

1 Seawater Sea-sand Engineered Geopolymer Composites (EGC) 2 with High Strength and High Ductility

3 *Jian-Cong Lao¹; Bo-Tao Huang² (*); Ling-Yu Xu³; Mehran Khan⁴;*
4 *Yi Fang⁵; Jian-Guo Dai⁶ (*)*

5 **Highlights**

- 6 ● Seawater Sea-sand EGC (SS-EGC) were developed and investigated for the first time.
- 7 ● Using seawater and sea-sand slightly decreased the compressive strength of EGC.
- 8 ● The content of hydrotalcite phases in SS-EGC matrix was higher than that of freshwater
9 EGC.
- 10 ● Using seawater and sea-sand in EGC increased the tensile strength but lowered the tensile
11 strain capacity.
- 12 ● The developed SS-EGC showed significantly lower embodied carbon than the cement-
13 based counterpart in the literature.

¹ Research Associate, Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China. E-mail: Attic.lao@connect.polyu.hk

² Research Fellow, Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China. E-mail: botaohuang@zju.edu.cn (**Corresponding Author*)

³ Ph.D., Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China. E-mail: ling-yu.xu@connect.polyu.hk

⁴ Postdoctoral Fellow, Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China. E-mail: drmehrankhan@outlook.com

⁵ Research Associate, Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China. E-mail: yfang20@crimson.ua.edu

⁶ Professor, Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China. E-mail: cejgdai@polyu.edu.hk (**Corresponding Author*)

Abstract

In this study, seawater sea-sand Engineered Geopolymer Composites (SS-EGC) were developed and investigated for the first time. The developed EGC achieved high compressive strength (over 140 MPa) and high tensile ductility (around 8%) simultaneously. Emphasis was placed on understanding the influence of seawater and sea-sand (compared to freshwater and washed sea-sand) on the matrix properties and tensile performance of EGC, with two fly ash-to-slag ratios (8:2 and 2:8) considered in the matrices. Results showed that the use of seawater hindered the reaction of EGC matrix and led to a slight reduction of compressive strength (compared to the freshwater counterpart). It was found that the content of hydrotalcite phases in SS-EGC matrix was higher than that of freshwater EGC. In addition, using seawater was found to increase the average modulus of matrix obtained from nanoindentation, leading to a higher fiber/matrix bond strength. The tensile strain capacity of SS-EGC was slightly lower than that of freshwater EGC. The developed SS-EGC showed superior crack resistance and significantly lower embodied carbon than the cement-based counterpart from the literature (with similar compressive strength). The findings of this study provided useful knowledge for the design and development of high-strength high-ductility SS-EGC towards sustainable and resilient marine infrastructures.

1 Introduction

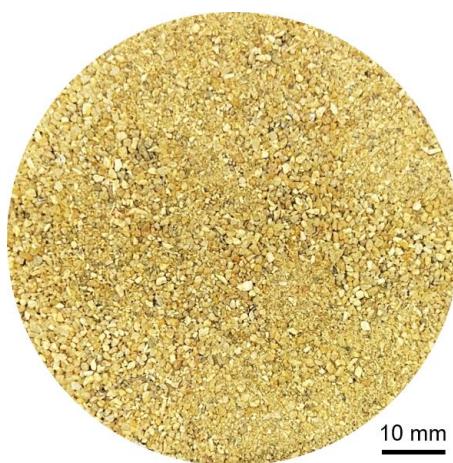
35 In the past three decades, two important advances in concrete technology may be
36 considered, i.e., the design and development of Engineered Cementitious Composites [ECC,
37 also known as Strain-Hardening Cementitious Composites (SHCC)] [1, 2, 3, 4] and Ultra-High-
38 Performance Concrete [UHPC, also known as Reactive Powder Concrete (RPC)] [5, 6, 7, 8].
39 ECC materials are micromechanically designed to achieve strain-hardening and multiple
40 cracking responses under tensile loadings [9, 10]. The compressive strength and tensile ductility
41 of ordinary ECC are usually 20–80 MPa and 2–10%, respectively. On the other hand, UHPC
42 are featured with ultra-high compressive strength (typically ≥ 150 MPa) and excellent durability,
43 but its tensile ductility is typically below 1%. To achieve high/ultra-high compressive strength
44 and tensile ductility simultaneously in concrete, ECC with high strength (HS, 80–150 MPa) and
45 ultra-high strength (UHS, 150–210 MPa) have been designed and developed in the recent
46 decade [11, 12, 13, 14]. Owing to the superior mechanical performance and dense
47 microstructures, HS/UHS-ECC show promising potential in structural applications under
48 complex/extreme loading and environmental conditions, especially in marine and coastal
49 regions [15, 16, 17, 18].

50 One of the major concerns for the construction of concrete infrastructure in marine/coastal
51 regions is the shortage of freshwater and river sand on-site [19, 20, 21], which are indispensable
52 raw materials for concrete casting. To address this challenge, seawater sea-sand concrete [also
53 seawater sea-sand ECC (SS-ECC)] reinforced with non-corrosive reinforcements [e.g., fiber-
54 reinforced polymer (FRP) composites] was proposed as an emerging solution, which is
55 promising for sustainable and durable marine/coastal infrastructures [17, 19]. Recently, Huang
56 et al. [23, 24] developed high-strength SS-ECC with a compressive strength of over 130 MPa
57 and tensile ductility of about 5%, and also proposed a probabilistic-based model to describe the
58 crack evolution of SS-ECC. In addition, high-strength SS-ECC reinforced by FRP is a
59 promising approach to developing sustainable structural components with high strength,
60 durability, and ductility. It should be pointed out that although using seawater and sea-sand can
61 improve the greenness of ECC materials, the high-volume cementitious binders used in ECC
62 (especially in HS/UHS-ECC system) [13] still remain a concern for the sustainability issue.

63 Geopolymer is considered a greener alternative to Portland cement in concrete production
64 [25, 26, 27, 28]. Thus, one emerging technical route to enhance the greenness of the ECC matrix
65 was using a geopolymers-based binder system to replace the Portland cement-based one. In such
66 cases, ECC with geopolymers matrix is named as Engineered Geopolymer Composites [EGC,
67 also known as Strain-Hardening Geopolymer Composites (SHGC)] [29, 30, 31, 32, 33]. Like
68 cement-based ECC, EGC also show significant strain-hardening and multiple cracking
69 behaviors under tension. Most of the existing EGC showed a compressive strength of 30–80
70 MPa and tensile ductility of 2–8%. Up to now, the highest compressive strength of EGC
71 reported in the literature was 102 MPa, while the corresponding tensile strain capacity was only
72 1.0% [34]. However, it is still quite challenging to develop EGC materials with both high
73 compressive strength and high tensile ductility.

74 According to the aforementioned background, the design and development of high-
75 strength high-ductility EGC using seawater and sea-sand is meaningful for constructing high-
76 performance and sustainable marine/coastal structures. On the one hand, using geopolymers
77 matrix in HS-ECC can effectively enhance the material's greenness. On the other hand, the
78 characteristics of high strength and high ductility are beneficial for improving the structural
79 performance of FRP-EGC components. However, up to now, almost no published work could
80 be found on seawater sea-sand EGC (SS-EGC). Developing EGC with high compressive
81 strength (e.g., over 120 MPa) and high tensile ductility (e.g., over 8%) even remains unrevealed
82 for the research community.

83 This study aims to design and develop SS-EGC with high strength and ductility, and tries
84 to understand the influence of seawater (compared to freshwater) on the matrix properties and
85 tensile performance of EGC. Geopolymer matrices with two different fly ash-to-slag ratios (i.e.,
86 8:2 and 2:8 to respectively represent fly ash-dominated mix and slag-dominated mix) were
87 considered in SS-EGC production. Reaction heat, thermogravimetric analysis (TGA), and
88 nanoindentation were utilized to analyze the properties and microstructures of EGC matrix.
89 Direct tensile performance and cracking behavior were investigated with the help of Digital
90 Image Correlation (DIC) method. Finally, the tensile properties and embodied carbon of the
91 developed SS-EGC and the cement-based SS-ECC in the literature were compared and

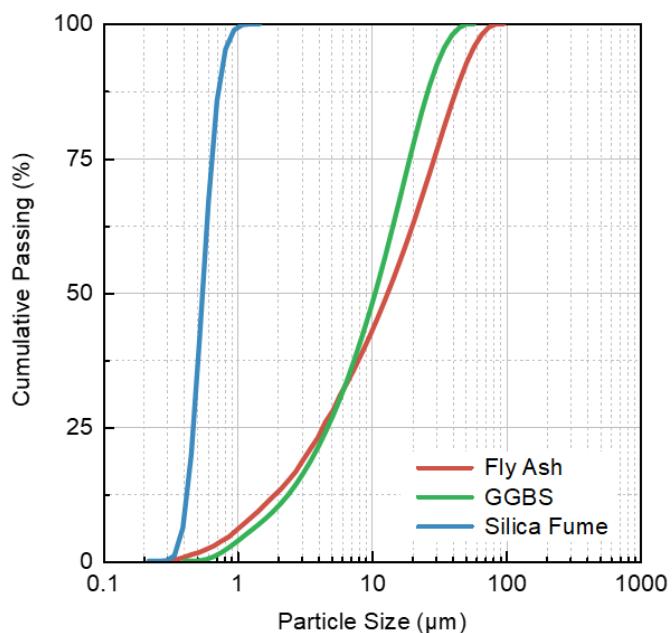

92 discussed.

93 **2 Experimental programs**

94 *2.1 Raw materials*

95 In this study, sea sand with a maximum size of 1.18 mm was obtained locally from Hong
96 Kong (**Fig. 1**). Artificial seawater was prepared by dissolving commercial sea salt into tap water
97 (with a dosage of 36 g/L), and the tap water in Hong Kong had a salinity lower than 0.1 g/L
98 [19]. It is noted that the commercial sea salt and tap water used in this study were the same with
99 those in the authors' previous studies [17, 23, 24], wherein the chemical composition of the
100 artificial seawater was close to that of the natural seawater along the coasts in Hong Kong as
101 reported in the previous study [23].

