

The following publication Guo, H., & Dong, Y. (2022). Dynamic Bayesian network for durability of reinforced concrete structures in long-term environmental exposures. *Engineering Failure Analysis*, 142, 106821 is available at <https://doi.org/10.1016/j.englfailanal.2022.106821>.

Declaration of interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

The authors declare the following financial interests/personal relationships which may be considered as potential competing interests:

Highlights:

- A dynamic Bayesian network-based durability assessment framework is developed;
- Time-varying environment and 2D chloride ingress are considered in durability assessment;
- A novel computation method of conditional probability table calculation is proposed;
- A real-world example is employed for the durability assessment of RC beams.

1 Dynamic Bayesian Network for durability of reinforced concrete structures in

2 long-term environmental exposures

Hongyuan GUO and You DONG

4 Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University,
5 Hong Kong, China

7 **Abstract:** Reinforced concrete (RC) structures under the marine environment may be
8 subjected to chloride-induced corrosion of reinforcement, which significantly impacts
9 the structural serviceability and reliability and further affects the sustainability and
10 development of society. However, most of the existing durability assessment methods
11 for RC structures only address their static and deterministic durability prediction and
12 assessment at the design stage given the constant environment, ignoring the influences
13 of stochastic environmental effects, uncertainties in structural properties, and inspection
14 results. To this end, this paper proposes a dynamic Bayesian network (DBN) based
15 durability assessment framework combined with a deterioration model that considers
16 random changes in environmental parameters, convective chloride ion transport, and
17 corrosion-induced cracking of concrete. In this framework, two-dimensional chloride
18 transport and its influences on the durability deterioration assessment are concerned
19 and achieved using the finite difference method. Besides, to reduce the deviations in
20 probabilistic evaluation, the good-lattice-point-set-partially stratified-sampling (GLP-
21 PSS) method is employed to establish a DBN framework. The proposed DBN
22 framework is used for sensitivity analysis through a real-world example to examine the
23 effects of the environmental model, chloride transport mode, and inspection results of
24 concrete crack on durability assessment.

26 **Keywords:** Dynamic Bayesian Network; environmental actions; durability assessment;
27 reinforced concrete (RC) structures.

29 **1. Introduction**

30 Under long-term environmental effects (e.g., chloride ingress and concrete carbonation), the
31 durability of reinforced concrete (RC) infrastructures, including bridges and buildings, might
32 deteriorate progressively, affecting their reliability and safety and even threatening social
33 security and stability. In 2020, a report from American Road & Transportation Builders
34 Association (ARTBA) announced that more than 46,000 bridges in the USA are structurally
35 deficient and more than 37% of bridges need maintenance [1]. One severe issue related to the
36 durability deterioration of RC structures is erosion media-induced reinforcement corrosion. For
37 instance, under the marine atmospheric environment, chloride ingress is the main threat to the
38 durability of RC structures. According to a report from the Australasian Corrosion Association,
39 the maintenance cost of corrosion-related infrastructure such as bridges in Australia was
40 estimated to be eight billion Australian dollars [2]. It can be seen that the environmental impacts
41 and associated social impacts on the durability of RC structures are significant. Therefore, it is
42 of critical importance to estimate and predict the durability of RC structures under long-term
43 environmental actions.

44 The durability assessment for RC structures was usually based on deterministic or semi-
45 probabilistic methods [3,4], which might not be appropriate for the scenarios considering
46 random environmental parameters and structural properties. Therefore, it is necessary to
47 develop probability-based assessment methods for the durability assessment of RC structures.
48 For example, Li *et al.* [5,6] proposed a probabilistic three-stage prediction model to perform
49 the performance evaluation for RC structures subject to reinforcement corrosion. Since such a
50 model is based on mathematical equations, it is difficult to consider the physical mechanisms
51 of performance deterioration and thus may underestimate the non-linearity and stochasticity
52 within the life-cycle assessment of RC structures [7]. Therefore, many scholars have considered
53 the physical equations associated with chloride transport to assess the durability of RC
54 structures by reliability-based methods [8,9]. Furthermore, due to the non-linearity and
55 uncertainty of environmental factors, traditional reliability-based methods may be challenging
56 for the durability assessment of RC structures subject to complicated and harsh environments.
57 For this reason, Flint *et al.* [10] and Guo *et al.* [11] proposed a performance-based durability

58 evaluation framework for integrating the effects of uncertainties within environmental effects,
59 e.g., global warming and physical models of erosion medium transport on durability evaluation.
60 Those durability assessments for RC structures focused on durability evaluation and prediction
61 during their design stages without considering the influence of inspections, while it has been
62 proven that inspections within the service life might affect the durability prediction results of
63 RC structures [12–14]. Thus, due to the negligence of inspection effects, most of the existing
64 durability assessments of RC structures might misestimate the durability performance of
65 structures and its uncertainty evolution in practical engineering. Therefore, it is necessary to
66 consider the effect of inspection on the durability assessment of RC structures.

