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Abstract

In this study, molecular models are developed to investigate the water-induced bond
degradation of the epoxy—concrete interface. Concrete is simulated using the C-S-H binder.
The results indicate that the interfacial chemical bonds, including Ca—O, Ca—N, and H-bond,
are reduced due to the existence of water at the interface. Two different roles of water
molecules are characterized in the interfacial structure, including the filling and enlarging roles.
The water presence degrades the interfacial bond strength and accelerates the interface
debonding process, attributed to the weakened interaction between the epoxy and the C-S-H
and the weakened load transfer of water molecules. The fracture position is transferred from
the internal epoxy to the interface between the epoxy and the C-S-H. These atomic-level
findings facilitate a better understanding of the interfacial deterioration of epoxy-bonded
systems, e.g., fiber-reinforced polymer (FRP)-strengthened concrete structures with water

presence at the interface.
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1. Introduction

After years of service, concrete infrastructures (e.g., bridges and buildings), often face
deterioration problems and may need rehabilitation and structure strengthening. Use of
externally bonded (EB) fiber-reinforced polymer (FRP) composites has become a popular
solution for the strengthening of concrete structures (Fig. 1a) [1-3], attributed to the many
advantages, such as high strength, light weight, corrosion and fatigue resistance and ease of
installation of the FRP composite materials [4-6]. However, there are also some concerns on
the EB FRP technology especially when exposed to severe environments, such as those highly
moist or with elevated temperature [7-11]. Significant attention has been paid to the influence
of water presence on the durability of FRP-to-concrete bond interface at both macroscopic and
microscopic scales, as water is one of the most often encountered deterioration factors of FRP-
to-concrete interface [12-18]. Since epoxy is most often used as the bonding adhesive as well
as the polymer matrix of fiber composites, the bond failure at the FRP—concrete interface under
a wet environment mainly depends on the bonding between epoxy and the calcium silicate

hydrates (C-S-H), which is the principal binder phase in concrete [19-21].

At the microscale, C-S-H exhibits a globular texture [22] and can adsorb water on its surface
from the pore solution, usually called “physically absorbed water” [23, 24], leading to a wet
epoxy—C-S-H interface [25]. The epoxy polar groups also favor the water absorption at the
epoxy—C-S-H interface from the surrounding environment [26]. A schematic diagram of the
interfacial bond at the macroscale and microscale is shown in Fig. 1(b). Due to the limitations
in scale and precision, all existing experimental studies could only provide investigations into
the phenomenological weakening effect on the epoxy—concrete interface under a wet
environment [7-16, 27]. The origins of the interfacial degradation and its correlation to the
water present at the interface cannot be explained by such phenomenological results and remain
vastly unclear. This calls for a molecular-level investigation into the fundamental mechanisms

behind the interfacial degradation phenomena (Fig. 1c) [26, 28, 29].



67
68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

Absorqu
water

'ic b |
)’!:f .,x; ‘
‘,'-u.\- ‘-‘U ‘ U‘f.“
q,

Engineering background Macroscale to microscale Molecular-level
Fig. 1 (a) An example of the engineering application of FRP-strengthened concrete structure; (b) a schematic view
of the macroscale FRP-to-concrete bond interface and a microscale epoxy—C-S-H interface with size down to
several nanometres. The C-S-H gel exhibits globular texture at the nanoscale, and the gel particles have a strong
binding ability with water from the surrounding environment. The epoxy gel also favors the water absorption on
its surface due to its polar groups; (c) a schematic view of the water molecules at the epoxy—C-S-H interface at

the molecular level.

Atomistic simulation, bypassing the experimental difficulties, could contribute
significantly to a direct insight into materials' physical and chemical basis at the molecular
level. To date, atomistic simulation has been successfully conducted to investigate the material
properties of epoxy gel and C-S-H gel. Tam et al. [30] investigated the structure and binding
behaviour of water molecules in cross-linked epoxy. When the water content is low, the water
molecules are mainly located in the vicinity of the epoxy functional groups. By increasing the
water content, the water molecules favourably form the large cluster in the epoxy. Pandiyan et
al. [31] also reached similar conclusion. Honorio et al. [32] studied the pore size and
temperature dependence of water diffusion in the C-S-H gel pore. The transition from glassy
to Fickean-dominated dynamics occurs at an interlayer distance of 2.6 nm between two C-S-H
layers. Qomi et al. [33] and Hou et al. [34, 35] reported the influence of water content on the
C-S-H mechanical properties. From a dry to saturated state, the tensile strength and Young’s
modulus of C-S-H decrease gradually due to the water attack on the cohesive force between C-
S-H layers. In addition, a few atomic-level studies have been performed to investigate the bond