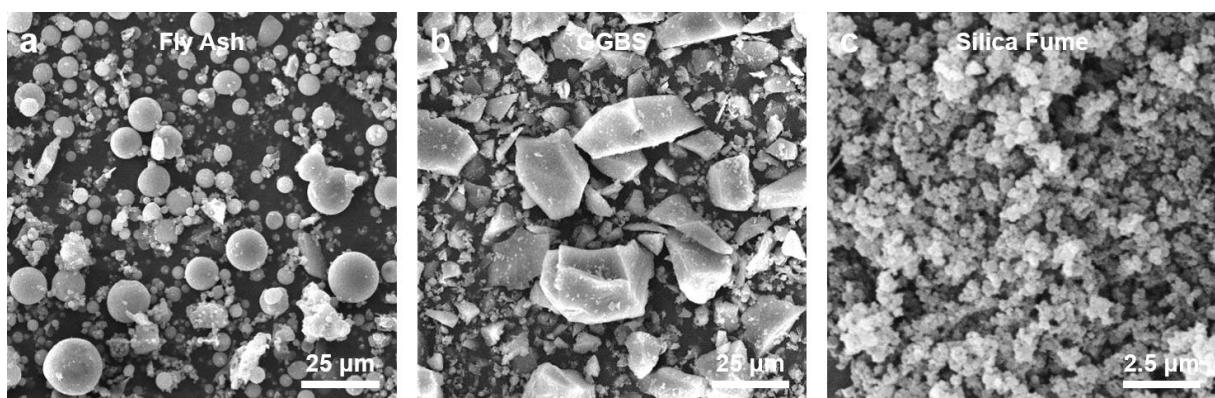
102 The precursors of EGC contained fly ash (FA), ground-granulated blast-furnace slag
103 (GGBS) and silica fume. Their chemical components tested by X-ray fluorescence (XRF) are
104 listed in **Table 1**. FA can be classified as class F according to ASTM C618-19 [35]. The particle
105 size distributions and morphologies can be found in **Fig. 2** and **Fig. 3**, respectively. It can be
106 seen that spherical and angular shape particles were predominant in FA and GGBS, respectively,
107 and SF showed a much smaller particle size.



108
109 **Fig. 1** Photograph of sea-sand with a maximum particle size of 1.18 mm.

110 **Table 1** Chemical components of raw materials (%).

Chemical Composition	FA	GGBS	SF
Aluminum Oxide, Al_2O_3	20.20	12.80	0.15
Silicon Oxide, SiO_2	47.10	29.40	95.20


Calcium Oxide, CaO	8.37	46.60	0.52
Ferric Oxide, Fe ₂ O ₃	14.50	0.36	0.06
Magnesium Oxide, MgO	2.64	7.47	1.08
Sulfur Trioxide, SO ₃	0.79	1.67	0.12
Titanium Dioxide, TiO ₂	2.04	0.80	/
Phosphorus Oxide, P ₂ O ₅	0.80	0.11	0.32
Potassium Oxide, K ₂ O	2.1	0.40	0.77
Others	0.66	0.19	0.03
LOI (950 °C)	0.80	0.20	1.75

111

112

Fig. 2 Particle size distributions of raw materials.

113

114

Fig. 3 SEM images of (a) fly ash, (b) GGBS, and (c) silica fume.

115

116

Sodium metasilicate anhydrous (in solid) and waterglass (in liquid) were used as alkali activators to produce the EGC matrix. Analytical-grade sodium metasilicate anhydrous in

117 powder form was composed of 50.5% Na₂O and 47.2% SiO₂ in weight (SiO₂ / Na₂O = 0.94).
118 Waterglass had 8.7% Na₂O, 27.7% SiO₂, and 56.8% H₂O in weight (SiO₂ / Na₂O = 3.18).
119 Additionally, analytical-grade borax (Na₂B₄O₇·10H₂O) with 99.5% purification was employed
120 as a retarder.

121 Fiber reinforcements used in EGC were 18 mm-length ultra-high-molecular-weight
122 polyethylene (PE) fibers, with a diameter of 24 μ m. The mechanical properties provided by the
123 manufacturer (Beijing Quantumeta AMT Co. Ltd) were as follows: 1) Strength: 3000 MPa, 2)
124 elastic modulus: 100 GPa, and 3) density: 0.97 g/cm³.

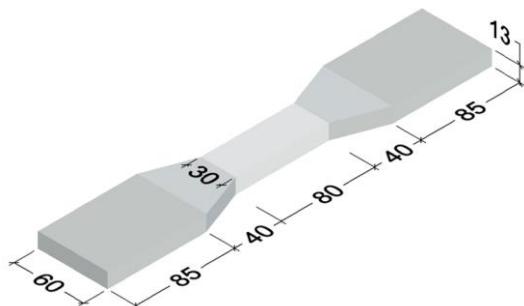
125 *2.2 Preparations of EGC and SS-EGC*

126 Fly ash and GGBS are the mostly used precursors for geopolymers. Alkali-activated fly ash
127 alone always has setting issue, known as a long setting time and a slow strength development
128 at ambient environment following. Whereas, alkali-activated GGBS alone, on the contrary,
129 exhibits fast setting and high early strength. Blending fly ash and GGBS is now a popular way
130 to produce geopolymers. It has also been demonstrated in Ref. [CCR] that using fly ash/GGBS
131 ratio of 8:2 and 2:8 guaranteed satisfactory mechanical properties and didn't have setting issue
132 (too fast or too slow), which will also be used in this study. On this basis, the effect of seawater
133 and sea sand were considered as another variable. Finally, the mix proportions of EGC and SS-
134 EGC are given in **Table 2**. The differences between the mixes were FA/GGBS ratios (i.e., 8:2
135 and 2:8), types of sand (i.e., sea-sand and washed sea-sand), types of water (i.e., seawater and
136 freshwater), while other factors remained the same. The mix IDs are shown in the form of
137 "FaSb-c", wherein F and S denote FA and GGBS, respectively. *a/b* denotes two FA/GGBS ratios
138 (in mass), and *c* denotes freshwater (F) or seawater (S). Seawater and sea-sand were used for
139 SS-EGC (i.e., F8S2-S and F2S8-S in **Table 2**). For the other two control groups (i.e., F8S2-F
140 and F2S8-F in **Table 2**), freshwater and freshwater-washed sea-sand were used. It is noted that
141 the tensile performance of ECC/EGC materials is sensitive to the sand properties. Thus,
142 freshwater-washed sea-sand was used in the control groups to minimize the influence of other
143 properties of the sand.

Table 2 Mix proportions of EGC and SS-EGC (weight ratio).

Mix IDs	Precursors (Total 1.000)			Borax	Activators		Extra Water	Total Water	Sand	PE Fibers
	FA	GGBS	SF		Na ₂ SiO ₃ - Anhydrous	Waterglass				
F8S2-F	0.760	0.190					0.152		0.300	
							(FW)		(WS)	
F8S2-S	0.760	0.190		0.038 (Water of Crystallization:		0.141 (Water Content: 0.095 0.018)	0.152		0.300	
			0.050				(SW)	0.250	(SS) 0.300	2.0 (Vol. %)
F2S8-F	0.190	0.760					0.152 (FW)		0.300 (WS)	
F2S8-S	0.190	0.760					0.152 (SW)		0.300 (SS)	

145 Note: WS (Washed Sand), SS (Sea-Sand), FW (Freshwater), and SW (Seawater).


146 For all the mixes, the water (the sum of extra water, water in waterglass, and crystal water
147 in borax)-to-precursor ratios were the same (i.e., 0.250). The low water/precursors ratio used in
148 this study could induce an alkali solution with a high PH value, which could cause rapid setting
149 during the preparation of samples. Borax (Na₂B₄O₇·10H₂O) was used as a retarder to avoid
150 flash setting during the preparation of samples. Sand-to-precursor ratio was chosen as 0.3,
151 which has been widely used in strain-hardening cement-based materials. Sodium metasilicate
152 and waterglass were used in combination with a Na₂O-to-precursor ratio of 6.5% and a SiO₂-
153 to-Na₂O ratio of 1.3. 18-mm PE fibers (2 Vol.%) were used as the fiber reinforcement.

154 During the EGC preparation, activators, borax, and extra water (artificial seawater or
155 freshwater) were first mixed together. Precursors were weighted and dry-mixed for 5 min,
156 followed by adding the prepared alkali solution and mixing for another 10 min until a uniform
157 slurry formed. PE fibers were then added to the slurry and mixed for 5 min before casting. The
158 specimens were demolded after 24 h ambient curing and wrapped with plastic film to avoid
159 excessive moisture loss. Finally, the specimens were placed at ambient temperature in the
160 laboratory (23 °C) until 28 d.

161 *2.3 Testing methods*

162 The compressive strength was measured by a 50-mm cube following ASTM C109/C109M
163 [36]. The loading rate was 1.0 MPa/s, and three identical cubes were tested for each mix. Direct
164 tensile test was performed by three dog-bone shape specimens for each group (**Fig. 4**) following

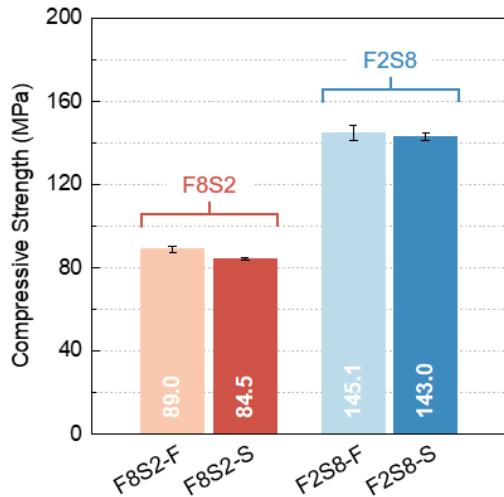
165 JSCE recommendations [37], with a displacement-control loading rate of 0.5 mm/min. The
166 wider side of the specimens was sprayed with a speckle pattern for Digital Image Correlation
167 (DIC) analysis. During the test, the photographs of the speckled side were captured
168 continuously by a digital camera at an interval of 3 s. Two linear variable differential
169 transformers (LVDTs) were set symmetrically to measure the deformation of the 80-mm length
170 central area.

171
172 **Fig. 4** Dimensions of dumbbell sample for the direct tensile test (unit: mm).