67 In practice, Bayesian update methods are usually employed to perform probabilistic
68 inferences by integrating the collected data from monitoring systems or field inspections to
69 update the estimation results [15]. For instance, Estes and Frangopol [16] applied the inspected
70 data from bridge management systems to update the reliability of structures for life-cycle
71 analysis. Also, Stewart [17] utilized visual inspection of concrete cover damage to update the
72 durability and reliability of RC structures. However, since practical engineering systems
73 involve many influencing parameters, it may be challenging to implement data updating and
74 inference using the conventional Bayesian update methods. Recently, Bayesian network (BN)
75 methods have been widely used in uncertainty assessment and failure analysis in many fields,
76 including aerospace, electronic engineering, and civil engineering [18–20]. BNs are built based
77 on joint probability distributions among variables within the investigated system, and the
78 inspection data of certain variables can update the distribution information of all variables. To
79 date, BN has been widely used in the durability and reliability assessment of RC structures
80 [20,21]. Ma *et al.* [12] established BNs combined with in-situ loading tests to predict corrosion
81 damage and structural response of existing RC bridges. Besides, Deby *et al.* [13,14] performed
82 a probabilistic durability assessment for RC structures subject to chloride ingress based on BN
83 and reliability theory. In addition, Tran *et al.* [22–24] proposed a BN-based method to identify
84 stochastic parameters in chloride transport models from inspection data. However, these studies
85 are usually based on static Bayesian networks (i.e., containing a one-time slice of the network)
86 and might have difficulties considering the time dependence among parameters (e.g.,
87 environment and material properties), which in turn may misestimate the time-dependent

88 performance of RC structures. Therefore, applying static BNs in the durability assessment of
89 RC structures might be inappropriate under long-term environmental effects.

90 To deal with the time dependence issue within static BN inference, existing studies
91 extended static BNs to dynamic Bayesian networks (DBNs), which usually have more than one
92 time slice of the network to describe stochastic processes [25,26]. Based on DBNs, Straub [27]
93 proposed a stochastic framework for modeling structural deterioration processes and validated
94 its effectiveness by a case of fatigue crack evolution. Tran *et al.* [28] implemented DBN to update
95 the time-dependent reliability via inspection data for decayed timber structures. Besides,
96 concerning the durability assessment for RC structures, Hackl [29] proposed a framework to
97 integrate DBN modeling and structural analysis for the time-dependent reliability assessment
98 of corroded RC structures. Based on Hackl's framework, monitoring and inspection information
99 at different time instants can be integrated to achieve the life-cycle assessment for deteriorating
100 RC structures. However, many issues still need to be urgently addressed in the existing DBN
101 framework of RC structures. For instance, the existing DBN framework employed a simplified
102 one-dimensional Fick's law for chloride transport prediction, which might be inappropriate for
103 two-dimensional components such as RC beams and columns in practical engineering [9]. In
104 addition, supposing that more advanced and complicated deterioration models were applied, it
105 would be challenging to capture the joint distribution information for the DBN model. The
106 primary reason is that a brute random sampling might cause a substantial computational burden
107 [30–32] while existing studies related to DBN modeling did not provide efficient
108 recommendations to address such an issue. As a result, it is still necessary to propose a new
109 framework for the durability assessment of RC structures to obtain an excellent trade-off
110 between the sophistication of the adopted deterioration models and the efficiency of the DBN
111 analysis.

