

1

2

3 **Understanding geopolимер binder-aggregate interfacial
4 characteristics at molecular level**

5 Ming-Feng Kai and Jian-Guo Dai*

6

7

8

9

10

11

12

13

14

15

16

17 1. Post-doctoral Fellow, Department of Civil and Environmental Engineering, The Hong Kong
18 Polytechnic University, Hong Kong, Email: mingfeng.kai@polyu.edu.hk, ORCID: [0000-0002-7626-2328](https://orcid.org/0000-0002-7626-2328)

20 2. Professor (Corresponding author), Department of Civil and Environmental Engineering,
21 The Hong Kong Polytechnic University, Hong Kong, Email: cejgdai@polyu.edu.hk,
22 ORCID: [0000-0001-9904-7914](https://orcid.org/0000-0001-9904-7914)

23

24

25

26

27

28 **Abstract**

29 The interfacial characteristics of geopolymers binder to aggregate composites are poorly
30 understood, especially at molecular level. Herein, molecular models are developed to study, for
31 the first time, the geopolymers-aggregate interface. Chemically, various forms of interfacial
32 bonding are characterized, including Al-O-Si bonding through condensation reactions, Na-O
33 and H-bonding. An atomic-level interfacial transition zone (ITZ) is identified, attributed to the
34 concentration of -OH groups. Increasing the Si/Al ratio of geopolymers is found to decrease the
35 ITZ density, but have limited effect on the ITZ width. A heterogeneous diffusion characteristic
36 occurs in geopolymers, due to the weak interfacial interaction. Mechanically, lowering the Si/Al
37 ratio promotes the interfacial strength due to the stronger interfacial interaction and higher
38 cross-linking degree in geopolymers. Under loading the interfacial fracture undergoes three
39 stages: crack propagation, chain bridging (including aluminosilicate and ionic bridging) and
40 breakage. The above atomic-level findings may facilitate a better design of geopolymers
41 concrete in engineering.

42

43 **Keywords:** Chemical bonding; Interfacial transition zone; Heterogeneous diffusion
44 characteristic; Interfacial strength; Interfacial fracture

45 **1. Introduction**[U1]

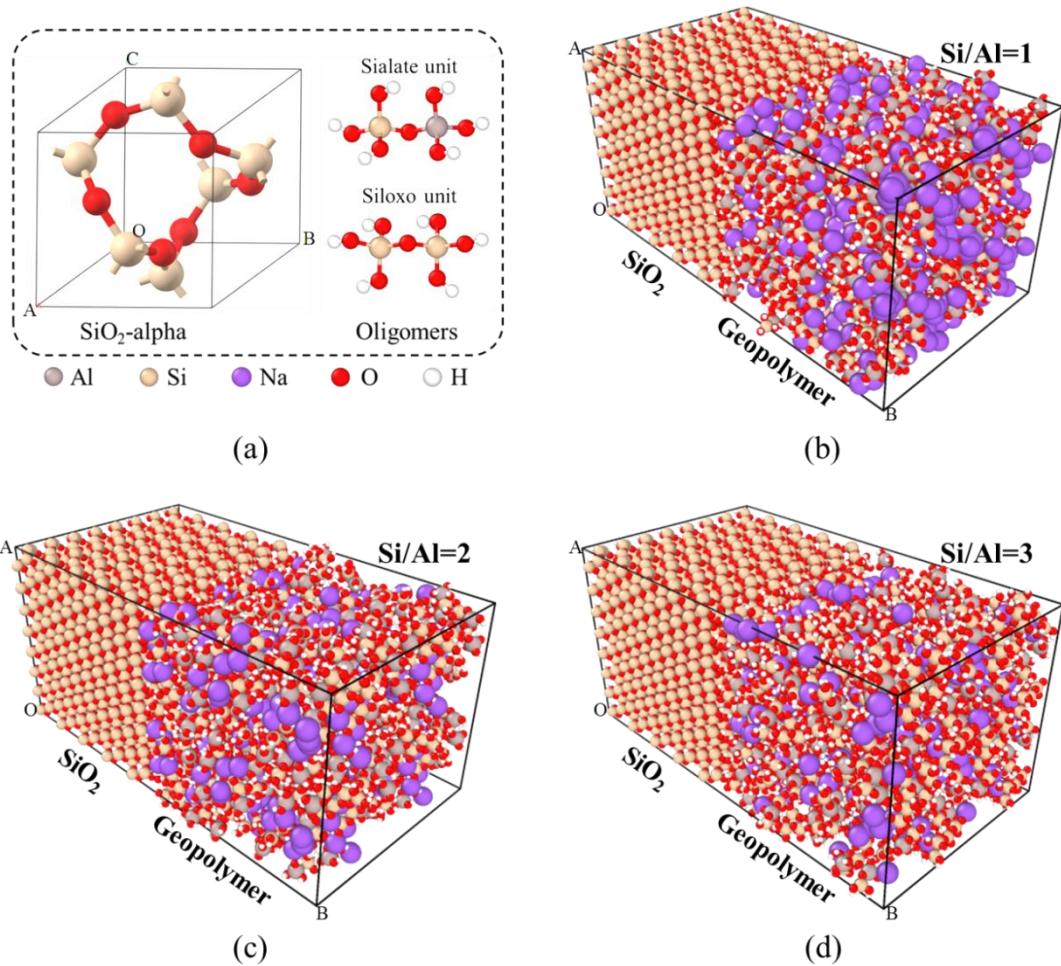
46 Cement industry is facing a huge challenge to meet the requirements of sustainable
47 development, as it contributes about 6–8% emissions of human-made CO₂ all over the world
48 [1-3]. Therefore, there is an urgent need to look for more environmentally friendly cement
49 binding materials for sustainable construction. As a kind of alkali-activated binder, geopolymers
50 has drawn considerable attention from both academia and industry as a promising sustainable
51 alternative to ordinary Portland cement (OPC). A wide variety of source materials can be used
52 for the geopolymers synthesis, including metakaolin, fly ash, calcined clay, furnace slag, mine
53 tailings [4-7]. Besides, biomass wastes such as rice husk ash and wood ash have been recycled
54 as the precursor materials [8-10]. The geopolymers synthesis generally involves two processes:
55 (1) the dissolution of source materials composed of aluminosilicate minerals under the alkali
56 environment (e.g. NaOH and KOH solutions) to release small molecules known as oligomers;
57 and (2) the condensation of these aluminosilicate oligomers into a covalently bonded network
58 [11-13]. According to the Si/Al atomic ratio, geopolymers comprises different chemical units: -
59 Si-O-Si-O- (siloxo), -Si-O-Al-O- (sialate), -Si-O-Al-O-Si-O- (sialate-siloxo) and -Si-O-Al-O-
60 Si-O-Si-O- (sialate-disiloxo). Besides environmental advantages (e.g. over 80% reduction in
61 CO₂ emission and reuse of industrial waste [8, 14]), geopolymers pose tunable strength at both
62 early and later ages, better durability, improved acid resistance, and higher temperature/fire
63 resistance [15]. Because of these advantageous properties, geopolymers concrete has a good
64 potential to become an alternative to conventional OPC concrete in many applications and is
65 especially attractive to some special fields that demand extreme properties, such as
66 toxic/radioactive waste encapsulation, fire resistant coatings and sewage pipes [16-18].

67 An important issue for geopolymers concrete is to understand the interfacial behavior (both
68 chemically and physically) between the geopolymers binder and the aggregates. In recent years,
69 a few experimental studies have been carried out to characterize the interfacial microstructure
70 and the binding behaviors in geopolymers concrete. Sarker et al. [19] and Peng et al. [20]
71 reported that geopolymers concrete shows a higher tensile strength than OPC concrete given the
72 same compressive strength, originating from the stronger bond strength at the interface between

73 the geopolymers binder and aggregates. Khan et al. [21] proposed that the incorporation of CaO
74 and MgO into the geopolymers results in a stronger bond between the geopolymers matrix and
75 the aggregates. Pacheco-Torgal et al. [12] employed schist sand, granite and limestone as the
76 aggregates and detected the interfacial microstructures in geopolymers concrete. In contrast with
77 the typical porous interfacial transition zone (ITZ) of cement mixtures, a very dense and
78 uniform ITZ was observed independent of the aggregate type, which is likely due to the better
79 chemical interaction between the paste and aggregates. Also, the existence of ITZ in
80 geopolymers concrete was confirmed by Khan et al. [21], Demie et al. [22], Sarker et al. [19],
81 and Embong et al. [23]. However, some researchers claimed that no obvious ITZ was identified
82 in geopolymers concrete, as there is no apparent difference between the bulk geopolymers matrix
83 and microstructures of the ITZ [24-27]. Despite all of these existing efforts, the interfacial
84 chemical structure of geopolymers concrete remains elusive because current experimental
85 techniques (e.g. scanning electron microscopy, X-ray diffraction, energy-dispersive X-ray
86 spectroscopy, Fourier transform infrared spectroscopy, nuclear magnetic resonance) can neither
87 provide insights into the geopolymersization process at molecular level nor qualitatively identify
88 the chemical composition of the geopolymers binder at the interface [28-30].

89 Molecular dynamics (MD), bypassing the experimental difficulties, could contribute a
90 deep insight into the chemical and physical basis of materials at molecular level [31-33].
91 Previously, Lolli et al. [34] developed geopolymers atomic models based on a defective crystal
92 structure to describe the geopolymersization product of sodium silicate-activated metakaolin.
93 Zhang et al. [28] carried out, perhaps for the first time, a reactive MD simulation of the
94 polymerization process of aluminosilicates for geopolymers synthesis, which produced realistic
95 geopolymers models comparable to experimentally synthesized geopolymers. Following this
96 method, Zhang et al. [35, 36] developed geopolymers models to study the chemical interactions
97 between active geopolymers and nano-materials. Up to now, the MD tool has been widely
98 applied to study the interfacial properties in various composite systems. For example, MD
99 simulation reveals that the interfacial bonding between asphalt and aggregate is strongly
100 dependent on the types of chemical compounds and functional groups (e.g. saturates, aromatics,

101 resins, and asphaltenes) in the asphalt binder [37-41], and the interfacial failure is affected by
102 many factors, such as moisture content [39, 40, 42, 43], air void [44, 45], loading rate [44, 45],
103 aging [40, 41] and temperature [38, 44-46]. Besides, the MD tool has been used to study the
104 interfacial properties of many other composites, such as water-silica [47], water-metal [48],
105 polymer-silica [49], polymer-metal [50], coating-metal [51] and solution-mineral [52].
106 [U2] These studies facilitated a better understanding of the physics and chemistry at the interfaces,
107 which are usually not accessible experimentally. To the best of the authors' knowledge, however,
108 there is still no atomic-level study on the interfacial characteristics of geopolymers concrete
109 system, especially considering the formation of the interfacial chemical structure and the effect
110 of the Si/Al ratios of geopolymers binder.


111 In this study, a reactive MD simulation is carried out, for the first time, to provide atomic-
112 level insights into the interfacial characteristics between geopolymers binder and silica
113 aggregates, considering three typical Si/Al ratios of geopolymers. First, the potential chemical
114 reactions between geopolymers and aggregate are explored and the effect of Si/Al ratios is
115 discussed, following which the interfacial structure is characterized to find how the ITZ exists
116 and the corresponding features. Then, atom trajectories are recorded to analyze the diffusion
117 behavior of geopolymers onto the aggregate surface. Mechanically, the interfacial strength is
118 tested using a strain constant method and the full-range fracture process is captured.

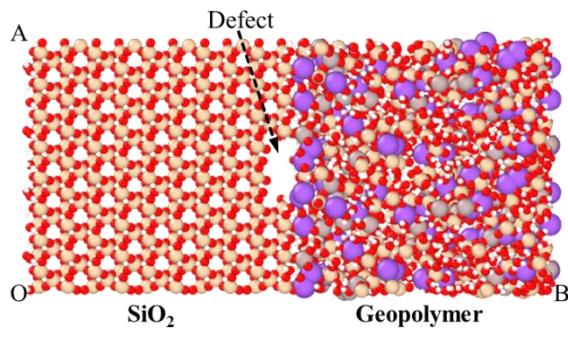
119 **2. Simulation Method**

120 **2.1 Model establishment**

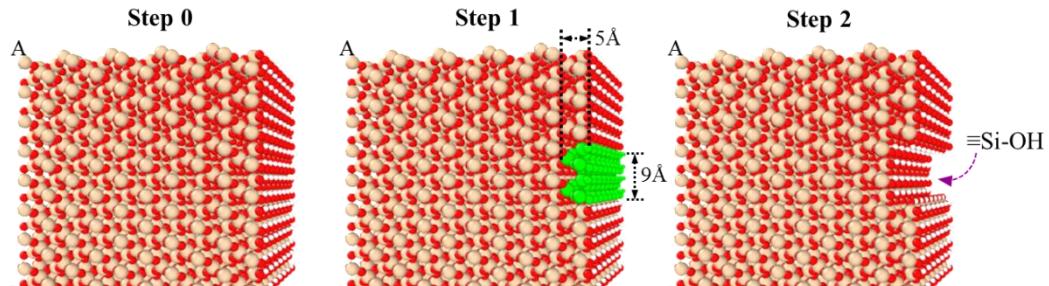
121 Considering the main chemical components in aggregates are sand, granite, quartz, and
122 basalt, a silica (SiO_2 -alpha) unit is often selected to build a representative aggregate model [43,
123 44, 53]. The initial silica model is a monoclinic cell with a size of $a = 4.91 \text{ \AA}$, $b = 4.91 \text{ \AA}$, $c =$
124 5.41 \AA ($\alpha = 90^\circ$, $\beta = 90^\circ$, $\gamma = 120^\circ$), as shown in Fig. 1(a). To begin with, a $(8 \times 10 \times 8)$ supercell
125 of silica is transformed into an orthorhombic configuration with a size of $39.30 \text{ \AA} \times 42.55 \text{ \AA} \times$
126 43.24 \AA [37]. To construct the geopolymers binder-aggregate interface, an exposed silica
127 surface is created by introducing a 40 \AA vacuum gap perpendicular to the (010) direction.
128 Hydroxyl groups are assigned on the surface to represent its hydrated form ($\equiv\text{Si-OH}$), which is

129 in line with the experimental finding that one hydroxyl group per one surface Si is the most
 130 probable form on the fully hydroxylated silica surface [54, 55]. As the polymerization of
 131 geopolymers starts with oligomers, 440 sialate oligomers (Fig. 1 a) together with the same
 132 number of Na atoms (for charge balance) are packed into the vacuum region as the initial
 133 geopolymers model with a Si/Al = 1, as shown in Fig. 1(b). To design the geopolymers models
 134 with different Si/Al ratios, partial sialate units in geopolymers are replaced by siloxo units (Fig.
 135 1a) to achieve Si/Al ratios of 2 and 3 [36, 56], as shown in Fig. 1(c) and (d). The number of Na
 136 atoms in the geopolymers system is consistent with that of Al atoms. As a result, three
 137 geopolymers-aggregate composite models are prepared with three typical Si/Al ratios.

