

1

2

3

4

Atomistic Insights into the Debonding of Epoxy–Concrete Interface with Water Presence

Ming-Feng Kai¹, Wei-Ming Ji², and Jian-Guo Dai^{3*}

10

11

12

13

14

15

16

17

18

81

22

23

24

17 1. Research Assistant Professor, Department of Civil and Environmental Engineering, The
18 Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong; Email:
19 mingfeng.kai@polyu.edu.hk

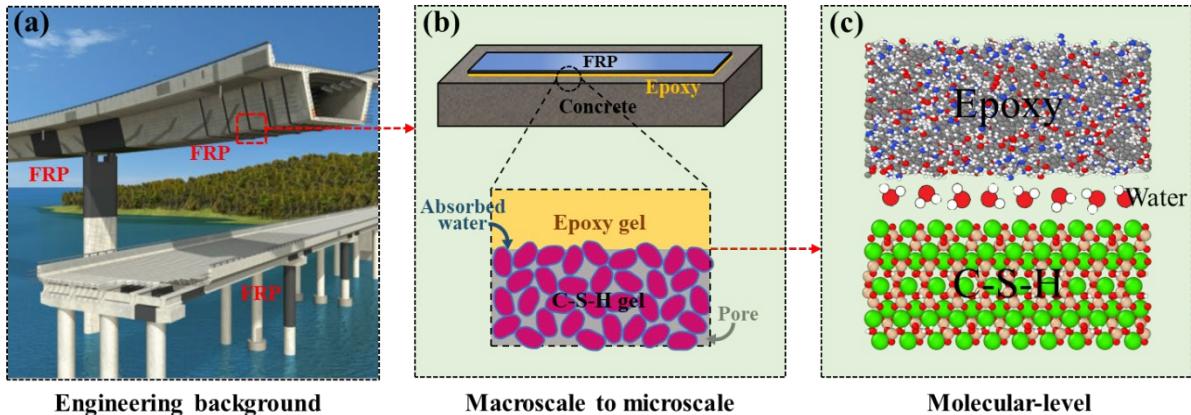
20 2. Research Fellow, School of Mechanical and Aerospace Engineering, Nanyang
21 Technological University, Singapore; Email: weiming.ji@ntu.edu.sg

22 3. Professor, Department of Civil and Environmental Engineering, The Hong Kong
23 Polytechnic University, Hung Hom, Kowloon, Hong Kong; Email:
24 cejgdai@polyu.edu.hk (Corresponding author)

25 **Abstract**

26 In this study, molecular models are developed to investigate the water-induced bond
27 degradation of the epoxy–concrete interface. Concrete is simulated using the C-S-H binder.
28 The results indicate that the interfacial chemical bonds, including Ca–O, Ca–N, and H-bond,
29 are reduced due to the existence of water at the interface. Two different roles of water
30 molecules are characterized in the interfacial structure, including the filling and enlarging roles.
31 The water presence degrades the interfacial bond strength and accelerates the interface
32 debonding process, attributed to the weakened interaction between the epoxy and the C-S-H
33 and the weakened load transfer of water molecules. The fracture position is transferred from
34 the internal epoxy to the interface between the epoxy and the C-S-H. These atomic-level
35 findings facilitate a better understanding of the interfacial deterioration of epoxy-bonded
36 systems, e.g., fiber-reinforced polymer (FRP)-strengthened concrete structures **with water**
37 **presence at the interface.**

38 **Keywords:** Chemical bonding; C-S-H; Epoxy; Water molecules; Interfacial debonding


39

40

41 **1. Introduction**

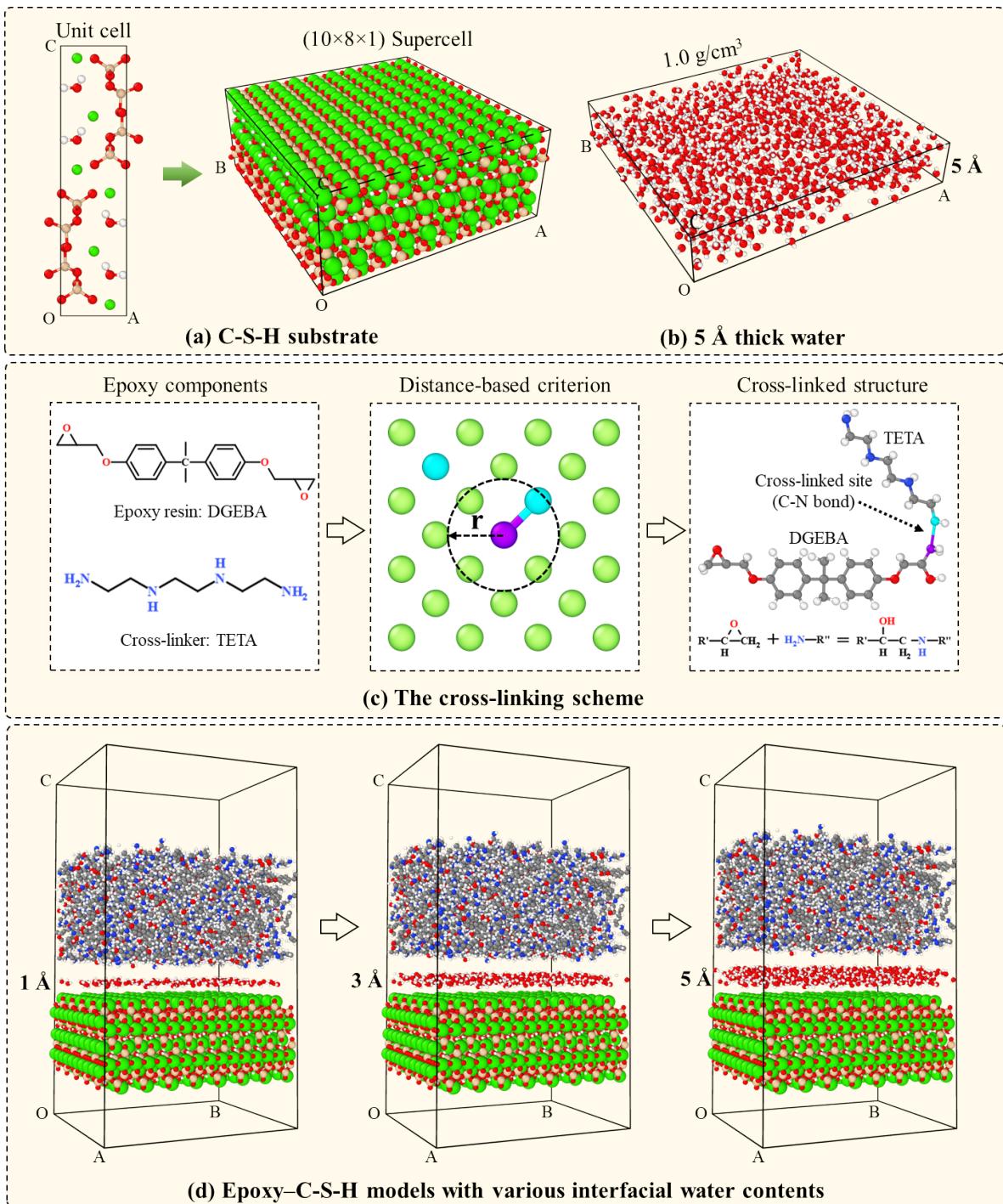
42 After years of service, concrete infrastructures (e.g., bridges and buildings), often face
43 deterioration problems and may need rehabilitation and structure strengthening. Use of
44 externally bonded (EB) fiber-reinforced polymer (FRP) composites has become a popular
45 solution for the strengthening of concrete structures (Fig. 1a) [1-3], attributed to the many
46 advantages, such as high strength, light weight, corrosion and fatigue resistance and ease of
47 installation of the FRP composite materials [4-6]. However, there are also some concerns on
48 the EB FRP technology especially when exposed to severe environments, such as those highly
49 moist or with elevated temperature [7-11]. Significant attention has been paid to the influence
50 of water presence on the durability of FRP-to-concrete bond interface at both macroscopic and
51 microscopic scales, as water is one of the most often encountered deterioration factors of FRP-
52 to-concrete interface [12-18]. Since epoxy is most often used as the bonding adhesive as well
53 as the polymer matrix of fiber composites, the bond failure at the FRP-concrete interface under
54 a wet environment mainly depends on the bonding between epoxy and the calcium silicate
55 hydrates (C-S-H), which is the principal binder phase in concrete [19-21].

56 At the microscale, C-S-H exhibits a globular texture [22] and can adsorb water on its surface
57 from the pore solution, usually called “physically adsorbed water” [23, 24], leading to a wet
58 epoxy-C-S-H interface [25]. The epoxy polar groups also favor the water absorption at the
59 epoxy-C-S-H interface from the surrounding environment [26]. A schematic diagram of the
60 interfacial bond at the macroscale and microscale is shown in Fig. 1(b). Due to the limitations
61 in scale and precision, all existing experimental studies could only provide investigations into
62 the phenomenological weakening effect on the epoxy-concrete interface under a wet
63 environment [7-16, 27]. The origins of the interfacial degradation and its correlation to the
64 water present at the interface cannot be explained by such phenomenological results and remain
65 vastly unclear. This calls for a molecular-level investigation into the fundamental mechanisms
66 behind the interfacial degradation phenomena (Fig. 1c) [26, 28, 29].

67
68 Fig. 1 (a) An example of the engineering application of FRP-strengthened concrete structure; (b) a schematic view
69 of the macroscale FRP-to-concrete bond interface and a microscale epoxy–C-S-H interface with size down to
70 several nanometres. The C-S-H gel exhibits globular texture at the nanoscale, and the gel particles have a strong
71 binding ability with water from the surrounding environment. The epoxy gel also favors the water absorption on
72 its surface due to its polar groups; (c) a schematic view of the water molecules at the epoxy–C-S-H interface at
73 the molecular level.

74 Atomistic simulation, bypassing the experimental difficulties, could contribute
75 significantly to a direct insight into materials' physical and chemical basis at the molecular
76 level. To date, atomistic simulation has been successfully conducted to investigate the material
77 properties of epoxy gel and C-S-H gel. Tam et al. [30] investigated the structure and binding
78 behaviour of water molecules in cross-linked epoxy. When the water content is low, the water
79 molecules are mainly located in the vicinity of the epoxy functional groups. By increasing the
80 water content, the water molecules favourably form the large cluster in the epoxy. Pandiyan et
81 al. [31] also reached similar conclusion. Honorio et al. [32] studied the pore size and
82 temperature dependence of water diffusion in the C-S-H gel pore. The transition from glassy
83 to Fickean-dominated dynamics occurs at an interlayer distance of 2.6 nm between two C-S-H
84 layers. Qomi et al. [33] and Hou et al. [34, 35] reported the influence of water content on the
85 C-S-H mechanical properties. From a dry to saturated state, the tensile strength and Young's
86 modulus of C-S-H decrease gradually due to the water attack on the cohesive force between C-
87 S-H layers. In addition, a few atomic-level studies have been performed to investigate the bond
88 performance between epoxy and C-S-H gel. For example, Wang et al. [36, 37] and Hou et al.

89 [14] evaluated the debonding behaviour of epoxy from the C-S-H surface, and found that water
90 and salt environment can significantly disrupt the integrity of the epoxy–C-S-H interface, and
91 thus weaken the adhesion of epoxy on the C-S-H surface. Yu et al. [25] also reported the
92 weakening effect of water molecules on the interfacial integrity of epoxy–C-S-H interface.
93 These studies have facilitated a better understanding of the interfacial physics and chemistry,
94 which are usually not accessible experimentally. However, there are still some open questions
95 regarding how various water contents on the C-S-H affect the interfacial structures (such as the
96 atomic interactions among these three phases) and bond properties (such as the bond
97 degradation and fracture characteristics) between epoxy and C-S-H.


98 In this study, an all-atom simulation is performed to offer direct insights into the interfacial
99 bond behaviour of the epoxy–C-S-H interface with a focus on the influence of the water
100 presence. First, a series of interfacial molecular models are built with different water contents
101 set at the interface. The interfacial ionic bond and hydrogen-bond (H-bond) are characterized
102 to find how the interfacial interactions are formed. Next, the interfacial bond strength is
103 measured by applying an external detaching force to epoxy, and the full-range fracture process
104 of the interface is captured. The findings are expected to be useful for understanding the
105 degradation mechanism of EB FRP systems with water presence at the interface.