173 The evolution of reaction heat of the geopolymer matrix was recorded by an isothermal
174 calorimeter (Calmetrix I-Cal 4000) to investigate the effect of seawater on the early-age reaction
175 process. Before the test, the alkali solution and all the solid materials (without sands and fibers)
176 were maintained at 20 °C in a temperature-conditioned room for 24 h. Then, external mixing
177 was performed for 3 min to ensure the homogeneity of the matrix. It is noted that the very early
178 reaction heat during the external mixing could not be captured. Following that, the slurry was
179 put into the isothermal calorimeter for 72-h testing at 20 °C.

180 For the following tests, paste samples were prepared, excluding fibers and sand.
181 Thermogravimetric analysis (TGA) was employed to quantify the reaction product. Powder
182 with a particle size smaller than 75 µm was prepared and subjected to freeze drying for 72 h at
183 -84 °C. During the TGA test (Rigaku, Thermo Plus EVO2), the samples were stabilized at 60 °C
184 for 30 min, and then heated to 900 °C at a rate of 10 °C/min in an atmosphere with nitrogen
185 flowing (20 ml/min). Fragments cut from the inner region of the paste were used for
186 nanoindentation tests. These fragments were then fixed in epoxy and polished to obtain a
187 smooth surface. For the nanoindentation (Bruker's TI Premier TriboIndenter), each indentation
188 was done over an 11 × 11 grid (100 µm × 100 µm), with a gap between adjacent points of 10

189 μm . The loading protocol followed [5 s loading – 2 s holding in the peak load (2000 μN) – 5 s
190 unloading] in a linear manner.

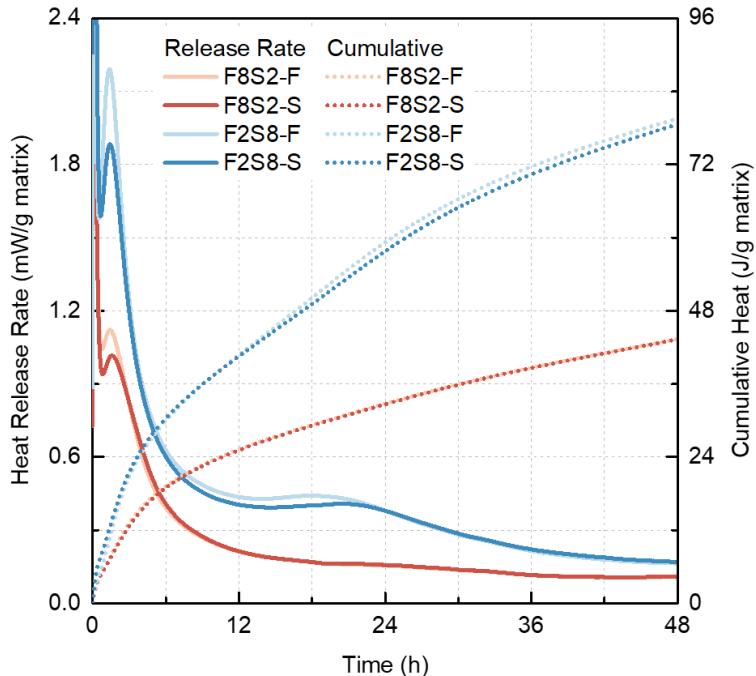

191 **3 Compressive strength and matrix characteristics**

192 *3.1 Compressive strength*

193 **Fig. 5** compares the 28-d compressive strengths of EGC. Generally, the mixtures showed
194 high compressive strengths over 80 MPa. For the freshwater mixes, F8S2-F and F2S8-F gained
195 a compressive strength of 89.0 MPa and 145.1 MPa, respectively. As confirmed in [CCR],
196 mixtures with higher content of GGBS can generate the reaction product (mainly C-(N)-A-S-
197 H) of higher Ca/Si ratio with enhanced space-filling effect [38], which subsequently reduced
198 the porosity caused by unbound water and densified the microstructure, finally increased the
199 strength.

200 SS-EGC exhibited marginal decreases in 28-d compressive strength as compared to their
201 freshwater counterparts, and the reduction in F8S2 (-5.0%) was more pronounced than that in
202 F2S8 (-1.5%). This deterioration of compressive strength may be related to the interaction
203 between seawater and alkali activator [see Eq. (1)] during the preparation of seawater-mixed
204 sodium silicate solution as revealed by Shi et al. [39]. MgCl_2 in seawater could react with
205 sodium silicate and consequently form magnesium silicate hydrate (M-S-H) gels and
206 amorphous SiO_2 . This reaction unavoidably decreased the alkali and soluble silica contents in
207 the alkali-activator solution. It was reported that lower alkali content would post a severer
208 degradation on FA-dominant mixtures than GGBS-dominant mixtures [40], which could
209 explain the difference between the compressive strength degradations of F2S8 and F8S2 series.
210 In addition, the nano-size M-S-H gel would also attach on the unreacted particles, which further
211 impeded the dissolution of the precursors [39, 41].

(1)


212
213 **Fig. 5** Compressive strength of EGC. Using seawater and sea-sand slightly decreased the
214 compressive strength of EGC for both F8S2 and F2S8 series.

215 *3.2 Reaction heat*

216 The reaction heat release rate and cumulative heat of the alkali-activating reaction were
217 plotted together in **Fig. 6**. For F2S8 series, the heat evolution followed Type III Model proposed
218 by Shi and Day [42], which contained five stages as: 1) initial and additional initial peaks, 2)
219 induction period, 3) acceleration period, 4) deceleration period, and 5) steady-state diffusion
220 stage. Due to the external mixing process, this study did not record the initial stage
221 corresponding to the first peak in the first few minutes. This peak was attributed to the wetting
222 and initial dissolution of precursors. In the plotted curves, the different initial stage displayed
223 as the second peaks, which correspond to the reaction between dissolved cations (e.g., Ca^{2+} and
224 Na^{2+}) and anion/anions group (e.g., $[\text{SiO}_4]^{4-}$) from activators to form the primary reaction
225 product [42]. It can be seen from **Fig. 6** that seawater significantly lowered the additional initial
226 peak because the seawater alkali-activator had a lower soluble silica content as a reactant to
227 form a primary hydration product. Consequently, the acceleration and deceleration stages
228 corresponding to the precipitation of reaction products were retarded and alleviated by seawater
229 subsequently. Finally, almost no difference was shown in the steady-state diffusion stage
230 between freshwater and seawater mixes.

231 For F8S2 series, the phenomenon was similar, with a lower heat releasing rate and an
232 absent acceleration and deceleration period. This was related to the longer geopolymersization

period of alkali-activated FA as a result of its low reactivity. But it is still evident that the additional initial period in F8S2 was also hindered by seawater. Although the heat release was apparently changed with seawater, the cumulative heat was only slightly lower, indicating a slightly lower degree of reaction.

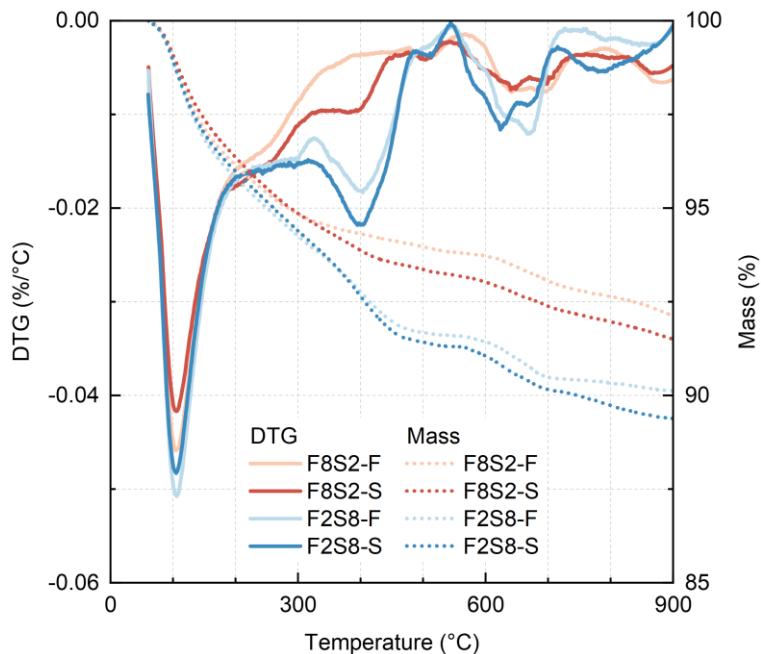
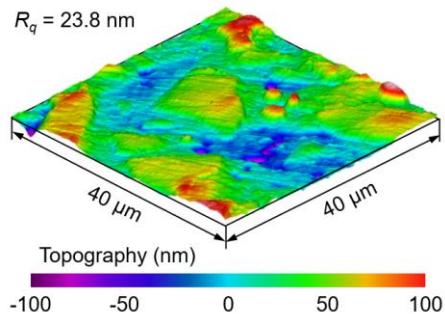


Fig. 6 Reaction heat of EGC and SS-EGC. SS-EGC mixes showed slightly lower heat releasing rate compared to the freshwater counterpart.

3.3 TGA analysis

Fig. 7 shows the thermogravimetric (TG) and differential thermogravimetric (DTG) curves of EGC and SS-EGC. Referring to the DTG curves, the weight loss below 200°C attributed to the decomposition of sodium-substituted calcium aluminosilicate hydrate [C-(N)-A-S-H], which was the main product to support strength of EGC and SS-EGC [43, 44] and contributed to the most significant mass loss in all the mixtures. It was also reported that in seawater-mixed alkali-activated materials, aluminium chloride hydrate might exist and decompose within 200–400°C [45]. Accordingly, the hydrotalcite phase contributed to the secondary peak at 400°C, which might contain CO₃-hydrotalcite (420°C) [46] or Cl-hydrotalcite in the presence of seawater (400°C) [47]. The decomposition of low-crystalline calcite caused the small hump centered at 508°C. After that, the residual peaks could be carbonates [i.e., calcite

within 600–800°C and $\text{CaMg}(\text{CO}_3)_2$ within 550–750°C [48]], and further decompositions of C-A-S-H to wollastonite (800°C) and mayenite (600–950°C) [49, 50].


Fig. 7 TG and DTG curves of EGC and SS-EGC. The influence of seawater on the TG curves of F8S2 series was more prominent than that of F2S8 series.