138
 139 Fig. 1 (a) Initial atomic models for fabricating silica aggregate and geopolymers: SiO_2 -alpha unit cell, sialate
 140 and siloxo oligomers (Here we use ball-and-stick models to show the connection between atoms); (b-d) a
 141 perspective view of geopolymers-aggregate composite models with typical Si/Al ratios of 1, 2 and 3 (Here


142 we use CPK models, also known as “space-filling model”, to show the atoms whose radii are proportional
143 to the radii of the atoms).

144 **2.2 Simulation procedure**


145 First, the initial composite models are geometry-optimized based on the conjugate
146 gradient (CG) algorithm with a convergence criterion of 10^{-6} kcal/mol, followed by a dynamic
147 equilibration for 300 ps under the isothermal-isobaric (NPT) ensemble with a temperature of
148 300 K (room temperature) and a pressure of 101 kPa (atmospheric pressure). The Nose-Hoover
149 thermostat and barostat algorithms are applied for the temperature and pressure control [57,
150 58]. Then, these composite systems are thermally treated at 1500 K for 300 ps under the
151 canonical (NVT) ensemble to accelerate the polymerization of the oligomers, which is a
152 common method to produce a realistic cross-linked geopolymers model [28, 35, 36, 56]. During
153 the thermal treatment, water molecules produced by the polymerization are removed in case of
154 the formation of voids in geopolymers caused by the agglomeration of too many water
155 molecules as the capillary water [28, 35, 56, 59]. These models are gradually cooled down to
156 300 K with a cooling rate of 5 K/ps. Subsequently, the Grand Canonical Monte Carlo (GCMC)
157 method is performed to absorb water molecules into the dry cross-linked geopolymers models
158 as the physically absorbed water. The final water contents are 7.9 %, 8.0 % and 8.1 % by weight
159 of geopolymers with Si/Al ratios of 1, 2 and 3 respectively, which are close to the reported
160 values (7.9 % in Ref. [36] and 7.64 % in Ref. [60]). After the GCMC process, a further dynamic
161 equilibrium is carried out for another 300 ps under the NPT ensemble with a temperature of
162 300 K and pressure of 101 kPa.

163 A structural analysis of these final geopolymers-aggregate composite models is carried out
164 to explore the interfacial molecular structures and the effect of Si/Al ratio. In order to study the
165 atom dynamics of different components, including aluminosilicates, Na^+ ions and water
166 molecules, in geopolymers matrices, the trajectory information of atoms is recorded by further
167 equilibrating these systems for 500 ps under the NVT ensemble at 300 K. To investigate the
168 interfacial mechanical properties and fracture process of these composites, a uniaxial tensile
169 loading is applied on the composite models along the y-direction (perpendicular to the

170 interfaces), before which a small defect with a size of 9 Å width and 5 Å thickness is introduced
 171 on the silica surface to induce the interfacial defect propagation, as shown in Fig. 2(a). Fig. 2(b)
 172 shows a schematic view of the defect design by deleting some atoms on the surface of silica
 173 aggregate and assigning hydroxyl groups on the newly exposed surface. The uniaxial tensile
 174 loading is applied using a constant-strain method with a strain rate of 0.01%/ps, indicating that
 175 the model dimension along the y-direction changes linearly with time. The strain rate employed
 176 in this study has been widely suggested to measure the stress-strain curves of various inorganic
 177 systems in MD simulation. During the tensile loading, the NPT ensemble with a temperature
 178 of 300 K is implemented and the pressure is controlled at 101 kPa in x and z directions to take
 179 account of the Poisson effect.

(a) Side view of a composite model for tension

(b) A schematic view of the defect design on SiO_2 surface

180
 181 Fig. 2 (a) A side view of a composite model with a small defect designed for the tensile test along y direction;
 182 (b) A schematic view of the defect design on SiO_2 aggregate surface (Step 0: a defect-free SiO_2 surface; Step
 183 1: selection of the atoms within the middle region ($9 \text{ \AA} \times 5 \text{ \AA}$) in the xy plane, which are labeled with green
 184 color; Step 2: removal of green atoms and hydrogenation of new exposed O atoms for charge balance.

185 All the simulations are carried out using the Large-scale Atomic/Molecular Massively

186 Parallel Simulator (LAMMPS) software with a time step of 0.25 fs. Periodic boundary
187 conditions are applied to all directions of the composite systems during all the simulation
188 processes mentioned above. Therefore, both sides (perpendicular to the y-direction) of silica
189 aggregate can interact with geopolymers: one is in the middle, and the other is at the boundary.

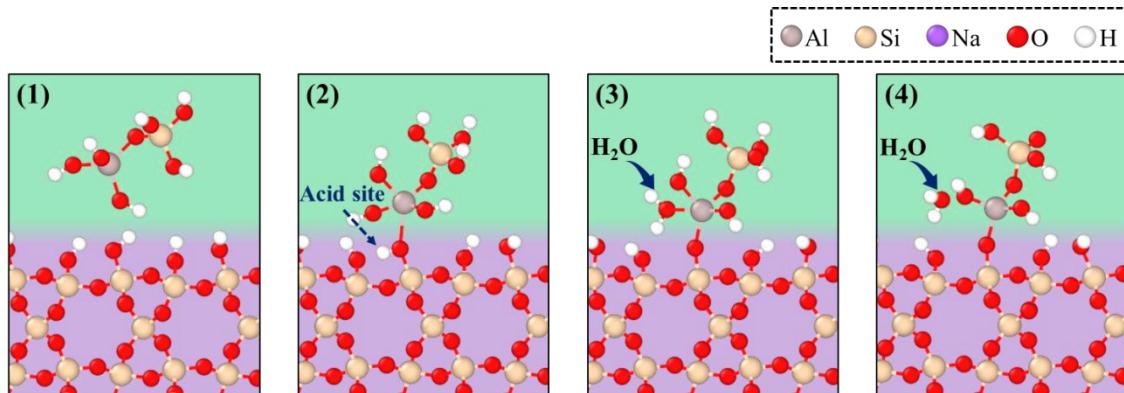
190 **2.3 Reactive force field**

191 In this study, the reactive force field (ReaxFF), developed by van Duin et al. [61] for use
192 in MD simulations, is employed to express both inter- and intra-molecular interactions. This
193 force field uses the distance-dependent bond order concept to describe the instantaneous
194 interactions between atoms, which allows for a smooth transition between the bonded states
195 (including single, double, or triple bonds) and un-bonded states. This strategy allows one to
196 simulate the chemical processes where the bond formation and dissociation are involved during
197 the dynamic evolution of a system. In general, the ReaxFF divides the system total energy
198 (E_{system}) into several partial contributions, as given below [62],

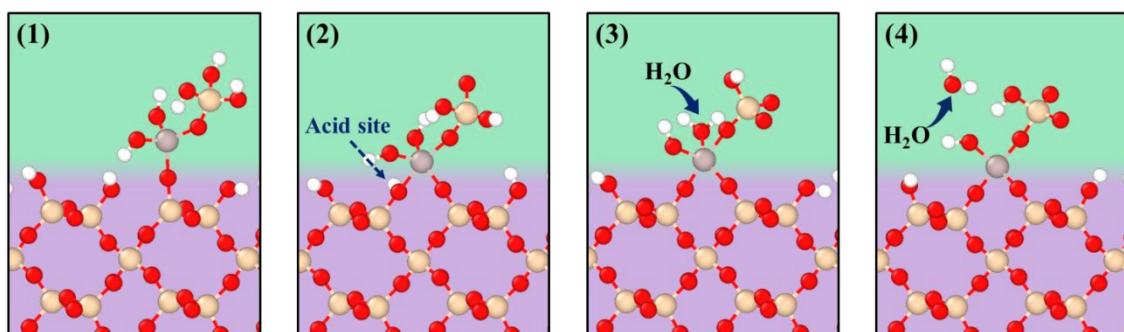
199
$$E_{Total} = E_{bond} + E_{over} + E_{under} + E_{val} + E_{tor} + E_{lp} + E_{H-bond} + E_{vdW} + E_{coul} \quad (1)$$

200 where E_{bond} is the two-body energies associated with bonded atoms; E_{over} and E_{under} are the
201 penalty energies preventing the atom over/under-coordination; E_{val} and E_{tor} are the energies
202 correlated with three-body valence angle strain and four-body torsional angle strain,
203 respectively; E_{lp} is the lone-pair energies based on the number of lone pairs around an atom;
204 E_{H-bond} is the hydrogen-bond (H-bond) energies; E_{vdW} and E_{coul} , are van der Waals and Coulomb
205 contributions calculated between all the atom pairs regardless of connectivity, and includes a
206 shielding parameter to avoid excessive repulsion at short distances. The atomic charges are
207 adjusted at each MD time step using the Charge equilibration (QEeq) scheme. More details
208 about these partial energy terms in ReaxFF can be found elsewhere [63].

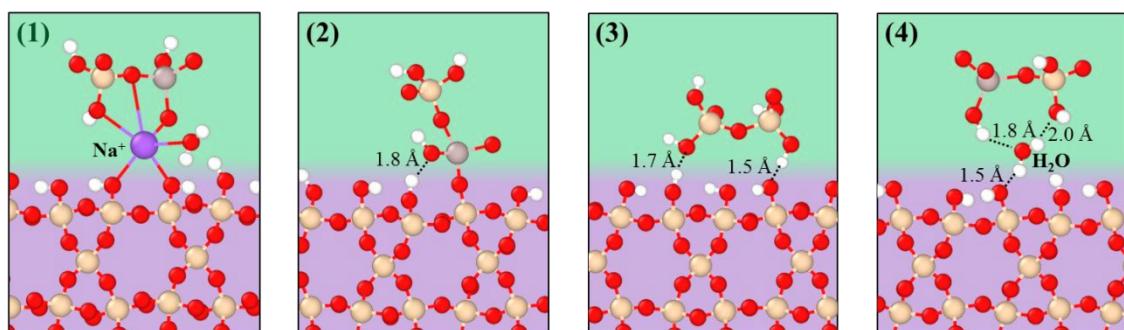
209 The ReaxFF parameters employed in this work were developed by the group of van Duin
210 [64]. These parameters have been fit to a large quantum mechanics (QM) training set containing
211 data of Na/Si/Al/O/H systems, via a single-parameter search optimization to minimize the error,


212 so that the ReaxFF MD simulation can retain accuracy nearly as great as that of QM
213 calculations [63]. Previously, these parameters have already been successfully applied to study
214 a variety of materials, such as silica [65, 66], geopolymer [35, 59], zeolite [64, 67], clay
215 minerals [68, 69], calcium silicate hydrates [70, 71], sodium aluminosilicate glass [72, 73].

