
Declaration of interests 

☒ The authors declare that they have no known competing financial interests or personal relationships 
that could have appeared to influence the work reported in this paper. 

☐ The authors declare the following financial interests/personal relationships which may be considered 
as potential competing interests: 

Conflict of interest

This is the Pre-Published Version.

The following publication Guo, H., & Dong, Y. (2022). Dynamic Bayesian network for durability of reinforced concrete structures in long-term environmental 
exposures. Engineering Failure Analysis, 142, 106821 is available at https://doi.org/10.1016/j.engfailanal.2022.106821.

© 2022. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/



Highlights: 

 A dynamic Bayesian network-based durability assessment framework is developed; 

 Time-varying environment and 2D chloride ingress are considered in durability 

assessment; 

 A novel computation method of conditional probability table calculation is 

proposed; 

 A real-world example is employed for the durability assessment of RC beams. 
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Abstract: Reinforced concrete (RC) structures under the marine environment may be 7 

subjected to chloride-induced corrosion of reinforcement, which significantly impacts 8 

the structural serviceability and reliability and further affects the sustainability and 9 

development of society. However, most of the existing durability assessment methods 10 

for RC structures only address their static and deterministic durability prediction and 11 

assessment at the design stage given the constant environment, ignoring the influences 12 

of stochastic environmental effects, uncertainties in structural properties, and inspection 13 

results. To this end, this paper proposes a dynamic Bayesian network (DBN) based 14 

durability assessment framework combined with a deterioration model that considers 15 

random changes in environmental parameters, convective chloride ion transport, and 16 

corrosion-induced cracking of concrete. In this framework, two-dimensional chloride 17 

transport and its influences on the durability deterioration assessment are concerned 18 

and achieved using the finite difference method. Besides, to reduce the deviations in 19 

probabilistic evaluation, the good-lattice-point-set-partially stratified-sampling (GLP-20 

PSS) method is employed to establish a DBN framework. The proposed DBN 21 

framework is used for sensitivity analysis through a real-world example to examine the 22 

effects of the environmental model, chloride transport mode, and inspection results of 23 

concrete crack on durability assessment. 24 

 25 
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1. Introduction 29 

Under long-term environmental effects (e.g., chloride ingress and concrete carbonation), the 30 

durability of reinforced concrete (RC) infrastructures, including bridges and buildings, might 31 

deteriorate progressively, affecting their reliability and safety and even threatening social 32 

security and stability. In 2020, a report from American Road & Transportation Builders 33 

Association (ARTBA) announced that more than 46,000 bridges in the USA are structurally 34 

deficient and more than 37% of bridges need maintenance [1]. One severe issue related to the 35 

durability deterioration of RC structures is erosion media-induced reinforcement corrosion. For 36 

instance, under the marine atmospheric environment, chloride ingress is the main threat to the 37 

durability of RC structures. According to a report from the Australasian Corrosion Association, 38 

the maintenance cost of corrosion-related infrastructure such as bridges in Australia was 39 

estimated to be eight billion Australian dollars [2]. It can be seen that the environmental impacts 40 

and associated social impacts on the durability of RC structures are significant. Therefore, it is 41 

of critical importance to estimate and predict the durability of RC structures under long-term 42 

environmental actions. 43 

The durability assessment for RC structures was usually based on deterministic or semi-44 

probabilistic methods [3,4], which might not be appropriate for the scenarios considering 45 

random environmental parameters and structural properties. Therefore, it is necessary to 46 

develop probability-based assessment methods for the durability assessment of RC structures. 47 

For example, Li et al. [5,6] proposed a probabilistic three-stage prediction model to perform 48 

the performance evaluation for RC structures subject to reinforcement corrosion. Since such a 49 

model is based on mathematical equations, it is difficult to consider the physical mechanisms 50 

of performance deterioration and thus may underestimate the non-linearity and stochasticity 51 

within the life-cycle assessment of RC structures [7]. Therefore, many scholars have considered 52 

the physical equations associated with chloride transport to assess the durability of RC 53 

structures by reliability-based methods [8,9]. Furthermore, due to the non-linearity and 54 

uncertainty of environmental factors, traditional reliability-based methods may be challenging 55 

for the durability assessment of RC structures subject to complicated and harsh environments. 56 

For this reason, Flint et al. [10] and Guo et al. [11] proposed a performance-based durability 57 
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evaluation framework for integrating the effects of uncertainties within environmental effects, 58 

e.g., global warming and physical models of erosion medium transport on durability evaluation. 59 

Those durability assessments for RC structures focused on durability evaluation and prediction 60 

during their design stages without considering the influence of inspections, while it has been 61 

proven that inspections within the service life might affect the durability prediction results of 62 

RC structures [12–14]. Thus, due to the negligence of inspection effects, most of the existing 63 

durability assessments of RC structures might misestimate the durability performance of 64 

structures and its uncertainty evolution in practical engineering. Therefore, it is necessary to 65 

consider the effect of inspection on the durability assessment of RC structures. 66 

In practice, Bayesian update methods are usually employed to perform probabilistic 67 

inferences by integrating the collected data from monitoring systems or field inspections to 68 

update the estimation results [15]. For instance, Estes and Frangopol [16] applied the inspected 69 

data from bridge management systems to update the reliability of structures for life-cycle 70 

analysis. Also, Stewart [17] utilized visual inspection of concrete cover damage to update the 71 

durability and reliability of RC structures. However, since practical engineering systems 72 

involve many influencing parameters, it may be challenging to implement data updating and 73 

inference using the conventional Bayesian update methods. Recently, Bayesian network (BN) 74 

methods have been widely used in uncertainty assessment and failure analysis in many fields, 75 

including aerospace, electronic engineering, and civil engineering [18–20]. BNs are built based 76 

on joint probability distributions among variables within the investigated system, and the 77 

inspection data of certain variables can update the distribution information of all variables. To 78 

date, BN has been widely used in the durability and reliability assessment of RC structures 79 

[20,21]. Ma et al. [12] established BNs combined with in-situ loading tests to predict corrosion 80 

damage and structural response of existing RC bridges. Besides, Deby et al. [13,14] performed 81 

a probabilistic durability assessment for RC structures subject to chloride ingress based on BN 82 

and reliability theory. In addition, Tran et al. [22–24] proposed a BN-based method to identify 83 

stochastic parameters in chloride transport models from inspection data. However, these studies 84 

are usually based on static Bayesian networks (i.e., containing a one-time slice of the network) 85 

and might have difficulties considering the time dependence among parameters (e.g., 86 

environment and material properties), which in turn may misestimate the time-dependent 87 
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performance of RC structures. Therefore, applying static BNs in the durability assessment of 88 

RC structures might be inappropriate under long-term environmental effects. 89 

To deal with the time dependence issue within static BN inference, existing studies 90 

extended static BNs to dynamic Bayesian networks (DBNs), which usually have more than one 91 

time slice of the network to describe stochastic processes [25,26]. Based on DBNs, Straub [27] 92 

proposed a stochastic framework for modeling structural deterioration processes and validated 93 

its effectiveness by a case of fatigue crack evolution. Tran et al. [28] implement DBN to update 94 

the time-dependent reliability via inspection data for decayed timber structures. Besides, 95 

concerning the durability assessment for RC structures, Hackl [29] proposed a framework to 96 

integrate DBN modeling and structural analysis for the time-dependent reliability assessment 97 

of corroded RC structures. Based on Hackl’s framework, monitoring and inspection information 98 

at different time instants can be integrated to achieve the life-cycle assessment for deteriorating 99 

RC structures. However, many issues still need to be urgently addressed in the existing DBN 100 

framework of RC structures. For instance, the existing DBN framework employed a simplified 101 

one-dimensional Fick’s law for chloride transport prediction, which might be inappropriate for 102 

two-dimensional components such as RC beams and columns in practical engineering [9]. In 103 

addition, supposing that more advanced and complicated deterioration models were applied, it 104 

would be challenging to capture the joint distribution information for the DBN model. The 105 

primary reason is that a brute random sampling might cause a substantial computational burden 106 