For both F8S2 and F2S8, incorporating seawater would reduce the C-(N)-A-S-H content due to the lower degree of reaction (caused by the interaction between seawater and alkali activator), which is associated with the slight reduction of compressive strength. On the contrary, the hydrotalcite contents detected at around 400°C were higher in the seawater mixtures. The Mg^{2+} and Cl^- in seawater might have provided additional sources for forming the Cl^- -hydrotalcite phase in the reaction product, thus enriching the total hydrotalcite phase in the reaction product. It can also be seen that F8S2-S tended to show higher mass loss within 200–400°C than F8S2-F, which indicates the formation of aluminium chloride hydrate in F8S2-S. In comparison, a less significant difference was observed between F2S8-F and F2S8-S due to the lower Al source of precursors (i.e., FA had a higher Al content than GGBS).

3.4 Nanoindentation

Before performing nanoindentation tests, the surface roughness of the well-polished samples was tested by scanning probe microscopy on a $40 \times 40 \mu\text{m}^2$ area. As shown in **Fig. 8**, the root-mean-square roughness (R_q) was 23.8 nm, indicating that the surface was flat enough

270 for a reliable test result [51].

271
272 **Fig. 8** Surface roughness of the nanoindentation samples tested by scanning probe
273 microscopy ($R_q = 23.8\text{nm}$).

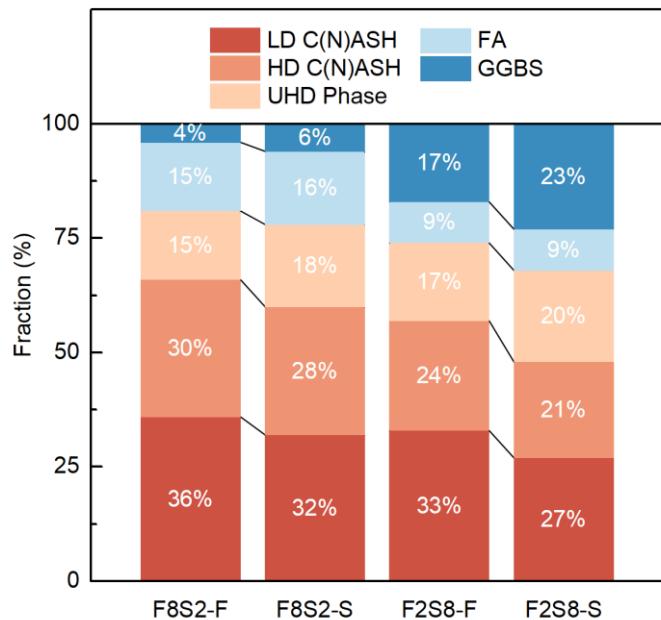
274 During the test, the loading protocol with a maximum load of $2000\text{ }\mu\text{N}$ resulted in a series
275 of nanoindentation responses in the form of a load-indentation depth relationship. **Fig. 9** shows
276 the typical nanoindentation responses of each phase extracted from F2S8-F, wherein low-
277 density (LD) C-(N)-A-S-H, high-density (HD) C-(N)-A-S-H, ultra-high-density (UHD) phase,
278 unreacted FA, and unreacted GGBS were presented. Given all these curves, the unloading
279 segment was used to calculate the reduced modulus E_r . Then, the E_r value of each indent was
280 converted to elastic modulus (E) by Oliver and Pharr method [52] by assuming the Poisson
281 ratio as 0.2. Finally, statistic deconvolution based on Gauss mixture model was performed to
282 gain the micromechanical properties, and the fraction of each phase was evaluated, according
283 to the same method reported by Fang et al. [53]. For each mix, 484 points (22×22) were used
284 for analysis.


285
286 **Fig. 9** Typical load-indentation depth curve for each phase in the matrix.

287 **Table 3** and **Fig. 10** display the deconvolution results of nanoindentation. Regarding the
288 elastic modulus, C-(N)-A-S-H and UHD phase showed higher values in the case of F2S8 series
289 than F8S2 series. This was related to different gel structures and chemical assemblages formed
290 by different FA/GGBS ratios [38]. It has been revealed in [CCR] that the C-(N)-A-S-H gel and
291 UHD phase of higher density and higher Calcium content were preferentially formed in F2S8
292 relative to F8S2 due to the higher GGBS content in the former, which showed a superior
293 nanoindentation response.

294 **Table 3** Average elastic modulus (E) of single phases after deconvolution (Unit: GPa)

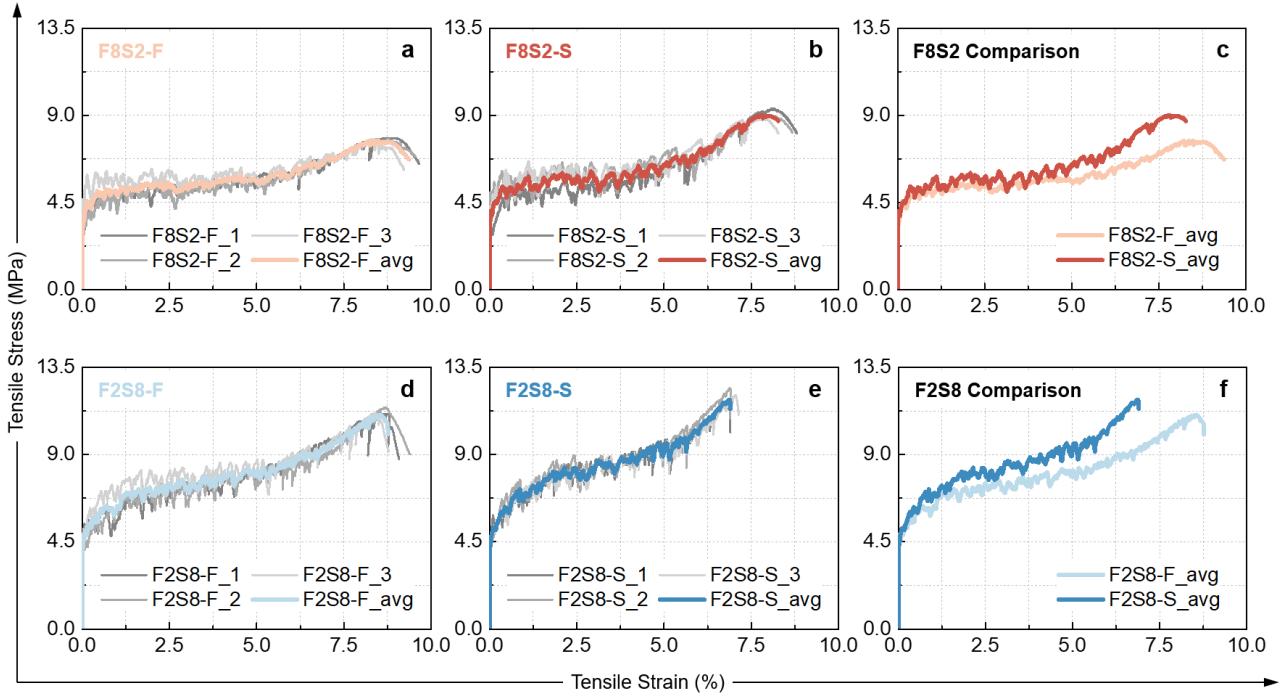
Mix IDs	LD C(N)ASH	HD C(N)ASH	UHD Phase	Unreacted FA	Unreacted GGBS
F8S2-F	22.64 \pm 3.67 (36%)	29.25 \pm 5.64 (30%)	43.20 \pm 8.28 (15%)	70.02 \pm 12.54 (15%)	95.53 \pm 8.05 (4%)
F8S2-S	21.96 \pm 2.96 (32%)	29.39 \pm 4.49 (28%)	42.52 \pm 4.52 (18%)	67.21 \pm 12.92 (16%)	96.34 \pm 9.56 (6%)
F2S8-F	26.90 \pm 3.25 (33%)	32.58 \pm 5.21 (24%)	47.95 \pm 8.79 (17%)	71.80 \pm 5.25 (9%)	89.01 \pm 5.51 (17%)
F2S8-S	26.38 \pm 2.30 (27%)	34.63 \pm 3.94 (21%)	47.03 \pm 8.78 (20%)	72.34 \pm 7.98 (9%)	96.94 \pm 9.23 (23%)


295 Note: The value in parentheses denotes the fraction of the corresponding phase.

296
297 **Fig. 10** Distribution of the elastic moduli of different phases in matrix. The elastic modulus of
298 each phase was not changed with the use of seawater.

299 From **Table 3**, it can be found that using seawater in the mixture did not significantly
300 change the average elastic modulus of each phase. However, the fraction of each phase altered
301 when seawater was added, as summarized in **Table 3** and **Fig. 11**. Obviously, the fractions of
302 LD and HD C-(N)-A-S-H decreased in the seawater mixes compared to the freshwater
303 counterparts. Specifically, the fraction of LD and HD C-(N)-A-S-H decreased by 10% for F8S2-
304 S and 16% for F2S8-S, while the unreacted particles increased. This should be because of the
305 lower degree of reaction in the seawater mixes, as aforementioned in **Section 3.1** and **Section**
306 **3.2**. Interestingly, the UHD phases with an elastic modulus around 45 GPa increased to some
307 extent in SS-EGC (20% and 17% increase for F8S2 and F2S8, respectively). As depicted in
308 Zhang et al. [54], the hydrotalcite phase roughly has a modulus higher than 40 GPa, and Moradi
309 et al. [55] regarded the phase in a sample of alkali-activated slag with a modulus around 45 GPa
310 as C-S-H with hydrotalcite nanocrystals. Therefore, UHD phase in this study might consist of
311 the intermix of C-(N)-A-S-H and hydrotalcite nanocrystals. As confirmed in TGA, hydrotalcite

312 phases increased in F8S2-S and F2S8-S compared to their freshwater counterparts, which was
313 consistent with the fraction increase of the UHD phase in nanoindentation. This observation
314 provides further evidence for the presence of hydrotalcite in the UHD phase in alkali-activated
315 FA and GGBS.