216 **3. Results and Discussion**

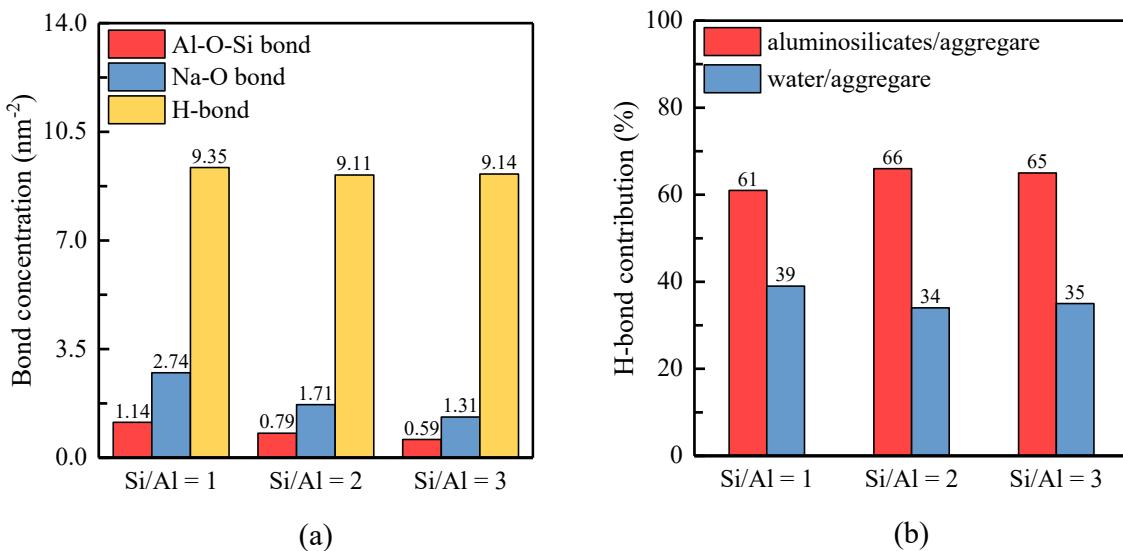

217 **3.1 Interfacial bonding and structure**

218 To understand the interfacial chemical structures, it is necessary to figure out the chemical
219 interaction between the geopolymer and the silica aggregate firstly. By observing the formation
220 process of the interfacial chemical structure, it is found that active aluminosilicate oligomers
221 can react with silica aggregate by typical condensation reactions, as illustrated in Fig. 3(a).
222 Initially, four-coordinated Al (Al[4]) in oligomers is coordinated with an oxygen atom in the
223 hydroxyl group exposed on the surface of the aggregate. At this intermediate state, Al[4] is
224 transformed into five-coordinated Al (Al[5]) and a Brønsted acid site (proton donor) is formed
225 [74]. Next, the Brønsted acid site donates the H^+ , which further binds with one adjacent OH^-
226 ion to produce a H_2O molecule coordinated with Al[5]. Finally, the H_2O molecule can escape
227 from Al[5] coordination and diffuse in geopolymer. At this state, Al[5] is transformed back
228 into Al[4]. As a result, an interfacial Al-O-Si bonding (type 1) is formed. It is also found that
229 $\equiv Al-OH$ groups in the oligomers chemically bonded with aggregate can further polymerize
230 with adjacent $\equiv Si-OH$ groups from the aggregate by the same condensation reaction
231 mechanism, resulting in a new type Al-O-Si bonding (type 2) between the geopolymer and the
232 aggregate, as illustrated in Fig. 3(b). Similarly, it is found that geopolymer can chemically bond
233 with various materials due to its activity, such as Al-O-Fe bonding with steel [75], Al-O-C
234 bonding with catechol in humic substances [76], and Al-O-Si bonding with Si-doped graphene
235 [62]. In addition, there exists ionic (Na-O) bonding and H-bonding that bridge the geopolymer
236 and the silica aggregate, as illustrated in Fig. 3(c). For the H-bonding, it can be formed between
237 $-OH$ groups in aluminosilicates and aggregate or formed by H_2O . In conclusion, there are
238 various forms of interfacial chemical bonding between geopolymer and silica aggregate,
239 including two types of Al-O-Si bonding through condensation reactions, Na-O ionic bonding


240 and H-bonding.

(a) Formation of interfacial Al-O-Si bonding (type 1)

(b) Formation of interfacial Al-O-Si bonding (type 2)


(c) Interfacial ionic bonding and H-bonding

241

242 Fig. 3 Snapshots of the interfacial chemical bonding between geopolymer and silica aggregate: (a) formation
243 of type 1 Al-O-Si bonding; (b) formation of type 2 Al-O-Si bonding; (c.1) Na-O ionic bonding and (c.2-4)
244 Multiform H-bonding.

245 To further understand the interfacial chemical structures, the concentrations of different
246 interfacial chemical bonds are calculated, which are defined as the number of chemical bonds
247 divided by the surface area of the aggregate, as shown in Fig. 4 (a). At the interfaces, the bond

248 concentration follows an order of Al-O-Si < Na-O < H-bond. The concentrations of interfacial
 249 Al-O-Si and Na-O bonds are 1.14 nm^{-2} and 2.74 nm^{-2} respectively for geopolymers ($\text{Si/Al} = 1$).
 250 With Si/Al ratio rising to 3, the interfacial bond concentrations for these two types of bonds
 251 decrease by nearly a half. However, the interfacial H-bond concentration is hardly affected by
 252 Si/Al ratio. As depicted in Fig. 3(c), the interfacial H-bonding can be formed by
 253 aluminosilicates and water with silica aggregate. To distinguish these two different H-bonding
 254 at the interface, the contributions to the H-bond from aluminosilicates and water with the silica
 255 aggregate is calculated, as shown in Fig. 4(b). The H-bond between aluminosilicates and
 256 aggregate contributes to 61%~66% of the total interfacial H-bonds while that between water
 257 and aggregate contributes to the remaining 34%~39% in various geopolymers-aggregate
 258 composites, indicating that the interfacial H-bonds mainly originate from the aluminosilicates
 259 on the aggregate surface.

260 (a) (b)
 261 Fig. 4 (a) The concentration of various interfacial chemical bonds (Al-O-Si, Na-O and H-bond) between
 262 geopolymers and silica aggregate; (b) the interfacial H-bond contribution (%) from aluminosilicates and water
 263 in geopolymers with silica aggregate.

264 It is well-known that geopolymers have a cross-linked aluminosilicate structure; as a result,
 265 the polymerization of the aluminosilicate oligomers is realized through a typical condensation
 266 reaction [28]. Fig. 5(a) shows a snapshot of the cross-linked geopolymers model built in this

study and its internal cross-linking between oligomers. The condensation reaction between $\equiv\text{Al-OH}$ and $\equiv\text{Si-OH}$ groups from oligomers results in the formation of Si-O-Al link between oligomers while the formation of Al-O-Al link is attributed to the condensation reaction between two $\equiv\text{Al-OH}$ groups. The bridging oxygen is usually called cross-linking sites [77, 78], which is marked with green in Fig. 5. It is also observed that partial $\text{Al}[4]$ in geopolymer is transformed into $\text{Al}[5]$, which is in line with the experimental analysis of geopolymer materials from ^{27}Al magic angle spinning nuclear magnetic resonance (MAS NMR) [79]. Fig. 5(b) depicts the cross-linking sites in geopolymer with various Si/Al ratios. Obviously, the increase in Si/Al ratios reduces the number of cross-linking sites from 659 to 375, indicating that the aluminosilicates in geopolymer are more highly cross-linked at lower Si/Al ratios, attributed to more active $\equiv\text{Al-OH}$ groups participating in the condensation reaction. Similarly, it was found that higher Al content in geopolymer can promote the polymerization process [28], in consistent with the present findings.

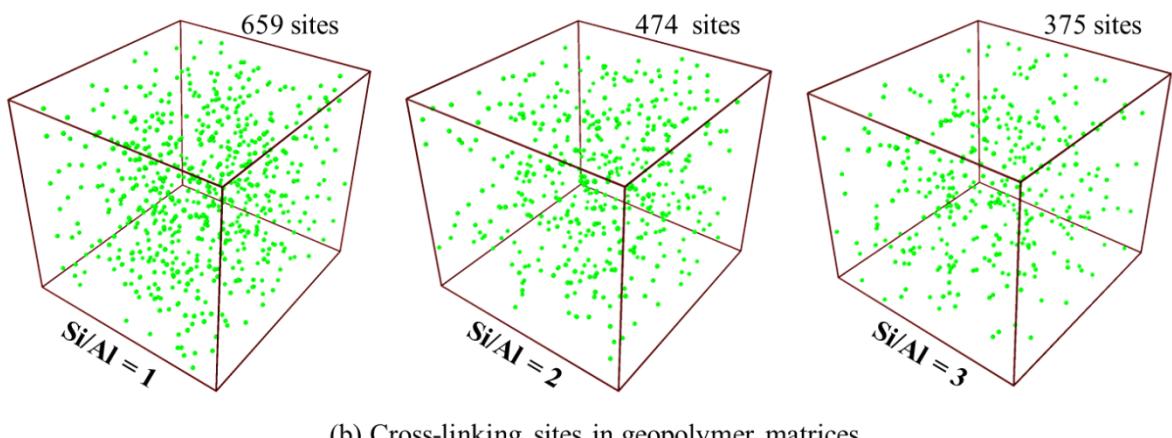
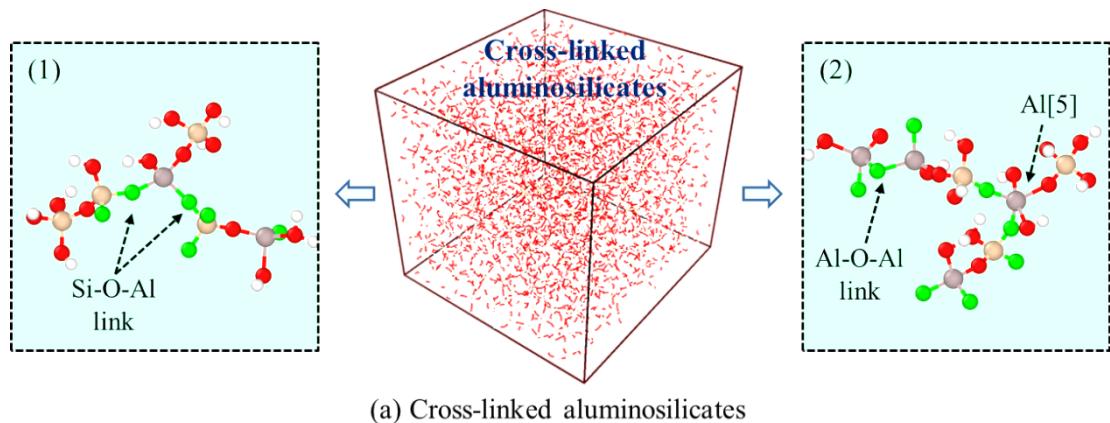
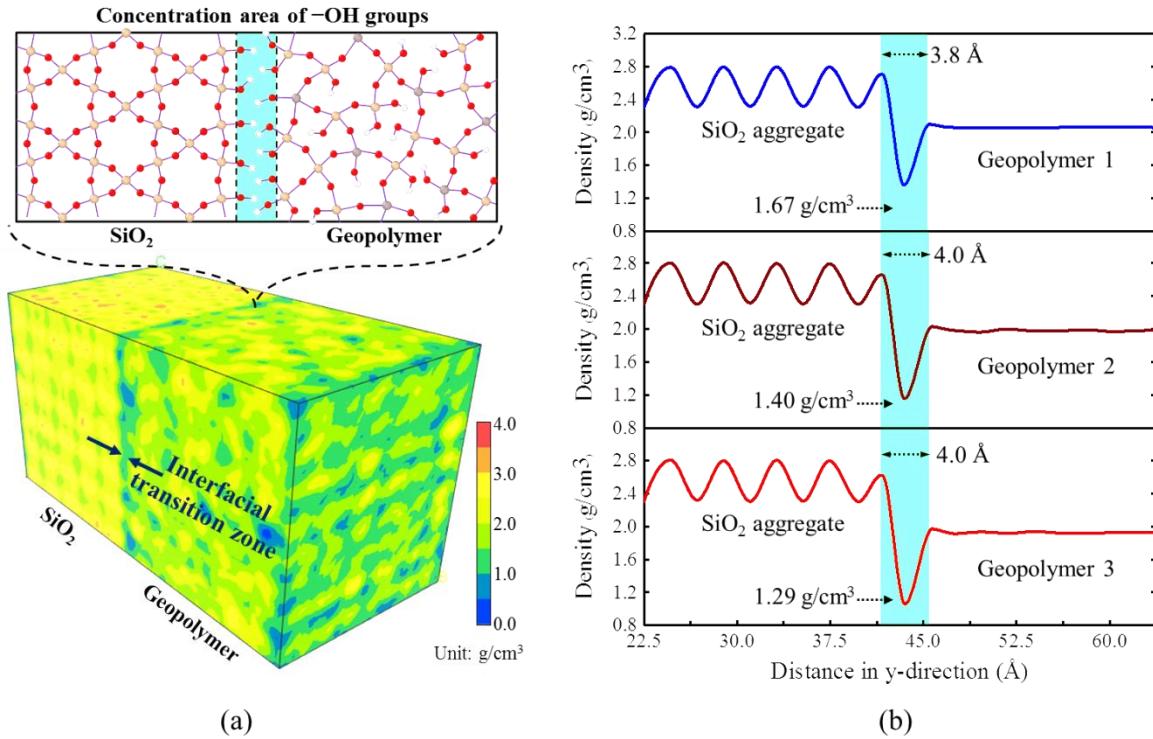




Fig. 5 (a) Snapshots of the cross-linked aluminosilicates in geopolymer ($\text{Si/Al} = 2$) model and its internal cross-links. (b) Cross-linking sites in geopolymer matrices for different Si/Al ratios.

283 linking between oligomers. The green balls represent the cross-linking sites (bridging oxygen atoms)
284 between oligomers; (b) snapshots of the cross-linking sites in geopolymers due to the polymerization of
285 oligomers in geopolymers with Si/Al ratios of 1, 2 and 3. The number of the cross-linking sites is 659, 474
286 and 375 respectively.

287 Next, the interfacial atomic structures of geopolymers-aggregate composites are
288 characterized. Fig. 6(a) presents a density field of one composite model with the Si/Al ratio of
289 3 for geopolymers. It can clearly be seen that there is a low density region at the middle of the
290 composite, which can be defined as an atomic-level “interfacial transition zone (ITZ)”. Please
291 note that the other ITZ at the boundary is not labeled where it is also an interface between
292 geopolymers and silica aggregate as periodic boundary conditions are used in this study. The
293 ITZ formation is attributed to the concentration of -OH groups from both geopolymers and
294 silica aggregate, as Fig. 3(c) and 4(a) prove that H-bonding is the major interfacial bonding
295 form. Interfacial H-bonding can generate a region with a density approaching the density of
296 water (1 g/cm³), which is an H-bonding system. Previously, the atomic-level ITZ with a low
297 density was observed at the interfaces of various composites, such as cement-polymer
298 composites [80], SiO₂-epoxy composites [81], and hydroxyl functionalized graphene-
299 geopolymers [62], which agrees with the present findings. To further characterize
300 the ITZ features of these composites and the effect of the Si/Al ratios of geopolymers, the atomic
301 density profile of the three composite models is plotted in Fig. 6(b) as a function of the distance
302 along the y-direction. The ITZ density of the composites is 1.67 g/cm³, 1.40 g/cm³ and 1.29
303 g/cm³ respectively, suggesting that the Si/Al ratio plays an important role in the ITZ density.
304 The decrease of ITZ density results from less Na and Al atoms concentrating on the surface of
305 the silica aggregate when the Si/Al ratio increases, as proved in Fig. 4(a). The ITZ widths for
306 the three composites are 3.8 Å, 4.0 Å and 4.0 Å, which shows a very limited increase (~ 5%)
307 with increasing the Si/Al ratio. This indicates that the ITZ width is mainly dependent on the
308 interfacial H-bonding while the concentration change of Na and Al atoms on the surface of
309 silica aggregate has a limited effect with increasing the Si/Al ratio. In conclusion, there is an
310 ITZ between the geopolymers and the silica aggregate and its density is highly correlated with

311 the Si/Al ratio of geopolymer. However, the ITZ width is not greatly affected such a ratio.