performance between epoxy and C-S-H gel. For example, Wang et al. [36, 37] and Hou et al.
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[14] evaluated the debonding behaviour of epoxy from the C-S-H surface, and found that water
and salt environment can significantly disrupt the integrity of the epoxy—C-S-H interface, and
thus weaken the adhesion of epoxy on the C-S-H surface. Yu et al. [25] also reported the
weakening effect of water molecules on the interfacial integrity of epoxy—C-S-H interface.
These studies have facilitated a better understanding of the interfacial physics and chemistry,
which are usually not accessible experimentally. However, there are still some open questions
regarding how various water contents on the C-S-H affect the interfacial structures (such as the
atomic interactions among these three phases) and bond properties (such as the bond

degradation and fracture characteristics) between epoxy and C-S-H.

In this study, an all-atom simulation is performed to offer direct insights into the interfacial
bond behaviour of the epoxy—C-S-H interface with a focus on the influence of the water
presence. First, a series of interfacial molecular models are built with different water contents
set at the interface. The interfacial ionic bond and hydrogen-bond (H-bond) are characterized
to find how the interfacial interactions are formed. Next, the interfacial bond strength is
measured by applying an external detaching force to epoxy, and the full-range fracture process
of the interface is captured. The findings are expected to be useful for understanding the

degradation mechanism of EB FRP systems with water presence at the interface.

2. Computational Methods

2.1 Model establishment

In the model, (10 x 8 x 1) supercell of Hamid’s tobermorite-11 A (6.69 A x 7.39 A x 22.77
A, o =B =90° v =120°), is transformed to an orthogonal molecular model (55.88 A x 59.12
A %2277 A, a=p=7=90°) as the C-S-H substrate with a dry surface (Fig. 2a), following the
method proposed by Tang et al. [38]. Then a layer of water is prepared by packing water
molecules into a 5 A thick box with a predefined density of 1.0 g/cm? (Fig. 5b) [39]. This layer
of water is divided into five equal parts along z direction and thus different thicknesses (0, 1,
2,3,4and 5 A) of water can be chosen and placed on the C-S-H substrate to reveal the influence

of different water contents at the interface on the interfacial bond properties. Next, an epoxy
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molecular structure is established, which is composed of two basic units, diglycidyl ether of
bisphenol A (DGEBA) resin and triethylenetetramine (TETA) as the cross-linker (Fig. 2¢) [26].
The establishment method of the epoxy molecular structure follows the steps below: first,
DGEBA and TETA units with a mole ratio of 2:1 are packed into a box (55.88 A x 59.12 A x
30 A) with a predefined density of 1.1 g/cm?; then these DGEBA and TETA molecules react
with each other using a distance-based cross-linking scheme (Fig. 2c) [26, 40-43], which has
been widely adopted in past decades [44-46]. The cross-linking scheme mainly involves the
following steps: (1) the reactive atoms on the DGEBA resin and the cross-linker are recognized;
(2) the epoxide groups (that contain the reactive atoms) on the DGEBA resin are opened, and
bonded with the reactive atoms on the cross-linker via C-N bond when the reaction radius is
reached; (3) the H atoms on the reacted N atoms will be removed (for charge balance), and the
unreacted O atoms are saturated with H atoms (for charge balance); (4) the cross-linked epoxy
is relaxed for the next reaction. The reaction radius is set to be 3 to 10 A with an increment of
0.5 A. After the step-by-step reaction, geometry optimization, and dynamic equilibration, a
cross-linked epoxy structure can be obtained with an 80% crosslinked degree. The final density
of the epoxy model is 1.13 g/cm?, in the range of 1.08—1.15 g/cm® (obtained by MD analysis
[47,48])and 1.13—1.16 g/cm® (obtained by experimental tests [49, 50]). The Young’s modulus
of the epoxy model is 3.75 GPa, in the range of 3.20—4.31 GPa (obtained by MD analysis [41,
51]) and close to the experimental values (3.4—3.5 GPa) [50, 52]. Finally, the epoxy structure
is placed on the water zone. The initial gap width between the water zones and C-S-H substrate
(or epoxy structure) is 5 A. Fig. 2(d) presents atomic structures of epoxy—C-S-H with three