106 2. Computational Methods

107 2.1 Model establishment

108 In the model, $(10 \times 8 \times 1)$ supercell of Hamid's tobermorite-11 Å ($6.69 \text{ \AA} \times 7.39 \text{ \AA} \times 22.77 \text{ \AA}$, $\alpha = \beta = 90^\circ$, $\gamma = 120^\circ$), is transformed to an orthogonal molecular model ($55.88 \text{ \AA} \times 59.12 \text{ \AA} \times 22.77 \text{ \AA}$, $\alpha = \beta = \gamma = 90^\circ$) as the C-S-H substrate with a dry surface (Fig. 2a), following the
110 method proposed by Tang et al. [38]. Then a layer of water is prepared by packing water
111 molecules into a 5 Å thick box with a predefined density of 1.0 g/cm^3 (Fig. 5b) [39]. This layer
112 of water is divided into five equal parts along z direction and thus different thicknesses (0, 1,
113 2, 3, 4 and 5 Å) of water can be chosen and placed on the C-S-H substrate to reveal the influence
114 of different water contents at the interface on the interfacial bond properties. Next, an epoxy
115

116 molecular structure is established, which is composed of two basic units, diglycidyl ether of
117 bisphenol A (DGEBA) resin and triethylenetetramine (TETA) as the cross-linker (Fig. 2c) [26].
118 The establishment method of the epoxy molecular structure follows the steps below: first,
119 DGEBA and TETA units with a **mole** ratio of 2:1 are packed into a box (55.88 Å × 59.12 Å ×
120 30 Å) with a predefined density of 1.1 g/cm³; then **these** DGEBA and TETA molecules react
121 with each other using a distance-based cross-linking scheme (Fig. 2c) [26, 40-43], which has
122 been widely adopted in past decades [44-46]. The cross-linking scheme mainly involves the
123 following steps: (1) the reactive atoms on the DGEBA resin and the cross-linker are recognized;
124 (2) the epoxide groups (that contain the reactive atoms) on the DGEBA resin are opened, and
125 bonded with the reactive atoms on the cross-linker via C-N bond when the reaction radius is
126 reached; (3) the H atoms on the reacted N atoms will be removed (for charge balance), and the
127 unreacted O atoms are saturated with H atoms (for charge balance); (4) the cross-linked epoxy
128 is relaxed for the next reaction. The reaction radius is set to be 3 to 10 Å with an increment of
129 0.5 Å. After the step-by-step reaction, geometry optimization, and dynamic equilibration, a
130 cross-linked epoxy structure can be obtained with an 80% crosslinked degree. **The** final density
131 of the epoxy model is 1.13 g/cm³, in the range of 1.08–1.15 g/cm³ (obtained by MD analysis
132 [47, 48]) and 1.13–1.16 g/cm³ (obtained by experimental tests [49, 50]). The Young's modulus
133 of the epoxy model is 3.75 GPa, in the range of 3.20–4.31 GPa (obtained by MD analysis [41,
134 51]) and close to the experimental values (3.4–3.5 GPa) [50, 52]. Finally, the epoxy structure
135 is placed on the water zone. The initial gap width between the water zones and C-S-H substrate
136 (or epoxy structure) is 5 Å. Fig. 2(d) presents atomic structures of epoxy–C-S-H with three
137 different thicknesses of water at the interface.

138

139 Fig.2 (a) The atomic structure of the C-S-H substrate produced from the unit cell of Hamid's tobermorite-11 Å;
 140 (b) a 5 Å thick water layer with a density of 1 g/cm³; (c) a schematic view of the cross-linking scheme to realize
 141 the cross-linking between DGEBA and TETA molecules in the epoxy molecular structure; (d) the atomic
 142 structures of epoxy-C-S-H with different thicknesses of water at the interface. Vacuum gaps of 10 Å and 100 Å
 143 are created at the lower and upper of the composite models, respectively. The green, peachpuff, red, white, grey,
 144 dark blue spheres represent the Ca, Si, O, H, C and N atoms in the molecular models. In addition, the light blue

145 and purple spheres in Fig. 2(c) represent the C and N atoms involving in the cross-linking reaction while and the
146 light green spheres represent all other atoms in the system.

147 **2.2 Force field**

148 The empirical force fields, including the ClayFF force field and CVFF force field, are
149 employed to describe the interaction between atoms in epoxy–C-S-H molecular models. The
150 Lorentz-Berthelot mixing rule [53] is applied for the combination of ClayFF and CVFF.
151 ClayFF, a general force field suitable for simulating C-S-H systems and their interfaces with
152 aqueous solutions, is based primarily on non-bonded interactions. The functional form of
153 ClayFF can be represented by a sum of the electrostatic (Coulombic) interactions, the short-
154 range interactions (the van der Waals term), and a very limited number of explicit bonded
155 interactions to describe the bond stretching energy and angle bending energy in water
156 molecules within C-S-H model,

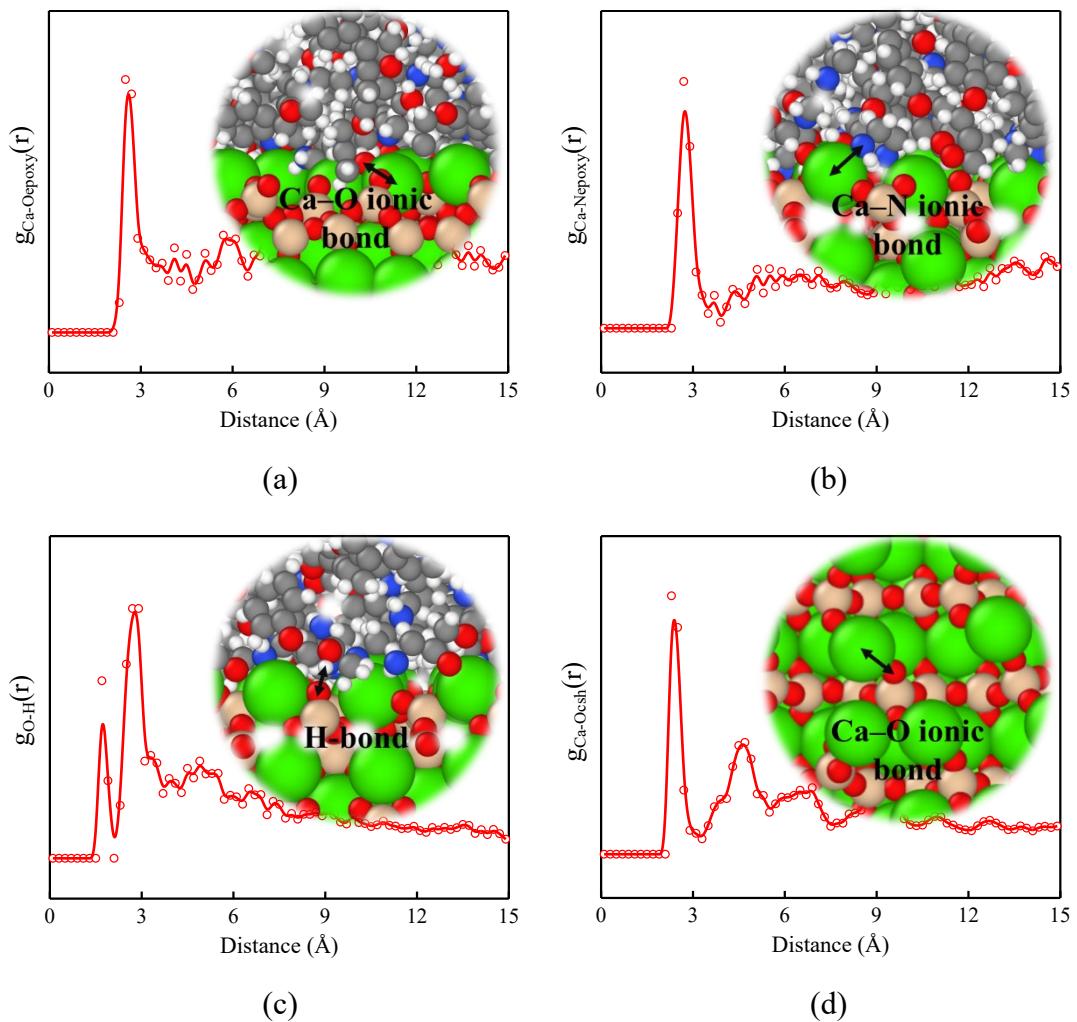
157
$$E_{C-S-H} = E_{Coul} + E_{vdW} + E_{bond} + E_{angle} \quad (1)$$

158 where the parameters for Coulombic and vdW interactions were determined by density
159 functional theory (DFT) calculations and can be obtained from Ref. [54]. CVFF, originally
160 derived for organic molecules (amides, carboxylic acids, etc.), was proved to show a good
161 performance in simulating epoxy molecules. The potential function in CVFF consists of the
162 bonded interactions (bond stretching, angle bending, four-body dihedral angle torsion, and
163 four-body improper out-of-plane terms) and non-bonded interactions (Coulombic and vdW
164 terms),

165
$$E_{epoxy} = E_{bond} + E_{angle} + E_{dihedral} + E_{improper} + E_{Coul} + E_{vdW} \quad (2)$$

166 where the parameters for the bonded and non-bonded interactions can be obtained from Ref.
167 [55]. The flexible SPC water model, compatible with both ClayFF and CVFF, describes the
168 water molecules between epoxy and C-S-H. During the simulation process, the cut-off distance
169 for vdW interactions in the epoxy–C-S-H systems is set as 10 Å, and a particle-particle particle-
170 mesh (PPPM) solver is used to compute long-range Coulombic interactions in epoxy–C-S-H
171 systems with an accuracy of 10^{-4} [26].

172 **2.3 Simulation details**


173 To start, vacuum gaps of 10 Å and 100 Å are created at the bottom and top of the composite
174 models, respectively, to leave enough space for the pull tests [56]. The simulation process
175 follows the steps below: first, energy minimization of the epoxy–C-S-H molecular structures
176 is performed by iteratively optimizing the atom positions based on the conjugate gradient (CG)
177 algorithm with the convergence criterion of 10^{-6} kcal/mol for energy and 10^{-6} kcal/(mole*Å)
178 for force [57]. Then, a dynamic equilibration is carried out under the isothermal-isobaric (NPT)
179 ensemble for 500 ps. The Berendsen thermostat (300 K) and barostat (1 atm in x and y
180 directions) are employed to rescale the positions and velocities of the atoms within the
181 simulation box as well as the box size every timestep [58]. To measure the interfacial
182 debonding properties, a 5 Å thick upper region of epoxy binder and a 5 Å thick lower region
183 of C-S-H are fixed, leaving the middle part dynamically equilibrated for another 500 ps. Finally,
184 a series of tensile tests are carried out by applying a constant velocity (0.01 Å/ps) on the upper
185 fixed region along z direction. The tensile velocity is lower enough for MD simulation to mimic
186 the experimental quasi-static loading [26, 59]. The simulation work is conducted using the
187 Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) package. A time step
188 of 0.5 fs is chosen, and periodic boundary conditions (PBC) are applied in each dimension of
189 the simulation box.