312

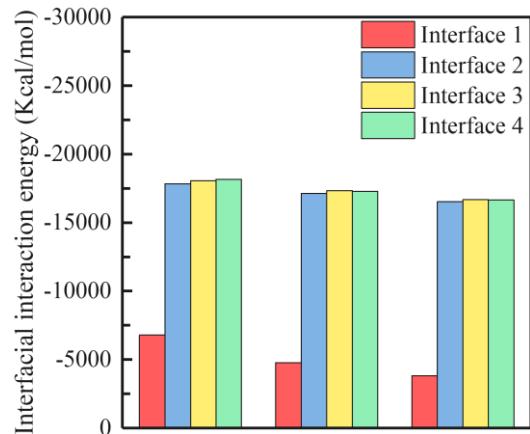
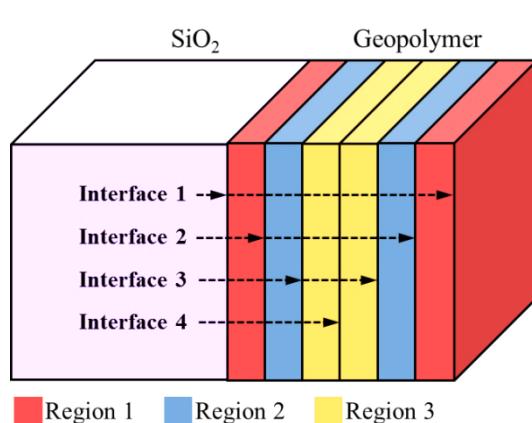
313 Fig. 6 (a) Density field of a geopolymer-aggregate composite model ($\text{Si}/\text{Al} = 3$ for geopolymer) and a
 314 schematic view of the concentration of $-\text{OH}$ groups at the interface based on the results from Fig. 4. Please
 315 note that the interfacial transition zone (ITZ) in the middle is labeled while the other one at the boundary is
 316 not labeled; (b) atomic density profiles of the three composites as a function of the distance along y distance
 317 with the Si/Al ratios of 1 (geopolymer 1), 2 (geopolymer 2) and 3 (geopolymer 3).

318 3.2 Diffusion behavior

319 The diffusion behavior in geopolymer binder, is related to a series of material
 320 characteristics, such as ion exchange ability [21], immobilization/leaching of alkali ions [35,
 321 56], self-healing process [46], and creep behaviors [82]. To assess the diffusion behavior of
 322 different components (aluminosilicates, Na^+ ions and water molecules) in geopolymer, the
 323 geopolymer matrices in the composites are first divided equally into 6 parts, as shown in Fig.
 324 7(a). In view of the symmetry of the composite models due to periodic boundary conditions,
 325 these parts can be classified into three regions. Then, the mean squared displacement (MSD),
 326 defined as an ensemble average of the deviation of the atom positions with respect to their

327 reference positions over time, of aluminosilicates, Na^+ ions and water molecules in these
 328 regions is calculated as a function of time by the following equation [32],

329

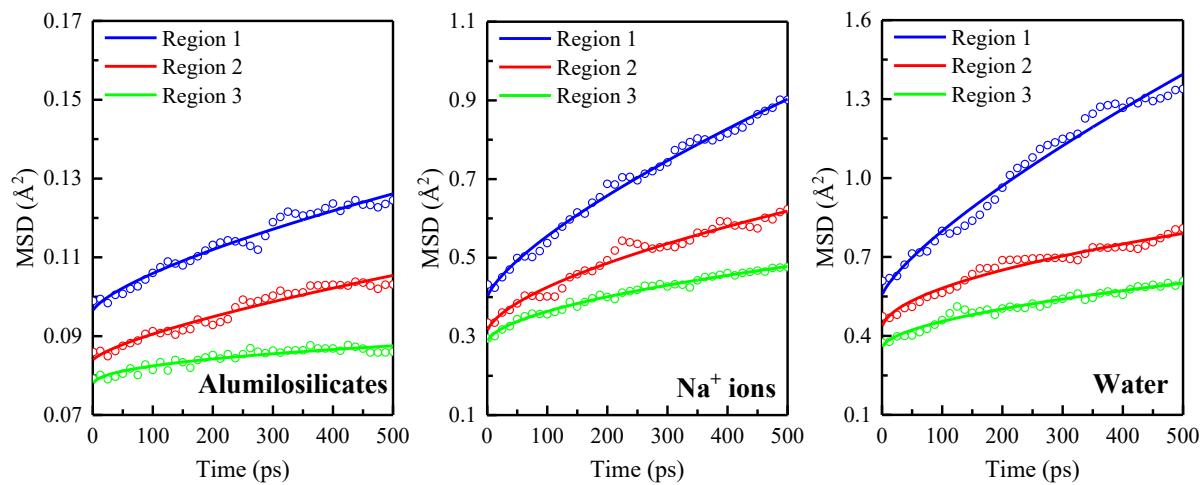


$$MSD(t) = \langle |\mathbf{r}(t) - \mathbf{r}_0|^2 \rangle = \frac{1}{N} \sum_{i=1}^N |\mathbf{r}_i(t) - \mathbf{r}_i(0)|^2 \quad (2)$$

330 where N is the number of atoms to be averaged; vector $\mathbf{r}_i(0)$ is the reference position of the
 331 i -th atom; and vector $\mathbf{r}_i(t)$ is the position of the i -th atom at time t . The MSD of
 332 aluminosilicates in geopolymer is represented by the MSD of Si and Al atoms [36, 83]. Based
 333 on the MSD calculation, the self-diffusion coefficients of different components in geopolymer
 334 are further computed by the following equation [32],

335

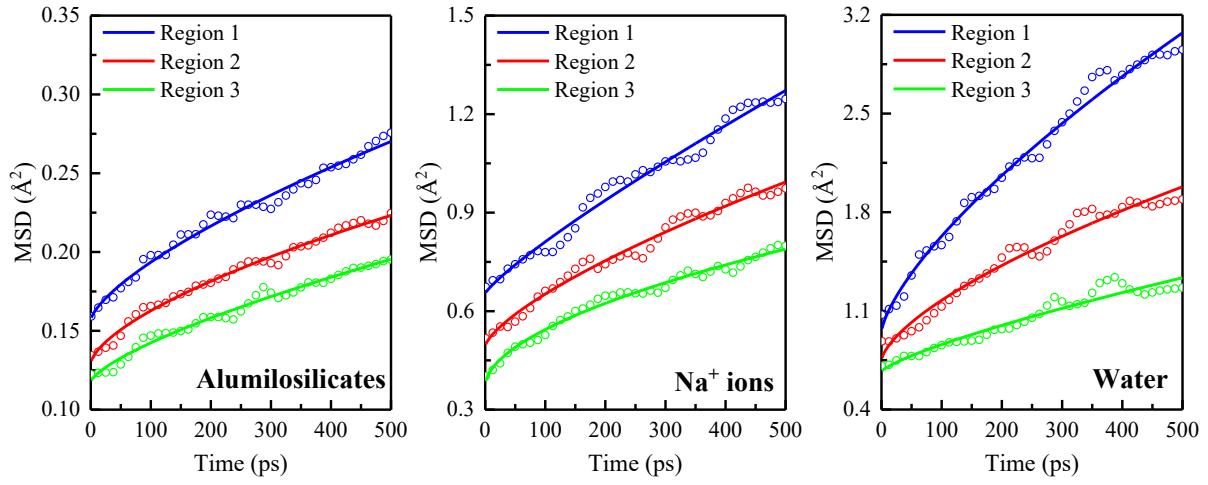
$$D = \frac{1}{6} \lim_{t \rightarrow \infty} \frac{MSD(t)}{t} \approx \frac{1}{6} \frac{MSD(t_1) - MSD(t_0)}{t_1 - t_0} \quad (3)$$

336 where t_1 and t_0 represent the final and initial computing time, respectively.


337

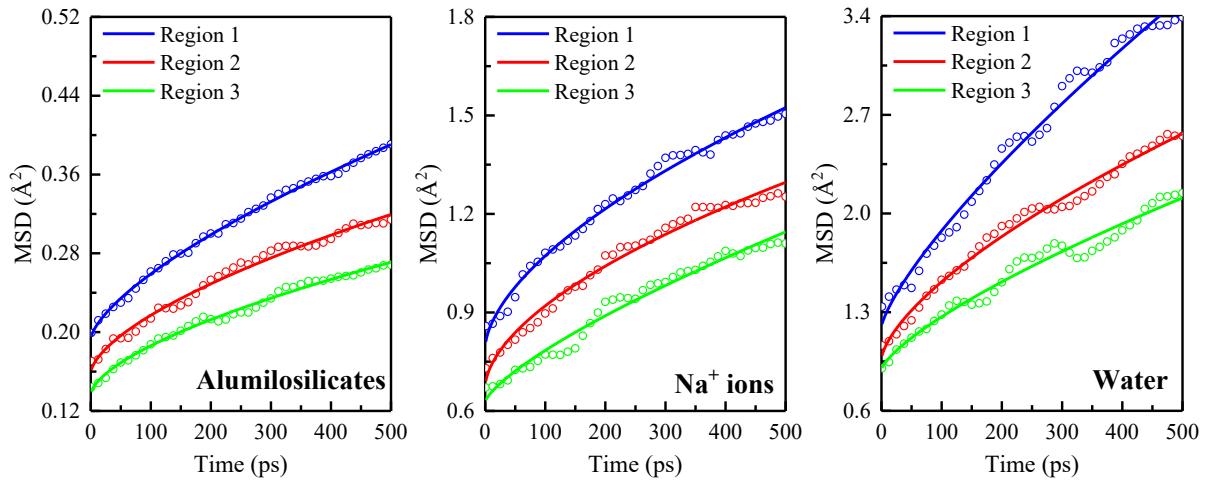
338 (a) (b)

339 Fig. 7 (a) Definition of three different regions and four interfaces of geopolymer (Interface 1 is between
 340 geopolymer and silica aggregate, and Interface 2, 3 4 are in the geopolymer matrices); (b) interfacial
 341 interaction between two adjacent regions.


342 Fig. 8 summarizes all the MSD curves of aluminosilicates, Na^+ ions and water molecules
 343 in different regions of three geopolymer matrices over a time scale of 500 ps. At the very

344 beginning (< 1 ps, the ballistic motion stage), there is a fast jump from 0 to a certain value for
 345 all MSD curves attributed to the inertia of atoms [36], since when MSD values increase slowly
 346 with time (the diffusion stage) [35]. All MSD curves suggest that all components, including
 347 aluminosilicates, Na^+ ions and water molecules, travel at different rates in different regions of
 348 geopolymers, following an order of Region 1 $>$ Region 2 $>$ Region 3. It states that the
 349 existence of an interface between geopolymers and silica aggregate can lead to a heterogeneous
 350 diffusion characteristic in geopolymers. It is also noted that different components in
 351 geopolymers exhibit different diffusion rates, following an order of aluminosilicates $<$
 352 Na^+ ions $<$ water molecules, regardless of Si/Al ratios. It originates from different chemical
 353 confinement on these components, because Si and Al atoms in the aluminosilicates of
 354 geopolymers are locally covalently bonded with their adjacent atoms (Covalent-bond
 355 confinement), and Na^+ ions interact with their adjacent atoms by ionic bonds (Ionic-bond
 356 confinement), while water molecules are weakly bonded with other atoms by H-bonds (H-bond
 357 confinement) [36]. Additionally, it can be observed that the slope of nearly all the MSD curves
 358 decreases slightly with time, which results from the inherent confinement from the solid gel
 359 [35].

360
 361

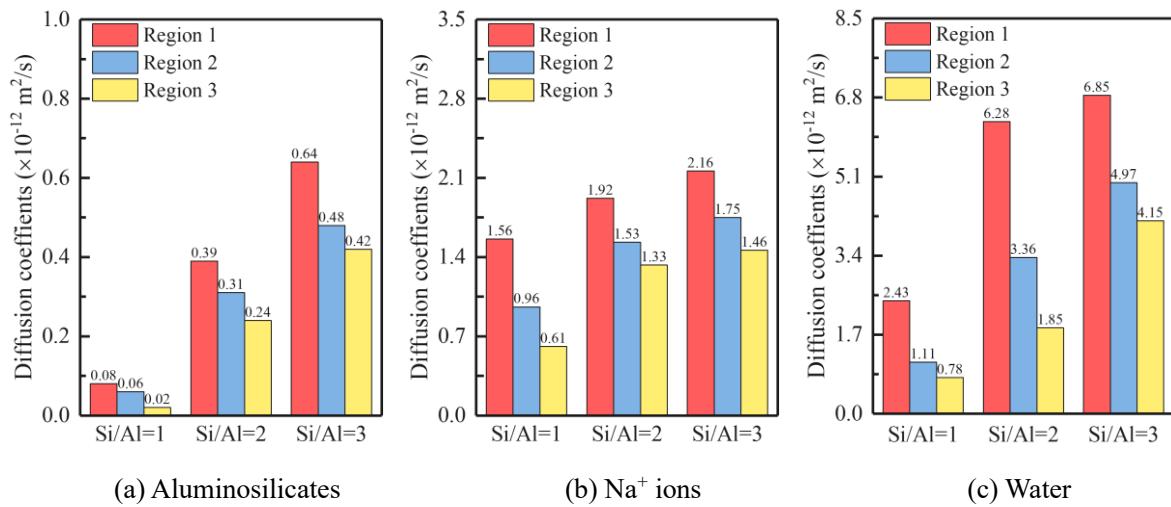

(a) Geopolymer (Si/Al = 1)

362

363

(b) Geopolymer (Si/Al = 2)

364


365

(c) Geopolymer (Si/Al = 3)

366 Fig. 8 The MSD curves of aluminosilicates, Na^+ ions and water molecules in different regions of
 367 geopolymers for three different composites: (a) geopolymer with $\text{Si}/\text{Al} = 1$; (b) geopolymer with $\text{Si}/\text{Al} = 2$;
 368 (c) geopolymer with $\text{Si}/\text{Al} = 3$. To show the overall trend of MSD curves with increase of the simulation
 369 time, the linear logarithmic transform function ($y = a + bx^c$) was used to fit all curves. Please note that
 370 the MSD values at $t = 0$ should be 0 and there is a marked rise from 0 to a certain value within a short period
 371 (< 1 ps, the ballistic motion stage), since when MSD values increase slowly with time (the diffusion stage).
 372 Please note we used different y-axis ranges in these figures.