different thicknesses of water at the interface.
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Fig.2 (a) The atomic structure of the C-S-H substrate produced from the unit cell of Hamid’s tobermorite-11 A;
(b) a 5 A thick water layer with a density of 1 g/cm?; (c) a schematic view of the cross-linking scheme to realize
the cross-linking between DGEBA and TETA molecules in the epoxy molecular structure; (d) the atomic
structures of epoxy—C-S-H with different thicknesses of water at the interface. Vacuum gaps of 10 A and 100 A
are created at the lower and upper of the composite models, respectively. The green, peachpuff, red, white, grey,

dark blue spheres represent the Ca, Si, O, H, C and N atoms in the molecular models. In addition, the light blue
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and purple spheres in Fig. 2(c) represent the C and N atoms involving in the cross-linking reaction while and the

light green spheres represent all other atoms in the system.
2.2 Force field

The empirical force fields, including the ClayFF force field and CVFF force field, are
employed to describe the interaction between atoms in epoxy—C-S-H molecular models. The
Lorentz-Berthelot mixing rule [53] is applied for the combination of ClayFF and CVFF.
ClayFF, a general force field suitable for simulating C-S-H systems and their interfaces with
aqueous solutions, is based primarily on non-bonded interactions. The functional form of
ClayFF can be represented by a sum of the electrostatic (Coulombic) interactions, the short-
range interactions (the van der Waals term), and a very limited number of explicit bonded
interactions to describe the bond stretching energy and angle bending energy in water
molecules within C-S-H model,

Ec_s—u = Ecou T Evaw + Epona + Eangle €Y)
where the parameters for Coulombic and vdW interactions were determined by density
functional theory (DFT) calculations and can be obtained from Ref. [54]. CVFF, originally
derived for organic molecules (amides, carboxylic acids, etc.), was proved to show a good
performance in simulating epoxy molecules. The potential function in CVFF consists of the
bonded interactions (bond stretching, angle bending, four-body dihedral angle torsion, and
four-body improper out-of-plane terms) and non-bonded interactions (Coulombic and vdW
terms),

Ecpoxy = Evona t Eangle + Edinedrai + Eimproper + Ecout + Evaw (2)
where the parameters for the bonded and non-bonded interactions can be obtained from Ref.
[55]. The flexible SPC water model, compatible with both ClayFF and CVFF, describes the
water molecules between epoxy and C-S-H. During the simulation process, the cut-off distance
for vdW interactions in the epoxy—C-S-H systems is set as 10 A, and a particle-particle particle-
mesh (PPPM) solver is used to compute long-range Coulombic interactions in epoxy—C-S-H

systems with an accuracy of 1074 [26].
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2.3 Simulation details

To start, vacuum gaps of 10 A and 100 A are created at the bottom and top of the composite
models, respectively, to leave enough space for the pull tests [56]. The simulation process
follows the steps below: first, energy minimization of the epoxy—C-S-H molecular structures
is performed by iteratively optimizing the atom positions based on the conjugate gradient (CG)
algorithm with the convergence criterion of 10" kcal/mol for energy and 10 kcal/(mole*A)
for force [57]. Then, a dynamic equilibration is carried out under the isothermal-isobaric (NPT)
ensemble for 500 ps. The Berendsen thermostat (300 K) and barostat (1 atm in x and y
directions) are employed to rescale the positions and velocities of the atoms within the
simulation box as well as the box size every timestep [58]. To measure the interfacial
debonding properties, a 5 A thick upper region of epoxy binder and a 5 A thick lower region
of C-S-H are fixed, leaving the middle part dynamically equilibrated for another 500 ps. Finally,
s series of tensile tests are carried out by applying a constant velocity (0.01 A/ps) on the upper
fixed region along z direction. The tensile velocity is lower enough for MD simulation to mimic
the experimental quasi-static loading [26, 59]. The simulation work is conducted using the
Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) package. A time step
of 0.5 fs is chosen, and periodic boundary conditions (PBC) are applied in each dimension of

the simulation box.