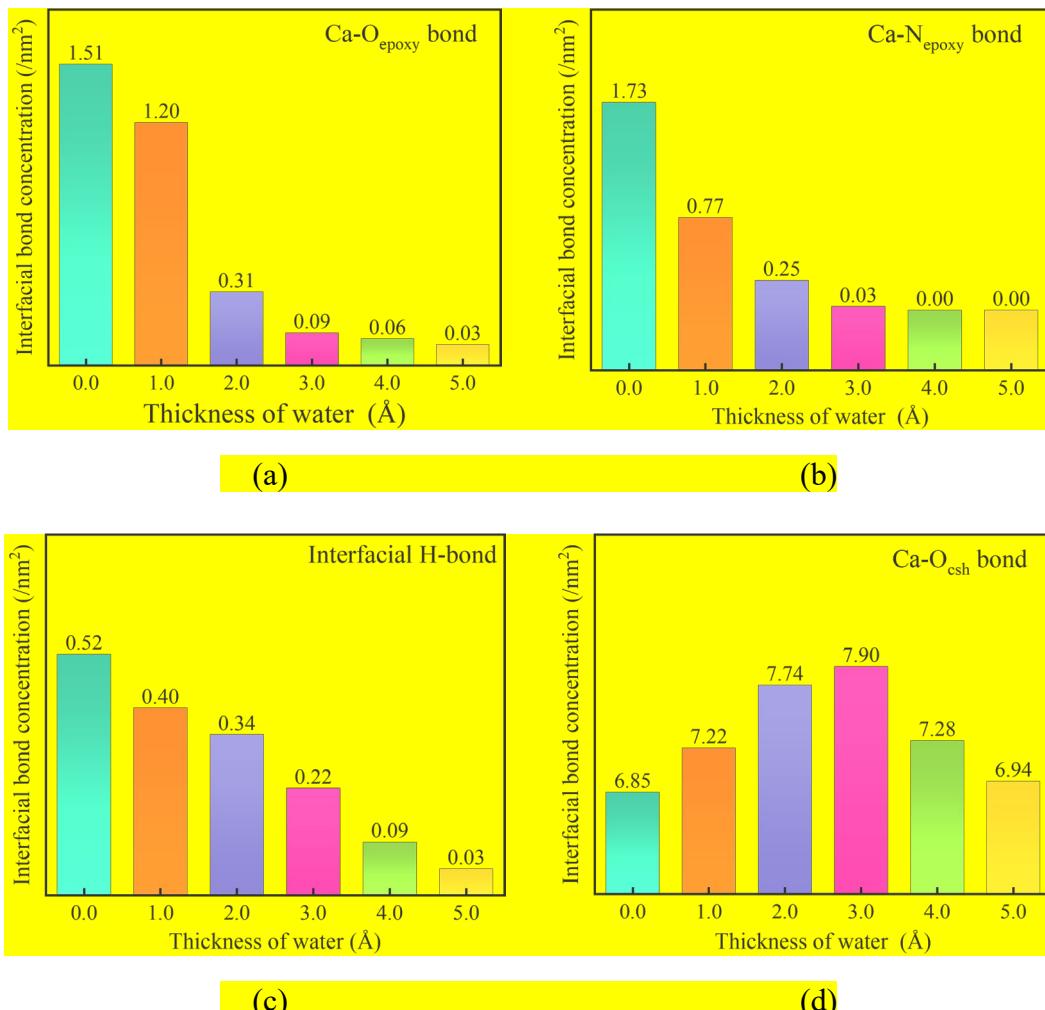
190 **3. Results and Discussion**

191 **3.1 Structure evolution**

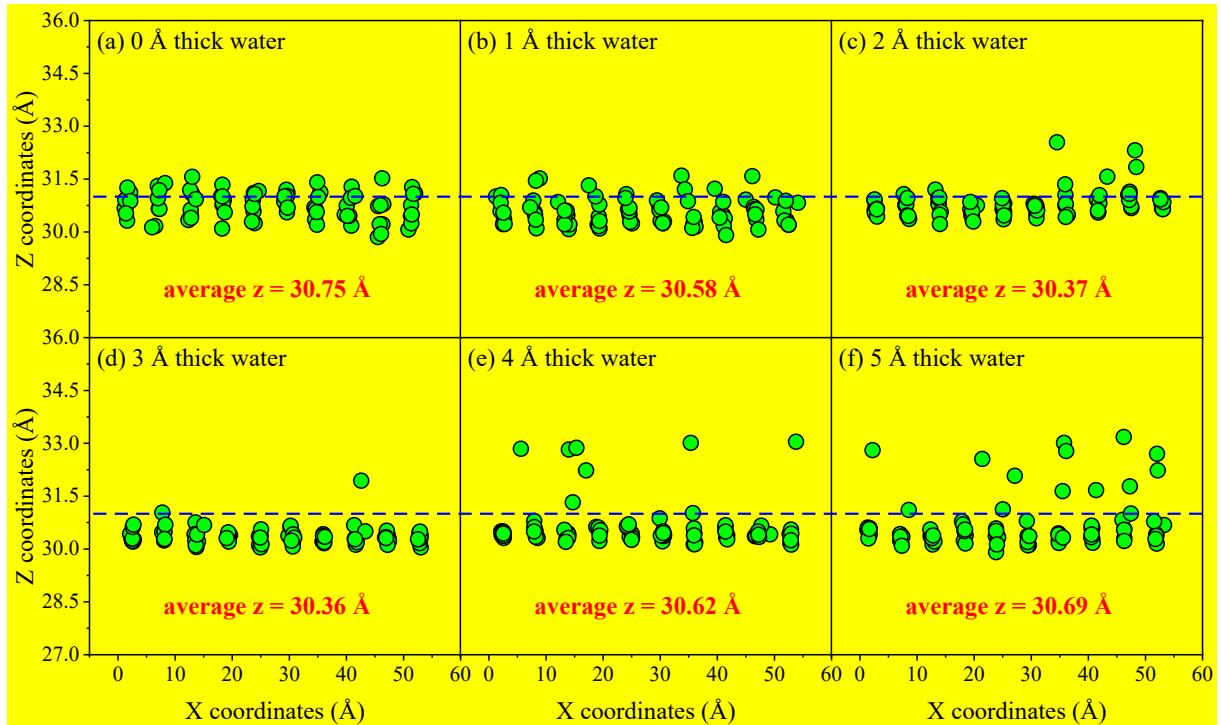
192 The molecular structure evolution under the influence of water at the interface is essential
193 to understand the interfacial characteristics of the epoxy–C-S-H composites [60]. First, the
194 interfacial molecular structure of the epoxy–C-S-H with a dry interface is characterized to
195 observe the structure evolution. Three typical interfacial bonds are existing at the interface,
196 including Ca–O ionic bond (the C-S-H offers Ca^{2+} and the epoxy offers O), Ca–N ionic bond
197 (the C-S-H offers Ca^{2+} and the epoxy offers O), and H-bond (the C-S-H offers O and the epoxy
198 offers H), as shown in Fig. 3(a-c). The Ca^{2+} ions are also ionic-bonded with the dangling O

199 atoms on the C-S-H surface, as shown in Fig. 3(d), which is due to the charge balance. The
 200 partial radial distribution functions, which are proportional to the probability of finding an atom
 201 at a distance from another atom [61], of Ca–O ionic bond, Ca–N ionic bond, and H-bond at the
 202 epoxy–C-S-H interface are shown in Fig. 2. The first peaks of the partial radial distribution
 203 functions correspond to the interfacial bonds, and the average bond lengths are 2.5 Å, 2.7 Å,
 204 and 1.7 Å for Ca–O bond, Ca–N bond, and H-bond, respectively. In addition, the average bond
 205 length for Ca–O (O from the C-S-H) is 2.3 Å. Based on the partial radial distribution functions,
 206 the number of interfacial bonds can be characterized.

207
 208


209
 210

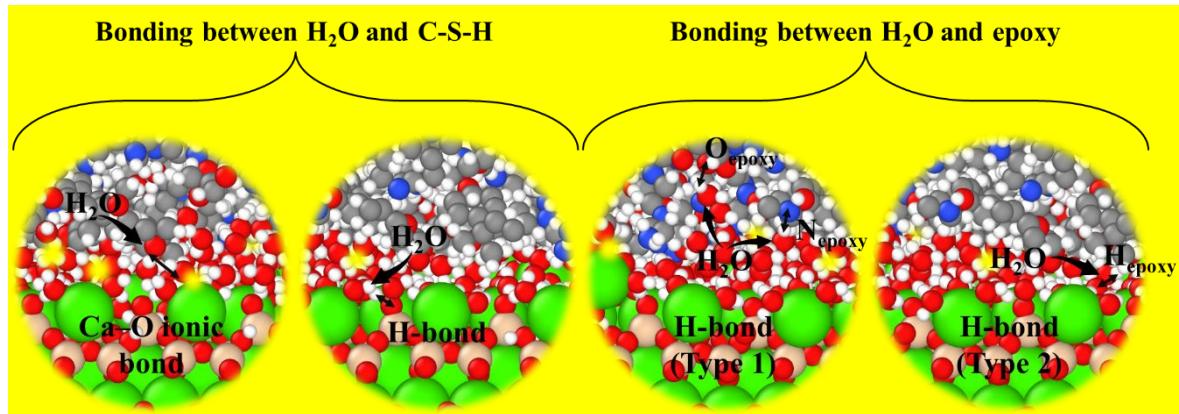
211 Fig. 3 (a-c) Partial radial distribution functions of Ca–O ionic bond, Ca–N ionic bond, and H-bond at the epoxy–
 212 C-S-H interface. The inset shows the snapshots of the interfacial bonds between the epoxy and the C-S-H; (d)
 213 Partial radial distribution functions of Ca–O (O from the C-S-H) ionic bond on the concrete substrate. The inset
 214 shows the snapshot of the Ca–O bond. The critical lengths for the interfacial Ca–O ionic bond, Ca–N ionic bond,


215 and H-bond are 3.1 Å, 3.3 Å and 2.3 Å, respectively (obtained from the RDF curves where the first peak ends),
216 within which values the atoms can be considered to be bonded. Besides, the critical length for the Ca–O (O from
217 the C-S-H) bond on the C-S-H surface is 3.0 Å.

218 Next, the concentrations of various interfacial bonds of epoxy–C-S-H composites with
219 different water thicknesses at the interface are calculated, as shown in Fig. 4 (a-c). For the
220 epoxy–C-S-H with a dry interface, the interfacial bond concentration follows an order of Ca–
221 N > Ca–O > H-bond. The concentrations of both Ca–N and Ca–O bonds decrease significantly
222 with the increasing water thickness from 0 to 3 Å and almost completely disappear with the
223 thickness of water > 3 Å. The H-bond at the interface loses almost linearly with the increasing
224 water thickness. It can be concluded that the increasing water at the interface leads to a gradual
225 loss of the interfacial chemical bonds. Similarly, Wang et al. [62] observed that the chemical
226 bond between an epoxy resin molecule and the C-S-H substrate is reduced in a wet environment.
227 Sun et al. [63] also found that the chemical bond between two C-S-H particles is reduced by
228 increasing the water content in the particle gap. These phenomena are in reasonable agreement
229 with our MD analytical results. In addition, it can be also found that the water molecules also
230 cause the variation of Ca–O (O from the C-S-H) ionic bonds on the C-S-H surface, as revealed
231 in Fig. 4(d). The concentration of Ca–O (O from the C-S-H) ionic bonds increases with the
232 water thickness increasing from 0 to 3 Å and then decreases with the water thickness increasing
233 from 3 to 5 Å. To explain how the interfacial water affects the Ca–O (O from the C-S-H) ionic
234 bonds on the C-S-H surface, the distribution of the Ca^{2+} on C-S-H surface is captured in the X–
235 Z plane, as shown in Fig. 5. When the water thickness ranges from 0 to 3 Å, the Ca^{2+} ions on
236 C-S-H surface distribute in a high z coordinate range to a low z coordinate range, i.e., the
237 average z coordinate value decreases from 30.75 Å to 30.36 Å. Almost all the Ca^{2+} ions are
238 located below the surface line of C-S-H when the water thickness reaches 3 Å. It indicates that
239 the Ca^{2+} ions are desorbed from the epoxy surface due to the introduction of water at the
240 interface (as revealed in Fig. 4a and b), leading to the return of Ca^{2+} back to the C-S-H surface.
241 It explains why the number of Ca–O (O from the C-S-H) ionic bonds increases with the increase
242 of water thickness from 0 to 3 Å. When the water thickness exceeds 3 Å, some Ca^{2+} ions are

243 desorbed from the C-S-H surface, and a higher water content leads to more Ca^{2+} ions desorbed
 244 from the C-S-H surface. The average z coordinate value increases from 30.36 Å to 30.69 Å due
 245 to the desorption behavior. It explains why the concentration of $\text{Ca}-\text{O}$ (O from the C-S-H) ionic
 246 bonds decreases with the increase of water thickness from 3 to 5 Å.