[30–32] while existing studies related to DBN modeling did not provide efficient 107 

recommendations to address such an issue. As a result, it is still necessary to propose a new 108 

framework for the durability assessment of RC structures to obtain an excellent trade-off 109 

between the sophistication of the adopted deterioration models and the efficiency of the DBN 110 

analysis.  111 

This study proposes a DBN-based framework for the durability assessment of RC 112 

structures subject to environmental actions. The framework mainly considers the stochastic 113 

process of environmental parameters, uncertainties in the erosive media transport, and the 114 

effects of inspection information on the durability assessment of RC structures. Based on the 115 

existing studies, durability deterioration models are developed considering the time-varying 116 

environment, two-dimensional diffusion and convection effects of chloride transport, and 117 



5 

concrete cracking. Using a low-deviation pseudo-random sequence sampling method, i.e., 118 

good-lattice-point-set-partially stratified-sampling (GLP-PSS), and considering the weight of 119 

each sample, the joint distribution of each parameter in DBN is determined by a limited number 120 

of samples. The proposed DBN framework is employed for durability assessment and 121 

sensitivity analysis of RC beams by a case study of RC beams in an actual environment to verify 122 

the effects of the environmental model, chloride transport mode, and inspection results on 123 

durability assessment. 124 

 125 

2. Probabilistic durability assessment for RC structures 126 

In this framework, the durability assessment of concrete structures is separated into three 127 

primary steps, as shown in Fig. 1. The first step is to build a durability deterioration model for 128 

RC structures. An appropriate deterministic model is essential since such a model is utilized to 129 

provide the a priori information for subsequent Bayesian inference. In this paper, the 130 

deterministic model for the durability of RC structures is established mainly in terms of 131 

previous studies with experimental verifications [11,33,34]. The main processes of 132 

deterministic analysis are as follows: (1) performing environmental modeling; (2) performing 133 

erosion medium transport analysis based on the boundary conditions provided by the 134 

environmental model; and (3) calculating corrosion degree and crack width on the concrete 135 

surface. Since the main threat to RC structures in the marine atmospheric environment is 136 

chloride attack, this study focuses on the physical modeling associated with chloride ingress 137 

within concrete. More detailed information relating to durability assessment refers to Section 3. 138 

Then, based on the proposed durability assessment model, a number of stochastic analyses 139 

are performed in the second step, as shown in Fig. 1. However, using traditional large-scale 140 

Monte Carlo simulations (MCS) is challenging given the uncertainties in environmental and 141 

material properties and the non-linearities in durability assessment. In order to reduce the 142 

computational burden, the thought of point evolution [30–32] is introduced to select a limited 143 

number of representative samples and perform deterministic simulations separately (see Section 144 

4.2.1 for more information). After completing the stochastic analysis, all computational results 145 

need to be collected and used for the DBN modeling. 146 
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Furthermore, a series of critical parameters are extracted as DBN nodes according to the 147 

proposed durability deterioration model. Meanwhile, the relationships among the nodes under 148 

the same and adjacent time points are determined in terms of physical models, and 149 

corresponding links in DBN are established. Then, the prior probability distribution of each 150 

node can be obtained through the results of the probabilistic analysis of each representative 151 

sample in the second step. The main algorithms in DBN modeling refer to Section 4.2.2. During 152 

the DBN modeling, the inspection nodes could be specified. Next, the time-dependent 153 

probability distribution of other nodes of interest can be inferred in the subsequent inference 154 

analysis via assigning posterior information to the inspection nodes. In this manner, a bridge 155 

between the a priori probability distributions obtained by the physical models and the inspection 156 

results from practical engineering can be established by using DBN. 157 

 158 

 159 

Fig. 1 General framework for durability assessment of RC structures 160 

 161 

3. Deterioration models for RC structures 162 

3.1. Environmental parameters modeling 163 

Modeling environmental parameters such as ambient temperature, relative humidity (RH), and 164 

chloride deposition are critical in the durability assessment of RC structures. However, due to 165 

the non-linearity and uncertainty of the time-varying marine atmospheric environment, it is 166 

challenging to predict climate evolution accurately. For this reason, a combination 167 

environmental model proposed by Flint [10] is adopted to account for the uncertainty of global 168 

warming and the daily and seasonal variation through the Fourier series, as shown in Eq.(1) 169 

[11]. 170 

        sea dai inc, , epep ec t ep t ep t ep ec t       (1) 171 

where ec is the characteristic value of exposure conditions (environmental temperature), i.e., 172 

Step 1: Establishment of deterministic models  

① Environmental modeling

② Erosion media transport prediction

③ Corrosion effect evaluation

Step 2: Implementation of probabilistic analysis 

④ Generation of input variables

⑤ Deterministic analysis for all samples

⑥ Collection of all simulation results

Step 3: Achievement of DBN analysis

⑦ Determine critical nodes & links

⑧Assign priori information for all nodes

⑨Assign posterior information to 

inspection nodes & DBN inference
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the average temperature increase from 1970 to 2090 [10]; ep denotes the environmental 173 

parameters (i.e., temperature, RH, and chloride deposition) given ec and time t; and epsea(t), 174 

epdai (t), epinc (ec, t), and 𝜀ep are the seasonal variation, daily variation, increasing tendency, and 175 

zero-mean noise, which could be computed by Eqs. (2)-(4), respectively. 176 

  
   1 ref 1 ref

sea 1 1 2 2 0

2
sin sin

365 365

w t t w t t
ep t a b a b a

  
    



 



  


 (2) 177 

          dai 01 11 11 11 11 21 11 21 11 cos  sin cos 2 sin 2ep t a a w t b w t a w t b w t      (3) 178 

      
( )

inc ref,  / 365
n ec

ec t a ec t tep       (4) 179 

where t and tref are current and reference time (day); a0 is the baseline average mean annual 180 

value; a1, a2, b1, b2, w1, and w2 are the parameters of seasonal variation; a01, a11, a21, b11, b21 and 181 

w11 are the parameters of daily variation; and a(ec) and n(ec) are the parameters of increasing 182 

tendency. 183 

Considering the effects of global warming, the temperature rising is predicted by a power 184 

function Eq. (4) whose parameters a(ec) and n(ec) could be acquired by fitting measured data. 185 

For the scenario that lacks associated data, citation [10] provides an empirical model of a(ec) 186 

and n(ec), i.e., Eqs. (5) and (6).  187 

 
3 2 2 2( ) 5.04 10 3.57 10 6.49 10a ec ec ec         (5) 188 

 
1 1( ) 3.59 10 3.33 10n ec ec      (6) 189 

 190 

3.2. Calculation of chloride ingress 191 

To assess the influences of environmental parameters on chlorine ingress, the following 192 

phenomena must be considered: chloride transport, moisture diffusion, and heat transfer, which 193 

can be indicated in the following form: 194 

 
'div div

diffusion convection

J J
t





 


  (7) 195 

in which t is the time parameter; ϕ, ξ, J, and J’ are the terms relying on the investigated physical 196 

phenomenon, as listed in Table 1. 197 

In general, the calculation process of chloride ingress is separated into four main steps [11]: 198 
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(1) Obtaining the boundary conditions for each physical phenomenon via the model from 199 

Section 3.1; 200 

(2) Solving the heat transfer equation; 201 

(3) Solving the moisture diffusion equation; and 202 

(4) Solving the chloride transport equation. 203 

Considering the high non-linearity of Eq.(7), the finite difference method (FDM) is 204 

adopted to solve Eq.(7) numerically. Meanwhile, concerning two-dimensional transport, the 205 

alternating-direction implicit (ADI) FDM would also be applied [35]. 206 

 207 

Table 1 Parameters in Eq.(7) under different physical phenomena 208 

Physical phenomenon Φ ξ J J’ 

Chloride transport Cfc 1 Dc
*∇Cfc CfcDh

*∇hRH 

Moisture diffusion hRH ∂we/∂hRH Dh∇hRH 0 

Heat transfer T ρc∙cq λ∇T 0 

 209 

The detailed meaning of each term in Eq.(7) and Table 1 will be introduced in the following 210 

contents, where Cfc is free chloride content (kg/m3 of pore solution); hRH is the RH of pore 211 

solution; T is the temperature; we is the moisture content, i.e., evaporable water content (m3 212 

pore solution/m3 concrete) [36]; Dc
* and Dh

* are the apparent diffusion coefficients of chloride 213 

and moisture (m2/s); ρc, cq, and λ are concrete density, heat capacity, and thermal conductivity; 214 

and Dh denotes the coefficient of humidity diffusion (m2/s). 215 

Regarding chloride transport, the governing equation could be written as Eq.(8) in terms 216 

of Eq.(7) and Table 1 [9] 217 

    * *fc
fc fc RHdiv divc h

C
D C C D h

t


   