3. Results and Discussion
3.1 Structure evolution

The molecular structure evolution under the influence of water at the interface is essential
to understand the interfacial characteristics of the epoxy—C-S-H composites [60]. First, the
interfacial molecular structure of the epoxy—C-S-H with a dry interface is characterized to
observe the structure evolution. Three typical interfacial bonds are existing at the interface,
including Ca—O ionic bond (the C-S-H offers Ca** and the epoxy offers O), Ca—N ionic bond
(the C-S-H offers Ca®" and the epoxy offers O), and H-bond (the C-S-H offers O and the epoxy

offers H), as shown in Fig. 3(a-c). The Ca?" ions are also ionic-bonded with the dangling O
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atoms on the C-S-H surface, as shown in Fig. 3(d), which is due to the charge balance. The
partial radial distribution functions, which are proportional to the probability of finding an atom
at a distance from another atom [61], of Ca—O ionic bond, Ca—N ionic bond, and H-bond at the
epoxy—C-S-H interface are shown in Fig. 2. The first peaks of the partial radial distribution
functions correspond to the interfacial bonds, and the average bond lengths are 2.5 A, 2.7 A,
and 1.7 A for Ca—O bond, Ca—N bond, and H-bond, respectively. In addition, the average bond
length for Ca—O (O from the C-S-H) is 2.3 A. Based on the partial radial distribution functions,

the number of interfacial bonds can be characterized.

gCa-Oepoxy(r)
gCa-Nepoxy(r)

Distance (A) Distance (A)

(a) (b)

gon(r)
gCa-Ocsh(r)

Distance (A) Distance (A)
(©) (d)
Fig. 3 (a-c) Partial radial distribution functions of Ca—O ionic bond, Ca—N ionic bond, and H-bond at the epoxy—
C-S-H interface. The inset shows the snapshots of the interfacial bonds between the epoxy and the C-S-H; (d)
Partial radial distribution functions of Ca—O (O from the C-S-H) ionic bond on the concrete substrate. The inset

shows the snapshot of the Ca—O bond. The critical lengths for the interfacial Ca—O ionic bond, Ca—N ionic bond,
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and H-bond are 3.1 A, 3.3 A and 2.3 A, respectively (obtained from the RDF curves where the first peak ends),
within which values the atoms can be considered to be bonded. Besides, the critical length for the Ca—O (O from

the C-S-H) bond on the C-S-H surface is 3.0 A.

Next, the concentrations of various interfacial bonds of epoxy—C-S-H composites with
different water thicknesses at the interface are calculated, as shown in Fig. 4 (a-c). For the
epoxy—C-S-H with a dry interface, the interfacial bond concentration follows an order of Ca—
N > Ca—O > H-bond. The concentrations of both Ca—N and Ca—O bonds decrease significantly
with the increasing water thickness from 0 to 3 A and almost completely disappear with the
thickness of water >3 A. The H-bond at the interface loses almost linearly with the increasing
water thickness. It can be concluded that the increasing water at the interface leads to a gradual
loss of the interfacial chemical bonds. Similarly, Wang et al. [62] observed that the chemical
bond between an epoxy resin molecule and the C-S-H substrate is reduced in a wet environment.
Sun et al. [63] also found that the chemical bond between two C-S-H particles is reduced by
increasing the water content in the particle gap. These phenomena are in reasonable agreement
with our MD analytical results. In addition, it can be also found that the water molecules also
cause the variation of Ca—O (O from the C-S-H) ionic bonds on the C-S-H surface, as revealed
in Fig. 4(d). The concentration of Ca—O (O from the C-S-H) ionic bonds increases with the
water thickness increasing from 0 to 3 A and then decreases with the water thickness increasing
from 3 to 5 A. To explain how the interfacial water affects the Ca—O (O from the C-S-H) ionic
bonds on the C-S-H surface, the distribution of the Ca®" on C-S-H surface is captured in the X-
Z plane, as shown in Fig. 5. When the water thickness ranges from 0 to 3 A, the Ca®" ions on
C-S-H surface distribute in a high z coordinate range to a low z coordinate range, i.e., the
average z coordinate value decreases from 30.75 A to 30.36 A. Almost all the Ca*" ions are
located below the surface line of C-S-H when the water thickness reaches 3 A. It indicates that
the Ca®" ions are desorbed from the epoxy surface due to the introduction of water at the
interface (as revealed in Fig. 4a and b), leading to the return of Ca?* back to the C-S-H surface.
It explains why the number of Ca—O (O from the C-S-H) ionic bonds increases with the increase

of water thickness from 0 to 3 A. When the water thickness exceeds 3 A, some Ca’" ions are