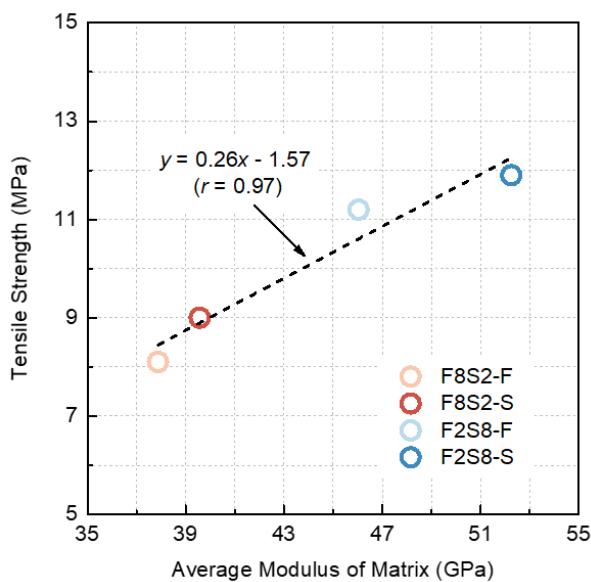


316
317 **Fig. 11** Fraction of each phase in matrix. For both F8S2 and F2S8 series, the use of seawater
318 increased the fraction of UHD phase but decreased the fractions of LD and HD C-(N)-A-S-H.

319 **4 Tensile performance and cracking behavior**

320 *4.1 Tensile performance*

321 The tensile stress-strain curves of EGC and SS-EGC are presented in **Fig. 12**, and the
322 averaged curve of each group is also plotted for comparison. The obtained tensile strengths and
323 strain capacities are summarized in **Table 4**. Significant tensile strain-hardening behavior can
324 be observed for all the mixes studied, and the tensile strain capacities of F8S2-F, F8S2-S, F2S8-
325 F, and F2S8-S were 8.7%, 8.1%, 8.6%, and 6.9%, respectively. It can be found that using
326 seawater and sea-sand decreased the tensile ductility of EGC and the reduction was more
327 significant for the F2S8 series. The tensile strengths of the F2S8 series were higher than those
328 of the F8S2 series, and the use of seawater and sea-sand increased the tensile strengths of both
329 series (see **Fig. 12c** and **Fig. 12f**).


330
331 **Fig. 12** Tensile stress–strain curves of EGC and SS-EGC. Using seawater and sea-sand
332 increased the tensile strength but decreased the tensile ductility.

333 **Table 4** Summary of mechanical properties EGC and SS-EGC.

Mechanical Properties	F8S2		F2S8		Cement-based SS-ECC [24]
	F8S2-F	F8S2-S	F2S8-F	F2S8-S	
Compressive Strength (MPa)	89.0	84.5	145.1	143.0	134.0
Tensile Strain Capacity (%)	8.7	8.1	8.6	6.9	7.1
Tensile Strength (MPa)	8.1	9.0	11.2	11.9	7.1
Average Crack Width, w_{Avg} (μm)	63.5	62.4	70.0	59.4	86.0
$1/w_{Avg}$ (1/ μm)	0.016	0.016	0.014	0.017	0.012
Crack Width Deviation, s_w (μm)	19.1	21.8	23.4	15.7	45.6
$1/s_w$ (1/ μm)	0.052	0.046	0.043	0.064	0.022

334 As reported in **Section 3.1**, the compressive strength of EGC slightly decreased when
335 seawater and sea-sand were used to replace the freshwater and washed sand. However, the
336 tensile strength of EGC in **Fig. 12** showed a different trend. It is known that the tensile strength
337 of strain-hardening concrete materials is highly dependent on the fiber interfacial frictional
338 bond [56, 57], and the matrix elastic modulus is important for the fiber/matrix bond [58]. Sonat
339 et al. [59] reported that there was a relationship between fiber/matrix bond and matrix elastic
340 modulus obtained from nanoindentation. Recently, a linear relationship between maximum
341 fiber bridging force and the average elastic modulus of the matrix had been validated [CCR],

which provided a linkage between micromechanical properties of the matrix and the maximum tensile strength. Hence, the tensile strength of EGC was plotted together with the average elastic modulus of EGC matrix obtained from nanoindentation (**Fig. 13**). A positive relationship can be observed between the tensile strength and the average modulus of the matrix. In **Fig. 13**, the average moduli of F8S2 matrices were lower than those of F2S8 matrices. In addition, using seawater to replace freshwater increased the average moduli of EGC matrices, leading to a higher tensile strength.

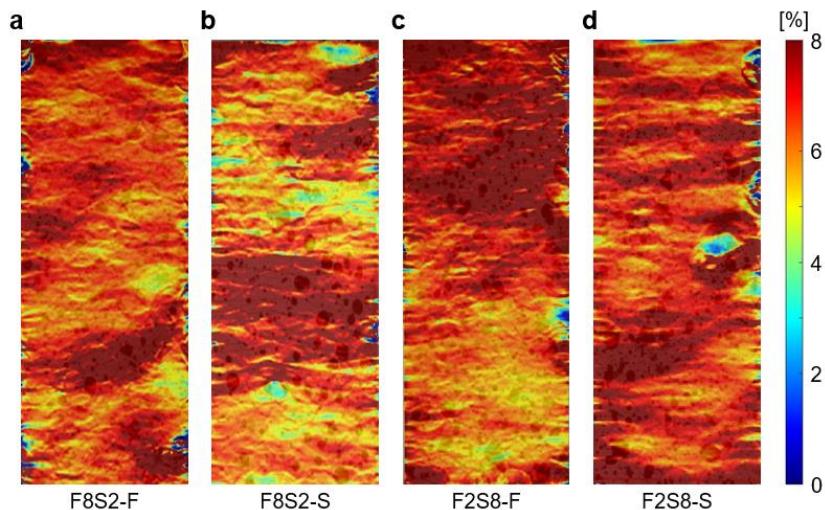
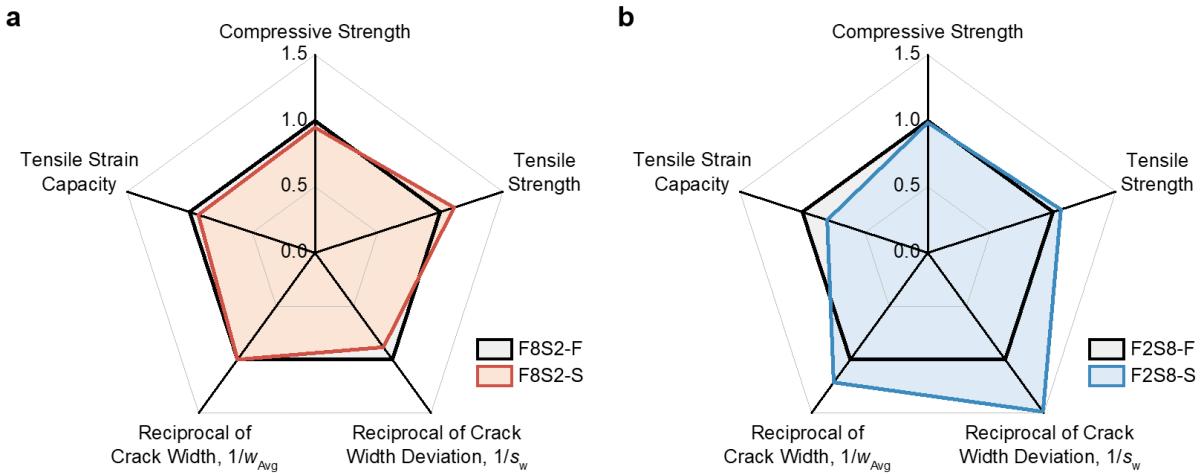


Fig. 13 Relationships between tensile strength and average matrix modulus obtained from nanoindentation. A positive relationship can be observed between these two parameters.

4.2 Cracking behavior

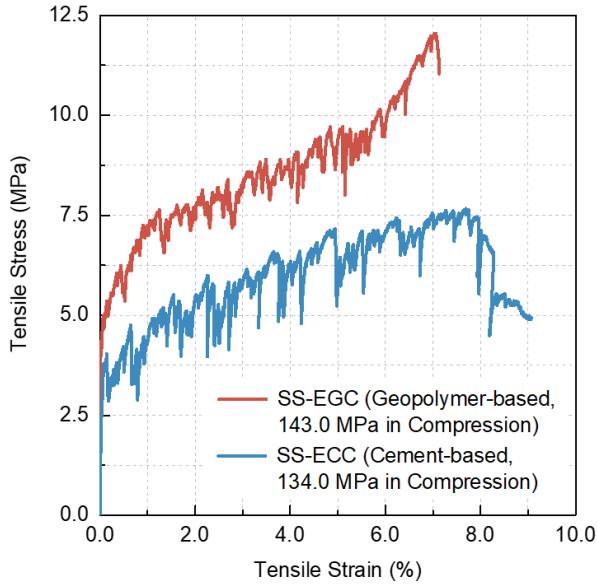
During the direct tensile test of EGC and SS-EGC, digital photographs were taken for DIC analysis. This method has been widely used in monitoring the cracking behavior of strain-hardening concrete materials. **Fig. 14** presents the DIC strain field at the ultimate tensile strain of the EGC and SS-EGC studied, and significant multiple cracking behavior can be observed for all the mixes. Based on the digital image taken at the ultimate tensile strain, the width of each crack at the central area (i.e., 80-mm length area in **Fig. 4**) was measured using the method mentioned in [28]. The average crack width and crack width deviation are also summarized in **Table 4**. Using seawater and sea-sand had a marginal effect on the cracking behavior of the F8S2 series, while decreasing the crack width (from 70.0 to 59.4 μm) and its deviation (from


362 23.4 to 15.7 μm) of the F2S8 series. For strain-hardening concrete materials, finer crack width
363 could be beneficial to the self-healing behavior.

364
365 **Fig. 14** DIC strain field at the ultimate tensile strain of EGC and SS-EGC. Significant
366 multiple cracking behavior can be observed for all the mixes.

367 *4.3 Assessment of overall performance*

368 To assess and compare the overall performance of EGC and SS-EGC, the five-dimensional
369 assessment of the mechanical properties (i.e., compressive strength, tensile strain capacity, and
370 tensile strength) and cracking behavior (i.e., crack width and crack width deviation at the
371 ultimate tensile strain) were utilized, which was proposed for strain-hardening concrete
372 materials [28]. **Fig. 15** compares the results of the five-dimensional assessment of EGC and SS-
373 EGC. It is noted that smaller crack width and crack width deviation represent better durability
374 and a more stable multiple-cracking process. Hence, the reciprocals of these two parameters are
375 used in **Fig. 15** to achieve a positive correlation between the parameters and performances. For
376 both F8S2 and F2S8 series, the values of the seawater sea-sand group were normalized by the
377 corresponding values of the control group. It can be found in **Fig. 15a** that compared to F8S2,
378 the use of seawater and sea-sand had a more pronounced effect on the properties of the F2S8
379 series. However, for the F2S8 series in **Fig. 15b**, SS-EGC exhibited lower tensile strain capacity
380 but better crack resistance (i.e., smaller crack width and width deviation).