 (8) 218 

in which Dc
* and Dh

* could be described by Eq.(10), respectively.  219 

Considering two-dimensional chloride transport, Eq.(8) could be rewritten as  220 

 
2 2

* *fc fc fc RH RH
fc fc2 2c h

C C C h h
D D C C

t x y x x y y

          
        

            
 (9) 221 

where x and y are the horizontal and vertical coordinates (m) of cross-sections. 222 

 
     

c,ref 1 2 3 RH h,ref 1 2 3* *

e bc fc e bc fc

( ) ( ) ( ) ( ) ( ) ( )
,

1 1/ / 1 1/ /

e RH

c h

D f T f t f h D g T g t g h
D D

w C C w C C
 

     
 (10) 223 
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in which Dc,ref and Dh,ref are the reference coefficients of chloride and humidity diffusion, 224 

respectively [37]; Cbc is bound chloride content described by Langmuir isotherm, Eq.(11) [38]; 225 

te is the equivalent hydration period (d); T is the current temperature (K); f1(T), f2(t), and f3(h) are 226 

the factors of temperature, time, and RH related to chloride transport; and g1(T), g2(te), and g3(h) 227 

are the factors of temperature, time, and RH related to moisture transport, respectively.  228 

  bc tc fc L fc L fc1eC C w C C C       (11) 229 

in which Ctc is the total chloride content (kg/m3); and αL and βL are binding constants. 230 

 231 

Table 2 Factors of temperature, time, and RH in Eq.(10) 232 

Physical phenomenon f1/g1 f2/g2 f3/g3 

Chloride transport 
c

gas ref

1 1
exp

U

R T T

  
  

   

 ref

Cm
t

t

 
 
 

 

1
4

RH

4

ref

(1 )
1

(1 )

h

h



 
 

 
 

Moisture diffusion 
h

gas ref

1 1
exp

U

R T T

  
  

   
 

e

13
0.3

t
  

 
0

0

RH c

1

1 (1 ) / (1 ) hn
h h







  
 

Notes: Uc and Uh are the activation energy of chloride diffusion and moisture diffusion, respectively; Rgas is 233 
the gas constant; Tref, tref, and href are the reference temperature, time, and RH in pore solution, respectively; 234 
and α0 is a ratio of Dh, min to Dh, max. 235 

 236 

Besides, for moisture diffusion, the form of Eq. (7) can be substituted as [9] 237 

 e e RH RH RH
h RH h 2 2

RH

div( ( ))
w w h h h

D h D
t h t x y

     
     

     
  (12) 238 

where Dh is relying on T, te, and RH, which could be calculated through [39]  239 

 h RH h,ref 1 2 3 RH( , , ) ( ) ( ) ( )e eD T t h D g T g t g h  (13) 240 

To evaluate moisture content we, a three-parameter model of the adsorption isotherm is 241 

employed [40] 242 

    
 

 

     

s m RH
e s

s RH s RH

ct m ct

1 1/ 1
, exp 855 / , ,

11 1 1

2.5 15 / 0.33 2.2 , 0.068 0.22 / 0.85 0.45 ,

N CCk V h
w C T k

Ck h C k h

N t wc N V t wc V

     
    

     

  (14) 243 

in which Vct and Nct are the factors of cement type (Vct=0.9 and Nct=1.1 for type I cement in 244 

ASTM [40]).  245 

In addition, a simple strategy from [11] was adopted considering the difference between 246 

the wetting and drying processes, i.e., the hysteresis effect: [41,42]:  247 
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(1) Dh, ref in Eq. (13) is substituted by Ddry
h, ref = 3 × 10-10 m2/s under a decreasing hRH; 248 

and 249 

(2) Dh, ref in Eq. (13) is substituted by Dwet
h, ref = 15 × 10-10 m2/s under an increasing hRH. 250 

Concerning heat transfer, the form of Eq. (7) can be replaced by [43] 251 

 
2 2

2 2c q

T T T
c T

t x y
  

   
     

   
  (15) 252 

 253 

3.3. Prediction of reinforcement corrosion and concrete cracking 254 

Once the chloride content on the reinforcement surface exceeds the critical value Ccr, 255 

reinforcement corrosion initiates and enters the corrosion propagation stage. In this stage, the 256 

radius reduction ∆r of steel bars could be computed by Eq.(16) in terms of Faraday’s law. 257 

  corr0.0116 dr i t t    (16) 258 

in which icorr(t) denotes the time-dependent corrosion current density. In this study, icorr(t) is 259 

predicted via an empirical model [33] 260 

 0.215

bar proln(1.08 ( )) 7.89 0.7771ln(1.69 ) 3006 0.000116 2.24corr c ci t C T R t        (17) 261 

where Cbar is the chloride content on the surface of steel bars; Tc is the temperature inside the 262 

concrete; Rc (Ohms) denotes the resistance of concrete cover; tpro(year) is the time since the 263 

corrosion propagation stage initiates; and ε is the term of white noise following N(0, 0.3312) 264 

[10]. 265 

Furthermore, according to Eq.(16), the residual cross-sectional area Ar and the reduction 266 

amount of the cross-sectional area ΔAs could be calculated by  267 

  
2

0 02 ,r s s rA d r A A A       (18) 268 

where d0 and As0 are the initial reinforcement diameter and cross-sectional area, respectively.  269 

On the other hand, for the sake of simplicity, based on the loss of cross-sectional area, the 270 

width of corrosion-induced crack ω (mm) is calculated by an empirical model [34] 271 

  0s sK A A       (19) 272 

where K is 0.0575 (mm-1); and ΔAs0 is the reduction of the cross-sectional area when concrete 273 

cracks are activated. 274 
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   0

2
3

0 0 t 01 1 2 / 7.53 9.32 / 10s sA A d c d          (20) 275 

where ct (mm) is the cover thickness of RC structures. 276 

It is noteworthy that corrosion-induced cracks bring more complicated effects on the 277 

durability performance of RC structures, with a comprehensive impact on their permeability, 278 

thermal conductivity, and resistivity. Limited by existing studies and considering the effects of 279 

corrosion-induced cracks on chloride ingress, it is usually assumed that the apparent diffusion 280 

coefficients increase and could be predicted by empirical models once concrete cracking 281 

happens [44,45]. For cracked concrete, the diffusions coefficient of chloride and humidity are 282 

denoted as Dc
𝜔 and Dh

𝜔 and calculated by Eqs.(21) [46] and (22) [47], respectively. 283 

      * 2

1 1, 31.61 4.73 1, 0.1c cD f D t f mm

             (21) 284 

      * 3

2 , 1h h h h hD f D t f k s

          (22) 285 

in which ω is the width of concrete crack (mm); kh is a parameter relating to the environmental 286 

conditions (105 mm-2 [47]); and sh is the mean crack spacing (ranging from 70 mm to 300 mm 287 

in [47] ). 288 

 289 

4. Dynamic Bayesian network and its implementation  290 

4.1. Static and dynamic Bayesian Network 291 

BNs are probabilistic models of directed acyclic graphs (DAGs) [25,48]. BNs consist of nodes 292 

and links indicating dependencies among nodes. In general, nodes in BN are modeled through 293 

continuous or discrete random variables (X1, X2,…, XN) and assigned conditional probability 294 

density function (PDF) or probability mass function (PMF). As mentioned before, there exist 295 

two types of BNs: static and dynamic BNs. For static BN, taking four discrete nodes (X1, X2, 296 

X3, X4) static BN as one example, X1 and X2 are the parent nodes of X3 and X4, while X3 and X4 297 

are the child nodes of X1 and X2, as illustrated in Fig. 2. The joint PMF of all nodes P(X1, X2, 298 