11
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desorbed from the C-S-H surface, and a higher water content leads to more Ca>* ions desorbed

from the C-S-H surface. The average z coordinate value increases from 30.36 A to 30.69 A due

to the desorption behavior. It explains why the concentration of Ca—O (O from the C-S-H) ionic

bonds decreases with the increase of water thickness from 3 to 5 A.
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Fig. 4 (a-c) The evolution of the interfacial bond concentration of Ca—O, Ca—N, and H-bond between epoxy and

C-S-H substrate; (d) the evolution of the Ca—O (O from C-S-H) bond number on the C-S-H surface.
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Fig. 5 The distribution of Ca?" on C-S-H surface in the X-Z plane for all the epoxy—C-S-H interfacial models. The

average z coordinates are calculated for all the interfacial models. The blue dash lines denote the position of the

C-S-H surface, where the outermost O atoms of Si-O™ groups locate.

Next, the interactions between the interfacial H2O molecules and the matrices (both C-S-H
and epoxy) are analyzed, as shown in Fig. 6(a). There are two bonding forms between the H20
molecules and the C-S-H matrix, including Ca—O ionic bond (the C-S-H offers Ca** and the
H:0 offers O), and H-bond (the C-S-H offers O and the H20 offers H). For the epoxy matrix,
it can only bond with the H20 molecules via H-bond. There are two types of H-bond between
the H2O molecules and the epoxy matrix: one is the H2O donates the H atoms while the O or
N atoms of epoxy accept the H atoms; the other is the epoxy donates the H atoms while the O
atoms of H20 accept the H atoms. The bond concentration between the interfacial H.O
molecules and the matrices (C-S-H and epoxy) is counted for all the atomic models, including
the Ca—O bond concentration between H>O and C-S-H, the H-bond concentration between H2O
and C-S-H, and the H-bond concentration between H20 and epoxy, as shown in Fig. 6(b). The
concentration of Ca—O bond and H-bond between H20 and C-S-H increases gradually by

introducing H20 into the epoxy—C-S-H interface. The H-bond concentration between H20 and

13



270  epoxy increases gradually when the water thickness ranges from 0 to 3 A, and almost keeps
271  constant when introducing more H20 into the epoxy—C-S-H interface, indicating that the H-

272 bond between H20 and epoxy is saturated when the water thickness reaches 3 A.

Bonding between H,O and C-S-H Bonding between H,0O and epoxy

273
274 (a) Bonding between water and matrices
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277 Fig. 6 (a) Snapshots of the bonding between the interfacial H,O molecules and the matrices (C-S-H and epoxy);
278  (b) the bond concentration between the interfacial H,O molecules and the matrices (C-S-H and epoxy), including
279 the Ca—O bond concentration between H,O and C-S-H, the H-bond concentration between H,O and C-S-H, and

280 the H-bond concentration between H,O and epoxy.

281 Fig. 7(a) summarizes all the structure sizes of the epoxy—C-S-H models along the z-
282  direction. Obviously, the water at the interface can also cause an increase in the structure size.
283  But it is interesting to note that the magnitude of the structure size change does not agree with

284  that of the water thickness increase at the interface. For each additional 1 A thick water, the
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evolution of the structure size is less than 1 A, and the total change of the structure size is only
3 A by introducing 5 A thick water. To further understand how the water molecules change the
evolution of the structure size, the atomic density profiles of the C-S-H, water, and epoxy in
the epoxy—C-S-H model with 5 A thick water is calculated as a function of the distance along
the z-direction, as shown in Fig. 7(b). For comparison, the atomic density profiles of the C-S-
H and epoxy in the epoxy—C-S-H model with a dry interface are also calculated. It can be seen
that the distribution of water molecules overlaps with the distribution of the C-S-H atoms and
the epoxy atoms. This implies that the water molecules can fill the molecular voids at the
interface between the C-S-H and the epoxy, which is the reason why the structure size change
is less than the thickness of water at the interface. Moreover, the distribution of the epoxy atoms
in the epoxy—C-S-H model with 5 A thick water moves to larger z-coordinates, compared with
that with a dry interface. This indicates that partial water molecules involve in enlarging the
interfacial space, which agrees with the results revealed in Fig. 4(a). Based on these findings,
the inset in Fig. 7 shows a schematic view of two different roles of water molecules at the
interface, including the filling role and the enlarging role. The filling role means that the water
molecules fill in the voids at the interface, while the enlarging role means that the water
molecules enlarge the interfacial space, leading to the increase in the structure size. In addition,
the filling role and the enlarging role always coexist with the increasing water content at the
interface, which differs from the common sense at larger scales (like macroscale) that water

fills in the pores first and then enlarges the interlayer space.
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Fig. 7 (a) The structure size along z-direction for epoxy—C-S-H model with different thicknesses of water at the
interface. The inset shows a schematic view of the filling role and enlarging role of water molecules at the interface;
(b) the atomic density profiles of the three components of two epoxy—C-S-H models with 0 A thick and 5 A thick
water as a function of the distance along the z-direction. The dash lines represent the position of the epoxy surface

and the red arrow denotes the movement of the epoxy structure after introducing 5 A thick water to the interface.