381
382 **Fig. 15** Five-dimensional assessment of the mechanical properties and cracking behavior of
383 EGC: (a) F8S2 and (b) F2S8 series. Compared to F8S2 series, using seawater and sea-sand
384 had a more pronounced effect on the properties of F2S8 series.

385 **5 Comparison to cement-based SS-ECC in literature**

386 *5.1 Comparison of tensile performance*

387 As mentioned in the **Introduction** section, the authors previously developed the cement-
388 based SS-ECC with a compressive strength of over 130 MPa [23, 24]. One of the developed
389 SS-ECC in Ref. [24] (Specimen ID: L18-V2.0-S1) was also reinforced by 2% 18-mm PE fibers,
390 which were the same as that used in this study. Also, the compressive strength of L18-V2.0-S1
391 (134.0 MPa) was close to that of F2S8-S (143.0 MPa). Thus, it is feasible to compare the tensile
392 performance and carbon emission of the aforementioned cement-based SS-ECC and SS-EGC,
393 which can present the differences between these two types of seawater sea-sand concrete. **Table**
394 **4** summarizes the mechanical properties of L18-V2.0-S1 reported in Ref. [24].

Fig. 16 Comparison of the tensile performance of geopolymer-based SS-EGC (F2S8-S in this study) and cement-based SS-ECC (L18-V2.0-S1 in Ref. [24]) with similar compressive strength. Geopolymer-based SS-EGC showed higher tensile strength and smaller tensile stress fluctuations during the strain-hardening process.

The tensile performance of geopolymer-based SS-EGC (i.e., F2S8-S in this study) and cement-based SS-ECC (i.e., L18-V2.0-S1 in Ref. [24]) are compared in **Fig. 16**, and one typical curve close to the averaged tensile performance of each material was selected and plotted. It is noted that although the tensile performance of ECC materials varied for different mix proportions, the selected SS-ECC was the only one found in the literature with similar compressive strength and the same fiber reinforcement. As summarized in **Table 4**, the tensile strain capacity of SS-EGC (i.e., 6.9%) was close to that of cement-based SS-ECC (i.e., 7.1%), and SS-EGC showed higher tensile strength (also see in **Fig. 16**). It can be found that geopolymer-based SS-EGC showed smaller tensile stress fluctuations during the strain-hardening process (**Fig. 16**), which indicated a finer crack width of SS-ECC in tension (compared to cement-based SS-ECC) [60]. Thus, as presented in **Table 4**, the crack width deviation of SS-EGC were significantly smaller than those of cement-based SS-ECC. Overall, it could be concluded that the developed SS-EGC had superior tensile performance and crack resistance than the cement-based SS-ECC with similar compressive strength in literature [24]. As the existing data of high-strength SS-EGC and SS-ECC (cement-

415 based) is still limited, further studies are essential to understand the differences between the
 416 mechanical properties and cracking behaviors of these emerging materials.

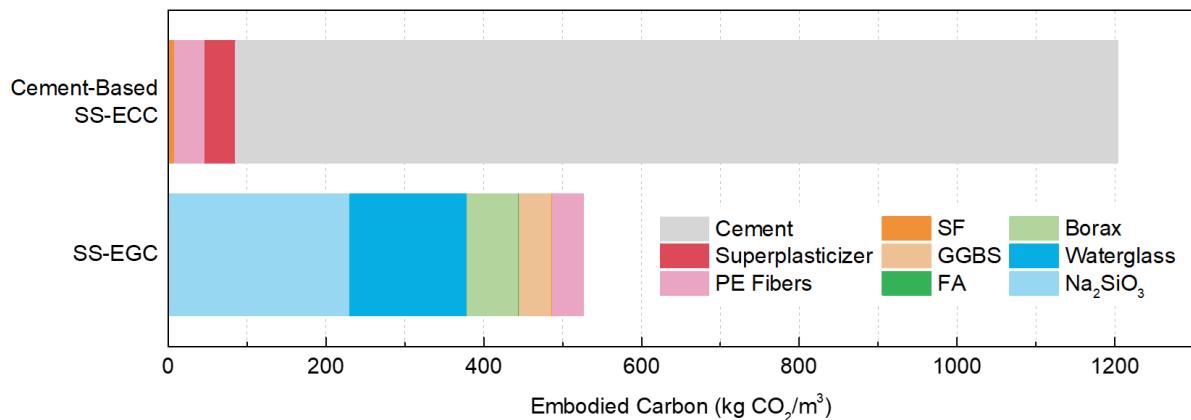
417 *5.2 Comparison of embodied carbon*

418 **Table 6** presents the unit embodied carbon, embodied energy, and cost of the raw material
 419 used for calculation. The calculated embodied carbon, embodied energy, and cost of SS-EGC
 420 and cement-based SS-ECC with similar compressive strength are summarized in **Table 6** and
 421 **Fig. 17**. It is mentioned that the embodied carbon of seawater and sea-sand was assumed as
 422 zero, as no relevant literature was found. The embodied carbon of waterglass was calculated as
 423 the sum of sodium silicate and water. In addition, the embodied carbon of borax was considered
 424 as that of the retarder reported in the literature [62].

425 **Table 5** Embodied carbon, embodied energy and cost of raw materials

Raw Materials	Embodied Carbon [(metric ton CO ₂)/metric ton]	Embodied Energy (GJ/metric ton)	Cost (HKD/metric ton)
Cement	0.912 [62]	5.5 [65]	800 [69]
FA	0.004 [62]	0.1 [65]	350 [69]
GGBS	0.042 [62]	0.2 [66]	500 [69]
SF	0.024 [63]	0.1 [65]	2100 [69]
Na ₂ SiO ₃	1.860 [26]	9.4 [66]	860 [69]
Waterglass ¹	0.804 [26]	4.07 [66]	2266 [70]
Borax ²	1.310 [62]	0.82 [67]	7440 [CCR]
Superplasticizer	1.880 [62]	11.47 [65]	60000 [69]
PE Fibers	2.000 [64]	94.5 [68]	200000 [CCR]
Sea-sand ³	0.000	0	0
Seawater ³	0.000	0	0

426 **Table 6** Embodied carbon, embodied energy, and cost of SS-EGC and cement-based SS-ECC.


Raw materials	Embodied Carbon (kg CO ₂ /m ³)		Embodied Energy (MJ/m ³)		Cost (HKD)	
	F2S8-S	SS-ECC [24]	F2S8-S	SS-ECC [24]	F2S8-S	SS-ECC [24]
Cement	/	1119.0 (92.9%)	/	6748.5 (76.3%)	/	981.6 (14.5%)
FA	0.9 (0.2%)	/	23.4 (0.6%)	/	82.0 (1.5%)	/
GGBS	39.4 (7.9%)	/	187.5 (4.8%)	/	468.8 (8.7%)	/
SF	1.5 (0.3%)	7.4 (0.6%)	6.2 (0.2%)	30.7 (0.3%)	129.6 (2.4%)	644.7 (9.6%)

Na ₂ SiO ₃	217.8 (43.6%)	/	1100.7 (28.2%)	/	100.7 (1.9%)	/
Waterglass ¹	140.3 (28.1%)	/	710.2 (18.2%)	/	395.4 (7.3%)	/
Borax ²	61.3 (12.3%)	/	38.4 (1.0%)	/	348.2 (6.4%)	/
Superplasticizer	/	38.9 (3.2%)	/	237.4 (2.7%)	/	1242.0 (18.4%)
PE Fibers	38.8 (7.8%)	38.8 (3.2%)	1833.3 (47.0%)	1833.3 (20.7%)	3880.0 (71.8%)	3880.0 (57.5%)
Sea-sand ³	0					
Seawater ³	0					
Total	500 (100%)	1204.1 (100%)	3899.8 (100%)	8849.9 (100%)	5404.7 (100%)	6748.3 (100%)

⁴²⁸ ¹Waterglass contains 56.8% H₂O in weight.

⁴²⁹ ²Borax includes crystallized water (i.e., Na₂B₄O₇·10H₂O).

⁴³⁰ ³The embodied carbon of seawater and sea-sand was assumed as zero.

⁴³¹ **Fig. 17** Embodied carbon of SS-EGC and cement-based SS-ECC. Compared to the cement-based SS-ECC with similar compressive strength, the developed SS-EGC (F2S8-S) showed significantly lower embodied carbon.

⁴³² Obviously, the embodied carbon of the cement-based SS-ECC (1204.1 kg CO₂/m³) was significantly higher than that of SS-EGC (526.2 kg CO₂/m³). The main body of the embodied carbon for the cement-based SS-ECC came from using Portland cement (92.9%), while the other components only contributed 7.1% of the total embodied carbon. It indicated that using the high volume of Portland cement to produce high-strength ECC is not beneficial for construction sustainability. On the other hand, the total embodied carbon of SS-EGC with a similar strength grade was only 43.7% of that of SS-ECC. In detail, precursor materials did not significantly contribute to the carbon dioxide emission (less than 10%). However, the embodied carbon of SS-EGC mainly comes from the alkaline activators (i.e., 43.8% for Na₂SiO₃ and 28.2% for waterglass) and the retarder (12.3%). At the current stage, activators and retarders are important for the successful production of high-strength high-ductility SS-EGC. Since recycled

446 alkaline activators from waste materials have also been tried to produce geopolymer pastes [61],
447 such materials are believed to be used as full or partial replacements of the current commercial
448 activators, which can further reduce embodied carbon of EGC materials in the future.

449 **6 Conclusions**

450 This study has developed seawater sea-sand Engineered Geopolymer Composites (SS-
451 EGC) with high strength and high ductility, and investigated the influence of seawater and sea-
452 sand (compared to freshwater and washed sea-sand) on the matrix properties and tensile
453 performance of EGC. Two fly ash-to-slag ratios [i.e., 8:2 (F8S2 series) and 2:8 (F2S8 series)]
454 were considered in the EGC matrices. Based on the experimental findings, the following
455 conclusions can be drawn.