X3, X4) could be expressed as follows: 299 

          1 2 3 4 1 2 3 1 2 4 1 2, , , | , | ,P X X X X P X P X P X X X P X X X  (23) 300 

in which P(X1) and P(X2) are the PMFs of X1 and X2, respectively; and P(X3|X1, X2) and P(X4|X1, 301 

X2) denote the conditional PMFs of X3 and X4 given the values of X1 and X2. For discrete nodes, 302 



12 

the conditional PMF of each node is stored in the conditional probability table (CPT). 303 

 304 

Fig. 2 Four discrete nodes of static BN 305 

The possibilities of the nodes can all be updated once new evidence is obtained. For 306 

instance, if one inspection indicates that node X3 is α, the joint PMF of other nodes (i.e., X1, X2, 307 

and X4) could be computed by Eq.(24). 308 

  
 

 

       

     
1 2

1 2 4 1 2 1 2 4 1 2

1 2 4

1 2 1 2

,

, , , | , | ,
, , |

| ,
X X

P X X X P X P X P X X P X X X
P X X X

P P X P X P X X

 


 
 


 (24) 309 

Eq.(24) is the critical bridge connecting the inspection results to the probability 310 

distributions and dependencies among the investigated nodes. No matter how complicated the 311 

static BN is, the primary inference algorithms of static BN remain unchanged. Concerning the 312 

scenarios of discrete nodes, exact inference algorithms, e.g., junction tree algorithms, could be 313 

adopted to achieve BN inference [49].  314 

On the other hand, DBNs consist of a series of slices containing a static BN with a 315 

collection of random variables Zi={X1
i, X2

i,…, XN
i} at the i-th time step [50]. Also, the slices in 316 

DBNs are connected by directed links, and these links represent temporal dependencies 317 

between nodes. The joint probability distribution of all random variables over time T, P(Z1, 318 

Z2,…,ZT), could be abbreviated as P(Z1:T), which can be expressed as [29]: 319 

    
1

1: 1 1:

1

|
T

T i i

i

P Z P Z Z






   (25) 320 

where P(Zi+1|Z1:i) is the conditional probability distribution at the i+1 th time slice given the 321 

combination of nodes at all previous slices. 322 

By adopting the Markov assumption that the probability distribution of each time slice 323 

depends only on the probability distribution of the last time slice, Eq.(25) could be rewritten 324 

as: 325 

    
1

1: 1

1

|
T

T i i

i

P Z P Z Z






   (26) 326 

where P(Zi+1|Zi) is the conditional probability distribution at the i+1 th time slice given the 327 

x1 x2

x3 x4
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combination of nodes at the i-th time slice. 328 

Fig. 3 shows an example of two-time slices of DBN (i.e., 2TBN). Based on Markow’s 329 

assumption, unrolling such a 2TBN to T time-slices of DBN requires the probabilistic 330 

information of the first two time slices because the residual time slices are the same as the 331 

second time slice. Such a strategy can effectively reduce the difficulties in DBN modeling. 332 

Meanwhile, inference algorithms of BN could also be utilized for DBN inference. However, if 333 

the time slices and the number of nodes increase, the computational burden might increase 334 

dramatically. Thus, Murphy [50] proposed a frontier algorithm by a smoothing strategy 335 

including the forward and backward operators to reduce the time complexity in DBN inference. 336 

The detailed information on Murphy’s algorithms refers to [50]. 337 

 338 

Fig. 3 Two time slices of dynamic BN 339 

 340 

4.2. Establishment of DBN in durability assessment 341 

The deterioration models in Section 3 are converted to a DBN to implement the probabilistic 342 

durability assessment of RC structures. In terms of Eqs.(1)-(22), some critical parameters such 343 

as ec and Dcref are extracted as nodes, and directed links are determined, as illustrated in Fig. 4. 344 

Some parent nodes in Fig. 4, such as ec and csurf, are time-independent variables that remain 345 

constant in all time-slices, so these nodes only appear in the first time slice of the DBN, and 346 

their probability distributions could be preset. Other child nodes, such as cbar and icorr, are 347 

stochastic processes, so these nodes exist in all time slices. For those child nodes, their 348 

probability distributions are calculated by sampling simulations based on the stochastic 349 

processes of the deterioration models. In this study, for simplicity and exact inference, only 350 

discrete random variables are considered in DBN modeling [51,52]. Therefore, discretization 351 

is required for continuous random variables. After discretization, it is necessary to calculate the 352 

CPT of each node to perform DBN inference. The detailed steps are described below. 353 

x1
1 x2

1

x3
1 x4

1

x1
2 x2

2

x3
2 x4

2

1st time slice 2nd time slice
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 354 

Fig. 4 DBN modeling for durability assessment of RC structures 355 

 356 

4.2.1. Selection of representative samples 357 

To accurately compute the probability distribution of each node, large-scale sampling is 358 

generally applied by Monte Carlo simulation (MCS) or Latin Hypercube simulation (LHS) in 359 

existing studies. While large-scale sampling usually brings accurate analysis results, such a 360 

sampling strategy can be time-consuming and inefficient, especially for high-complexity and 361 

nonlinear cases. In this study, the method of selecting representative points in PDFM is also 362 

employed in DBN modeling [30–32].  363 

The first step in selecting representative samples for the DBN is to capture a point set θ 364 

for the parent nodes in Fig. 4. Then, the point set θ is substituted into the deterioration models 365 

in Section 3 to obtain the stochastic process for each child node in Fig. 4. Next, the point set θ 366 

and its corresponding stochastic processes of child nodes would be further utilized to compute 367 

the CPT of each node. Therefore, the uniformity of the point set θ might affect the accuracy of 368 

the prior information in the DBN modeling.  369 

To obtain a uniform θ, it is necessary to get a uniformly distributed point set u in [0,1], 370 

and then the point set θ can be obtained by its cumulative distribution function (CDF), i.e., 371 

Eq.(27). Herein, the point set u is gain by using a partially stratified sampling method (GLP-372 

PSS) based on a good lattice point set (GLP) [53], whose basic algorithm is described in 373 

ec dc

ω

Rcccr

Time slice t=1

ω

Time slice t =2

ω

Time slice t =T
….

ec: characteristic of exposure condition

csurf: average baseline chloride deposition

Dcref: reference coefficient of chloride diffusion

dc: cover thickness of RC structures

cbar: chloride content on the surface of reinforcement

ccr: threshold value of chloride content

Rc: resistance of concrete cover

icorr: corrosion current density of reinforcement

∆r: radius reduction of reinforcement

ω: width of corrosion-induced crack

csurf Dcref

cbar cbar cbar

icorr icorr icorr∆r ∆r ∆r
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Appendix A1. 374 

 
    1 , 1,2, , , 1,2, ,

i

j j

i iF u i s j N 

       (27) 375 

where s and N are the number of parent nodes and representative samples; and  1

i
F 

   376 

denotes the inverse CDF of the i-th parent node Θi. 377 

Unlike the traditional sampling strategy, where each sample has a uniform weight (1/N), 378 

each representative sample may have a different weight, i.e., the assigned probability pa,j, which 379 

could be computed by Eq.(28) [54]. 380 

 
, ( ) d , 1,2,...,

j
a jp p j N 


   (28) 381 

in which p𝚯(𝜽) denotes the joint PDF of all parent nodes 𝚯; and Ωj is the Voronoi volume of 382 

the j-th sub-domain.  383 

Furthermore, in terms of the assigned probability of each sample, point set θ could be 384 

revised into a new point set θ0 by Eq.(29) [55] 385 

 
      1

0, , ,

1

, 1,2, , ,0.5 1,2, ,
i

N
j k j

i a k i i a j

k

i s j NF p I p  





 
 

     





  (29) 386 

in which I{∙} is an indicator function that equals one if the term in the bracket is actual. 387 

To present the performance of the employed point selection method, 54 two-dimensional 388 

standard Gaussian distributed samples θ = [θ1, θ2]
T is selected, as illustrated in Fig. 5. It can be 389 

noticed that both the uniform points u and Gaussian samples θ by the proposed method perform 390 

a better uniformity than those by LHS.  391 

 392 
Fig. 5 (a) 54 two-dimensional uniform point set u, and (b) 54 two-dimensional Gaussian 393 

distributed point set θ 394 

 395 
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4.2.2. Node discretization and CPT computation 396 