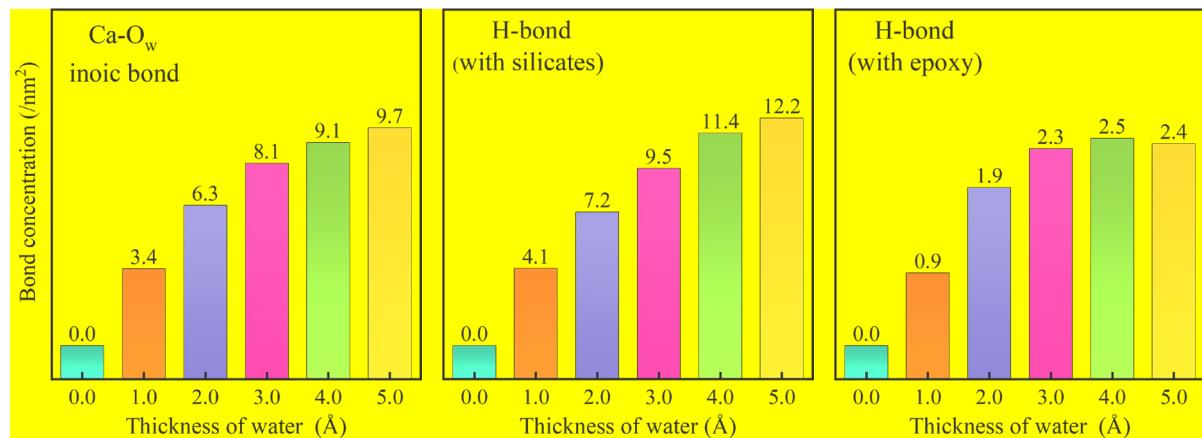
247
 248 Fig. 4 (a-c) The evolution of the interfacial bond concentration of $\text{Ca}-\text{O}$, $\text{Ca}-\text{N}$, and H-bond between epoxy and
 249 C-S-H substrate; (d) the evolution of the $\text{Ca}-\text{O}$ (O from C-S-H) bond number on the C-S-H surface.



253

254 Fig. 5 The distribution of Ca^{2+} on C-S-H surface in the X-Z plane for all the epoxy-C-S-H interfacial models. The
 255 average z coordinates are calculated for all the interfacial models. The blue dash lines denote the position of the
 256 C-S-H surface, where the outermost O atoms of $\text{Si}-\text{O}^-$ groups locate.

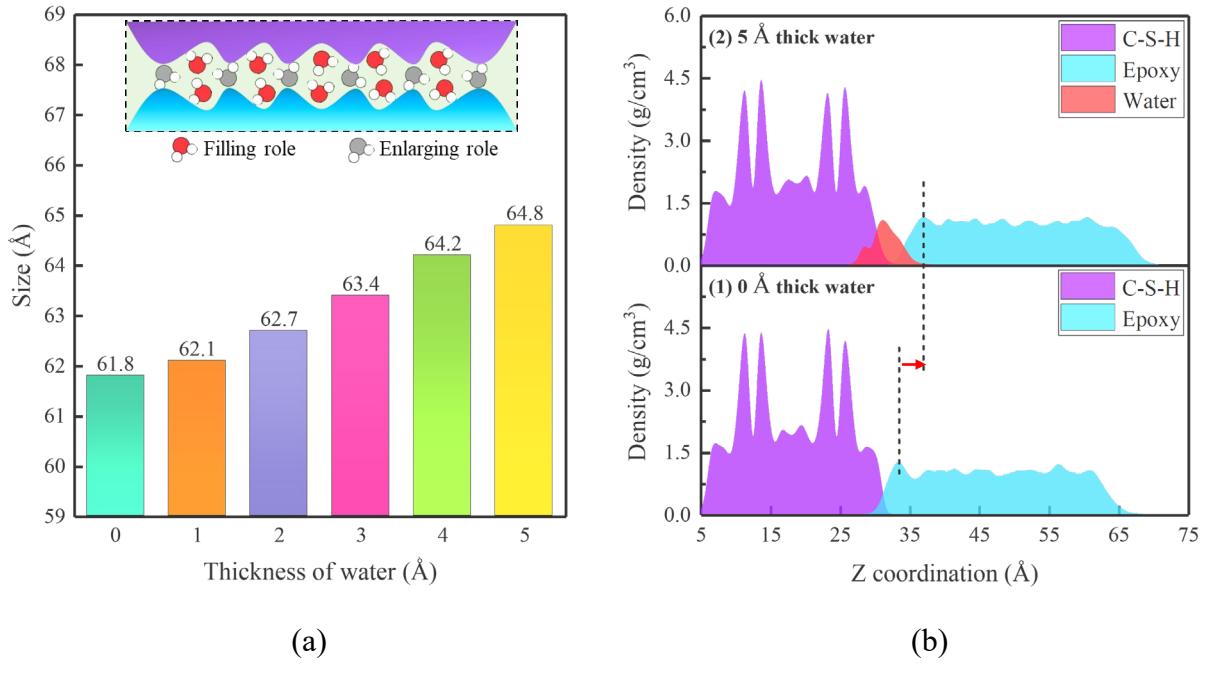
257 Next, the interactions between the interfacial H_2O molecules and the matrices (both C-S-H
 258 and epoxy) are analyzed, as shown in Fig. 6(a). There are two bonding forms between the H_2O
 259 molecules and the C-S-H matrix, including $\text{Ca}-\text{O}$ ionic bond (the C-S-H offers Ca^{2+} and the
 260 H_2O offers O), and H-bond (the C-S-H offers O and the H_2O offers H). For the epoxy matrix,
 261 it can only bond with the H_2O molecules via H-bond. There are two types of H-bond between
 262 the H_2O molecules and the epoxy matrix: one is the H_2O donates the H atoms while the O or
 263 N atoms of epoxy accept the H atoms; the other is the epoxy donates the H atoms while the O
 264 atoms of H_2O accept the H atoms. The bond concentration between the interfacial H_2O
 265 molecules and the matrices (C-S-H and epoxy) is counted for all the atomic models, including
 266 the $\text{Ca}-\text{O}$ bond concentration between H_2O and C-S-H, the H-bond concentration between H_2O
 267 and C-S-H, and the H-bond concentration between H_2O and epoxy, as shown in Fig. 6(b). The
 268 concentration of $\text{Ca}-\text{O}$ bond and H-bond between H_2O and C-S-H increases gradually by
 269 introducing H_2O into the epoxy-C-S-H interface. The H-bond concentration between H_2O and


270 epoxy increases gradually when the water thickness ranges from 0 to 3 Å, and almost keeps
 271 constant when introducing more H₂O into the epoxy–C-S-H interface, indicating that the H-
 272 bond between H₂O and epoxy is saturated when the water thickness reaches 3 Å.

273

274

(a) Bonding between water and matrices


275

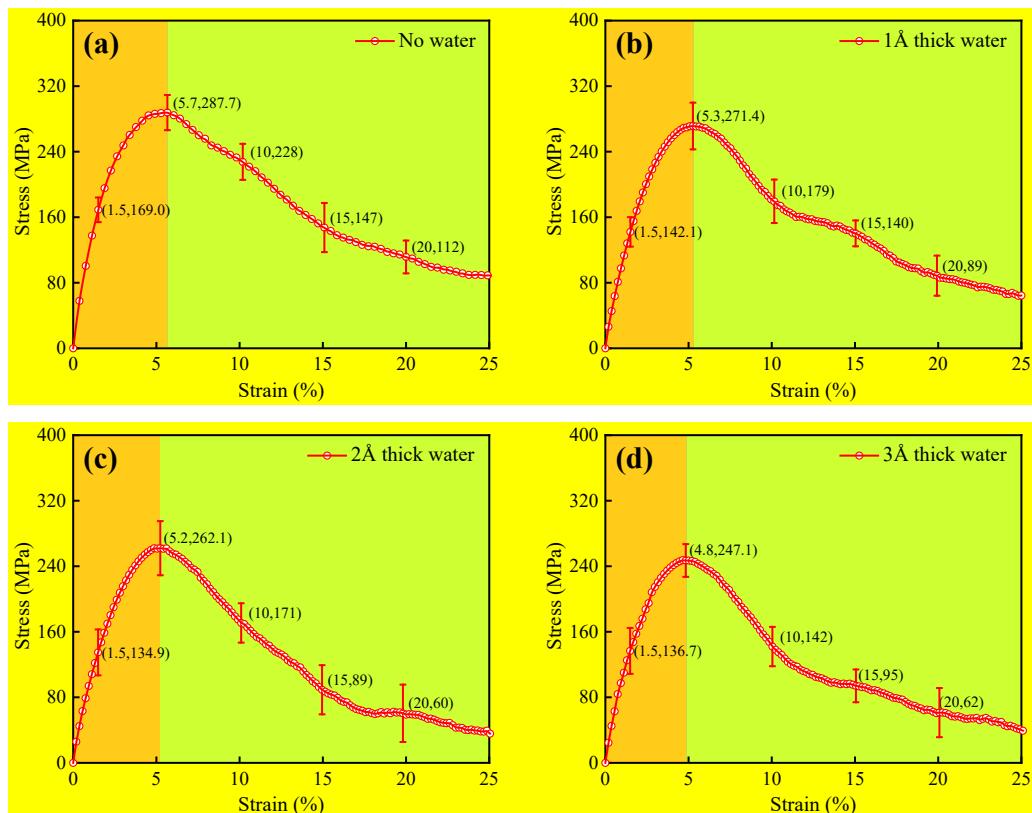
(b) The bond concentration between water and matrices

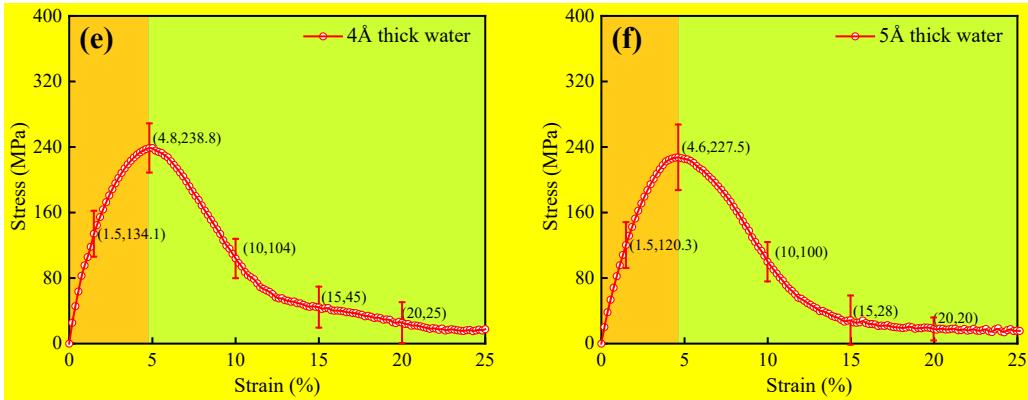
276 Fig. 6 (a) Snapshots of the bonding between the interfacial H₂O molecules and the matrices (C-S-H and epoxy);
 277 (b) the bond concentration between the interfacial H₂O molecules and the matrices (C-S-H and epoxy), including
 278 the Ca–O bond concentration between H₂O and C-S-H, the H-bond concentration between H₂O and C-S-H, and
 279 the H-bond concentration between H₂O and epoxy.

280
 281 Fig. 7(a) summarizes all the structure sizes of the epoxy–C-S-H models along the z-
 282 direction. Obviously, the water at the interface can also cause an increase in the structure size.
 283 But it is interesting to note that the magnitude of the structure size change does not agree with
 284 that of the water thickness increase at the interface. For each additional 1 Å thick water, the

285 evolution of the structure size is less than 1 Å, and the total change of the structure size is only
286 3 Å by introducing 5 Å thick water. To further understand how the water molecules change the
287 evolution of the structure size, the atomic density profiles of the C-S-H, water, and epoxy in
288 the epoxy–C-S-H model with 5 Å thick water is calculated as a function of the distance along
289 the z-direction, as shown in Fig. 7(b). For comparison, the atomic density profiles of the C-S-
290 H and epoxy in the epoxy–C-S-H model with a dry interface are also calculated. It can be seen
291 that the distribution of water molecules overlaps with the distribution of the C-S-H atoms and
292 the epoxy atoms. This implies that the water molecules can fill the molecular voids at the
293 interface between the C-S-H and the epoxy, which is the reason why the structure size change
294 is less than the thickness of water at the interface. Moreover, the distribution of the epoxy atoms
295 in the epoxy–C-S-H model with 5 Å thick water moves to larger z-coordinates, compared with
296 that with a dry interface. This indicates that partial water molecules involve in enlarging the
297 interfacial space, which agrees with the results revealed in Fig. 4(a). Based on these findings,
298 the inset in Fig. 7 shows a schematic view of two different roles of water molecules at the
299 interface, including the filling role and the enlarging role. The filling role means that the water
300 molecules fill in the voids at the interface, while the enlarging role means that the water
301 molecules enlarge the interfacial space, leading to the increase in the structure size. In addition,
302 the filling role and the enlarging role always coexist with the increasing water content at the
303 interface, which differs from the common sense at larger scales (like macroscale) that water
304 fills in the pores first and then enlarges the interlayer space.