3.2 Debonding behaviors

The debonding characteristics of the epoxy—C-S-H interface with the water presence are
studied by applying a constant velocity on the upper region of the epoxy structure, which is a
common method to identify the debonding process between two initially bonded components
[64, 65]. First, the stress-strain curves of the epoxy—C-S-H structures is recorded during the
tensile tests, as shown in Fig. 8. For all the epoxy—C-S-H models, the tensile stress increases
gradually at the initial stage. Then it reaches the peak, after which the tensile stress decreases
gradually with further increasing of the tensile strain (the fracture stage). The peak values
decrease from 287.7 to 227.5 MPa with the interfacial water thickness ranging from 0 to 5 A,
indicating that the interfacial bond strength of the epoxy—C-S-H models is weakened by water
molecules, and a higher water content leads to a stronger weakening effect. It can also be found

that the tensile strain at the peaks decreases from 5.7% to 4.6%, indicating that increasing the
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water content at the interface causes an earlier occurrence of the fracture of the epoxy—C-S-H
interface. At the fracture process, the residual bond strength also decreases with the increasing
water content at the interface. For example, the tensile stress at 15% strain are 147, 89, and 45
MPa, respectively for the epoxy—C-S-H models with 0, 2, and 4 A thick water at the interface.
In summary, the interfacial water presence degrades the interfacial bond strength, the earlier
occurrence of the fracture, and the lower residual bond strength. Similarly, the water presence
at the asphalt—quartz interface [66], the graphene—C-S-H interface [67], and asphalt—calcite
interface [64] can also lead to the interfacial mechanical degradation. Yaphary et al. [28] and
Wang et al. [62] proved that the detaching force of an epoxy resin molecule from C-S-H or
aggregate substrate can be decreased by water molecules. These results are in line with that in

the current study.
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Fig. 8 The stress-strain curves of the epoxy—C-S-H models with different thicknesses of water at the interface: (a)
no water; (b) 1 A thick water; (c) 2 A thick water; (d) 3 A thick water; (e) 4 A thick water; (f) 5 A thick water.
Some coordinates are labeled to reveal the relation between stress and strain at the initial stage, the peak, and the

fracture stage.

Next, the snapshots of the epoxy—C-S-H models are taken during the debonding process,
as shown in Fig. 9. At 5 A displacement, some visible pores can be seen in the epoxy—C-S-H
models. To investigate the influence of water on the pore formation process, the pore structures
(at 5 A displacement) are constructed via the alpha-shape method with the probe sphere radius
of 5 A [68], as shown in Fig. 10. For the dry case, no pore is formed within the interfacial
model, but with gradual introduction of water into the interface the pore volume becomes larger
and larger. The results reveal that the water molecules may accelerate the crack formation at
the interface. By observing the whole debonding process of the epoxy—C-S-H model with a dry
interface (Fig. 9a), the cracks propagate gradually with the increase of the pull displacement,
and then multiple epoxy chains are observed to bridge the cracks. Afterwards, the epoxy chain
bridging fails gradually, and then a singly long epoxy chain keeps bridging the cracks until the
complete failure (note that there is no breakage of any covalent bond during the whole fracture
process). The fracture process is similar to that of geopolymer binder—aggregate, which also
undergoes crack propagation, molecular chain bridging, and failure of the chain bridging [59].
Compared with the epoxy—C-S-H model with a dry interface, it is obvious that the water
presence at the interface affects the bridging of the epoxy chains, as the complete failure of the