Firstly, the parent nodes in Fig. 4 are investigated. The discretized parent nodes are denoted as397 

' ' '

1, ,  s
     Θ , the discrete number is noted as ni, and the corresponding discretization 398 

scheme is represented as Di=[d1, d2,…,dni+1] with equal intervals. Then, the PMF of the i-th 399 

parent node Θ’i can be written as [52]: 400 

      ' 1 , 1,..., , 1,2, ,
i ii

k k iP k F d F d k n i s  
      (30) 401 

where FΘi(∙) denotes the CDF of Θi. The lower and upper bounds (d1 and dni+1) could be preset 402 

for parent nodes. Supposing that Θi follows Gaussian distribution, d1 and dni+1 could be 403 

calculated by Eq.(31). 404 

        1 1,
i ii ni ii id E d E            (31) 405 

in which E(∙) and σ(∙) are the mean value and standard deviation (STD) in the bracket; and αi is 406 

the scaling factor (αi = 4 for Gaussian distribution). 407 

On the other hand, denoting that original and discretized child nodes are Ψ=[Ψ1,…, Ψc] 408 

and 
' ' '

1, ,  c
     Ψ (c is the number of child nodes), their lower d1 and upper bounds dni+1 409 

can be determined by the minimum and maximum values of these child nodes in the 410 

representative samples from Sections 3 and 4.2.1. Furthermore, unlike PMFs of parent nodes 411 

that could be computed directly by Eq.(30), the PMFs of child nodes (i.e., CPT) come from the 412 

joint distribution of investigated child nodes and their parent nodes. Inspired by Tran’s study 413 

[22], the CPTs of child nodes  ' 1,...,m m c   are computed by the following step: 414 

(1) The discrete number of '

m  is noted as nΨ, and parent nodes could be found via its DBN 415 

scheme (such as Fig. 4) and marked as a collection set 
' ' '

col b ,..., e
      (b and e denote 416 

the serial numbers of the parent nodes in topological order from the beginning to the end of 417 

the sequence). Corresponding discrete numbers are also collected as npa = [nb,…,ne]. For 418 

the first representative sample and the first time slice, let j = 1 and k = 1. For other time 419 

slices, the child node of Ψ’m at the last time slice is also a parent node, and Θ’b and nb equal 420 

Ψ’m and nΨ, respectively; 421 

(2) Determine the state XΨ of the j-th sample and the k-th time slice of '

m  (denoted as 
 ',

,

k

m j ) 422 
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based on the discretization scheme DΨm of '

m ; 423 

(3) From nb to ne, determine the states of the j-th sample of parent nodes in topological order 424 

and store these states as Xpa= [Xpa,b,….Xpa,e]. Meanwhile, calculate a state variable Xtemp by 425 

Eq. (32); 426 

  
1

temp , ,

1

1
pe

pa b pa p o

p b o b

X X X n


  

      (32) 427 

(4) Then, the value of the Xtemp-th row and XΨ-th column of CPT will be incremented by pa,j, 428 

i.e., Eq. (33); 429 

    temp temp ,CPT , CPT , a jX XX X p    (33) 430 

(5) For the CPT of the first time slice, if j < N, let j=j+1, and repeat step (2). For the CPT of 431 

other time slices, if k < T, let k = k+1, and repeat step (2); and 432 

(6) When step (5) is over, the final CPT could be normalizing itself. 433 

The above steps are summarized in Algorithms 1. 434 

 435 

Algorithm 1 CPT computation for child nodes 

1:      Determine the investigate child node Ψ’m, and let npa=[nb,…, ne] 

2:      For j = 1, …, N (number of representative samples) 

3:         For k = 1, …., T 

4:           XΨ = state of 𝛹𝑚,𝑗
‘,[𝑘]

 

5:           Xtemp = 0 

6:           For p = b, …, e 

7:               Xpa,p = state of Θ’p 

8:               If p := b 

9:                  Xtemp = Xtemp + Xpa,p 

10:              Else 

11:                 Xtemp = Xtemp + ∑ (𝑋𝑝𝑎,𝑝 − 1) ⋅ ∏ 𝑛𝑜
𝑝−1
𝑜=𝑏

𝑒
𝑝=𝑏+1  

12:              End 

13:           End 

14:           Let CPT(𝑋temp , 𝑋𝛹) = CPT(𝑋temp, 𝑋𝛹) + 𝑝𝑎,𝑗 

15:        End 

16:     End 

17:     Normalize CPT 

 436 

To demonstrate the efficiency of the proposed CPT calculation method, the BN in Fig. 2 437 

is taken as one example. Within the BN, x1 and x2 are supposed to follow the standard Gaussian 438 

distribution, and x3 can be calculated by Eq.(34). 439 
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2 2

3 1 2x x x   (34) 440 

Then, 376 GLP-PSS-based samples are selected according to Section 4.2.1, and the CPT 441 

of x3 is calculated using the method in Algorithm 1. Meanwhile, 376 LHS and 106 LHS-based 442 

samples are generated to compute CPT of x3 for comparisons. For the sake of simplicity, the 443 

discrete numbers of all nodes are set as 4, and the PMF of x3 under four combinations of x1 and 444 

x2 are compared:  445 

(1) x1∈[-4, -2] ∩ x2∈[-2, -0];  446 

(2) x1∈[-4, -2] ∩ x2∈[0, 2];  447 

(3) x1∈[0, 2] ∩ x2∈[0, 2]; and  448 

(4) x1∈[-2, 0] ∩ x2∈[2, 4].  449 

Those PMFs of x3 by different methods are presented in Fig. 6. As indicated, in the above 450 

four scenarios, the PMFs of x3 by 376 GLP-PSS-based samples agree with those by 106 LHS 451 

samples, while the PMFs of 376 LHS samples perform poorly compared to the proposed 452 

representative sample method. This phenomenon may be owing to the dispersion of the LHS 453 

samples (Fig. 5) and the equal weight of each sample. Such results also demonstrate the 454 

efficiency and accuracy of the proposed CPT calculation method in the case of a small number 455 

of representative points. 456 

 457 

Fig. 6 PMF of x3 under different combinations: (a) x1∈[-4, -2]∩x2∈[-2, -0]; (b) x1∈[-4, -458 

2]∩x2∈[0, 2];(c) x1∈[0, 2]∩x2∈[0, 2] ; and (d) x1∈[-2, 0]∩x2∈[2, 4] 459 
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5. Numerical study 460 

5.1. Problem description 461 

In this section, the durability of RC beams under the marine atmospheric environment is 462 

investigated to demonstrate the applicability of the proposed framework. RC beams are 463 

supposed to be located on the west coast of the Yellow Sea from 2010 [11]. The cross-section 464 

and cover thickness are 200 × 400 mm and 25 mm, respectively. The primary information on 465 

environmental parameters refers to previous studies [11,56], in which the parameters of Eqs.(1)466 

-(4) are summarized in Table 3. Based on the earlier studies, the distribution types and 467 

parameters of all parent nodes in Fig. 4 are listed in Table 4.  468 

According to the proposed framework, the first step is to generate 610 representative 469 

samples according to the deterioration models from Section 3 and the point selection methods 470 

in Section 4.2.1. Since all nodes are continuous variables, those nodes need to be discretized, 471 

and their CPTs are computed and assigned to all nodes in all the time slices using the methods 472 

in Section 4.2.2. For simplicity, the time interval and slices in DBN are preset to three years 473 

and 18, and the discrete number of each node (both for parent and child nodes) is set to six. 474 

 475 

Table 3 Environmental parameters in Eqs.(1)-(4) [11] 476 

 
Temperature 

(°C) 
Humidity 

Chloride deposition 

 (% wt of concrete) 
 