112 This study proposes a DBN-based framework for the durability assessment of RC
113 structures subject to environmental actions. The framework mainly considers the stochastic
114 process of environmental parameters, uncertainties in the erosive media transport, and the
115 effects of inspection information on the durability assessment of RC structures. Based on the
116 existing studies, durability deterioration models are developed considering the time-varying
117 environment, two-dimensional diffusion and convection effects of chloride transport, and

118 concrete cracking. Using a low-deviation pseudo-random sequence sampling method, i.e.,
119 good-lattice-point-set-partially stratified-sampling (GLP-PSS), and considering the weight of
120 each sample, the joint distribution of each parameter in DBN is determined by a limited number
121 of samples. The proposed DBN framework is employed for durability assessment and
122 sensitivity analysis of RC beams by a case study of RC beams in an actual environment to verify
123 the effects of the environmental model, chloride transport mode, and inspection results on
124 durability assessment.

125

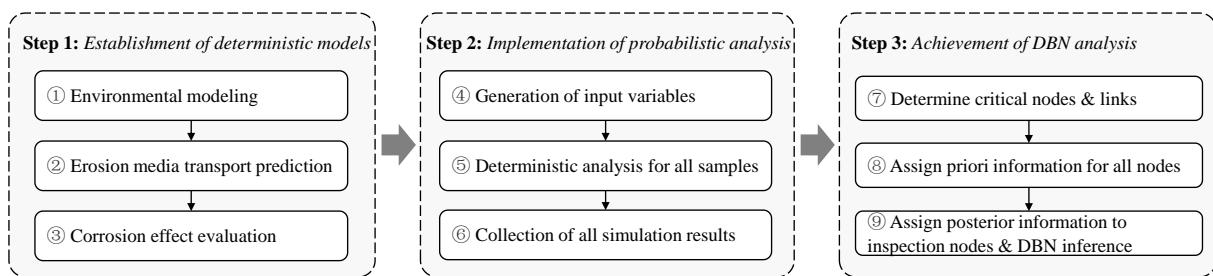
126 **2. Probabilistic durability assessment for RC structures**

127 In this framework, the durability assessment of concrete structures is separated into three
128 primary steps, as shown in Fig. 1. The first step is to build a durability deterioration model for
129 RC structures. An appropriate deterministic model is essential since such a model is utilized to
130 provide the a priori information for subsequent Bayesian inference. In this paper, the
131 deterministic model for the durability of RC structures is established mainly in terms of
132 previous studies with experimental verifications [11,33,34]. The main processes of
133 deterministic analysis are as follows: (1) performing environmental modeling; (2) performing
134 erosion medium transport analysis based on the boundary conditions provided by the
135 environmental model; and (3) calculating corrosion degree and crack width on the concrete
136 surface. Since the main threat to RC structures in the marine atmospheric environment is
137 chloride attack, this study focuses on the physical modeling associated with chloride ingress
138 within concrete. More detailed information relating to durability assessment refers to Section 3.

139 Then, based on the proposed durability assessment model, a number of stochastic analyses
140 are performed in the second step, as shown in Fig. 1. However, using traditional large-scale
141 Monte Carlo simulations (MCS) is challenging given the uncertainties in environmental and
142 material properties and the non-linearities in durability assessment. In order to reduce the
143 computational burden, the thought of point evolution [30–32] is introduced to select a limited
144 number of representative samples and perform deterministic simulations separately (see Section
145 4.2.1 for more information). After completing the stochastic analysis, all computational results
146 need to be collected and used for the DBN modeling.

147 Furthermore, a series of critical parameters are extracted as DBN nodes according to the
 148 proposed durability deterioration model. Meanwhile, the relationships among the nodes under
 149 the same and adjacent time points are determined in terms of physical models, and
 150 corresponding links in DBN are established. Then, the prior probability distribution of each
 151 node can be obtained through the results of the probabilistic analysis of each representative
 152 sample in the second step. The main algorithms in DBN modeling refer to Section 4.2.2. During
 153 the DBN modeling, the inspection nodes could be specified. Next, the time-dependent
 154 probability distribution of other nodes of interest can be inferred in the subsequent inference
 155 analysis via assigning posterior information to the inspection nodes. In this manner, a bridge
 156 between the a priori probability distributions obtained by the physical models and the inspection
 157 results from practical engineering can be established by using DBN.