- 456 ● Using seawater and sea-sand slightly decreased the compressive strength of EGC (from
457 89.0 to 84.5 MPa for F8S2 series, and from 145.1 to 143.0 MPa for the F2S8 series), due
458 to the interaction between seawater and alkali activator. It was found that SS-EGC mix
459 showed slightly lower heat releasing rate compared to the freshwater counterpart. The use
460 of seawater increased the fraction of ultra-high-density phase but decreased the fractions
461 of low-density and high-density C-(N)-A-S-H. The ultra-high-density phases in EGC
462 possibly consisted of C-(N)-A-S-H and hydrotalcite, and the content of the latter increased
463 in the seawater-mixed matrix.
- 464 ● For the tensile performance, using seawater and sea-sand increased the tensile strength but
465 decreased the tensile ductility of EGC. For the cracking behavior, the use of seawater and
466 sea-sand had a marginal effect on the cracking behavior of the F8S2 series, while it
467 decreased both the crack width (from 70.0 to 59.4 μm) and crack width deviation (from
468 23.4 to 15.7 μm) of F2S8 series. In summary, compared to the F8S2 series, using seawater
469 and sea-sand had a more pronounced effect on the overall performance of the F2S8 series.
- 470 ● Compared to the cement-based SS-ECC (with similar compressive strength and the same
471 fiber reinforcement) in literature [24], geopolymer-based SS-EGC (F2S8-S) had a similar
472 tensile strain capacity, a higher tensile strength and a superior crack resistance. Notably,
473 the SS-EGC (F2S8-S) showed a significantly lower embodied carbon than the cement-

474 based SS-ECC. It should be pointed out that owing to the limitation of existing database,
475 more efforts are needed to understand the differences between SS-EGC and cement-based
476 SS-ECC in future studies.

477 **Acknowledgments**

478 The authors would like to acknowledge the financial support received from the Hong Kong
479 Research Grants Council (No. T22-502/18-R), Chinese Guangdong Province R&D Plan for
480 Key Areas (No. 2019B111107002), and The Hong Kong Polytechnic University through the
481 Research Institute for Land and Space (No. CD7D). Jian-Cong Lao and Bo-Tao Huang would
482 like to acknowledge the support by the Hong Kong Innovation and Technology Fund (Project
483 Code: ITS/077/18FX) through the Research Talent Hub.

484 **Declaration of competing interest**

485 The authors declare that they have no known competing financial interests or personal
486 relationships that could have appeared to influence the work reported in this paper.

487 **CRedit Author Statement**

488 **JC Lao:** Conceptualization, Investigation, Validation, Formal analysis, Writing - Original Draft.
489 **BT Huang:** Conceptualization, Methodology, Visualization, Writing - Original Draft, Writing
490 - Review & Editing. **LY Xu:** Formal analysis, Writing - Review & Editing. **M Khan:** Data
491 acquisition, Validation, Writing - Review & Editing. **Y Fang:** Formal analysis, Writing - Review
492 & Editing. **JG Dai:** Funding Acquisition, Project administration, Supervision, Writing - Review
493 & Editing.

494 **References**

- 495 1. Li, V. C. (2019). Engineered Cementitious Composites (ECC) - Bendable Concrete for Sustainable and
496 Resilient Infrastructure. Verlag GmbH Germany: Springer, Berlin, Heidelberg.
- 497 2. Li, V. C., Wang, S., & Wu, C. (2001). Tensile strain-hardening behavior of polyvinyl alcohol engineered
498 cementitious composite (PVA-ECC). *ACI Materials Journal*, 98(6), 483-492.
- 499 3. Qian, S., Zhou, J., De Rooij, M. R., Schlangen, E., Ye, G., & Van Breugel, K. (2009). Self-healing
500 behavior of strain hardening cementitious composites incorporating local waste materials. *Cement and
Concrete Composites*, 31(9), 613-621.

502 4. Li, Q. H., Yin, X., Huang, B. T., Luo, A. M., Lyu, Y., Sun, C. J., & Xu, S. L. (2021). Shear interfacial
503 fracture of strain-hardening fiber-reinforced cementitious composites and concrete: A novel approach.
504 *Engineering Fracture Mechanics*, 253, 107849.

505 5. Richard, P., & Cheyrezy, M. (1995). Composition of reactive powder concretes. *Cement and Concrete
506 Research*, 25(7), 1501-1511.

507 6. Wille, K., Naaman, A. E., El-Tawil, S., & Parra-Montesinos, G. J. (2012). Ultra-high performance
508 concrete and fiber reinforced concrete: achieving strength and ductility without heat curing. *Materials
509 and Structures*, 45(3), 309-324.

510 7. Shen, X., & Brühwiler, E. (2020). Influence of local fiber distribution on tensile behavior of strain
511 hardening UHPFRC using NDT and DIC. *Cement and Concrete Research*, 132, 106042.

512 8. Huang, B. T., Dai, J. G., Weng, K. F., Zhu, J. X., & Shah, S. P. (2021). Flexural Performance of UHPC–
513 Concrete–ECC Composite Member Reinforced with Perforated Steel Plates. *Journal of Structural
514 Engineering*, 147(6), 04021065.

515 9. Li, V. C., & Leung, C. K. Y. (1992). Steady-state and multiple cracking of short random fiber composites.
516 *Journal of Engineering Mechanics*, 118(11), 2246-2264.

517 10. Leung, C. K. (1996). Design criteria for pseudoductile fiber-reinforced composites. *Journal of
518 Engineering Mechanics*, 122(1), 10-18.

519 11. Xu, L. Y., Huang, B. T., Li, V. C., & Dai, J. G. (2022). High-strength high-ductility Engineered/Strain-
520 Hardening Cementitious Composites (ECC/SHCC) incorporating geopolymers fine aggregates. *Cement
521 and Concrete Composites*, 125, 104296.

522 12. Huang, B. T., Zhu, J. X., Weng, K. F., Li, V. C., & Dai, J. G. (2022). Ultra-high-strength
523 engineered/strain-hardening cementitious composites (ECC/SHCC): Material design and effect of fiber
524 hybridization. *Cement and Concrete Composites*, 129, 104464.

525 13. Zhu, J. X., Xu, L. Y., Huang, B. T., Weng, K. F., & Dai, J. G. (2022). Recent developments in
526 Engineered/Strain-Hardening Cementitious Composites (ECC/SHCC) with high and ultra-high strength.
527 *Construction and Building Materials*, 342, 127956.

528 14. Yoo, D. Y., & Banthia, N. (2022). High-performance strain-hardening cementitious composites with
529 tensile strain capacity exceeding 4%: A review. *Cement and Concrete Composites*, 125, 104325.

530 15. Curosu, I., Mechtrcherine, V., & Millon, O. (2016). Effect of fiber properties and matrix composition on
531 the tensile behavior of strain-hardening cement-based composites (SHCCs) subject to impact loading.
532 *Cement and Concrete Research*, 82, 23-35.

533 16. Chen, Y., Yu, J., & Leung, C. K. (2018). Use of high strength strain-hardening cementitious composites
534 for flexural repair of concrete structures with significant steel corrosion. *Construction and Building
535 Materials*, 167, 325-337.

536 17. Huang, B. T., Yu, J., Wu, J. Q., Dai, J. G., & Leung, C. K. (2020). Seawater sea-sand Engineered
537 Cementitious Composites (SS-ECC) for marine and coastal applications. *Composites Communications*,

538 20, 100353.

539 18. Huang, B. T., Weng, K. F., Zhu, J. X., Xiang, Y., Dai, J. G., & Li, V. C. (2021). Engineered/strain-
540 hardening cementitious composites (ECC/SHCC) with an ultra-high compressive strength over 210
541 MPa. *Composites Communications*, 26, 100775.

542 19. Teng, J. G., Xiang, Y., Yu, T., & Fang, Z. (2019). Development and mechanical behaviour of ultra-high-
543 performance seawater sea-sand concrete. *Advances in Structural Engineering*, 22(14), 3100-3120.

544 20. Huang, B. T., Wang, Y. T., Wu, J. Q., Yu, J., Dai, J. G., & Leung, C. K. (2021). Effect of fiber content
545 on mechanical performance and cracking characteristics of ultra-high-performance seawater sea-sand
546 concrete (UHP-SSC). *Advances in Structural Engineering*, 24(6), 1182-1195.

547 21. Ebead, U., Lau, D., Lollini, F., Nanni, A., Suraneni, P., & Yu, T. (2022). A review of recent advances in
548 the science and technology of seawater-mixed concrete. *Cement and Concrete Research*, 152, 106666.

549 22. Zeng, J. J., Liao, J., Zhuge, Y., Guo, Y. C., Zhou, J. K., Huang, Z. H., & Zhang, L. (2022). Bond behavior
550 between GFRP bars and seawater sea-sand fiber-reinforced ultra-high strength concrete. *Engineering
551 Structures*, 254, 113787.

552 23. Huang, B. T., Wu, J. Q., Yu, J., Dai, J. G., & Leung, C. K. (2020). High-strength seawater sea-sand
553 Engineered Cementitious Composites (SS-ECC): Mechanical performance and probabilistic modeling.
554 *Cement and Concrete Composites*, 114, 103740.

555 24. Huang, B. T., Wu, J. Q., Yu, J., Dai, J. G., Leung, C. K., & Li, V. C. (2021). Seawater sea-sand
556 engineered/strain-hardening cementitious composites (ECC/SHCC): Assessment and modeling of crack
557 characteristics. *Cement and Concrete Research*, 140, 106292.

558 25. Provis, J. L. (2018). Alkali-activated materials. *Cement and Concrete Research*, 114, 40-48.

559 26. Xu, L. Y., Qian, L. P., Huang, B. T., & Dai, J. G. (2021). Development of artificial one-part geopolymer
560 lightweight aggregates by crushing technique. *Journal of Cleaner Production*, 315, 128200.

561 27. Lao, J. C., Xu, L. Y., Huang, B. T., Dai, J. G., & Shah, S. P. (2022). Strain-hardening Ultra-High-
562 Performance Geopolymer Concrete (UHPC): Matrix design and effect of steel fibers. *Composites
563 Communications*, 30, 101081.