Temperature 

(°C) 
Humidity 

Chloride deposition 

 (% wt of concrete) 

a0 12.78 0.76 Csurf a01 0.1326 -0.0942 - 

a1 -12.02 0.13 0.052 a11 2.111 5.866 - 

a2 1.35 -0.03 - b11 1.012 -8.576 - 

b1 2.27 5.43 -0.056 w11 0.2333 0.5206 - 

b2 -5.39 -0.29 - a21 2.188 6.334 - 

w1 6.33 6.84 - b21 0.3616 -2.548 - 

tref 149 149 -  - - - 

 477 

 478 

Table 4 Distribution types and values of parent nodes 479 

Parameters Distribution μ δ Ref Parameters Distribution μ δ Ref 

ec(°C) Uniform 0 3.5 [11] dc(mm) Gaussian 25 0.05 [57] 

csurf (wt% of cement) Gaussian 0.65 0.1 [11] ccr(wt% of cement) Lognormal 0.4 0.1 [58] 

D0(10-11 m2/s) Lognormal 1.6 0.1 [59] Rc(kΩ) Lognormal 25 0.1 [10] 

Note: μ and δ are the lower and upper bounds for the uniform distribution value, while μ and δ are the mean and 480 

coefficient of variation (COV) for other distributions. 481 

 482 
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5.2. Inference results 483 

After establishing the DBN, the following task is to infer and evaluate the durability of RC 484 

structures using Murphy’s DBN inference algorithms [50]. In this case, it is supposed that the 485 

probability of detection (PoD) equals one, the widths of concrete crack are detected at several 486 

inspection instants, i.e., 3, 12, 21, 30, and 39 (years), and three possible inspection results of ω 487 

(mm) are considered: 𝜔1∈ [0, 0.1], 𝜔2 ∈ [0.2, 0.3], and 𝜔3∈ [0.5, 0.6]. The DBN was 488 

applied to infer durability assessment parameters (e.g., cbar, icorr, ∆r, and ω) subjected to 489 

different inspection results and inspection instants to study the effects of inspections on the 490 

durability of RC structures. 491 

 492 

5.2.1. Effects of inspections on chloride content of reinforcement surface 493 

This subsection investigates the influences of crack width detections on cbar. For comparison 494 

purposes, three ranges of cbar (wt% of cement) are taken into account: cbar1 ∈ [0,0.2], cbar2∈ 495 

[0.4,0.6], and cbar3∈ [0.8, 1], representing low, middle, and high levels of total chloride content 496 

Ctc, respectively. The time-dependent probabilities of cbar under different inspection results are 497 

illustrated in Fig. 7 and Fig. 8, where all the probabilities of cbar1 decrease versus time, and those 498 

of cbar2 and cbar3 increase with time. It can be noted that the probability of cbar3 after 51 years 499 

suddenly increases by about 100% compared to the previous year, while that of cbar2 after 51 500 

years slightly drops. Such phenomena indicate that chloride content on reinforcement surfaces 501 

might increase dramatically at the end of service life due to the development of concrete cracks.  502 

As shown in Fig. 7, it can be found that the PMFs of cbar (including cbar1, cbar2, and cbar3) 503 

given the third-year inspection result of 𝜔1 basically agree with those without inspection, 504 

meaning that the early inspection of small crack width has few influences on the probability 505 

distribution of cbar. In addition, given the third and 39th inspection of 𝜔1, the probability of cbar1 506 

is exceeded by that of cbar2 after 10 and 15 years, respectively, and exceeded by that of cbar3 after 507 

26 and 38 years, respectively. Thus, the delay of inspection instant of 𝜔1 reduces the decreasing 508 

rate of the probability of cbar1 over time. Furthermore, for cbar1, its probability after 51 years 509 

increases by 2.3 times, given the 39th-year inspection result of 𝜔1 compared to that without 510 

inspection. Besides, the probability of cbar2 decreases with the inspection instants (about 1.7% 511 

to 52% compared to no inspection) from the sixth year to the 48th year. In Fig. 7, if small crack 512 

GHY-Home
高亮
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widths are detected at the end of service life, the probability of moderate chloride content on 513 

the steel surface might increase. In addition, long inspection instants can significantly reduce 514 

the probability of cbar3 by 46% to 60% compared to no inspection at the initial time, where such 515 

an effect also decreases over time. Generally, the probability distribution of cbar given the 516 

concrete width of 𝜔1 is more likely to be concentrated at low to middle levels than no inspection, 517 

and such an effect became more pronounced with longer inspection instants. 518 

 519 

Fig. 7 Time-dependent probability of cbar subject to 𝜔1 and different inspection instants 520 

 521 

Also, Fig. 8 displays the probabilities of cbar at the inspection results of 𝜔2. Given the 12th 522 

and 39th inspection of 𝜔2, the probability of cbar1 is exceeded by that of cbar2 after 7 and 13 years, 523 

respectively, and exceeded by that of cbar3 after 20 and 28 years, respectively. Thus, for the 524 

inspection of 𝜔2 earlier than 21 years, inspection increases the changing rate of the probability 525 

of cbar; vice versa, inspection decrease the changing rate of the probability of cbar. Besides, 526 

compared to no inspection, the PMF of cbar1 given the 12th year inspection of 𝜔2 decreases most 527 

by about 45% before 15 years. Besides, the 39th-year inspection resulted in a 2% to 34% 528 

increase in the PMF of cbar1. Thus, it can be seen that the earlier the inspection, the lower the 529 

PMF of cbar1. Besides, in Fig. 8, the PMF of cbar2 given the 12th year inspection of 𝜔2 rises most 530 

by 27% to 80% compared to no inspection from sixth to 15th year; and that given the 39th 531 

inspection declines most by 6% to 39% from sixth to 24th year. In addition, compared to no 532 

inspection, the PMFs of cbar3 given the 12th and 39th year inspections of 𝜔2 are found to increase 533 
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(82% to 114%) and decrease (36% to 50%) the most from the sixth year to 15th year. The above 534 

results suggest that the inspection of middle-level crack width mainly reduces the probability 535 

of low chloride content near the inspection instants and increases the probabilities of middle 536 

and high-level chloride content.  537 

 538 
Fig. 8 Time-dependent probability of cbar subject to 𝜔2 and different inspection instant 539 

 540 

Furthermore, for the inspection of 𝜔3, the scenario is the reverse of Fig. 7, where the PMFs 541 

of cbar1 with the inspection are lower than those without inspection, and those of cbar2 and cbar3 542 

with the inspection are higher than no inspection. Such a phenomenon is consistent with the 543 

intuitive impression since the large width of concrete crack implies a medium/high level of 544 

chloride content on the reinforcement surface. Also, the PMFs of cbar1 given the inspections of 545 

𝜔3 at 21st and 30th year decrease by 15% to 57% compared to no inspection before 33 years. 546 

After 33 years, both the PMFs of cbar1 given the inspections of 𝜔3 at 30th and 39th year 547 

dramatically decrease by about 63% to 65% compared to no inspection. Besides, before 21 548 

years, the PMFs of cbar2 and cbar2 given the inspections of 𝜔3 at 21st increase most by 21% to 549 

154% compared to no inspection. Above results indicate that the inspection of high-level crack 550 

width primary reduces the probability of low chloride content, increases that of middle chloride 551 

content initially and that of high chloride content all the time slices.  552 

 553 
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5.2.2. Effects of inspections on corrosion rate 554 

In terms of the existing studies on the corrosion rate inspection of corroded reinforcement 555 

[60,61], the corrosion rate icorr can be classified into low, medium, and high levels: 0 to 0.5 556 

μA/cm2,0.5 to 1.0 μA/cm2, and >1.0 μA/cm2. Fig. 9 illustrates that all samples over time of icorr 557 

follow bimodal distribution, with high probabilities only for the intervals with icorr less than 0.5 558 

μA/cm2 and icorr beyond 1.0 μA/cm2. Therefore, in this subsection, only the low corrosion rate 559 

icorr1∈[0,0.5] μA/cm2 and the high corrosion rate icorr2∈[1.0,+∞] μA/cm2 are of interest and 560 

consideration.  561 

 562 

Fig. 9 Histogram of discrete icorr 563 

 564 

Fig. 10 and Fig. 11 show the probabilities of icorr fluctuating with time given different 565 

inspection results. Similar to Fig. 7, Fig. 10 illustrates that the PMFs of icorr1 and icorr2 given a 566 

third-year inspection of 𝜔1 are basically the same as those of the PMFs without inspection, 567 

suggesting that the early small crack has little effect on the probability distribution of icorr. Also, 568 

with the increase of inspection instants from the 12th year to the 39th year, the PMFs of icorr1 569 

increase by around 6% to 14%, and those of icorr2 decrease by about 10% to 30% during the 570 

service life, compared to no inspection. Given the inspection results of 𝜔1, the changing rates 571 

of the PMFs of icorr will decrease with the inspection instant. 572 
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 573 