158



159

160 Fig. 1 General framework for durability assessment of RC structures
 161

162 3. Deterioration models for RC structures

163 3.1. Environmental parameters modeling

164 Modeling environmental parameters such as ambient temperature, relative humidity (RH), and
 165 chloride deposition are critical in the durability assessment of RC structures. However, due to
 166 the non-linearity and uncertainty of the time-varying marine atmospheric environment, it is
 167 challenging to predict climate evolution accurately. For this reason, a combination
 168 environmental model proposed by Flint [10] is adopted to account for the uncertainty of global
 169 warming and the daily and seasonal variation through the Fourier series, as shown in Eq.(1)
 170 [11].

$$171 \quad ep(ep, t) = ep_{sea}(t) + ep_{dai}(t) + ep_{inc}(ep, t) + \varepsilon_{ep} \quad (1)$$

172 where ec is the characteristic value of exposure conditions (environmental temperature), i.e.,

173 the average temperature increase from 1970 to 2090 [10]; ep denotes the environmental
 174 parameters (i.e., temperature, RH, and chloride deposition) given ec and time t ; and $ep_{\text{sea}}(t)$,
 175 $ep_{\text{dai}}(t)$, $ep_{\text{inc}}(ec, t)$, and ε_{ep} are the seasonal variation, daily variation, increasing tendency, and
 176 zero-mean noise, which could be computed by Eqs. (2)-(4), respectively.

$$177 \quad ep_{\text{sea}}(t) = a_1 \cdot \sin\left[\frac{w_1(t-t_{\text{ref}})}{365} + b_1\right] + a_2 \cdot \sin\left[\frac{2w_1(t-t_{\text{ref}})}{365} + b_2\right] + a_0 \quad (2)$$

$$178 \quad ep_{\text{dai}}(t) = a_{01} - a_{11} \cos(w_{11}t) + b_{11} \sin(w_{11}t) - a_{21} \cos(2w_{11}t) - b_{21} \sin(2w_{11}t) \quad (3)$$

$$179 \quad ep_{\text{inc}}(ec, t) = a(ec) \cdot [(t-t_{\text{ref}})/365]^{n(ec)} \quad (4)$$

180 where t and t_{ref} are current and reference time (day); a_0 is the baseline average mean annual
 181 value; a_1, a_2, b_1, b_2, w_1 , and w_2 are the parameters of seasonal variation; $a_{01}, a_{11}, a_{21}, b_{11}, b_{21}$ and
 182 w_{11} are the parameters of daily variation; and $a(ec)$ and $n(ec)$ are the parameters of increasing
 183 tendency.

184 Considering the effects of global warming, the temperature rising is predicted by a power
 185 function Eq. (4) whose parameters $a(ec)$ and $n(ec)$ could be acquired by fitting measured data.
 186 For the scenario that lacks associated data, citation [10] provides an empirical model of $a(ec)$
 187 and $n(ec)$, i.e., Eqs. (5) and (6).

$$188 \quad a(ec) = 5.04 \times 10^{-3} ec^2 - 3.57 \times 10^{-2} ec + 6.49 \times 10^{-2} \quad (5)$$

$$189 \quad n(ec) = 3.59 \times 10^{-1} ec + 3.33 \times 10^{-1} \quad (6)$$

190

191 3.2. Calculation of chloride ingress

192 To assess the influences of environmental parameters on chlorine ingress, the following
 193 phenomena must be considered: chloride transport, moisture diffusion, and heat transfer, which
 194 can be indicated in the following form:

$$195 \quad \xi \frac{\partial \phi}{\partial t} = \underset{\text{diffusion}}{\text{div}} J + \underset{\text{convection}}{\text{div}} J' \quad (7)$$

196 in which t is the time parameter; ϕ , ξ , J , and J' are the terms relying on the investigated physical
 197 phenomenon, as listed in Table 1.

198 In general, the calculation process of chloride ingress is separated into four main steps [11]:

199 (1) Obtaining the boundary conditions for each physical phenomenon via the model from
 200 Section 3.1;
 201 (2) Solving the heat transfer equation;
 202 (3) Solving the moisture diffusion equation; and
 203 (4) Solving the chloride transport equation.

204 Considering the high non-linearity of Eq.(7), the finite difference method (FDM) is
 205 adopted to solve Eq.(7) numerically. Meanwhile, concerning two-dimensional transport, the
 206 alternating-direction implicit (ADI) FDM would also be applied [35].