bridging occurs at the different displacements, 70 A for the epoxy—C-S-H (a dry interface), 55
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for the epoxy—C-S-H (3 A thick water), 25 A for the epoxy—C-S-H (4 A thick water). For the
epoxy—C-S-H (5 A thick water), no epoxy chain bridging can be observed because there is
almost no chemical bonding between the epoxy and the C-S-H, as reported in Fig. 4. For the
epoxy—C-S-H models with 4 and 5 A thick water at the interface (Fig. 9e and f), the water
molecule chains are observed to bridge the cracks, and a higher water content leads to a longer
water chain. In addition, some epoxy molecules can be pulled out by the C-S-H substrate from
the epoxy structure, and the increasing water contents result in less epoxy molecules on the C-
S-H substrate (Fig. 9a-d). In particular, many epoxy molecules are pulled out from the epoxy—
C-S-H with a dry interface (Fig. 9a). Thus the position of the fracture can be viewed as in the
internal of the epoxy structure. No epoxy molecules are found on the C-S-H substrate when the
thickness of water at the interface is larger than 4 A (Fig. 9e and f). In conclusion, the water
molecules at the interface accelerate the crack formation and propagation, the failure of the
epoxy chain bridging, and weaken the pull-out of the epoxy molecules by the C-S-H substrate.
Moreover, the fracture plane is transferred from the internal of the epoxy to the interface with

the increasing water content.
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Fig. 10 The pore structures of the epoxy—C-S-H interfacial models with different interfacial water thicknesses at
5 A displacement: (a) a dry interface (0 A thick water); (b) 1 A thick water; (c) 2 A thick water; (d) 3 A thick

water; (e) 4 A thick water; (f) 5 A thick water.

To further understand how the water molecules degrade the interfacial mechanical
properties, two key factors that are responsible for the mechanical strength, including the direct
stress transfer between epoxy and C-S-H and the indirect stress transfer via water molecules
(Fig. 11a), are analyzed. The direct stress transfer capacity is related to the interaction between
epoxy and C-S-H, which can be investigated by calculating the interaction energy between
these two components [59], as summarized in Fig. 11(b). The interaction energy increases
significantly from -1430.7 kcal/mol to -639.9 kcal/mol when the thickness of water increases
from 0 to 2 A, then it increases to -356.3 kcal/mol with the thickness of water further increasing
to 5 A. As a lower interaction energy (more negative) corresponds to a stronger interaction, the
results indicate that the increasing water content at the epoxy—C-S-H interface can weaken the
interfacial interaction, leading to the decrease of the direct stress transfer capacity. Similarly,
Tam et al. [69] also reported that the water presence at the epoxy—fiber interface could increase
the interfacial interaction energy (less negative). In addition, the water molecules can
contribute to the load transfer between the epoxy and the C-S-H. Next, to reveal the indirect
stress transfer via water molecules between epoxy and C-S-H, the atom stress (g,) of the water

molecules is calculated using the following equation [70],
Np Np

1 1
g, = _[mvzz + EZ(rlz Flz + TZZFZZ) + EZ(rlz Flz + TZZFZZ)
n=1 n=1

Ng

1
+ §Z(rlz Fy, 41y, F, +13 F3 )+ Kspace(r;, F; )]/V (3)

n=1

where the first term is a kinetic energy contribution to atom stress; the second term is a pairwise
energy contribution where 7 loops over the N, neighbors of atoms, r; and 7, are the positions
of the 2 atoms in the pairwise interaction, and F; and F, are the forces on the 2 atoms due to
the pairwise interaction; the third term is a bond contribution of similar form for the N, bonds

which atom is part of. There are similar terms for the N, angle, which atom is part of; the last
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term is the Kspace contribution from long-range Coulombic interactions; V is the atomic
volume that can be approximately obtained by Voronoi analysis. The maximum atom stress of
the water molecules are summarized in Fig. 11(b). The atom stress of the water molecules
decreases gradually from 338.2 MPa to 239.6 MPa with the increasing water contents at the
interface, indicating that higher water contents weaken the load transfer of the water molecules.
Similarly, Kai et al. [71] found that the load transfer of these water molecules between two C-
S-H layers is weakened by higher water contents, which is viewed as the “hydrolytic weakening
mechanism”. In conclusion, the degradation mechanism of the interface is attributed to two
factors: one is that the direct stress transfer between epoxy and C-S-H is weakened and the
other is that the indirect stress transfer via water molecules is also weakened with the presence

of water at the epoxy—C-S-H interface.

o

fttteeeeey

0 500

-356.3
-400 - 4242

w

2

u|
T

Epoxy
4

4* Stress {ransfer
v via H,0

C-S-H

338.2

-639.9 295.4

-800 |- 2497 5396

[

%3

IS
T

-913.0

Interaction energy (Kcal/mol)
Atom stress (MPa)
N
2

-1200

Direct stress transfer
ey
wn
;