373 Fig. 9 summarizes all the self-diffusion coefficients of aluminosilicates, Na^+ ions and
 374 water molecules in different regions of geopolymer matrices. It is clearly evident that the self-
 375 diffusion coefficients of all components are highly affected with the Si/Al ratio of geopolymer

376 matrices. For example, the increase in Si/Al ratio from 1 to 3 leads to 8.0 times (from 0.08×10^{-12} to $0.64 \times 10^{-12} \text{ m}^2/\text{s}$), 1.4 times (from 1.56×10^{-12} to $2.16 \times 10^{-12} \text{ m}^2/\text{s}$) and 2.8 times (from 2.43×10^{-12} to $6.85 \times 10^{-12} \text{ m}^2/\text{s}$) of increase of the self-diffusion coefficients of aluminosilicates, 377 Na^+ ions and water molecules in Region 1, respectively. Overall, the self-diffusion coefficients 378 of all components in Region 1 obviously exhibit much higher values compared to those in 379 Region 2 and 3, indicating that the diffusion of the components in geopolymer is affected more 380 by the interface between geopolymer and silica aggregate when they are closer to this interface. 381

383 Fig. 9 Summary of the diffusion coefficients of (a) aluminosilicates, (b) Na^+ ions and (c) water in different 384 regions of geopolymers with Si/Al ratios of 1, 2 and 3 for three different composites. Please note we used 385 different y-axis ranges in these figures.

386 To explain the heterogeneous diffusion characteristics in the geopolymer matrices of the 387 composites and the effect of Si/Al ratio, the interfacial interaction energy between geopolymer 388 and aggregate (Interface 1) and the internal interaction of geopolymer (Interface 2, 3 and 4) are 389 calculated by the following equation to reveal the confinement in different locations of the 390 composites,

391
$$E_{Interface} = E_{Composite} - E_{Left} - E_{Right} \quad (4)$$

392 where $E_{Composite}$ is the total potential energy of a composite system, E_{left} is the potential 393 energy of the left region of the interface and E_{Right} is the potential energy of the right region

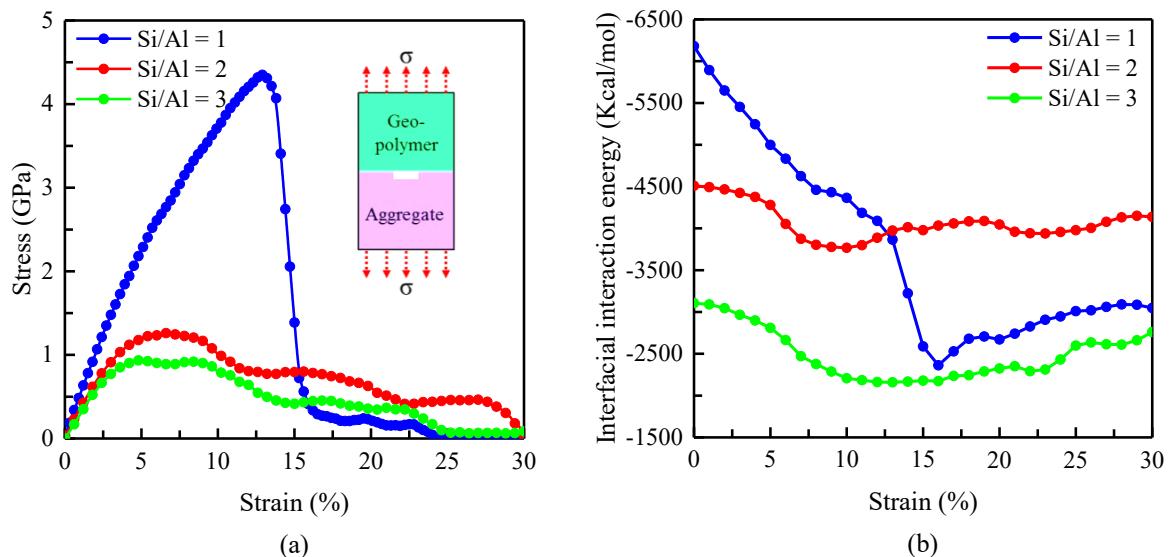
396 of the interface. The lower interfacial energy corresponds to the stronger interfacial interaction
397 and thus the stronger confinement. The results are recorded in Fig. 7(b). It is obvious that the
398 interfacial interaction energy at Interface 1 is much higher than those at Interface 2, 3 and 4 for
399 all three composites, while there is no notable difference among the interfacial interaction
400 energy at Interfaces 2, 3 and 4. This states that the confinement at the interface (Interface 1)
401 between geopolymer and aggregate is much weaker than the internal confinement within
402 geopolymer while the internal confinement within geopolymer keeps invariant in different
403 locations (Interfaces 2, 3 and 4). Therefore, it can be concluded that the weak interfacial
404 interaction between geopolymer and aggregate is the cause of the heterogeneous diffusion
405 characteristics in the geopolymer matrices of the composites. Additionally, Fig. 7(b) shows that
406 the interfacial interaction energy increases from -6787 Kcal/mol to -3827 Kcal/mol with the
407 Si/Al ratio ranging from 1 to 3, indicating the interfacial interaction is weakened by increasing
408 the Si/Al ratio, in line with the results that less Al-O-Si and Na-O bonds are formed at the
409 interface (Fig. 4). That is to say, the interfacial confinement between geopolymer and aggregate
410 becomes weaker in case of higher Si/Al ratios, which can be one reason why all components
411 in geopolymer diffuse in a faster rate at higher Si/Al ratios. Another reason is that the increase
412 of Si/Al ratio can decrease the cross-linking degree in geopolymer (Fig. 5), which leads to the
413 weakened confinement between atoms within geopolymer according to the rigid theory and
414 thus promotes the diffusion rate [36, 81, 84, 85].

415 In conclusion, geopolymer exhibits a heterogeneous diffusion characteristic as its
416 components diffuse at a faster rate at a distance closer to the interface between geopolymer and
417 silica aggregate, resulting from the weak interfacial interaction compared with its internal
418 interaction. The diffusion rate of different components in geopolymer follows an order of
419 aluminosilicates < Na^+ ions < water molecules. Furthermore, the higher Si/Al ratio can cause
420 a faster diffusion of all components in geopolymer, originating from the weakened interfacial
421 interaction and decreased cross-linking degree in geopolymer.

422 **3.3 Mechanical/fracture properties**

423 The interfacial mechanical properties between geopolymer and aggregate are one of the

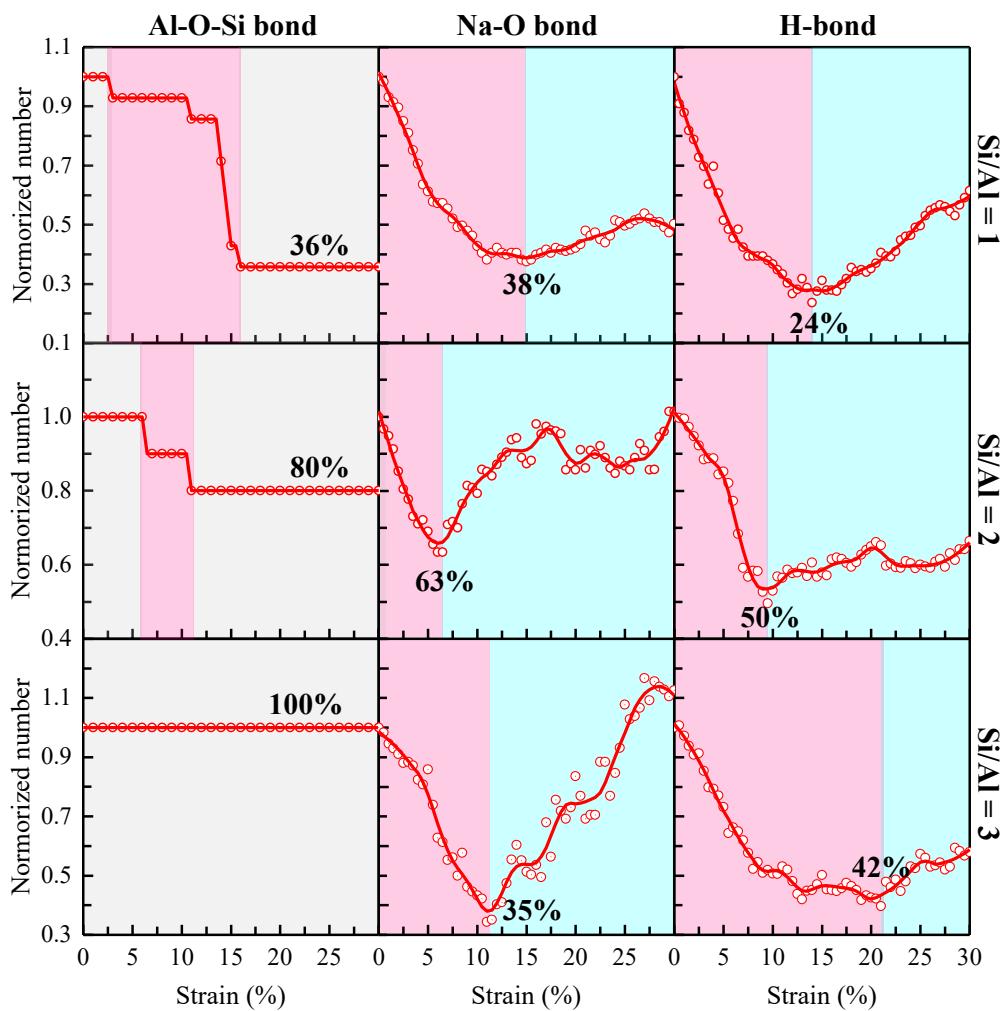
424 most noteworthy features that play a decisive role in the material performance of geopolymers
 425 concrete [5, 29]. Therefore, a series of tension tests on geopolymers-aggregate composites with
 426 a defect at the interface is carried out to investigate the interfacial strength and fracture process.
 427 The tensile stress (P_y) is calculated using the following equation during the tensile process [35],


$$428 \quad P_y = \frac{\sum_k^N m_k v_{ky} v_{ky}}{V} + \frac{\sum_k^{N'} r_{ky} f_{ky}}{V} \quad (5)$$

429 where N is the number of atoms in the simulation box; N' denotes the number of atoms in
 430 the simulation box and periodic image atoms outside the central box; v_{ky} , r_{ky} and f_{ky}
 431 denote the component in the y-direction of the velocity and position of k th atom, and the force
 432 exerted on the k th atom; m_k is the mass of the k th atom; and V is the volume of the
 433 simulation box.

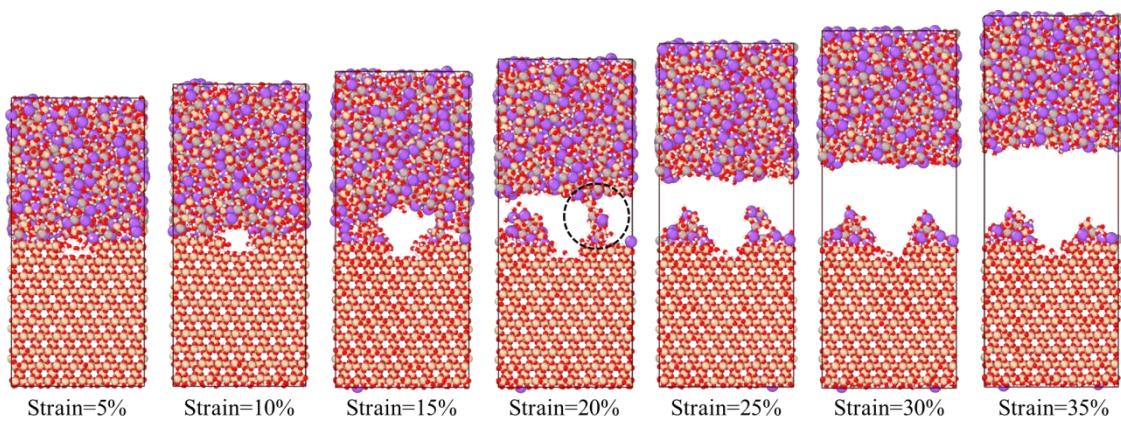
434 Fig. 10 (a) exhibits the stress-strain curves of the three geopolymers-aggregate composites.
 435 The tensile strength (the peak stress) of the three composites is 4.3 GPa, 1.3 GPa and 0.9 GPa
 436 with Si/Al ratio of 1, 2 and 3, respectively. The Young's modulus, determined by calculating
 437 the initial slope ratios of the stress-strain curves with the strain ranging from 0.0% to 2.0% [71],
 438 is 49.2 GPa, 31.9 GPa and 28.2 GPa for the three composites, respectively. The results indicate
 439 that the interfacial strength is weakened by increasing Si/Al ratios. To assess the variation of
 440 the interfacial interaction between geopolymers and aggregate during the tensile test, the
 441 interfacial interaction energy is calculated based on Eq. (4) and the results are presented in Fig.
 442 10 (b). The initial interfacial interaction energy of the three composites is -6190 Kcal/mol, -
 443 4502 Kcal/mol and -3103 Kcal/mol, because of the less Al-O-Si covalent bond and Na-O ionic
 444 bonds formed at the interface when the Si/Al ratio increases, as stated previously. That is why
 445 a lower Si/Al ratio is more beneficial for the interfacial strength. Similarly, it is widely reported
 446 that the interfacial covalent bonding can promote the interfacial stress transfer and thus the
 447 interfacial bond strength [36, 62, 81, 86, 87], which is in line with the present study because
 448 the concentration of Al-O-Si bonds at the interface is decreased by increasing Si/Al ratios.
 449 However, the strongest interface between geopolymers (Si/Al = 1) and aggregate involves the

450 fastest loss of the interfacial interaction during the tensile process with a maximum loss of ~
451 61% at strain = 16%, while the interfacial interaction energy of the composites with the Si/Al
452 ratios of 2 and 3 increases slowly during the tensile process with a maximum loss of ~ 18% at
453 strain = 10% and ~ 33% at strain = 13%, respectively. In addition, there is a recovery stage of
454 the interfacial interaction for all three composites during the tensile process, as revealed from
455 Fig. 10(b). The results indicate that the variation of the interfacial interaction during the tensile
456 process undergoes two stages: the loss stage and recovery stage, and the loss of the interfacial
457 interaction for the three composites follows an order of Si/Al = 1 > Si/Al = 3 > Si/Al = 2.