207 208 Table 1 Parameters in Eq.(7) under different physical phenomena

Physical phenomenon	Φ	ξ	J	J'
Chloride transport	C_{fc}	1	$D_c^* \nabla C_{fc}$	$C_{fc} D_h^* \nabla h_{RH}$
Moisture diffusion	h_{RH}	$\partial w_e / \partial h_{RH}$	$D_h \nabla h_{RH}$	0
Heat transfer	T	$\rho_c \cdot c_q$	$\lambda \nabla T$	0

209
 210 The detailed meaning of each term in Eq.(7) and Table 1 will be introduced in the following
 211 contents, where C_{fc} is free chloride content (kg/m^3 of pore solution); h_{RH} is the RH of pore
 212 solution; T is the temperature; w_e is the moisture content, i.e., evaporable water content (m^3
 213 pore solution/ m^3 concrete) [36]; D_c^* and D_h^* are the apparent diffusion coefficients of chloride
 214 and moisture (m^2/s); ρ_c , c_q , and λ are concrete density, heat capacity, and thermal conductivity;
 215 and D_h denotes the coefficient of humidity diffusion (m^2/s).

216 Regarding chloride transport, the governing equation could be written as Eq.(8) in terms
 217 of Eq.(7) and Table 1 [9]

$$218 \frac{\partial C_{fc}}{\partial t} = \text{div}(D_c^* \nabla C_{fc}) + \text{div}(C_{fc} D_h^* \nabla h_{RH}) \quad (8)$$

219 in which D_c^* and D_h^* could be described by Eq.(10), respectively.

220 Considering two-dimensional chloride transport, Eq.(8) could be rewritten as

$$221 \frac{\partial C_{fc}}{\partial t} = D_c^* \left(\frac{\partial^2 C_{fc}}{\partial x^2} + \frac{\partial^2 C_{fc}}{\partial y^2} \right) + D_h^* \left(\frac{\partial}{\partial x} \left(C_{fc} \frac{\partial h_{RH}}{\partial x} \right) + \frac{\partial}{\partial y} \left(C_{fc} \frac{\partial h_{RH}}{\partial y} \right) \right) \quad (9)$$

222 where x and y are the horizontal and vertical coordinates (m) of cross-sections.

$$223 D_c^* = \frac{D_{c,\text{ref}} f_1(T) f_2(t) f_3(h_{RH})}{1 + (1/w_e) (\partial C_{bc} / \partial C_{fc})}, D_h^* = \frac{D_{h,\text{ref}} g_1(T) g_2(t_e) g_3(h_{RH})}{1 + (1/w_e) (\partial C_{bc} / \partial C_{fc})} \quad (10)$$

224 in which $D_{c,\text{ref}}$ and $D_{h,\text{ref}}$ are the reference coefficients of chloride and humidity diffusion,
 225 respectively [37]; C_{bc} is bound chloride content described by Langmuir isotherm, Eq.(11) [38];
 226 t_e is the equivalent hydration period (d); T is the current temperature (K); $f_1(T)$, $f_2(t)$, and $f_3(h)$ are
 227 the factors of temperature, time, and RH related to chloride transport; and $g_1(T)$, $g_2(t_e)$, and $g_3(h)$
 228 are the factors of temperature, time, and RH related to moisture transport, respectively.

229

$$C_{bc} = C_{tc} - w_e C_{fc} = \alpha_L C_{fc} / (1 + \beta_L C_{fc}) \quad (11)$$

230 in which C_{tc} is the total chloride content (kg/m^3); and α_L and β_L are binding constants.
 231

232 **Table 2 Factors of temperature, time, and RH in Eq.(10)**

Physical phenomenon	f_1/g_1	f_2/g_2	f_3/g_3
Chloride transport	$\exp\left[\frac{U_c}{R_{\text{gas}}}\left(\frac{1}{T_{\text{ref}}}-\frac{1}{T}\right)\right]$	$\left(\frac{t_{\text{ref}}}{t}\right)^{m_c}$	$\left[1-\frac{(1-h_{\text{RH}})^4}{(1-h_{\text{ref}})^4}\right]^{-1}$
Moisture diffusion	$\exp\left[\frac{U_h}{R_{\text{gas}}}\left(\frac{1}{T_{\text{ref}}}-\frac{1}{T}\right)\right]$	$0.3 + \sqrt{\frac{13}{t_e}}$	$\alpha_0 + \frac{1-\alpha_0}{1 + ((1-h_{\text{RH}})/(1-h_c))^{n_h}}$

233 Notes: U_c and U_h are the activation energy of chloride diffusion and moisture diffusion, respectively; R_{gas} is
 234 the gas constant; T_{ref} , t_{ref} , and h_{ref} are the reference temperature, time, and RH in pore solution, respectively;
 235 and α_0 is a ratio of $D_{h,\text{min}}$ to $D_{h,\text{max}}$.