564 28. Peng, K. D., Huang, B. T., Xu, L. Y., Hu, R. L., & Dai, J. G. (2022). Flexural strengthening of reinforced
565 concrete beams using geopolymer-bonded small-diameter CFRP bars. *Engineering Structures*, 256,
566 113992.

567 29. Lee, B. Y., Cho, C. G., Lim, H. J., Song, J. K., Yang, K. H., & Li, V. C. (2012). Strain hardening fiber
568 reinforced alkali-activated mortar—a feasibility study. *Construction and Building Materials*, 37, 15-20.

569 30. Ohno, M., & Li, V. C. (2014). A feasibility study of strain hardening fiber reinforced fly ash-based
570 geopolymer composites. *Construction and Building Materials*, 57, 163-168.

571 31. Nematollahi, B., Sanjayan, J., Qiu, J., & Yang, E. H. (2017). Micromechanics-based investigation of a
572 sustainable ambient temperature cured one-part strain hardening geopolymer composite. *Construction
573 and Building Materials*, 131, 552-563.

574 32. Kumar, S., Das, C. S., Lao, J., Alrefaei, Y., & Dai, J. G. (2022). Effect of sand content on bond
575 performance of engineered geopolymer composites (EGC) repair material. *Construction and Building*
576 *Materials*, 328, 127080.

577 33. Yoo, D. Y., Lee, S. K., You, I., Oh, T., Lee, Y., & Zi, G. (2022). Development of strain-hardening
578 geopolymer mortar based on liquid-crystal display (LCD) glass and blast furnace slag. *Construction and*
579 *Building Materials*, 331, 127334.

580 34. Ling, Y., Wang, K., Li, W., Shi, G., & Lu, P. (2019). Effect of slag on the mechanical properties and
581 bond strength of fly ash-based engineered geopolymer composites. *Composites Part B: Engineering*,
582 164, 747-757.

583 35. ASTM C618 – 19. (2019). Standard Specification for Coal Fly Ash and Raw or Calcined Natural
584 Pozzolan for Use in Concrete, ASTM International, West Conshohocken, PA.

585 36. ASTM C109/C109M. (2013). Standard Test Method for Compressive Strength of Hydraulic Cement
586 Mortars, ASTM International, West Conshohocken, PA.

587 37. Japan Society of Civil Engineers. (2008), Recommendations for Design and Construction of High
588 Performance Fiber Reinforced Cement Composites with Multiple Fine Cracks (HPFRCC), Concrete
589 Engineering Series No. 82.

590 38. Ismail, I., Bernal, S. A., Provis, J. L., San Nicolas, R., Hamdan, S., & van Deventer, J. S. (2014).
591 Modification of phase evolution in alkali-activated blast furnace slag by the incorporation of fly ash.
592 *Cement and Concrete Composites*, 45, 125-135.

593 39. Shi, D., Yao, Y., Ye, J., & Zhang, W. (2019). Effects of seawater on mechanical properties, mineralogy
594 and microstructure of calcium silicate slag-based alkali-activated materials. *Construction and Building*
595 *Materials*, 212, 569-577.

596 40. Marjanović, N., Komljenović, M., Bašćarević, Z., Nikolić, V., & Petrović, R. (2015). Physical–
597 mechanical and microstructural properties of alkali-activated fly ash–blast furnace slag blends.
598 *Ceramics International*, 41(1), 1421-1435.

599 41. Ren, J., Sun, H., Cao, K., Ren, Z., Zhou, B., Wu, W., & Xing, F. (2021). Effects of natural seawater
600 mixing on the properties of alkali-activated slag binders. *Construction and Building Materials*, 294,
601 123601.

602 42. Shi, C., & Day, R. L. (1995). A calorimetric study of early hydration of alkali-slag cements. *Cement and*
603 *concrete Research*, 25(6), 1333-1346.

604 43. Kim, M. S., Jun, Y., Lee, C., & Oh, J. E. (2013). Use of CaO as an activator for producing a price-
605 competitive non-cement structural binder using ground granulated blast furnace slag. *Cement and*
606 *concrete research*, 54, 208-214.

607 44. Zhang, S., Li, Z., Ghiassi, B., Yin, S., & Ye, G. (2021). Fracture properties and microstructure formation
608 of hardened alkali-activated slag/fly ash pastes. *Cement and Concrete Research*, 144, 106447.

609 45. Jun, Y., Kim, T., & Kim, J. H. (2020). Chloride-bearing characteristics of alkali-activated slag mixed

610 with seawater: Effect of different salinity levels. *Cement and Concrete Composites*, 112, 103680.

611 46. Richardson, I. G., & Li, S. (2018). Composition and structure of an 18-year-old 5M KOH-activated
612 ground granulated blast-furnace slag paste. *Construction and Building Materials*, 168, 404-411.

613 47. Islam, M., & Patel, R. (2009). Nitrate sorption by thermally activated Mg/Al chloride hydrotalcite-like
614 compound. *Journal of hazardous materials*, 169(1-3), 524-531.

615 48. Kristóf-Makó, É., & Juhász, A. Z. (1999). The effect of mechanical treatment on the crystal structure
616 and thermal decomposition of dolomite. *Thermochimica Acta*, 342(1-2), 105-114.

617 49. Hay, R., Li, J., & Celik, K. (2020). Influencing factors on micromechanical properties of calcium
618 (alumino) silicate hydrate C-(A-) SH under nanoindentation experiment. *Cement and Concrete Research*,
619 134, 106088.

620 50. Myers, R. J., L'Hôpital, E., Provis, J. L., & Lothenbach, B. (2015). Effect of temperature and aluminium
621 on calcium (alumino) silicate hydrate chemistry under equilibrium conditions. *Cement and Concrete
622 Research*, 68, 83-93.

623 51. Miller, M., Bobko, C., Vandamme, M., & Ulm, F. J. (2008). Surface roughness criteria for cement paste
624 nanoindentation. *Cement and Concrete Research*, 38(4), 467-476.

625 52. Oliver, W. C., & Pharr, G. M. (1992). An improved technique for determining hardness and elastic
626 modulus using load and displacement sensing indentation experiments. *Journal of materials research*,
627 7(6), 1564-1583.

628 53. Fang, Y., Wang, J., Qian, X., Wang, L., Chen, P., & Qiao, P. (2022). A renewable admixture to enhance
629 the performance of cement mortars through a pre-hydration method. *Journal of Cleaner Production*, 332,
630 130095.

631 54. Zhang, Y., Liang, M., Gan, Y., & Çopuroğlu, O. (2022). Micro-Mechanical Properties of Slag Rim
632 Formed in Cement–Slag System Evaluated by Nanoindentation Combined with SEM. *Materials*, 15(18),
633 6347.

634 55. Moradi, M., Ashraf, W., & Tian, N. (2022). Monitoring temperature-induced in-situ nanomechanical
635 changes of cement paste by nanoindentation. *MRS Advances*, 7(10), 217-221.

636 56. Aveston, J., Mercer, R. A., & Siltwood, J. M. (1974). Fiber reinforced cements—scientific foundations
637 for specifications. *Composites standards testing arid design, Conference Proceedings National Physical
638 Laboratory, IPC Science and Technology Press, Guildford, United Kingdom*, 93-103.

639 57. Li, V. C. (1992). Postcrack scaling relations for fiber reinforced cementitious composites. *Journal of
640 Materials in Civil Engineering*, 4(1), 41-57.

641 58. Liu, W. H., Zhang, L. W., & Liew, K. M. (2020). Modeling of crack bridging and failure in
642 heterogeneous composite materials: A damage-plastic multiphase model. *Journal of the Mechanics and
643 Physics of Solids*, 143, 104072.

644 59. Sonat, C., He, S., Li, J., Unluer, C., & Yang, E. H. (2021). Strain hardening magnesium-silicate-hydrate
645 composites (SHMSHC) reinforced with short and randomly oriented polyvinyl alcohol microfibers.

Cement and Concrete Research, 142, 106354.

- 60. Xu, M., Song, S., Feng, L., Zhou, J., Li, H., & Li, V. C. (2021). Development of basalt fiber engineered cementitious composites and its mechanical properties. *Construction and Building Materials*, 266, 121173.
- 61. Alnahhal, M. F., Kim, T., & Hajimohammadi, A. (2021). Waste-derived activators for alkali-activated materials: A review. *Cement and Concrete Composites*, 118, 103980.
- 62. Hammond, G. P., & Jones, C. I. (2008). Embodied energy and carbon in construction materials. *Proceedings of the Institution of Civil Engineers-Energy*, 161(2), 87-98.
- 63. Vijayarethinam, N. (2009). Silica fume applications. *World Cement*, 40, 97-100.
- 64. Shoji, D., He, Z., Zhang, D., & Li, V. C. (2022). The greening of engineered cementitious composites (ECC): A review. *Construction and Building Materials*, 327, 126701.
- 65. Yu, J., Chen, Y., & Leung, C. K. (2019). Mechanical performance of Strain-Hardening Cementitious Composites (SHCC) with hybrid polyvinyl alcohol and steel fibers. *Composite Structures*, 226, 111198.
- 66. Yang, T., Zhang, Z., Zhang, F., Gao, Y., & Wu, Q. (2020). Chloride and heavy metal binding capacities of hydrotalcite-like phases formed in greener one-part sodium carbonate-activated slag cements. *Journal of Cleaner Production*, 253, 120047.
- 67. Pasupathy, K., Ramakrishnan, S., & Sanjayan, J. (2023). 3D concrete printing of eco-friendly geopolymers containing brick waste. *Cement and Concrete Composites*, 104943.
- 68. Zhang, D., Yu, J., Wu, H., Jaworska, B., Ellis, B. R., & Li, V. C. (2020). Discontinuous micro-fibers as intrinsic reinforcement for ductile Engineered Cementitious Composites (ECC). *Composites Part B: Engineering*, 184, 107741.
- 69. Xu, L. Y., Huang, B. T., Lan-Ping, Q., & Dai, J. G. (2022). Enhancing long-term tensile performance of Engineered Cementitious Composites (ECC) using sustainable artificial geopolymers aggregates. *Cement and Concrete Composites*, 133, 104676.
- 70. Song, Y., Li, Z., Zhang, J., Tang, Y., Ge, Y., & Cui, X. (2020). A low-cost biomimetic heterostructured multilayer membrane with geopolymer microparticles for broad-spectrum water purification. *ACS Applied Materials & Interfaces*, 12(10), 12133-12142.