-1430.7

RRRRRRARE! pieall 1 1 1IBNED |

0.0 1.0 2.0 3.0 4.0 5.0 1.0 2.0 3.0 4.0 5.0
o] Thickness of water (A) Thickness of water (A)

(@) (b) (©

Fig. 11 (a) A schemetic view of the stress tranfer within the epoxy—C-S-H interfacial structures, including the
direct stress transfer between epoxy and C-S-H and the indirect stress transfer via H;O molecules; (b) Summary
of the interaction energy between the epoxy and the C-S-H with different thicknesses of water at the interface; (c)
the maximum atom stress of the water molecules between the epoxy and the C-S-H with different thicknesses of

water at the interface during the tensile tests.

Fig. 12 shows the exposed epoxy surface and C-S-H surface after the complete debonding
of the epoxy—C-S-H structures (1, 3, and 5 A thick water). It can be seen that the water
molecules prefer to be absorbed by the C-S-H substrate rather than the epoxy during the

debonding process. To explain this phenomenon, the interaction energy between water and
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epoxy, and between water and C-S-H is calculated and shown in Fig. 12. Obviously, the C-S-
H substrate has an ultra-strong water absorption ability compared to the epoxy. In addition,
with the increase of the water thickness at the interface, the interaction energy per water
molecule decreases, indicating that the water absorption on the C-S-H surface is weakened
(physical effect: more water molecules exist at a longer distance away from the C-S-H surface).
As a result, the water molecules have the possibility to be absorbed by the epoxy surface, as

shown in Fig. 12(c).
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Fig. 12 The exposed epoxy surface and C-S-H surface after the complete debonding of the epoxy—C-S-H structures
with 1, 3, and 5 A thick water. The purple color is used to represent all the epoxy atoms, while the blue color is
used to describe all the C-S-H atoms. The O and H in water molecules are represented in red and white colors,
respectively. The data in the figure are the average values of the interaction energy between the water molecules

and the epoxy and the C-S-H.

4. Conclusions
This study has investigated the evolution of the interfacial molecular structure and the
debonding behaviour of the epoxy-to-C-S-H interface under the water presence using atomistic

simulation. Some conclusions can be drawn from this research as follows:
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(a) There are various forms of interfacial chemical bonding between the epoxy and the C-
S-H, including Ca—O ionic bond, Ca—N ionic bond, and H-bond. All these chemical
bonds decrease with the increasing water content.

(b) The size of the epoxy—C-S-H molecular structure evolves with the increasing water
contents at the interface. There are two different roles of the water molecules, including
the filling role and enlarging role. As only partial water molecules involve in enlarging
the structure size, the increase of the structure size is smaller than the thickness of water
introduced to the interface.

(c) Water can lead to the degradation of the interfacial bond strength and accelerate the
crack formation and propagation, the failure of the epoxy chain bridging, and weaken
the pull-out of the epoxy molecules by the C-S-H substrate. The position of the fracture
is transferred from the internal of the epoxy to the interface by introducing water.

(d) The degradation mechanism of the epoxy-C-S-H interface is attributed to two factors:
one is the interaction between the epoxy and the C-S-H is weakened by the water
molecules, and the other is the load transfer of the water molecules becomes weaker
with the increasing water content.

(e) The water molecules usually prefer to be absorbed by the C-S-H substrate rather than
the epoxy during the debonding process because the former has a much stronger water
absorption ability than the latter. With the increasing water content, however, a few
water molecules may be absorbed by the epoxy surface.

The present work provides an atomic-level insight into the debonding performance between
epoxy and C-S-H, which can be viewed as an extremely localized phnomenon in a realistic
FRP-to-concrete interface. The results can also help to understand the influence of salt
solutions at the epoxy—C-S-H interfaces as its main component is water, but the influence of
1ons in salt solutions needs to be further evaluated. However, the realistic FRP-to-concrete
interface is more complicated, as concrete is a porous multiphase material that involves in a
series of physical and chemical events and the moisture ingress may not only occur at the

interface between epoxy and C-S-H. Although the present MD modelling can help understand
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the mechanism of how the presence of water degrades the interface bond between the epoxy
and C-S-H, further research is needed to correlate the atomic level behaviour to the macroscale

behaviour in terms of failure mode and mechanical responses.
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