236

237 Besides, for moisture diffusion, the form of Eq. (7) can be substituted as [9]

238

$$\frac{\partial w_e}{\partial t} = \frac{\partial w_e}{\partial h_{\text{RH}}} \frac{\partial h_{\text{RH}}}{\partial t} = \text{div}(D_h \nabla(h_{\text{RH}})) = D_h \left(\frac{\partial h_{\text{RH}}}{\partial x^2} + \frac{\partial h_{\text{RH}}}{\partial y^2} \right) \quad (12)$$

239 where D_h is relying on T , t_e , and RH, which could be calculated through [39]

240

$$D_h(T, t_e, h_{\text{RH}}) = D_{h,\text{ref}} g_1(T) g_2(t_e) g_3(h_{\text{RH}}) \quad (13)$$

241 To evaluate moisture content w_e , a three-parameter model of the adsorption isotherm is
 242 employed [40]

243

$$w_e = \frac{C k_s V_m h_{\text{RH}}}{(1 - k_s h_{\text{RH}}) [1 + (C - 1) k_s h_{\text{RH}}]}, \quad C = \exp(855/T), \quad k_s = \frac{[1 - (1/N)] C - 1}{C - 1}, \quad (14)$$

$$N = (2.5 + 15/t)(0.33 + 2.2 w_e) N_{\text{ct}}, \quad V_m = (0.068 - 0.22/t)(0.85 + 0.45 w_e) V_{\text{ct}},$$

244 in which V_{ct} and N_{ct} are the factors of cement type ($V_{\text{ct}}=0.9$ and $N_{\text{ct}}=1.1$ for type I cement in
 245 ASTM [40]).

246 In addition, a simple strategy from [11] was adopted considering the difference between
 247 the wetting and drying processes, i.e., the hysteresis effect: [41,42]:

248 (1) $D_{h, \text{ref}}$ in Eq. (13) is substituted by $D_{h, \text{ref}}^{\text{dry}} = 3 \times 10^{-10} \text{ m}^2/\text{s}$ under a decreasing h_{RH} ;

249 and

250 (2) $D_{h, \text{ref}}$ in Eq. (13) is substituted by $D_{h, \text{ref}}^{\text{wet}} = 15 \times 10^{-10} \text{ m}^2/\text{s}$ under an increasing h_{RH} .

251 Concerning heat transfer, the form of Eq. (7) can be replaced by [43]

252

$$\rho_c \cdot c_q \frac{\partial T}{\partial t} = \lambda \nabla T = \lambda \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} \right) \quad (15)$$

253

254 3.3. Prediction of reinforcement corrosion and concrete cracking

255 Once the chloride content on the reinforcement surface exceeds the critical value C_{cr} ,
256 reinforcement corrosion initiates and enters the corrosion propagation stage. In this stage, the
257 radius reduction Δr of steel bars could be computed by Eq.(16) in terms of Faraday's law.

258

$$\Delta r = \int 0.0116 i_{\text{corr}}(t) dt \quad (16)$$

259 in which $i_{\text{corr}}(t)$ denotes the time-dependent corrosion current density. In this study, $i_{\text{corr}}(t)$ is
260 predicted via an empirical model [33]

261

$$\ln(1.08i_{\text{corr}}(t)) = 7.89 + 0.7771 \ln(1.69C_{\text{bar}}) - 3006/T_c - 0.000116R_c + 2.24t_{\text{pro}}^{-0.215} + \varepsilon \quad (17)$$

262 where C_{bar} is the chloride content on the surface of steel bars; T_c is the temperature inside the
263 concrete; R_c (Ohms) denotes the resistance of concrete cover; t_{pro} (year) is the time since the
264 corrosion propagation stage initiates; and ε is the term of white noise following $N(0, 0.3312)$
265 [10].

266 Furthermore, according to Eq.(16), the residual cross-sectional area A_r and the reduction
267 amount of the cross-sectional area ΔA_s could be calculated by

268

$$A_r = \pi(d_0 - 2 \cdot \Delta r)^2, \Delta A_s = A_{s0} - A_r \quad (18)$$

269 where d_0 and A_{s0} are the initial reinforcement diameter and cross-sectional area, respectively.