305

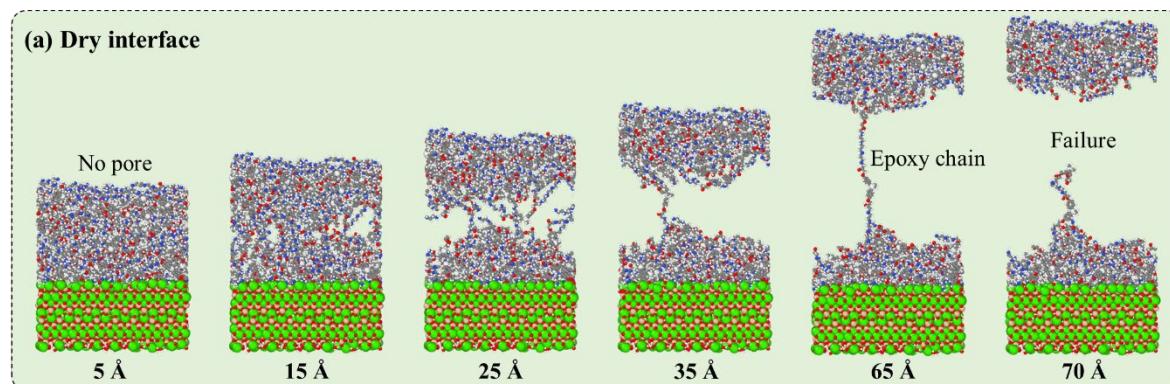

306

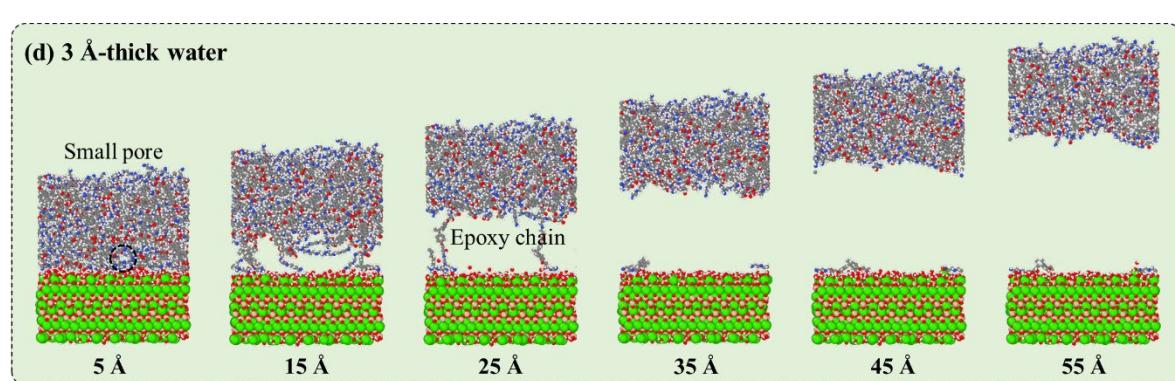
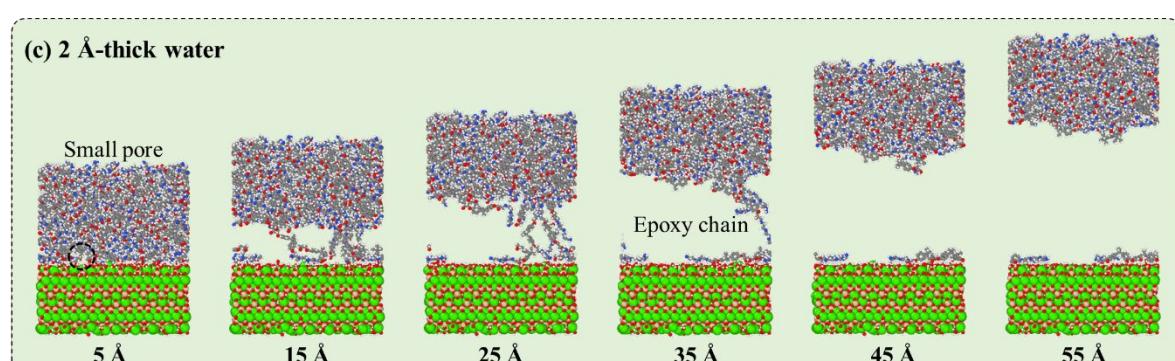
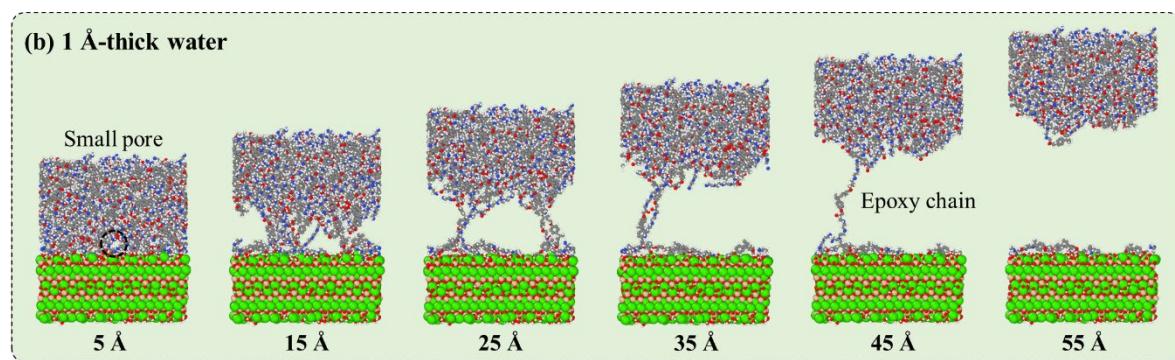
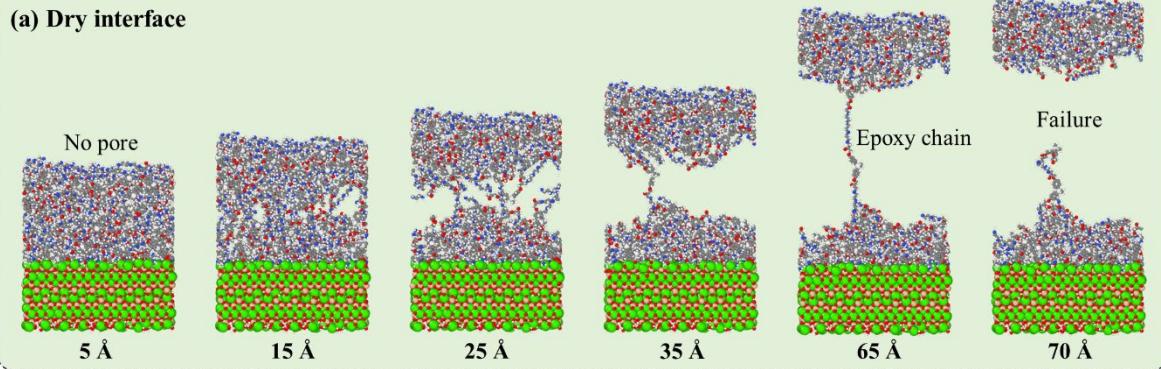

307 Fig. 7 (a) The structure size along z-direction for epoxy–C-S-H model with different thicknesses of water at the
 308 interface. The inset shows a schematic view of the filling role and enlarging role of water molecules at the interface;
 309 (b) the atomic density profiles of the three components of two epoxy–C-S-H models with 0 Å thick and 5 Å thick
 310 water as a function of the distance along the z-direction. The dash lines represent the position of the epoxy surface
 311 and the red arrow denotes the movement of the epoxy structure after introducing 5 Å thick water to the interface.

312 3.2 Debonding behaviors

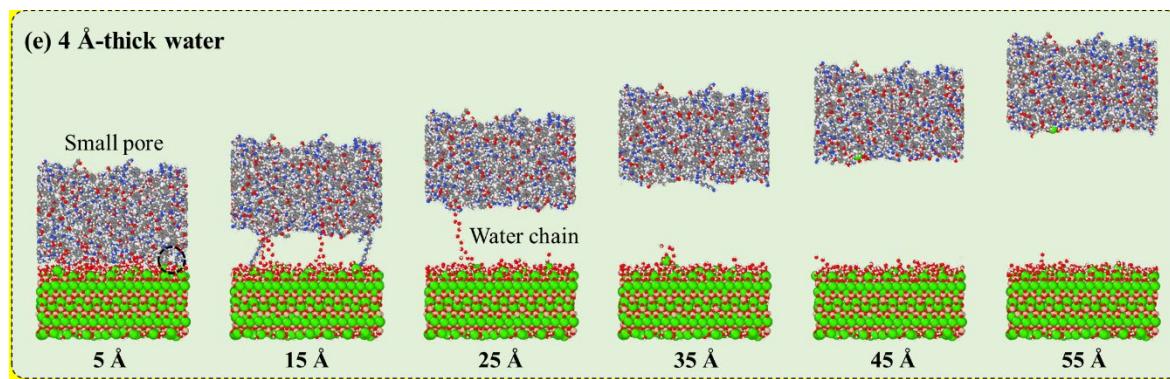
313 The debonding characteristics of the epoxy–C-S-H interface with the water presence are
 314 studied by applying a constant velocity on the upper region of the epoxy structure, which is a
 315 common method to identify the debonding process between two initially bonded components
 316 [64, 65]. First, the stress-strain curves of the epoxy–C-S-H structures is recorded during the
 317 tensile tests, as shown in Fig. 8. For all the epoxy–C-S-H models, the tensile stress increases
 318 gradually at the initial stage. Then it reaches the peak, after which the tensile stress decreases
 319 gradually with further increasing of the tensile strain (the fracture stage). The peak values
 320 decrease from 287.7 to 227.5 MPa with the interfacial water thickness ranging from 0 to 5 Å,
 321 indicating that the interfacial bond strength of the epoxy–C-S-H models is weakened by water
 322 molecules, and a higher water content leads to a stronger weakening effect. It can also be found
 323 that the tensile strain at the peaks decreases from 5.7% to 4.6%, indicating that increasing the

324 water content at the interface causes an earlier occurrence of the fracture of the epoxy–C-S-H
 325 interface. At the fracture process, the residual bond strength also decreases with the increasing
 326 water content at the interface. For example, the tensile stress at 15% strain are 147, 89, and 45
 327 MPa, respectively for the epoxy–C-S-H models with 0, 2, and 4 Å thick water at the interface.
 328 In summary, the interfacial water presence degrades the interfacial bond strength, the earlier
 329 occurrence of the fracture, and the lower residual bond strength. Similarly, the water presence
 330 at the asphalt–quartz interface [66], the graphene–C-S-H interface [67], and asphalt–calcite
 331 interface [64] can also lead to the interfacial mechanical degradation. Yaphary et al. [28] and
 332 Wang et al. [62] proved that the detaching force of an epoxy resin molecule from C-S-H or
 333 aggregate substrate can be decreased by water molecules. These results are in line with that in
 334 the current study.