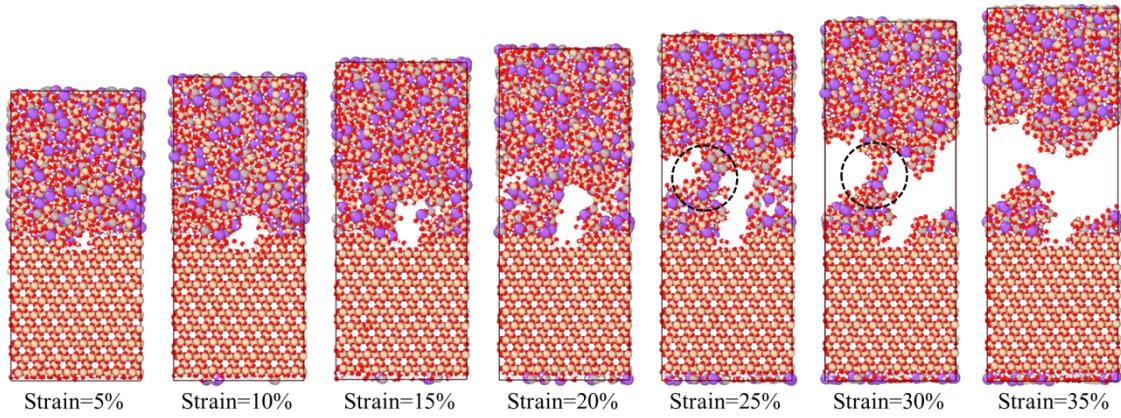

458

459
460 Fig. 10 (a) Tensile stress-strain curves for the geopolymer-aggregate composites with various Si/Al ratios
461 for geopolymer during the tensile process along y direction; (b) the variations of the interfacial interaction
462 energy for the geopolymer-aggregate composites during the tensile process along y direction.

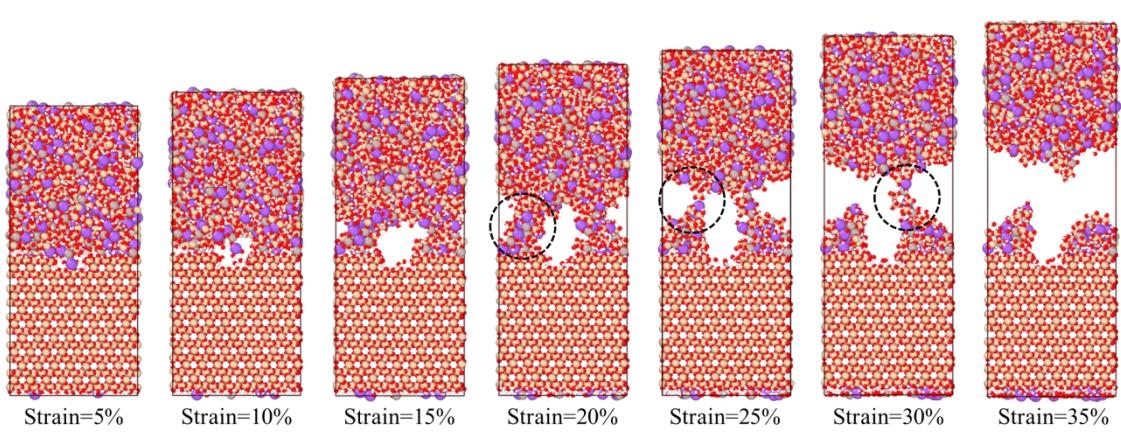
463 To figure out the interfacial fracture process of geopolymer-aggregate composites, the
464 interfacial chemical bonds, including Al-O-Si, Na-O, and H-bonds, are recorded for the three
465 composites with various Si/Al ratios during the tensile process, as presented in Fig. 11. For the
466 interfacial Al-O-Si bonds, there are 64% and 20% bond breakage for the composites with Si/Al
467 ratios of 1 and 2 during the tensile process, while there is no bond breakage for the composite
468 with the Si/Al ratio of 3, indicating that the interfacial Al-O-Si bonds are more likely to be


469 broken at lower Si/Al ratios. In addition, no recovery of Al-O-Si bonds is found after the bond
 470 breakage. For the interfacial Na-O and H-bonds, the bond number decreases with increasing
 471 tensile strain at the initial stage. However, a recovery of Na-O and H-bonds is observed at the
 472 interface for all composites at the later stages. Therefore, it can be concluded that the loss stage
 473 of the interfacial interaction (Fig. 10 b) originates from the breakage of Al-O-Si, Na-O, and H-
 474 bonds at the interface, while the recovery stage is attributed to the recovery of Na-O and H-
 475 bonds at the interface. The composite (Si/Al = 1) involves the maximum loss of the interfacial
 476 interaction compared with the other two composites due to the fastest breakage of interfacial
 477 bonds, while the composite (Si/Al = 2) has the minimum loss of the interfacial interaction
 478 because it has the least breakage of Na-O and H-bonds.

479
 480 Fig. 11 The record (normalized number) of the interfacial chemical bonds, including Al-O-Si, Na-O, and H-
 481 bonds, for the geopolymers-aggregate composites with Si/Al ratios of 1, 2 and 3. The invariable region is


482 labeled in grey color; the descending region is labeled in pink color; and the ascending region is labeled in
483 blue color.

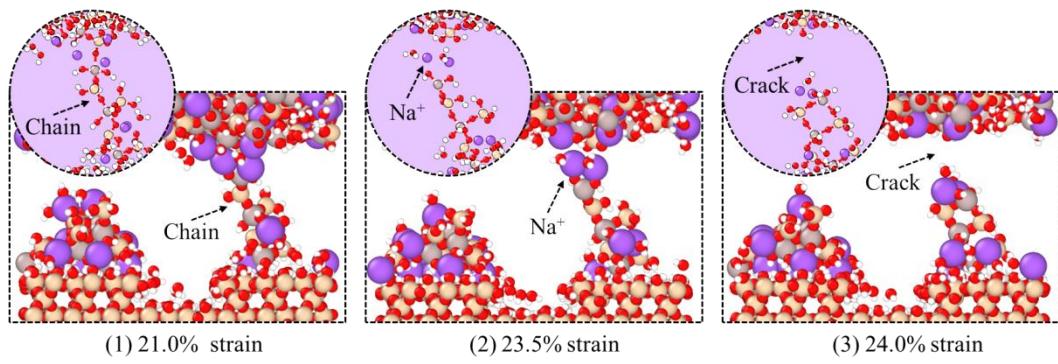
484 In order to further understand the fracture process of geopolymers-aggregate composites,
485 Fig. 12 shows a side view of the three composites with various Si/Al ratios for geopolymers
486 under the tensile process. Overall, the fracture process for the three composites undergoes three
487 stages: crack propagation, chain bridging and chain breakage. The main difference is that the
488 formation of the chain bridging and breakage for the composites (Si/Al = 1) is earlier than the
489 other two composites (Si/Al = 2 and 3), in line with the results that the composite (Si/Al = 1)
490 fails first in Fig. 10 (a). By comparing Fig. 12 with Fig. 10 (a), it can be found that the chain
491 bridging is the origin of the residual strength of composites. For example, the composite (Si/Al
492 = 1) still has residual strength at strain = 20% (Fig. 10a), by which time the interfacial
493 connection between geopolymers and aggregates is a chain bridging (Fig. 12a). However, at some
494 times the composites fully lose the strength even though the chain bridging is not broken. For
495 example, the composites (Si/Al = 2 and 3) fully lose the strength at strain = 30% and 25%
496 respectively (Fig. 10a), by which time the chain bridging between geopolymers and aggregates
497 still exists (Fig. 12b and c). According to Fig. 11 and 12, it can be found that the fracture process
498 involves the bond breakage at the interface and in geopolymers matrices. The bond breakage in
499 geopolymers matrices results in a small remnant of geopolymers matrices on the aggregate
500 surface.



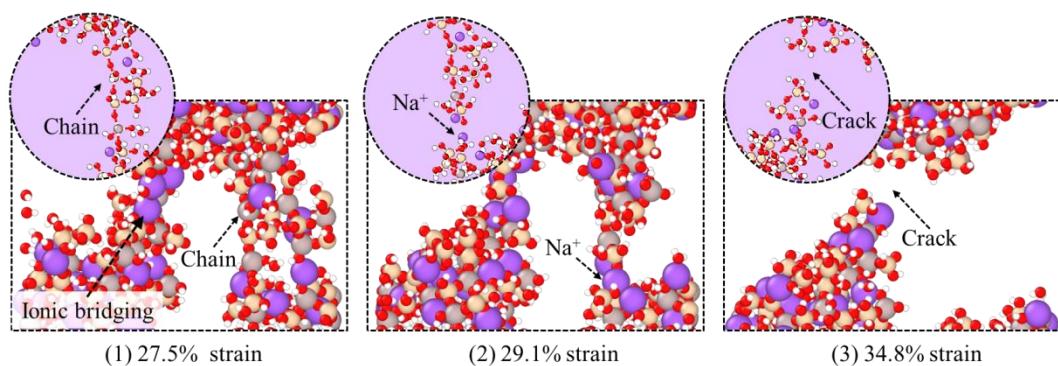
(a) Si/Al ratio = 1

501

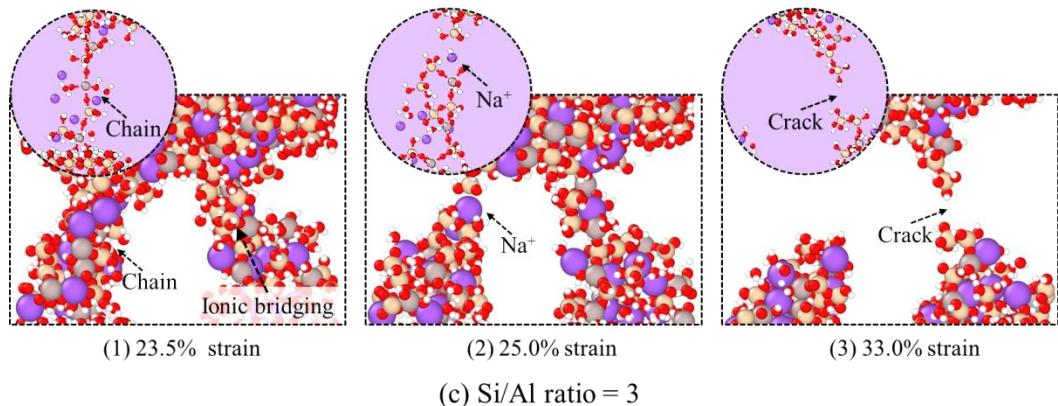
502 (b) Si/Al ratio = 2



503 (c) Si/Al ratio = 3


504 Fig. 12 A side view of the geopolymer-aggregate composites with (a) Si/Al ratio = 1, (b) Si/Al ratio = 2, and
 505 (c) Si/Al ratio = 3 during the tensile process. The black circles are used to label the chain bridging between
 506 geopolymer and aggregate.

507 To gain a deep insight into the effect of the chain bridging and breakage on the residual
 508 strength of the composites, a series of the local structures of the chains that bridge geopolymer
 509 matrices and aggregates are depicted in Fig. 13 at various tensile strains. For the composite
 510 ($\text{Si/Al} = 1$), there is an intact aluminosilicate chain that bridges the geopolymer and aggregate
 511 at strain = 21.0%, by which time the composite has the residual strength (Fig. 10a). But the
 512 aluminosilicate chain is broken and Na^+ ions (sometimes with water molecules) are filled at
 513 the breaking point to form a local Na-O ionic bridging (sometimes together with H-bond
 514 bridging) at strain = 23.5%, by which time the tensile strength is 0 (Fig. 10a). That is to say,
 515 the residual strength of the composite is attributed to the bridging of the aluminosilicate chain
 516 while the Na-O ionic bridging (or H-bond bridging) cannot provide the load-bearing ability


when the aluminosilicate chain is broken. Finally, the ionic bridging is also broken to form a crack with further increase of the tensile strain. Similarly, the other two composites also undergo two different chain bridging stages: one is the aluminosilicate chain bridging at strain = 27.5% for the composite (Si/Al = 2) and at strain = 23.5% for the composite (Si/Al = 3). At this stage, the composites have the residual strength; and the other is the ionic bridging after the aluminosilicate chains are broken. At this stage, the composites have already lost the strength completely. The results are in line with the fact that Al-O-Si bond strength is much higher than Na-O ionic bond and H-bond strength [88]. It is also another reason why the interfacial strength of the composites is higher at lower Si/Al ratios because geopolymers are more highly cross-linked at lower Si/Al ratios, leading to a stronger geopolymers.