270 On the other hand, for the sake of simplicity, based on the loss of cross-sectional area, the
271 width of corrosion-induced crack ω (mm) is calculated by an empirical model [34]

272

$$\omega = K \cdot (\Delta A_s - \Delta A_{s0}) \quad (19)$$

273 where K is $0.0575 \text{ (mm}^{-1}\text{)}$; and ΔA_{s0} is the reduction of the cross-sectional area when concrete
274 cracks are activated.

275
$$\Delta A_{s0} = A_{s0} \left\{ 1 - \left[1 - 2/d_0 (7.53 + 9.32c_t/d_0) 10^{-3} \right]^2 \right\} \quad (20)$$

276 where c_t (mm) is the cover thickness of RC structures.

277 It is noteworthy that corrosion-induced cracks bring more complicated effects on the
 278 durability performance of RC structures, with a comprehensive impact on their permeability,
 279 thermal conductivity, and resistivity. Limited by existing studies and considering the effects of
 280 corrosion-induced cracks on chloride ingress, it is usually assumed that the apparent diffusion
 281 coefficients increase and could be predicted by empirical models once concrete cracking
 282 happens [44,45]. For cracked concrete, the diffusions coefficient of chloride and humidity are
 283 denoted as D_c^ω and D_h^ω and calculated by Eqs.(21) [46] and (22) [47], respectively.

284
$$D_c^\omega = f_{\omega 1}(\omega) \cdot D_c^*(t), f_{\omega 1}(\omega) = 31.61\omega^2 + 4.73\omega + 1, \omega \geq 0.1\text{mm} \quad (21)$$

285
$$D_h^\omega = f_{\omega 2}(\omega) \cdot D_h^*(t), f_h(\omega) = 1 + k_h \cdot \omega^3/s_h \quad (22)$$

286 in which ω is the width of concrete crack (mm); k_h is a parameter relating to the environmental
 287 conditions (10^5 mm^{-2} [47]); and s_h is the mean crack spacing (ranging from 70 mm to 300 mm
 288 in [47]).

289

290 **4. Dynamic Bayesian network and its implementation**

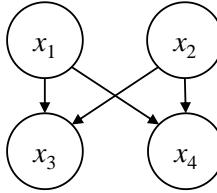
291 **4.1. Static and dynamic Bayesian Network**

292 BNs are probabilistic models of directed acyclic graphs (DAGs) [25,48]. BNs consist of nodes
 293 and links indicating dependencies among nodes. In general, nodes in BN are modeled through
 294 continuous or discrete random variables (X_1, X_2, \dots, X_N) and assigned conditional probability
 295 density function (PDF) or probability mass function (PMF). As mentioned before, there exist
 296 two types of BNs: static and dynamic BNs. For static BN, taking four discrete nodes ($X_1, X_2,$
 297 X_3, X_4) static BN as one example, X_1 and X_2 are the parent nodes of X_3 and X_4 , while X_3 and X_4
 298 are the child nodes of X_1 and X_2 , as illustrated in Fig. 2. The joint PMF of all nodes $P(X_1, X_2,$
 299 $X_3, X_4)$ could be expressed as follows:

300
$$P(X_1, X_2, X_3, X_4) = P(X_1)P(X_2)P(X_3|X_1, X_2)P(X_4|X_1, X_2) \quad (23)$$

301 in which $P(X_1)$ and $P(X_2)$ are the PMFs of X_1 and X_2 , respectively; and $P(X_3|X_1, X_2)$ and $P(X_4|X_1,$
 302 $X_2)$ denote the conditional PMFs of X_3 and X_4 given the values of X_1 and X_2 . For discrete nodes,

303 the conditional PMF of each node is stored in the conditional probability table (CPT).



304

305 Fig. 2 Four discrete nodes of static BN

306 The possibilities of the nodes can all be updated once new evidence is obtained. For
 307 instance, if one inspection indicates that node X_3 is α , the joint PMF of other nodes (i.e., X_1 , X_2 ,
 308 and X_4) could be computed by Eq.(24).