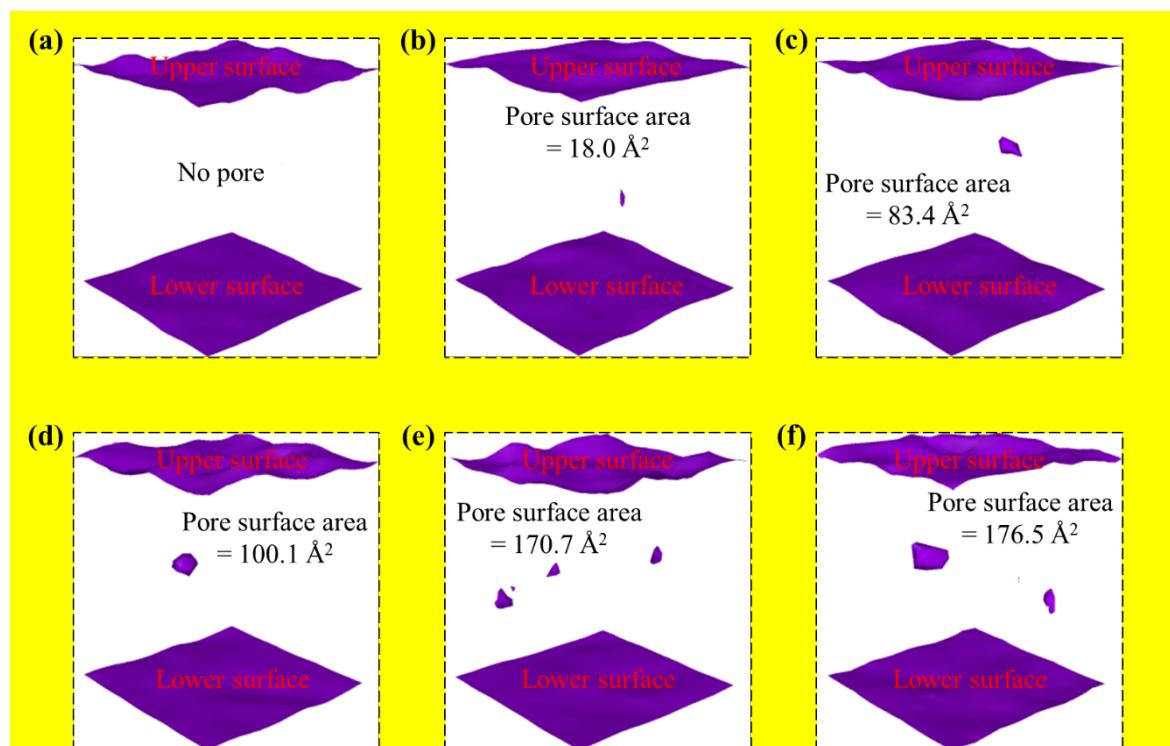






337

338 Fig. 8 The stress-strain curves of the epoxy–C-S-H models with different thicknesses of water at the interface: (a)
 339 no water; (b) 1 Å thick water; (c) 2 Å thick water; (d) 3 Å thick water; (e) 4 Å thick water; (f) 5 Å thick water.
 340 Some coordinates are labeled to reveal the relation between stress and strain at the initial stage, the peak, and the
 341 fracture stage.


342 Next, the snapshots of the epoxy–C-S-H models are taken during the debonding process,
 343 as shown in Fig. 9. At 5 Å displacement, some visible pores can be seen in the epoxy–C-S-H
 344 models. To investigate the influence of water on the pore formation process, the pore structures
 345 (at 5 Å displacement) are constructed via the alpha-shape method with the probe sphere radius
 346 of 5 Å [68], as shown in Fig. 10. For the dry case, no pore is formed within the interfacial
 347 model, but with gradual introduction of water into the interface the pore volume becomes larger
 348 and larger. The results reveal that the water molecules may accelerate the crack formation at
 349 the interface. By observing the whole debonding process of the epoxy–C-S-H model with a dry
 350 interface (Fig. 9a), the cracks propagate gradually with the increase of the pull displacement,
 351 and then multiple epoxy chains are observed to bridge the cracks. Afterwards, the epoxy chain
 352 bridging fails gradually, and then a singly long epoxy chain keeps bridging the cracks until the
 353 complete failure (note that there is no breakage of any covalent bond during the whole fracture
 354 process). The fracture process is similar to that of geopolymer binder–aggregate, which also
 355 undergoes crack propagation, molecular chain bridging, and failure of the chain bridging [59].
 356 Compared with the epoxy–C-S-H model with a dry interface, it is obvious that the water
 357 presence at the interface affects the bridging of the epoxy chains, as the complete failure of the
 358 bridging occurs at the different displacements, 70 Å for the epoxy–C-S-H (a dry interface), 55

359 Å for the epoxy–C-S-H (1 Å thick water), 45 Å for the epoxy–C-S-H (2 Å thick water), 35 Å
 360 for the epoxy–C-S-H (3 Å thick water), 25 Å for the epoxy–C-S-H (4 Å thick water). For the
 361 epoxy–C-S-H (5 Å thick water), no epoxy chain bridging can be observed because there is
 362 almost no chemical bonding between the epoxy and the C-S-H, as reported in Fig. 4. For the
 363 epoxy–C-S-H models with 4 and 5 Å thick water at the interface (Fig. 9e and f), the water
 364 molecule chains are observed to bridge the cracks, and a higher water content leads to a longer
 365 water chain. In addition, some epoxy molecules can be pulled out by the C-S-H substrate from
 366 the epoxy structure, and the increasing water contents result in less epoxy molecules on the C-
 367 S-H substrate (Fig. 9a-d). In particular, many epoxy molecules are pulled out from the epoxy–
 368 C-S-H with a dry interface (Fig. 9a). Thus the position of the fracture can be viewed as in the
 369 internal of the epoxy structure. No epoxy molecules are found on the C-S-H substrate when the
 370 thickness of water at the interface is larger than 4 Å (Fig. 9e and f). In conclusion, the water
 371 molecules at the interface accelerate the crack formation and propagation, the failure of the
 372 epoxy chain bridging, and weaken the pull-out of the epoxy molecules by the C-S-H substrate.
 373 Moreover, the fracture plane is transferred from the internal of the epoxy to the interface with
 374 the increasing water content.

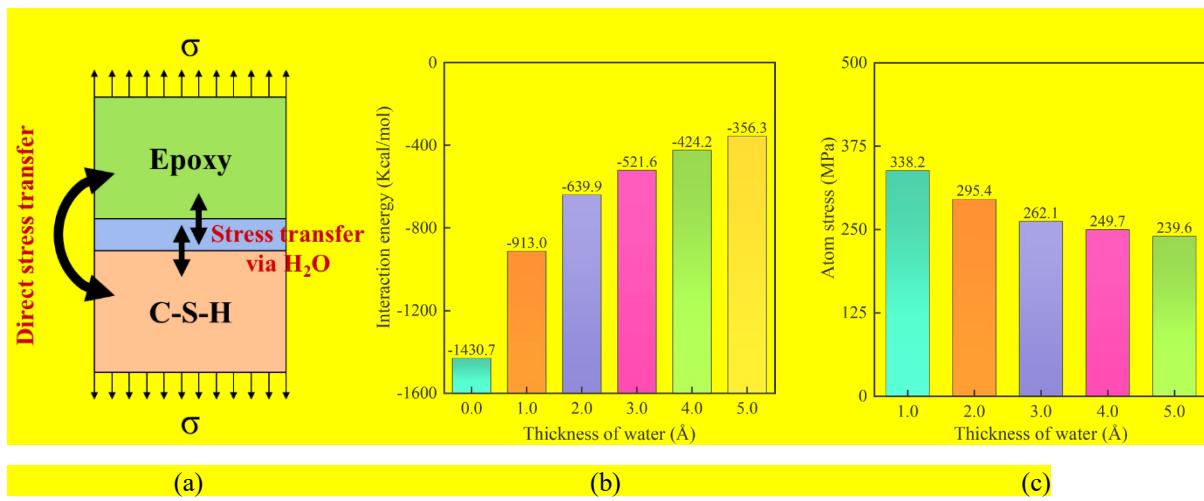


380

381

382 Fig. 9 The snapshots of the debonding process of the epoxy–C–S–H models with different water thicknesses at the
 383 interface: (a) a dry interface (0 Å thick water); (b) 1 Å thick water; (c) 2 Å thick water; (d) 3 Å thick water;
 384 (e) 4 Å thick water; (f) 5 Å thick water.

385

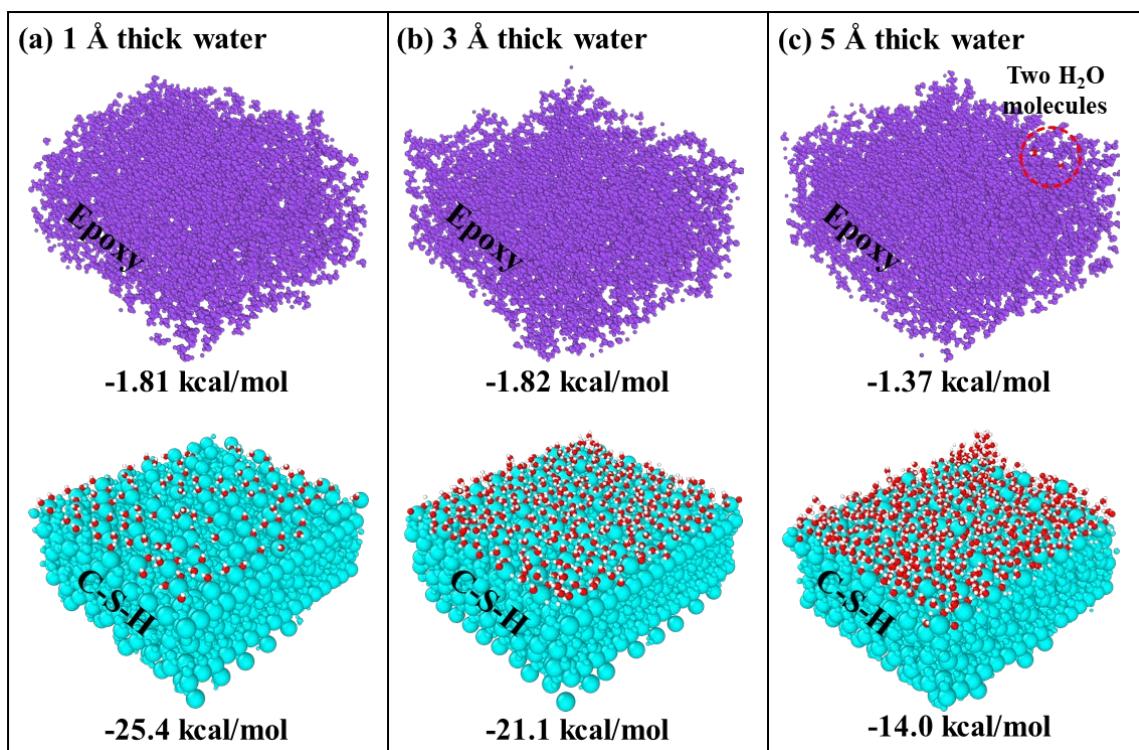

386 Fig. 10 The pore structures of the epoxy–C-S-H interfacial models with different interfacial water thicknesses at
 387 5 Å displacement: (a) a dry interface (0 Å thick water); (b) 1 Å thick water; (c) 2 Å thick water; (d) 3 Å thick
 388 water; (e) 4 Å thick water; (f) 5 Å thick water.