Fig. 10 Time-dependent probability of icorr subject to 𝜔1 and different inspection instants 574 

 575 

In addition, since Fig. 10 shows that the probabilities of icorr1 and icorr2 are essentially 576 

complementary, Fig. 11 shows only the probability of icorr1 with the different instants of 577 

inspection of 𝜔2 and 𝜔3. All inspections in Fig. 11 have a more pronounced effect on the PMFs 578 

of icorr at the instants before and after the inspections. In Fig. 11a, the PMFs of icorr1 maximumly 579 

decrease by 7% to 18% under the inspection instants at the 3rd to 30th year, while for the 580 

inspection of 𝜔2 at the 39th year, the PMFs of icorr1 increase by about 1% to 7% compared to no 581 

inspection. Thus, for the inspections of 𝜔2 earlier than the 30th year, the PMFs of icorr1 are 582 

smaller than the no inspections, respectively. Furthermore, in Fig. 11b, the PMFs of icorr with 583 

inspection exhibit fluctuations and those of icorr1 with inspections of 𝜔3 are lower than those 584 

without inspection. In addition, the PMFs of icorr1 is the lowest at their inspection instants, where 585 

the PMFs of icorr1 with the 30th inspection decrease by 8%, compared to no inspection. Such 586 

results indicate that high-level crack width significantly influences the PMFs of icorr at 587 

inspection instants. 588 
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 589 

Fig. 11 Time-dependent probability of icorr1 subject to 𝜔2 and 𝜔3 and different inspection 590 

instants: (a) 𝜔2; and (b) 𝜔3 591 

 592 

5.2.3. Effects of inspections on radius reduction and concrete crack width 593 

This subsection examines the effects of crack width inspection on the development of radius 594 

reduction and crack width. For comparison purposes, three ranges of ∆r (mm) are considered: 595 

∆r1∈[0,0.05], ∆r2∈[0.1,0.15], and ∆r3∈[0.2,0.25], representing low, medium, and high levels 596 

of radius reduction, respectively. Fig. 12 and Fig. 13 show the probabilities of ∆r over time 597 

under different inspection results, where the probabilities of ∆ r1 decrease with time, those of 598 

∆r2 increase and then decrease with time, and those of ∆r3 increase with time. Also, Fig. 14 599 

displays the probabilities of 𝜔 given its inspection results. Compared to Sections 5.2.1 and 5.2.2, 600 

inspection results of 𝜔 have more dramatic effects on its own development and ∆r. 601 

In Fig. 12, it can be noticed that, given the inspection results of 𝜔1, the PMFs of ∆r1 remain 602 

one until the inspection instants and gradually decrease with time after the inspection instants. 603 

For no inspection, the PMFs of ∆r1 are beyond those of ∆r2 and ∆r3 before 38 and 40 years, 604 

respectively; and for third inspection of 𝜔1, those of ∆r1 are beyond those of ∆r2 and ∆r3 before 605 

43 and 42 years, respectively. For other inspections, the PMFs of ∆r1 are the highest over time, 606 

followed by those of ∆r2 and ∆r3. Thus, inspection of 𝜔1 implies that the PMFs of ∆r1 dominates. 607 

In addition, compared to no inspection, the PMFs of ∆r1 with inspection increase by around 5% 608 

to 402% and such rising ratio increases with inspection instants. Besides, the rising of PMFs of 609 
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∆r2 starts about six years later than the inspection instants, and the maximum probability of ∆r2 610 

is about 0.24. The PMFs of ∆r3 dramatically decrease with the inspection instants compared to 611 

no inspection. Above results indicate that the inspection results of 𝜔1 significantly increase and 612 

decrease the PMFs of ∆r1 and ∆r3, respectively, and delay the development of ∆r2. 613 

 614 

Fig. 12 Time-dependent probability of ∆r subject to 𝜔1 and different inspection instants 615 

 616 

Moreover, Fig. 13 shows the probability of ∆r given the inspection results of 𝜔2, where 617 

the PMFs of ∆r1 and ∆r2 reach zero and rise after the inspection instants, respectively; and those 618 

of ∆r3 keep increasing and exceed those of ∆r2 after 31 and 39 years given the 12nd and the 619 

21st year inspections. In Fig. 13, the PMFs of ∆r1 given the 21st to the 39th year inspections 620 

are initially 4% to 120% higher, and then 100% lower than no inspection. Also, the PMFs of 621 

∆r2 increase immediately at inspection instants, and their maximum values are about 0.63, 170% 622 

higher than the peak value of no inspection. In addition, the PMFs of ∆r3 given the 12th year 623 

inspection of 𝜔2 are about 790% higher than no inspection; those given the 21st year inspection 624 

are firstly about 70% lower before 36 years but then 40% higher than no inspection. The above 625 

results indicate that the inspection results of 𝜔2 significantly affect the onset instants of the 626 

changes in the PMFs of ∆r.  627 

 628 
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 629 

Fig. 13 Time-dependent probability of ∆r subject to 𝜔2 and different inspection instants 630 

 631 

Furthermore, regarding the inspection result of 𝜔3, the PMFs of ∆r are close to Fig. 13 but 632 

the PMFs of ∆r3 are higher than the inspection result of 𝜔2 under the same inspection instants. 633 

Besides, an earlier inspection instant cause higher the PMFs of ∆r2, in which the PMFs of ∆r2 634 

under the 12th year inspection of 𝜔3 maximumly increase to 1.0 by 1.2×104 % compared to no 635 

inspection before 12 years, but then decrease by 100 % after 12 years. In addition, the PMFs of 636 

∆r3 with the 12th year inspection increase maximumly by 2.6×104 % compared to no inspection 637 

at the 12th year. Thus, compared to cbar and icorr, high crack width levels significantly increase 638 

the probabilities of radius loss at high and medium levels. 639 

To further investigate the inspection results of crack width on its development, Fig. 14 640 

illustrates the PMFs of 𝜔1 and 𝜔2 given their own inspection results. Similar to Fig. 12, in Fig. 641 

14a, the PMFs of 𝜔1 remain one before its inspection instant and decrease after inspection 642 

instant. Compared to no inspection, the PMFs of 𝜔1 given the 3rd to 39th year inspection of 𝜔1 643 

increase approximately by 18% to 1.9×103 %. Thus, the inspection of small crack width 644 

suggests a small crack width before the inspection instant and a sudden drop after the inspection 645 

instant. Also, like Fig. 13, Fig. 14b shows that the PMFs of 𝜔2 firstly increase maximumly by 646 

about 1.6×105% before inspection instant then suddenly drops by about 100%, given the 647 

inspection of 𝜔2. The inspection of 𝜔2 mainly influence the peak point of the PMFs of 𝜔2 rather 648 

than their trends over time. In addition, given the inspection of 𝜔3, all PMFs of 𝜔3 exceed those 649 

without inspection, rapidly increase by about 50% to 2.6×104 % compared to no inspection, 650 
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and remain one after inspection instants. The above results show that the inspection of crack 651 

width has direct and significant effects on its development. Given the inspection results of low 652 

and high levels of crack width, their PMFs keep one before and after inspection, respectively; 653 

for the middle level of crack width, its PMFs equal one only at the inspection instant. Besides, 654 

the PMFs of crack width versus time are consistent with those of radius reduction. Therefore, 655 

the inspection of crack width is significant for indirectly assessing the corrosion degree of 656 

reinforcement. 657 

 658 

Fig. 14 Time-dependent probability of 𝜔 subject to different inspection instants and results:(a) 659 