(a) Si/Al ratio = 1

(b) Si/Al ratio = 2

529

530 Fig. 13 The local chemical structure of the chains that bridges the geopolymer and aggregate in the
 531 composites with (a) Si/Al ratio = 1, (b) Si/Al ratio = 2, and (c) Si/Al ratio = 3 during the tensile process. The
 532 images in the circles show again the local structure using the ball-stick models to reveal the chemical bonding
 533 of the molecular structure.

534 In conclusion, lower Si/Al ratios are more beneficial for the interfacial strength of
 535 geopolymer-aggregate composites, resulting from more Al-O-Si and Na-O bonds formed at the
 536 interface that contribute to the interfacial interaction and a more highly cross-linked
 537 aluminosilicate structure. During the tensile process, the variation of the interfacial interaction
 538 undergoes two stages: the loss stage formed by the breakage of interfacial bonds, and the
 539 recovery stage formed by the recovery of interfacial Na-O and H-bonds. Lower Si/Al ratios
 540 can result in faster interfacial Al-O-Si bond breakage. In addition, the fracture process of the
 541 composites undergoes three stages: crack propagation, chain bridging and chain breakage. The
 542 chain bridging also involves two processes: one is aluminosilicate chain bridging that can
 543 contribute to the residual strength of the composites; and the other is Na-O ionic bridging that
 544 has no contribution to the strength because ionic bonding is a kind of weak chemical interaction.

545 **4. Conclusions**

546 As a promising sustainable construction material, geopolymer concrete has been poorly
 547 understood in terms of the characteristics of geopolymer binder-aggregate interface, especially
 548 at the molecular level. In this study, a comprehensive research of atomic-level interfacial
 549 properties was carried out, for the first time, using MD simulation with a reactive force field to

550 reveal the chemical events, structure evolution, diffusion behavior and fracture process at the
551 interface between geopolymer ($\text{Si}/\text{Al} = 1, 2, \text{ and } 3$) and SiO_2 aggregate. Some conclusions can
552 be drawn from this study as follows:

553 (1) Chemically, various forms of interfacial bonding are characterized between
554 geopolymer and aggregate, including two types of $\text{Al}-\text{O}-\text{Si}$ bonding formed by the
555 condensation reaction, $\text{Na}-\text{O}$ ionic bonding and H-bonding. The increase in Si/Al ratio results
556 in lower interfacial $\text{Al}-\text{O}-\text{Si}$ and $\text{Na}-\text{O}$ bond concentrations, but has a negligible effect on the
557 interfacial H-bond concentration.

558 (2) Structurally, an atomic-level ITZ (low density region) is identified at the interface
559 between geopolymer and aggregate, attributed to the concentration of $-\text{OH}$ groups from both
560 SiO_2 aggregate and geopolymer. The ITZ density can be decreased by increasing the Si/Al ratio
561 as less Na and Al atoms concentrate on the surface of the aggregate, but the ITZ width is not
562 greatly affected by the Si/Al ratio, as it is mainly dependent on the interfacial H-bonding.

563 (3) A heterogeneous diffusion characteristic occurs in geopolymer, due to the weak
564 interfacial interaction compared with the internal interaction within geopolymer. The diffusion
565 rate of different components in geopolymer follows an order of aluminosilicates $< \text{Na}^+$ ions $<$
566 water. The increasing Si/Al ratio can cause a faster diffusion of all components, originating
567 from the weakened interfacial interaction and decreased cross-linking degree of geopolymer.

568 (4) Mechanically, lower Si/Al ratios are more beneficial for the interfacial strength due to
569 the stronger interfacial interaction and more highly cross-linked structure, but result in a faster
570 $\text{Al}-\text{O}-\text{Si}$ bond breakage at the interface. During the tensile process, the variation of the
571 interfacial interaction undergoes two stages: the loss stage due to the breakage of interfacial
572 $\text{Al}-\text{O}-\text{Si}$, $\text{Na}-\text{O}$ and H-bonds, and the recovery stage due to the reformation of $\text{Na}-\text{O}$ and H-
573 bonds.

574 (5) Overall, the fracture process of the geopolymer-aggregate composites undergoes three
575 stages: crack propagation, chain bridging and chain breakage. The chain bridging also involves
576 two processes: one is aluminosilicate chain bridging that can contribute to the residual strength
577 of the composites; and the other is $\text{Na}-\text{O}$ ionic bridging that cannot contribute to the strength.

578

579 **Declaration of competing interest**

580 The authors declare that they have no known competing financial interests or personal
581 relationships that could have appeared to influence the work reported in this paper.

582

583 **Acknowledgments**

584 The authors acknowledge the financial support received from the Hong Kong RGC
585 General Research Fund (Project code: 15223120), the National Natural Science Foundation of
586 China (NSFC) Key Project (Project Code: 51638008), the NSFC/RGC Joint Research Scheme
587 (Project code: N_PolyU542/20), and Innovation Technology Fund (Project code:
588 ITF/077/18FX).

589

590 **References**

- 591 [1] R. Hay, K. Celik, Hydration, carbonation, strength development and corrosion resistance of reactive MgO
592 cement-based composites, *Cement and Concrete Research* 128 (2020) 105941.
- 593 [2] A. Attanasio, L. Pascali, V. Tarantino, W. Arena, A. Largo, Alkali-activated mortars for sustainable building
594 solutions: Effect of binder composition on technical performance, *Environments* 5(3) (2018) 35.
- 595 [3] J. Li, W. Zhang, K. Xu, P.J. Monteiro, Fibrillar calcium silicate hydrate seeds from hydrated tricalcium silicate
596 lower cement demand, *Cement and Concrete Research* 137 (2020) 106195.
- 597 [4] I. Ismail, S.A. Bernal, J.L. Provis, R. San Nicolas, S. Hamdan, J.S. van Deventer, Modification of phase
598 evolution in alkali-activated blast furnace slag by the incorporation of fly ash, *Cement and Concrete Composites*
599 45 (2014) 125-135.
- 600 [5] Z. Luo, W. Li, Y. Gan, K. Mendu, S.P. Shah, Applying grid nanoindentation and maximum likelihood
601 estimation for NASH gel in geopolymers paste: Investigation and discussion, *Cement and Concrete Research* 135
602 (2020) 106112.
- 603 [6] P. Blanc, A. Lach, A. Lassin, M. Falah, R. Obenaus-Emler, S. Guignot, Modeling hydration of mine tailings:
604 Production of hydraulic binders from alkali-activated materials, *Cement and Concrete Research* 137 (2020)
605 106216.
- 606 [7] S.A. Bernal, J.L. Provis, R.M. De Gutiérrez, J.S. van Deventer, Accelerated carbonation testing of alkali-
607 activated slag/metakaolin blended concretes: effect of exposure conditions, *Materials and Structures* 48(3) (2015)
608 653-669.
- 609 [8] O.A. Abdulkareem, M. Ramli, J.C. Matthews, Production of geopolymers mortar system containing high
610 calcium biomass wood ash as a partial substitution to fly ash: An early age evaluation, *Composites Part B: Engineering* 174 (2019) 106941.
- 612 [9] T.M. Pham, Enhanced properties of high-silica rice husk ash-based geopolymers paste by incorporating basalt

613 fibers, *Construction and Building Materials* 245 (2020) 118422.

614 [10] S.A. Bernal, E.D. Rodríguez, R.M. de Gutiérrez, J.L. Provis, S. Delvasto, Activation of metakaolin/slag
615 blends using alkaline solutions based on chemically modified silica fume and rice husk ash, *Waste and Biomass
616 Valorization* 3(1) (2012) 99-108.

617 [11] N. Li, C. Shi, Z. Zhang, H. Wang, Y. Liu, A review on mixture design methods for geopolymer concrete,
618 *Composites Part B: Engineering* 178 (2019) 107490.

619 [12] F. Pacheco-Torgal, J. Castro-Gomes, S. Jalali, Investigations about the effect of aggregates on strength and
620 microstructure of geopolymeric mine waste mud binders, *Cement and Concrete Research* 37(6) (2007) 933-941.

621 [13] Y.-S. Wang, Y. Alrefaei, J.-G. Dai, Silico-aluminophosphate and alkali-aluminosilicate geopolymers: A
622 comparative review, *Frontiers in Materials* 6 (2019) 106.

623 [14] F. Puertas, M. Palacios, H. Manzano, J. Dolado, A. Rico, J. Rodríguez, A model for the CASH gel formed in
624 alkali-activated slag cements, *Journal of the European Ceramic Society* 31(12) (2011) 2043-2056.

625 [15] J.L. Provis, A. Palomo, C. Shi, Advances in understanding alkali-activated materials, *Cement and Concrete
626 Research* 78 (2015) 110-125.

627 [16] M. Komljenović, G. Tanasijević, N. Džunuzović, J. Provis, Immobilization of cesium with alkali-activated
628 blast furnace slag, *Journal of hazardous materials* 388 (2020) 121765.

629 [17] S.A. Kearney, B. McLuckie, K. Webb, R. Orr, I.A. Vatter, C.L. Corkhill, M. Hayes, M.J. Angus, J.L. Provis,
630 Effects of plutonium dioxide encapsulation on the physico-chemical development of Portland cement blended
631 grouts, *Journal of Nuclear Materials* 530 (2020) 151960.

632 [18] M. Lahoti, K.H. Tan, E.-H. Yang, A critical review of geopolymer properties for structural fire-resistance
633 applications, *Construction and Building Materials* 221 (2019) 514-526.

634 [19] P.K. Sarker, R. Haque, K.V. Ramgolam, Fracture behaviour of heat cured fly ash based geopolymer concrete,
635 *Materials & Design* 44 (2013) 580-586.

636 [20] H. Peng, C. Cui, C. Cai, Y. Liu, Z. Liu, Microstructure and microhardness property of the interface between
637 a metakaolin/GGBFS-based geopolymer paste and granite aggregate, *Construction and Building Materials* 221
638 (2019) 263-273.

639 [21] M. Khan, A. Castel, A. Akbarnezhad, S.J. Foster, M. Smith, Utilisation of steel furnace slag coarse aggregate
640 in a low calcium fly ash geopolymer concrete, *Cement and Concrete Research* 89 (2016) 220-229.

641 [22] S. Demie, M.F. Nuruddin, N. Shafiq, Effects of micro-structure characteristics of interfacial transition zone
642 on the compressive strength of self-compacting geopolymer concrete, *Construction and Building Materials* 41
643 (2013) 91-98.

644 [23] R. Embong, A. Kusbiantoro, N. Shafiq, M.F. Nuruddin, Strength and microstructural properties of fly ash
645 based geopolymer concrete containing high-calcium and water-absorptive aggregate, *Journal of cleaner
646 production* 112 (2016) 816-822.

647 [24] W. Lee, J. Van Deventer, The interface between natural siliceous aggregates and geopolymers, *Cement and
648 Concrete Research* 34(2) (2004) 195-206.

649 [25] Y. Zhang, W. Sun, J. Li, Hydration process of interfacial transition in potassium polysialate (K-PSDS)
650 geopolymer concrete, *Magazine of Concrete Research* 57(1) (2005) 33-38.

651 [26] V. Sata, A. Wongsa, P. Chindaprasirt, Properties of pervious geopolymer concrete using recycled aggregates,
652 *Construction and Building Materials* 42 (2013) 33-39.

653 [27] R. Pouhet, M. Cyr, Formulation and performance of flash metakaolin geopolymer concretes, *Construction
654 and Building Materials* 120 (2016) 150-160.

655 [28] M. Zhang, N.A. Deskins, G. Zhang, R.T. Cygan, M. Tao, Modeling the polymerization process for
656 geopolymers synthesis through reactive molecular dynamics simulations, *The Journal of Physical Chemistry C*
657 122(12) (2018) 6760-6773.

658 [29] Y.-S. Wang, K.-D. Peng, Y. Alrefaei, J.-G. Dai, The bond between geopolymers repair mortars and OPC
659 concrete substrate: Strength and microscopic interactions, *Cement and Concrete Composites* 119 (2021) 103991.

660 [30] L.-Y. Xu, Y. Alrefaei, Y.-S. Wang, J.-G. Dai, Recent advances in molecular dynamics simulation of the NASH
661 geopolymers system: modeling, structural analysis, and dynamics, *Construction and Building Materials* 276 (2021)
662 122196.

663 [31] R.K. Mishra, A.K. Mohamed, D. Geissbühler, H. Manzano, T. Jamil, R. Shahsavari, A.G. Kalinichev, S.
664 Galmarini, L. Tao, H. Heinz, cemff: A force field database for cementitious materials including validations,
665 applications and opportunities, *Cement and Concrete Research* 102 (2017) 68-89.

666 [32] E. Duque-Redondo, K. Yamada, H. Manzano, Cs retention and diffusion in CSH at different Ca/Si ratio,
667 *Cement and Concrete Research* 140 (2021) 106294.

668 [33] H. Manzano, E. Durgun, I.i. López-Arbeloa, J.C. Grossman, Insight on tricalcium silicate hydration and
669 dissolution mechanism from molecular simulations, *ACS applied materials & interfaces* 7(27) (2015) 14726-
670 14733.