389 To further understand how the water molecules degrade the interfacial mechanical
 390 properties, two key factors that are responsible for the mechanical strength, including the direct
 391 stress transfer between epoxy and C-S-H and the indirect stress transfer via water molecules
 392 (Fig. 11a), are analyzed. The direct stress transfer capacity is related to the interaction between
 393 epoxy and C-S-H, which can be investigated by calculating the interaction energy between
 394 these two components [59], as summarized in Fig. 11(b). The interaction energy increases
 395 significantly from -1430.7 kcal/mol to -639.9 kcal/mol when the thickness of water increases
 396 from 0 to 2 Å, then it increases to -356.3 kcal/mol with the thickness of water further increasing
 397 to 5 Å. As a lower interaction energy (more negative) corresponds to a stronger interaction, the
 398 results indicate that the increasing water content at the epoxy–C-S-H interface can weaken the
 399 interfacial interaction, leading to the decrease of the direct stress transfer capacity. Similarly,
 400 Tam et al. [69] also reported that the water presence at the epoxy–fiber interface could increase
 401 the interfacial interaction energy (less negative). In addition, the water molecules can
 402 contribute to the load transfer between the epoxy and the C-S-H. Next, to reveal the indirect
 403 stress transfer via water molecules between epoxy and C-S-H, the atom stress (σ_z) of the water
 404 molecules is calculated using the following equation [70],

$$405 \sigma_z = -[mv_z^2 + \frac{1}{2} \sum_{n=1}^{N_p} (r_{1z} F_{1z} + r_{2z} F_{2z}) + \frac{1}{2} \sum_{n=1}^{N_b} (r_{1z} F_{1z} + r_{2z} F_{2z}) \\ 406 + \frac{1}{3} \sum_{n=1}^{N_a} (r_{1z} F_{1z} + r_{2z} F_{2z} + r_{3z} F_{3z}) + Kspace(r_{iz}, F_{iz})]/V \quad (3)$$

407 where the first term is a kinetic energy contribution to atom stress; the second term is a pairwise
 408 energy contribution where n loops over the N_p neighbors of atoms, r_1 and r_2 are the positions
 409 of the 2 atoms in the pairwise interaction, and F_1 and F_2 are the forces on the 2 atoms due to
 410 the pairwise interaction; the third term is a bond contribution of similar form for the N_b bonds
 411 which atom is part of. There are similar terms for the N_a angle, which atom is part of; the last

412 term is the Kspace contribution from long-range Coulombic interactions; V is the atomic
 413 volume that can be approximately obtained by Voronoi analysis. The maximum atom stress of
 414 the water molecules are summarized in Fig. 11(b). The atom stress of the water molecules
 415 decreases gradually from 338.2 MPa to 239.6 MPa with the increasing water contents at the
 416 interface, indicating that higher water contents weaken the load transfer of the water molecules.
 417 Similarly, Kai et al. [71] found that the load transfer of these water molecules between two C-
 418 S-H layers is weakened by higher water contents, which is viewed as the “hydrolytic weakening
 419 mechanism”. In conclusion, the degradation mechanism of the interface is attributed to two
 420 factors: one is that the direct stress transfer between epoxy and C-S-H is weakened and the
 421 other is that the indirect stress transfer via water molecules is also weakened with the presence
 422 of water at the epoxy–C-S-H interface.



423 (a) (b) (c)

424 Fig. 11 (a) A schematic view of the stress transfer within the epoxy–C-S-H interfacial structures, including the
 425 direct stress transfer between epoxy and C-S-H and the indirect stress transfer via H₂O molecules; (b) Summary
 426 of the interaction energy between the epoxy and the C-S-H with different thicknesses of water at the interface; (c)
 427 the maximum atom stress of the water molecules between the epoxy and the C-S-H with different thicknesses of
 428 water at the interface during the tensile tests.

429 Fig. 12 shows the exposed epoxy surface and C-S-H surface after the complete debonding
 430 of the epoxy–C-S-H structures (1, 3, and 5 Å thick water). It can be seen that the water
 431 molecules prefer to be absorbed by the C-S-H substrate rather than the epoxy during the
 432 debonding process. To explain this phenomenon, the interaction energy between water and
 433

434 epoxy, and between water and C-S-H is calculated and shown in Fig. 12. Obviously, the C-S-
 435 H substrate has an ultra-strong water absorption ability compared to the epoxy. In addition,
 436 with the increase of the water thickness at the interface, the interaction energy per water
 437 molecule decreases, indicating that the water absorption on the C-S-H surface is weakened
 438 (physical effect: more water molecules exist at a longer distance away from the C-S-H surface).
 439 As a result, the water molecules have the possibility to be absorbed by the epoxy surface, as
 440 shown in Fig. 12(c).

441
 442 Fig. 12 The exposed epoxy surface and C-S-H surface after the complete debonding of the epoxy–C-S-H structures
 443 with 1, 3, and 5 Å thick water. The purple color is used to represent all the epoxy atoms, while the blue color is
 444 used to describe all the C-S-H atoms. The O and H in water molecules are represented in red and white colors,
 445 respectively. The data in the figure are the average values of the interaction energy between the water molecules
 446 and the epoxy and the C-S-H.

447 4. Conclusions

448 This study has investigated the evolution of the interfacial molecular structure and the
 449 debonding behaviour of the epoxy-to-C-S-H interface under the water presence using atomistic
 450 simulation. Some conclusions can be drawn from this research as follows:

451 (a) There are various forms of interfacial chemical bonding between the epoxy and the C-
452 S-H, including Ca–O ionic bond, Ca–N ionic bond, and H-bond. All these chemical
453 bonds decrease with the increasing water content.

454 (b) The size of the epoxy–C-S-H molecular structure evolves with the increasing water
455 contents at the interface. There are two different roles of the water molecules, including
456 the filling role and enlarging role. As only partial water molecules involve in enlarging
457 the structure size, the increase of the structure size is smaller than the thickness of water
458 introduced to the interface.

459 (c) Water can lead to the degradation of the interfacial bond strength and accelerate the
460 crack formation and propagation, the failure of the epoxy chain bridging, and weaken
461 the pull-out of the epoxy molecules by the C-S-H substrate. The position of the fracture
462 is transferred from the internal of the epoxy to the interface by introducing water.

463 (d) The degradation mechanism of the epoxy-C-S-H interface is attributed to two factors:
464 one is the interaction between the epoxy and the C-S-H is weakened by the water
465 molecules, and the other is the load transfer of the water molecules becomes weaker
466 with the increasing water content.

467 (e) The water molecules usually prefer to be absorbed by the C-S-H substrate rather than
468 the epoxy during the debonding process because the former has a much stronger water
469 absorption ability than the latter. With the increasing water content, however, a few
470 water molecules may be absorbed by the epoxy surface.

471 The present work provides an atomic-level insight into the debonding performance between
472 epoxy and C-S-H, which can be viewed as an extremely localized phenomenon in a realistic
473 FRP-to-concrete interface. The results can also help to understand the influence of salt
474 solutions at the epoxy–C-S-H interfaces as its main component is water, but the influence of
475 ions in salt solutions needs to be further evaluated. However, the realistic FRP-to-concrete
476 interface is more complicated, as concrete is a porous multiphase material that involves in a
477 series of physical and chemical events and the moisture ingress may not only occur at the
478 interface between epoxy and C-S-H. Although the present MD modelling can help understand

479 the mechanism of how the presence of water degrades the interface bond between the epoxy
480 and C-S-H, further research is needed to correlate the atomic level behaviour to the macroscale
481 behaviour in terms of failure mode and mechanical responses.

482

483 **Declaration of competing interest**

484 The authors declare that they have no known competing financial interests or personal
485 relationships that could have appeared to influence the work reported in this paper.

486

487 **Acknowledgments**

488 The authors acknowledge the financial support received from Chinese Guangdong
489 Province R&D Plan for Key Areas (Project No. 2019B111107002), Hong Kong Research
490 Grants Council – Theme-based Research Scheme (Project No. T22-502/18-R), the Hong Kong-
491 Guangzhou Technology and Innovation Partnership Program (Project No. 201807010055), and
492 the National Natural Science Foundation of China (NSFC) Project (Project No. 51478406).

493

494 **References**

495 [1] M. Abedini, C. Zhang, Dynamic performance of concrete columns retrofitted with FRP using
496 segment pressure technique, *Composite Structures*, 260 (2021) 113473.

497 [2] B. Wan, C. Jiang, Y.-F. Wu, Effect of defects in externally bonded FRP reinforced concrete,
498 *Construction and Building Materials*, 172 (2018) 63-76.

499 [3] X. Zou, P. Feng, Y. Bao, J. Wang, H. Xin, Experimental and analytical studies on shear behaviors
500 of FRP-concrete composite sections, *Engineering Structures*, 215 (2020) 110649.

501 [4] T. Siwowski, M. Rajchel, Structural performance of a hybrid FRP composite-lightweight concrete
502 bridge girder, *Composites Part B: Engineering*, 174 (2019) 107055.

503 [5] X. Zou, H. Lin, P. Feng, Y. Bao, J. Wang, A review on FRP-concrete hybrid sections for bridge
504 applications, *Composite Structures*, DOI (2020) 113336.

505 [6] F.M. Mukhtar, R.M. Faysal, A review of test methods for studying the FRP-concrete interfacial
506 bond behavior, *Construction and Building Materials*, 169 (2018) 877-887.

507 [7] J.-G. Dai, H. Yokota, M. Iwanami, E. Kato, Experimental investigation of the influence of moisture
508 on the bond behavior of FRP to concrete interfaces, *Journal of Composites for Construction*, 14 (2010)
509 834-844.

510 [8] W.-Y. Gao, J.-G. Dai, J. Teng, Analysis of Mode II debonding behavior of fiber-reinforced polymer-
511 to-substrate bonded joints subjected to combined thermal and mechanical loading, *Engineering Fracture
512 Mechanics*, 136 (2015) 241-264.

513 [9] Z. Wang, J.-G. Dai, M. Wang, L. Chen, F. Zhang, Q. Xu, Residual bond strengths of epoxy and
514 cement-bonded CFRP reinforcements to concrete interfaces after elevated temperature exposure, *Fire
515 Safety Journal*, DOI (2021) 103393.

516 [10] D.-G. Jia, W.-Y. Gao, D.-X. Duan, J. Yang, J.-G. Dai, Full-range behavior of FRP-to-concrete
517 bonded joints subjected to combined effects of loading and temperature variation, *Engineering Fracture
518 Mechanics*, 254 (2021) 107928.

519 [11] F. Zhang, J.-G. Dai, Z. Wang, M. Wang, Y. Leng, Q. Xu, Bond durability of epoxy and cement-
520 bonded CFRP reinforcement to concrete interfaces subject to water immersion, *Materials and Structures*,
521 54 (2021) 1-12.

522 [12] J. Shrestha, D. Zhang, T. Ueda, Durability performances of carbon fiber-reinforced polymer and
523 concrete-bonded systems under moisture conditions, *Journal of composites for construction*, 20 (2016)
524 04016023.

525 [13] Z. Ouyang, B. Wan, Nonlinear deterioration model for bond interfacial fracture energy of FRP-
526 concrete joints in moist environments, *Journal of Composites for Construction*, 13 (2009) 53-63.

527 [14] D. Hou, Q. Yang, P. Wang, Z. Jin, M. Wang, Y. Zhang, X. Wang, Unraveling disadhesion
528 mechanism of epoxy/CSH interface under aggressive conditions, *Cement and Concrete Research*, 146
529 (2021) 106489.

530 [15] B. Ferracuti, M. Savoia, C. Mazzotti, Interface law for FRP-concrete delamination, *Composite
531 structures*, 80 (2007) 523-531.

532 [16] H. Diab, Z. Wu, Nonlinear constitutive model for time-dependent behavior of FRP-concrete
533 interface, *Composites science and technology*, 67 (2007) 2323-2333.

534 [17] A. Zhou, O. Büyüköztürk, D. Lau, Debonding of concrete-epoxy interface under the coupled effect
535 of moisture and sustained load, *Cement and Concrete Composites*, 80 (2017) 287-297.

536 [18] B. Wan, M.F. Petrou, K.A. Harries, The effect of the presence of water on the durability of bond
537 between CFRP and concrete, *Journal of Reinforced Plastics and Composites*, 25 (2006) 875-890.

538 [19] C. Tuakta, O. Büyüköztürk, Deterioration of FRP/concrete bond system under variable moisture
539 conditions quantified by fracture mechanics, *Composites Part B: Engineering*, 42 (2011) 145-154.

540 [20] I. Alachek, N. Reboul, B. Jurkiewicz, Bond strength's degradation of GFRP-concrete elements
541 under aggressive exposure conditions, *Construction and Building Materials*, 179 (2018) 512-525.

542 [21] S. Amidi, J. Wang, Subcritical debonding of FRP-to-concrete bonded interface under synergistic
543 effect of load, moisture, and temperature, *Mechanics of Materials*, 92 (2016) 80-93.

544 [22] M.F. Kai, L.W. Zhang, K.M. Liew, New insights into creep characteristics of calcium silicate
545 hydrates at molecular level, *Cement and Concrete Research*, 142 (2021) 106366.

546 [23] M. Kai, L. Zhang, K. Liew, New insights into creep characteristics of calcium silicate hydrates at
547 molecular level, *Cement and Concrete Research*, 142 (2021) 106366.