𝜔1 and (b) 𝜔2 660 

 661 

5.3. Further discussion 662 

Based on the developed DBN, this section further discusses other factors, such as the effects of 663 

exposure conditions ec, environmental models, and chloride transport modes, and their effects 664 

on the parameters of durability assessment. For comparisons, the time-varying mean values E(x) 665 

of parameters are investigated and computed by Eq.(35). Herein, only one inspection scenario 666 

is considered, i.e., the 21st year inspection of 𝜔2.   667 
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in which x is the investigated durability parameter; [d1, d2,…,dnx+1] is the discretization scheme 669 

of x; and Px(k) is the PMF of x at its k-th interval.  670 
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Regarding ec (°C) as another inspection node, low and high levels of ec are taken into 671 

consideration: ec1∈[0, 0.6] and ec2∈[2.9, 3.5]. Fig. 15a compares the mean values of cbar under 672 

exposure conditions and inspection results. As shown, the mean values of the durability 673 

parameters corresponding to ec1 are minimum, and those corresponding to ec2 are the maximum 674 

at a given instant, no matter whether the inspection occurs or not. For the scenarios of no 675 

inspection of 𝜔, it can be seen in Fig. 15a that given ec1 and ec2, the mean values of cbar 676 

maximumly decrease and increase by 4.6% and 2.6%, respectively, compared to no given ec. 677 

In addition, given the 21st-year inspection of 𝜔2 and ec1, the mean values of cbar maximumly 678 

decrease by 4.9%, compared to no given ec, while, given ec2, those of cbar maximumly increase 679 

by 1.2%. Compared to no inspection of 𝜔, the mean values of cbar with 𝜔2 maximumly increase 680 

by about 11.8% to 15.1%. The above results indicate that the inspection of 𝜔 has more 681 

influences on cbar than ec. 682 

In addition, to study the influences of proposed time-varying environmental models on 683 

durability assessment, a traditional constant model is adopted by ignoring the seasonal and daily 684 

variation of environmental parameters (Eqs.(2) and (3)) and only considers global warming 685 

(Eq.(4)). Fig. 15b illustrates the mean values of cbar subject to different environmental models. 686 

For the constant model, it can be noticed that the mean values of cbar maximumly decrease by 687 

21% compared to the time-varying model. In addition, given the 21st-year inspection of 𝜔2 and 688 

the constant model, the mean values of cbar maximumly decrease by 19.6%. Given the 689 

inspection of 𝜔2, the effects of environmental models on durability assessment decrease 690 

compared to no inspection. Besides, regarding the constant model, Fig. 15b also presents that 691 

given the inspection of 𝜔2, the mean values of cbar maximumly increase by about 13.0% 692 

compared to no inspection of 𝜔. Thus, environmental models might have more effects on cbar 693 

than inspection. 694 

Furthermore, to investigate the effect of two-dimensional chloride transport on the 695 

durability assessment, the conventional one-dimensional chloride transport model is introduced 696 

herein. Fig. 15b shows the mean values of cbar based on different chloride transport models. It 697 

can be noted that under the one-dimensional transport, the mean values of cbar decrease by up 698 

to 34.8% compared to the two-dimensional transport. Moreover, given the 21st-year inspection 699 

for 𝜔2 and one-dimensional transport, the mean values of cbar are maximally reduced by 17.8%. 700 
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Given the inspection of 𝜔2, the effects of chloride transport modes on the cbar are reduced 701 

compared to no inspection. Furthermore, regarding the one-dimensional transport, Fig. 15b also 702 

shows that given the inspection of 𝜔2, the mean values of cbar increase by a maximum of about 703 

50.2% compared to no inspection of 𝜔. Thus, for one-dimensional transport, the inspections of 704 

concrete cracks might have more critical influences on cbar than two-dimensional transport. 705 

 706 

Fig. 15 Mean values of cbar under different scenarios: (a) exposure conditions; and (b) 707 

environmental models and chloride transport modes 708 

 709 

6. Conclusions 710 

In this study, a DBN-based framework is developed for the durability assessment of RC 711 

structures suffering from long-term environmental actions. This framework adopts a 712 

comprehensive durability deterioration model for RC structures, considering time-varying 713 

environmental parameters, two-dimensional chloride transport, and concrete cracking. Besides, 714 

the thought of point-evolution is used to compute CPT for each node in DBN. Meanwhile, the 715 

durability of RC beams under the marine atmospheric environment is investigated through the 716 

developed framework. The following conclusions could be drawn: 717 
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(1) Using a simple mathematical example, it is demonstrated that the proposed GLP-PSS-based 718 

CPT calculation method is more accurate than the traditional LHS-based brute MCS with 719 

the same sample size and more efficient compared with a large-scale MCS; 720 

(2) Inferences results demonstrate that inspection of crack widths 𝜔 significantly affects the 721 

chloride content of reinforcement surface cbar and such effects rely on the inspection results 722 

and instants. Given the inspection of low-level 𝜔, the probabilities of low-level cbar might 723 

increase by 230%, those of middle and high-level cbar might decrease by 60%, compared to 724 

no inspection. In addition, for the inspected high-level 𝜔, the probabilities of low-level cbar 725 

might decrease by 65%, and those of middle and high-level cbar might increase by 154%. 726 

Different levels of crack inspection mainly affect the probabilities of corresponding levels 727 

of cbar; 728 

(3) With respect to different inspection results of 𝜔, corrosion rate icorr and its probability of 729 

reinforcement fluctuate with time. For instance, given the inspected high-level 𝜔, the 730 

probabilities of low-level icorr might decrease by 8%, which might not be as significant as 731 

cbar. In addition, the effects of inspected 𝜔 on radius reduction Δr and 𝜔 itself are consistent 732 

and more pronounced than other durability parameters. For an inspected high-level 𝜔, the 733 

probabilities of middle and high-level ∆r might increase maximumly by 1.2×104% and 734 

2.6×104%, respectively;  735 

(4) Given an exposure condition ec (°C) of [0, 0.6], the mean values of cbar decrease by 4.6% 736 

to 4.9 %, compared to no specific ec; given an ec of [2.9, 3.5], those increase by 1.2% to 737 

2.6%. Also, applying a constant environment model and one-dimensional chloride transport 738 

model decreases those by 19% to 35%, compared to the time-varying and two-dimensional 739 

model, respectively. Thus, ignoring the time-varying environment and two-dimensional 740 

transport mode might dramatically underestimate the values of durability parameters. 741 

Besides, inspection results of 𝜔 might have greater effects on cbar than exposure condition 742 

and chloride transport models but fewer effects than environmental modes; 743 

In conclusion, it is practical to use the developed DBN framework for the durability 744 

assessment of RC structures. The proposed approach can integrate inspection data with the 745 

durability design and management of RC infrastructure and significantly reduce the 746 

uncertainties in structural durability assessment. Besides, this study considers only macroscopic 747 
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genera within the chloride transport and more complicated scenarios, for example, investigating 748 

the depth and longitudinal dimensions of crack distribution. In addition, it would be helpful to 749 

apply the proposed framework to the mechanical performance assessment and reliability 750 

analysis of RC structures and to improve the robustness of the proposed framework in the future. 751 
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Appendix: 946 

A1. Basic procedures of GLP-PSS 947 

The primary thought of GLP-PSS is to separate the sample space ΩU into ns disjoint di (di<s)-948 

dimensional orthogonal subspaces Ωs,k (k=1,2,…, ns). For each Ωs,k, stratified sampling is 949 

achieved by good lattice points (GLP) [62]. For the sake of simplicity, the dimension of each 950 

subspace di is determined as two, and point set within the first subspace u(1,j)=(u1
(1,j), u2

(1,j)) 951 

(i=1,2; j=1, 2,…,N) can be written as: 952 
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 (36) 953 

where int (∙) denotes an integer operator that trims the fractional part in the bracket; and Qi 954 

(i=1,2) denotes the generator parameters where Q1 equals one and Q2 relies on N, as 955 

summarized in Table A1 [63]. 956 

 957 

Table A1 Parameters of Q2 and N 958 

N 8 13 21 34 55 89 144 377 610 987 1597 

Q2 5 8 13 21 34 55 89 144 377 610 987 

 959 

Then, the j-th sample u(j) (j=1, 2,…, N) of GLP-PSS could be written as: 960 
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where  1, j
u  is obtained by Eq.(36); and  ,, k jk r

u  is a pair of two-dimensional points by 962 

implementing random permutation  1, j
u .  963 