671 [34] F. Lolli, H. Manzano, J.L. Provis, M.C. Bignozzi, E. Masoero, Atomistic simulations of geopolymers models:
672 the impact of disorder on structure and mechanics, *ACS applied materials & interfaces* 10(26) (2018) 22809-
673 22820.

674 [35] M.F. Kai, L.W. Zhang, K.M. Liew, Atomistic insights into structure evolution and mechanical property of
675 calcium silicate hydrates influenced by nuclear waste caesium, *Journal of Hazardous Materials* 411 (2021) 125033.

676 [36] M. Kai, L. Zhang, K. Liew, Carbon nanotube-geopolymer nanocomposites: A molecular dynamics study of
677 the influence of interfacial chemical bonding upon the structural and mechanical properties, *Carbon* 161 (2020)
678 772-783.

679 [37] L. Chu, L. Luo, T. Fwa, Effects of aggregate mineral surface anisotropy on asphalt-aggregate interfacial
680 bonding using molecular dynamics (MD) simulation, *Construction and Building Materials* 225 (2019) 1-12.

681 [38] M. Huang, H. Zhang, Y. Gao, L. Wang, Study of diffusion characteristics of asphalt-aggregate interface with
682 molecular dynamics simulation, *International Journal of Pavement Engineering* (2019) 1-12.

683 [39] G. Xu, H. Wang, Study of cohesion and adhesion properties of asphalt concrete with molecular dynamics
684 simulation, *Computational Materials Science* 112 (2016) 161-169.

685 [40] G. Xu, H. Wang, Molecular dynamics study of oxidative aging effect on asphalt binder properties, *Fuel* 188
686 (2017) 1-10.

687 [41] M. Xu, J. Yi, D. Feng, Y. Huang, D. Wang, Analysis of adhesive characteristics of asphalt based on atomic
688 force microscopy and molecular dynamics simulation, *ACS applied materials & interfaces* 8(19) (2016) 12393-
689 12403.

690 [42] H. Wang, E. Lin, G. Xu, Molecular dynamics simulation of asphalt-aggregate interface adhesion strength
691 with moisture effect, *International Journal of Pavement Engineering* 18(5) (2017) 414-423.

692 [43] Z. Dong, Z. Liu, P. Wang, X. Gong, Nanostructure characterization of asphalt-aggregate interface through
693 molecular dynamics simulation and atomic force microscopy, *Fuel* 189 (2017) 155-163.

694 [44] G. Xu, H. Wang, Molecular dynamics study of interfacial mechanical behavior between asphalt binder and
695 mineral aggregate, *Construction and Building Materials* 121 (2016) 246-254.

696 [45] Y. Lu, L. Wang, Nanoscale modelling of mechanical properties of asphalt-aggregate interface under tensile

697 loading, International Journal of Pavement Engineering 11(5) (2010) 393-401.

698 [46] H. Yao, Q. Dai, Z. You, Investigation of the asphalt–aggregate interaction using molecular dynamics,

699 Petroleum Science and Technology 35(6) (2017) 586-593.

700 [47] J. Rimsza, J. Du, Interfacial structure and evolution of the water–silica gel system by reactive force-field-
701 based molecular dynamics simulations, The Journal of Physical Chemistry C 121(21) (2017) 11534-11543.

702 [48] S. Li, Y. Chen, J. Zhao, C. Wang, N. Wei, Atomic structure causing an obvious difference in thermal
703 conductance at the Pd–H₂O interface: a molecular dynamics simulation, Nanoscale 12(34) (2020) 17870-17879.

704 [49] Y. Bai, H. Sui, X. Liu, L. He, X. Li, E. Thormann, Effects of the N, O, and S heteroatoms on the adsorption
705 and desorption of asphaltenes on silica surface: A molecular dynamics simulation, Fuel 240 (2019) 252-261.

706 [50] M. Ebadi, L.T. Costa, C.M. Araujo, D. Brandell, Modelling the Polymer Electrolyte/Li-Metal Interface by
707 Molecular Dynamics Simulations, Electrochimica Acta 234 (2017) 43-51.

708 [51] W. Peng, K. Sun, R. Abdullah, M. Zhang, J. Chen, J. Shi, Strengthening mechanisms of graphene coatings
709 on Cu film under nanoindentation: a molecular dynamics simulation, Applied Surface Science 487 (2019) 22-31.

710 [52] M.M. Koleini, M.F. Mehraban, S. Ayatollahi, Effects of low salinity water on calcite/brine interface: A
711 molecular dynamics simulation study, Colloids and Surfaces A: Physicochemical and Engineering Aspects 537
712 (2018) 61-68.

713 [53] W. Sun, H. Wang, Moisture effect on nanostructure and adhesion energy of asphalt on aggregate surface: A
714 molecular dynamics study, Applied Surface Science 510 (2020) 145435.

715 [54] L. Zhuravlev, The surface chemistry of amorphous silica. Zhuravlev model, Colloids and Surfaces A:
716 Physicochemical and Engineering Aspects 173(1-3) (2000) 1-38.

717 [55] L. Zhuravlev, Concentration of hydroxyl groups on the surface of amorphous silicas, Langmuir 3(3) (1987)
718 316-318.

719 [56] M.R. Sadat, S. Bringuer, A. Asaduzzaman, K. Muralidharan, L. Zhang, A molecular dynamics study of the
720 role of molecular water on the structure and mechanics of amorphous geopolymer binders, The Journal of
721 chemical physics 145(13) (2016) 134706.

722 [57] S. Nosé, A unified formulation of the constant temperature molecular dynamics methods, The Journal of
723 chemical physics 81(1) (1984) 511-519.

724 [58] W.G. Hoover, Canonical dynamics: Equilibrium phase-space distributions, Physical review A 31(3) (1985)
725 1695.

726 [59] M.R. Sadat, K. Muralidharan, L. Zhang, Reactive molecular dynamics simulation of the mechanical behavior
727 of sodium aluminosilicate geopolymer and calcium silicate hydrate composites, Computational Materials Science
728 150 (2018) 500-509.

729 [60] Y. Zhang, J.L. Zhang, J.Y. Jiang, D.S. Hou, J.R. Zhang, The effect of water molecules on the structure,
730 dynamics, and mechanical properties of sodium aluminosilicate hydrate (NASH) gel: A molecular dynamics study,
731 Construction and Building Materials 193 (2018) 491-500.

732 [61] A.C. Van Duin, S. Dasgupta, F. Lorant, W.A. Goddard, ReaxFF: a reactive force field for hydrocarbons, The
733 Journal of Physical Chemistry A 105(41) (2001) 9396-9409.

734 [62] L. Zhang, M. Kai, X. Chen, Si-doped graphene in geopolymer: Its interfacial chemical bonding, structure
735 evolution and ultrastrong reinforcing ability, Cement and Concrete Composites 109 (2020) 103522.

736 [63] K. Chenoweth, A.C. Van Duin, W.A. Goddard, ReaxFF reactive force field for molecular dynamics
737 simulations of hydrocarbon oxidation, The Journal of Physical Chemistry A 112(5) (2008) 1040-1053.

738 [64] K.L. Joshi, G. Psolfogiannakis, A.C. Van Duin, S. Raman, Reactive molecular simulations of protonation of

739 water clusters and depletion of acidity in H-ZSM-5 zeolite, *Physical Chemistry Chemical Physics* 16(34) (2014)
740 18433-18441.

741 [65] D.-C. Yue, T.-B. Ma, Y.-Z. Hu, J. Yeon, A.C. van Duin, H. Wang, J. Luo, *Tribochemistry of phosphoric acid*
742 *sheared between quartz surfaces: A reactive molecular dynamics study*, *The Journal of Physical Chemistry C*
743 117(48) (2013) 25604-25614.

744 [66] D.-C. Yue, T.-B. Ma, Y.-Z. Hu, J. Yeon, A.C. van Duin, H. Wang, J. Luo, *Tribochemical mechanism of*
745 *amorphous silica asperities in aqueous environment: a reactive molecular dynamics study*, *Langmuir* 31(4) (2015)
746 1429-1436.

747 [67] G.M. Psolfogiannakis, J.F. McCleery, E. Jaramillo, A.C. Van Duin, *ReaxFF reactive molecular dynamics*
748 *simulation of the hydration of Cu-SSZ-13 zeolite and the formation of Cu dimers*, *The Journal of Physical*
749 *Chemistry C* 119(12) (2015) 6678-6686.

750 [68] M.C. Pitman, A.C. Van Duin, *Dynamics of confined reactive water in smectite clay–zeolite composites*,
751 *Journal of the American Chemical Society* 134(6) (2012) 3042-3053.

752 [69] J.L. Suter, L. Kabanian, M. Khader, P.V. Coveney, *Ab initio molecular dynamics study of the interlayer and*
753 *micropore structure of aqueous montmorillonite clays*, *Geochimica et Cosmochimica Acta* 169 (2015) 17-29.

754 [70] M.A. Qomi, K. Krakowiak, M. Bauchy, K. Stewart, R. Shahsavari, D. Jagannathan, D.B. Brommer, A.
755 Baronnet, M.J. Buehler, S. Yip, *Combinatorial molecular optimization of cement hydrates*, *Nature*
756 *communications* 5 (2014) 4960.

757 [71] M.F. Kai, L.W. Zhang, K.M. Liew, *Graphene and graphene oxide in calcium silicate hydrates: Chemical*
758 *reactions, mechanical behaviors and interfacial sliding*, *Carbon* 146 (2019) 181-193.

759 [72] Y. Yu, B. Wang, M. Wang, G. Sant, M. Bauchy, *Reactive molecular dynamics simulations of sodium silicate*
760 *glasses—toward an improved understanding of the structure*, *International Journal of Applied Glass Science* 8(3)
761 (2017) 276-284.

762 [73] R. Dongol, L. Wang, A. Cormack, S. Sundaram, *Molecular dynamics simulation of sodium aluminosilicate*
763 *glass structures and glass surface-water reactions using the reactive force field (ReaxFF)*, *Applied Surface Science*
764 439 (2018) 1103-1110.

765 [74] M. Ravi, V.L. Sushkevich, J.A. van Bokhoven, *Towards a better understanding of Lewis acidic aluminium in*
766 *zeolites*, *Nature Materials* 19(10) (2020) 1047-1056.

767 [75] S. Yong, D. Feng, G. Lukey, J. Van Deventer, *Chemical characterisation of the steel–geopolymeric gel*
768 *interface*, *Colloids and Surfaces A: Physicochemical and Engineering Aspects* 302(1-3) (2007) 411-423.

769 [76] C. Liu, P. Huang, *Role of hydroxy-aluminosilicate ions (proto-imogolite sol) in the formation of humic*
770 *substances*, *Organic Geochemistry* 33(3) (2002) 295-305.

771 [77] W.-M. Ji, L.-W. Zhang, K. Liew, *Understanding interfacial interaction characteristics of carbon nitride*
772 *reinforced epoxy composites from atomistic insights*, *Carbon* 171 (2021) 45-54.

773 [78] J. Li, W. Zhang, K. Garbev, G. Beuchle, P.J. Monteiro, *Influences of cross-linking and Al incorporation on*
774 *the intrinsic mechanical properties of tobermorite*, *Cement and Concrete Research* 136 (2020) 106170.

775 [79] T. Hanzlíček, I. Perná, K. Uličná, V. Římal, H. Štěpánková, *The Evaluation of Clay Suitability for*
776 *Geopolymer Technology*, *Minerals* 10(10) (2020) 852.

777 [80] D. Hou, J. Yu, P. Wang, *Molecular dynamics modeling of the structure, dynamics, energetics and mechanical*
778 *properties of cement-polymer nanocomposite*, *Composites Part B: Engineering* 162 (2019) 433-444.

779 [81] Z.K. Wang, Q. Lv, S.H. Chen, C.L. Li, S.Q. Sun, S.Q. Hu, *Effect of interfacial bonding on interphase*
780 *properties in SiO₂/epoxy nanocomposite: a molecular dynamics simulation study*, *ACS applied materials &*

781 interfaces 8(11) (2016) 7499-7508.

782 [82] M.F. Kai, L.W. Zhang, K.M. Liew, New insights into creep characteristics of calcium silicate hydrates at
783 molecular level, Cement and Concrete Research 142 (2021) 106366.

784 [83] D. Hou, Y. Zhang, T. Yang, J. Zhang, H. Pei, J. Zhang, J. Jiang, T. Li, Molecular structure, dynamics, and
785 mechanical behavior of sodium aluminosilicate hydrate (NASH) gel at elevated temperature: a molecular
786 dynamics study, Physical Chemistry Chemical Physics 20(31) (2018) 20695-20711.

787 [84] M. Bauchy, M.J.A. Qomi, C. Bichara, F.-J. Ulm, R.J.-M. Pellenq, Rigidity transition in materials: hardness
788 is driven by weak atomic constraints, Physical review letters 114(12) (2015) 125502.

789 [85] M. Bauchy, M.J. Abdolhosseini Qomi, C. Bichara, F.-J. Ulm, R.J.-M. Pellenq, Nanoscale structure of cement:
790 viewpoint of rigidity theory, The Journal of Physical Chemistry C 118(23) (2014) 12485-12493.

791 [86] J. Lu, M. Luo, B.I. Yakobson, Glass composites reinforced with silicon-doped carbon nanotubes, Carbon 128
792 (2018) 231-236.

793 [87] W. Ji, L. Zhang, Diamond nanothread reinforced polymer composites: ultra-high glass transition temperature
794 and low density, Composites Science and Technology 183 (2019) 107789.

795 [88] G.A. Lyngdoh, S. Nayak, R. Kumar, N. Anoop Krishnan, S. Das, Fracture toughness of sodium
796 aluminosilicate hydrate (NASH) gels: Insights from molecular dynamics simulations, Journal of Applied Physics
797 127(16) (2020) 165107.

798