548 [24] P. Bonnaud, Q. Ji, B. Coasne, R.-M. Pellenq, K. Van Vliet, Thermodynamics of water confined in
549 porous calcium-silicate-hydrates, *Langmuir*, 28 (2012) 11422-11432.

550 [25] Z. Yu, A. Zhou, W. Ning, L.-h. Tam, Molecular insights into the weakening effect of water on
551 cement/epoxy interface, *Applied Surface Science*, 553 (2021) 149493.

552 [26] X.Q. Wang, W. Jian, O. Buyukozturk, C.K. Leung, D. Lau, Degradation of epoxy/glass interface
553 in hygrothermal environment: An atomistic investigation, *Composites Part B: Engineering*, 206 (2021)
554 108534.

555 [27] A. Moshedifard, S. Masoumi, M.A. Qomi, Nanoscale origins of creep in calcium silicate hydrates,
556 *Nature communications*, 9 (2018) 1-10.

557 [28] Y.L. Yaphary, Z. Yu, R.H. Lam, D. Hui, D. Lau, Molecular dynamics simulations on adhesion of
558 epoxy-silica interface in salt environment, *Composites Part B: Engineering*, 131 (2017) 165-172.

559 [29] L.-h. Tam, A. Zhou, Z. Yu, Q. Qiu, D. Lau, Understanding the effect of temperature on the
560 interfacial behavior of CFRP-wood composite via molecular dynamics simulations, *Composites Part B:
561 Engineering*, 109 (2017) 227-237.

562 [30] L.-h. Tam, D. Lau, C. Wu, Understanding interaction and dynamics of water molecules in the
563 epoxy via molecular dynamics simulation, *Molecular Simulation*, 45 (2019) 120-128.

564 [31] S. Pandiyan, J. Krajniak, G. Samaey, D. Roose, E. Nies, A molecular dynamics study of water
565 transport inside an epoxy polymer matrix, *Computational Materials Science*, 106 (2015) 29-37.

566 [32] T. Honorio, H. Carasek, O. Cascudo, Water self-diffusion in CSH: Effect of confinement and
567 temperature studied by molecular dynamics, *Cement and Concrete Research*, 155 (2022) 106775.

568 [33] M.A. Qomi, K. Krakowiak, M. Bauchy, K. Stewart, R. Shahsavari, D. Jagannathan, D.B. Brommer,
569 A. Baronnet, M.J. Buehler, S. Yip, Combinatorial molecular optimization of cement hydrates, *Nature
570 communications*, 5 (2014) 1-10.

571 [34] D. Hou, H. Ma, Y. Zhu, Z. Li, Calcium silicate hydrate from dry to saturated state: Structure,
572 dynamics and mechanical properties, *Acta materialia*, 67 (2014) 81-94.

573 [35] D. Hou, J. Yu, Z. Jin, A. Hanif, Molecular dynamics study on calcium silicate hydrate subjected
574 to tension loading and water attack: structural evolution, dynamics degradation and reactivity
575 mechanism, *Physical Chemistry Chemical Physics*, 20 (2018) 11130-11144.

576 [36] P. Wang, Q. Yang, Z. Jin, D. Hou, M. Wang, Effects of water and ions on bonding behavior
577 between epoxy and hydrated calcium silicate: a molecular dynamics simulation study, *Journal of*
578 *Materials Science*, 56 (2021) 16475-16490.

579 [37] P. Wang, Q. Yang, M. Wang, D. Hou, Z. Jin, P. Wang, J. Zhang, Theoretical investigation of epoxy
580 detachment from CSH interface under aggressive environment, *Construction and Building Materials*,
581 264 (2020) 120232.

582 [38] S. Tang, A. Hubao, J. Chen, W. Yu, P. Yu, E. Chen, H. Deng, Z. He, The interactions between
583 water molecules and CSH surfaces in loads-induced nanopores: A molecular dynamics study, *Applied*
584 *Surface Science*, 496 (2019) 143744.

585 [39] R.J.-M. Pellenq, A. Kushima, R. Shahsavari, K.J. Van Vliet, M.J. Buehler, S. Yip, F.-J. Ulm, A
586 realistic molecular model of cement hydrates, *Proceedings of the National Academy of Sciences*, 106
587 (2009) 16102-16107.

588 [40] L.-h. Tam, D. Lau, A molecular dynamics investigation on the cross-linking and physical
589 properties of epoxy-based materials, *RSC Advances*, 4 (2014) 33074-33081.

590 [41] W. Jian, D. Lau, Understanding the effect of functionalization in CNT-epoxy nanocomposite from
591 molecular level, *Composites Science and Technology*, 191 (2020) 108076.

592 [42] W.-M. Ji, L.-W. Zhang, K. Liew, Understanding interfacial interaction characteristics of carbon
593 nitride reinforced epoxy composites from atomistic insights, *Carbon*, 171 (2021) 45-54.

594 [43] F. Jeyranpour, G. Alahyarizadeh, B. Arab, Comparative investigation of thermal and mechanical
595 properties of cross-linked epoxy polymers with different curing agents by molecular dynamics
596 simulation, *Journal of Molecular Graphics and Modelling*, 62 (2015) 157-164.

597 [44] D. Doherty, B. Holmes, P. Leung, R. Ross, Polymerization molecular dynamics simulations. I.
598 Cross-linked atomistic models for poly (methacrylate) networks, *Computational and Theoretical*
599 *Polymer Science*, 8 (1998) 169-178.

600 [45] C. Wu, W. Xu, Atomistic molecular modelling of crosslinked epoxy resin, *Polymer*, 47 (2006)
601 6004-6009.

602 [46] V. Varshney, S.S. Patnaik, A.K. Roy, B.L. Farmer, A molecular dynamics study of epoxy-based
603 networks: cross-linking procedure and prediction of molecular and material properties, *Macromolecules*,
604 41 (2008) 6837-6842.

605 [47] A. Shokuhfar, B. Arab, The effect of cross linking density on the mechanical properties and
606 structure of the epoxy polymers: molecular dynamics simulation, *Journal of molecular modeling*, 19
607 (2013) 3719-3731.

608 [48] F. Aghadavoudi, H. Golestanian, Y. Tadi Beni, Investigating the effects of resin crosslinking ratio
609 on mechanical properties of epoxy - based nanocomposites using molecular dynamics, *Polymer*
610 *Composites*, 38 (2017) E433-E442.

611 [49] F.G. Garcia, B.G. Soares, V.J. Pita, R. Sánchez, J. Rieumont, Mechanical properties of epoxy
612 networks based on DGEBA and aliphatic amines, *Journal of Applied Polymer Science*, 106 (2007)
613 2047-2055.

614 [50] E.N. Brown, S.R. White, N.R. Sottos, Fatigue crack propagation in microcapsule-toughened epoxy,
615 *Journal of materials science*, 41 (2006) 6266-6273.

616 [51] W. Jian, X. Wang, H. Lu, D. Lau, Molecular dynamics simulations of thermodynamics and shape
617 memory effect in CNT-epoxy nanocomposites, Composites Science and Technology, 211 (2021)
618 108849.

619 [52] J. Wan, B. Gan, C. Li, J. Molina-Aldareguia, E.N. Kalali, X. Wang, D.-Y. Wang, A sustainable,
620 eugenol-derived epoxy resin with high biobased content, modulus, hardness and low flammability:
621 Synthesis, curing kinetics and structure–property relationship, Chemical Engineering Journal, 284
622 (2016) 1080-1093.

623 [53] P. Wang, G. Qiao, Y. Zhang, D. Hou, J. Zhang, M. Wang, X. Wang, X. Hu, Molecular dynamics
624 simulation study on interfacial shear strength between calcium-silicate-hydrate and polymer fibers,
625 Construction and Building Materials, 257 (2020) 119557.

626 [54] R.T. Cygan, J.-J. Liang, A.G. Kalinichev, Molecular models of hydroxide, oxyhydroxide, and clay
627 phases and the development of a general force field, The Journal of Physical Chemistry B, 108 (2004)
628 1255-1266.

629 [55] P. Dauber-Osguthorpe, V. Roberts, D. Osguthorpe, J. Wolff, M. Genest, AT and Hagler. Structure
630 and energetics of ligand binding to proteins: Escherichia coli dihydrofolate reductase-trimethoprim, a
631 drug-receptor system, Proteins: Structure, Function, and Genetics, 4 (1988) 31-47.

632 [56] M. Kai, L. Zhang, K. Liew, Graphene and graphene oxide in calcium silicate hydrates: Chemical
633 reactions, mechanical behavior and interfacial sliding, Carbon, 146 (2019) 181-193.

634 [57] M.F. Kai, L.W. Zhang, K.M. Liew, Graphene and graphene oxide in calcium silicate hydrates:
635 Chemical reactions, mechanical behavior and interfacial sliding, Carbon, 146 (2019) 181-193.

636 [58] Z. Diao, Y. Zhao, B. Chen, C. Duan, S. Song, ReaxFF reactive force field for molecular dynamics
637 simulations of epoxy resin thermal decomposition with model compound, Journal of Analytical and
638 Applied Pyrolysis, 104 (2013) 618-624.

639 [59] M.-F. Kai, J.-G. Dai, Understanding geopolymers binder-aggregate interfacial characteristics at
640 molecular level, Cement and Concrete Research, 149 (2021) 106582.

641 [60] F. Jiang, Q. Yang, Y. Wang, P. Wang, D. Hou, Z. Jin, Insights on the adhesive properties and
642 debonding mechanism of CFRP/concrete interface under sulfate environment: From experiments to
643 molecular dynamics, Construction and Building Materials, 269 (2021) 121247.

644 [61] D. Hou, J. Zhang, W. Pan, Y. Zhang, Z. Zhang, Nanoscale mechanism of ions immobilized by the
645 geopolymers: A molecular dynamics study, Journal of Nuclear Materials, 528 (2020) 151841.

646 [62] P. Wang, Q. Yang, Z. Jin, D. Hou, M. Wang, Effects of water and ions on bonding behavior
647 between epoxy and hydrated calcium silicate: a molecular dynamics simulation study, Journal of
648 Materials Science, DOI (2021) 1-16.

649 [63] J. Sun, W. Zhang, J. Zhang, D. Hou, Molecular dynamics study the structure, bonding, dynamic
650 and mechanical properties of calcium silicate hydrate with ultra-confined water: Effects of nanopore
651 size, Construction and Building Materials, 280 (2021) 122477.

652 [64] W. Sun, H. Wang, Moisture effect on nanostructure and adhesion energy of asphalt on aggregate
653 surface: A molecular dynamics study, Applied Surface Science, 510 (2020) 145435.

654 [65] S. Zhou, N. Vu-Bac, B. Arash, H. Zhu, X. Zhuang, Interface characterization between
655 polyethylene/silica in engineered cementitious composites by molecular dynamics simulation,
656 Molecules, 24 (2019) 1497.

657 [66] H. Wang, E. Lin, G. Xu, Molecular dynamics simulation of asphalt-aggregate interface adhesion
658 strength with moisture effect, International Journal of Pavement Engineering, 18 (2017) 414-423.

659 [67] T. Yang, Y. Jia, D. Hou, H. Li, J. Jiang, J. Zhang, Molecular dynamics study on the weakening
660 effect of moisture content on graphene oxide reinforced cement composite, Chemical Physics Letters,
661 708 (2018) 177-182.

662 [68] A. Stukowski, Computational analysis methods in atomistic modeling of crystals, Jom, 66 (2014)
663 399-407.

664 [69] L.-h. Tam, L. He, C. Wu, Molecular dynamics study on the effect of salt environment on interfacial
665 structure, stress, and adhesion of carbon fiber/epoxy interface, Composite Interfaces, 26 (2019) 431-
666 447.

667 [70] D. Surblys, H. Matsubara, G. Kikugawa, T. Ohara, Application of atomic stress to compute heat
668 flux via molecular dynamics for systems with many-body interactions, Physical Review E, 99 (2019)
669 051301.

670 [71] M. Kai, L. Zhang, K. Liew, Atomistic insights into structure evolution and mechanical property of
671 calcium silicate hydrates influenced by nuclear waste caesium, Journal of Hazardous Materials, 411
672 (2021) 125033.

673