309

$$P(X_1, X_2, X_4 | \alpha) = \frac{P(X_1, X_2, \alpha, X_4)}{P(\alpha)} = \frac{P(X_1)P(X_2)P(\alpha | X_1, X_2)P(X_4 | X_1, X_2)}{\sum_{X_1, X_2} P(X_1)P(X_2)P(\alpha | X_1, X_2)} \quad (24)$$

310 Eq.(24) is the critical bridge connecting the inspection results to the probability
 311 distributions and dependencies among the investigated nodes. No matter how complicated the
 312 static BN is, the primary inference algorithms of static BN remain unchanged. Concerning the
 313 scenarios of discrete nodes, exact inference algorithms, e.g., junction tree algorithms, could be
 314 adopted to achieve BN inference [49].

315 On the other hand, DBNs consist of a series of slices containing a static BN with a
 316 collection of random variables $Z^i = \{X_1^i, X_2^i, \dots, X_N^i\}$ at the i -th time step [50]. Also, the slices in
 317 DBNs are connected by directed links, and these links represent temporal dependencies
 318 between nodes. The joint probability distribution of all random variables over time T , $P(Z^1, Z^2, \dots, Z^T)$, could be abbreviated as $P(Z^{1:T})$, which can be expressed as [29]:

320

$$P(Z^{1:T}) = \prod_{i=1}^{T-1} P(Z^{i+1} | Z^{1:i}) \quad (25)$$

321 where $P(Z^{i+1} | Z^{1:i})$ is the conditional probability distribution at the $i+1$ th time slice given the
 322 combination of nodes at all previous slices.

323 By adopting the Markov assumption that the probability distribution of each time slice
 324 depends only on the probability distribution of the last time slice, Eq.(25) could be rewritten
 325 as:

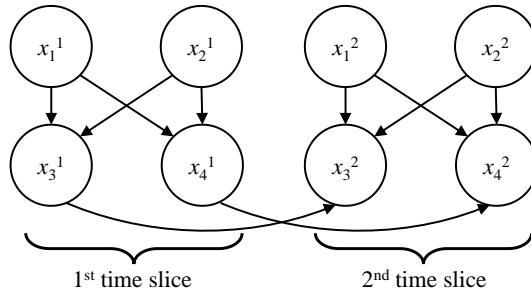
326

$$P(Z^{1:T}) = \prod_{i=1}^{T-1} P(Z^{i+1} | Z^i) \quad (26)$$

327 where $P(Z^{i+1} | Z^i)$ is the conditional probability distribution at the $i+1$ th time slice given the

328 combination of nodes at the i -th time slice.

329 Fig. 3 shows an example of two-time slices of DBN (i.e., 2TBN). Based on Markow's
330 assumption, unrolling such a 2TBN to T time-slices of DBN requires the probabilistic
331 information of the first two time slices because the residual time slices are the same as the
332 second time slice. Such a strategy can effectively reduce the difficulties in DBN modeling.
333 Meanwhile, inference algorithms of BN could also be utilized for DBN inference. However, if
334 the time slices and the number of nodes increase, the computational burden might increase
335 dramatically. Thus, Murphy [50] proposed a frontier algorithm by a smoothing strategy
336 including the forward and backward operators to reduce the time complexity in DBN inference.
337 The detailed information on Murphy's algorithms refers to [50].



338
339
340

Fig. 3 Two time slices of dynamic BN

341 **4.2. Establishment of DBN in durability assessment**

342 The deterioration models in Section 3 are converted to a DBN to implement the probabilistic
343 durability assessment of RC structures. In terms of Eqs.(1)-(22), some critical parameters such
344 as ec and D_{ref} are extracted as nodes, and directed links are determined, as illustrated in Fig. 4.
345 Some parent nodes in Fig. 4, such as ec and c_{surf} , are time-independent variables that remain
346 constant in all time-slices, so these nodes only appear in the first time slice of the DBN, and
347 their probability distributions could be preset. Other child nodes, such as c_{bar} and i_{corr} , are
348 stochastic processes, so these nodes exist in all time slices. For those child nodes, their
349 probability distributions are calculated by sampling simulations based on the stochastic
350 processes of the deterioration models. In this study, for simplicity and exact inference, only
351 discrete random variables are considered in DBN modeling [51,52]. Therefore, discretization
352 is required for continuous random variables. After discretization, it is necessary to calculate the
353 CPT of each node to perform DBN inference. The detailed steps are described below.

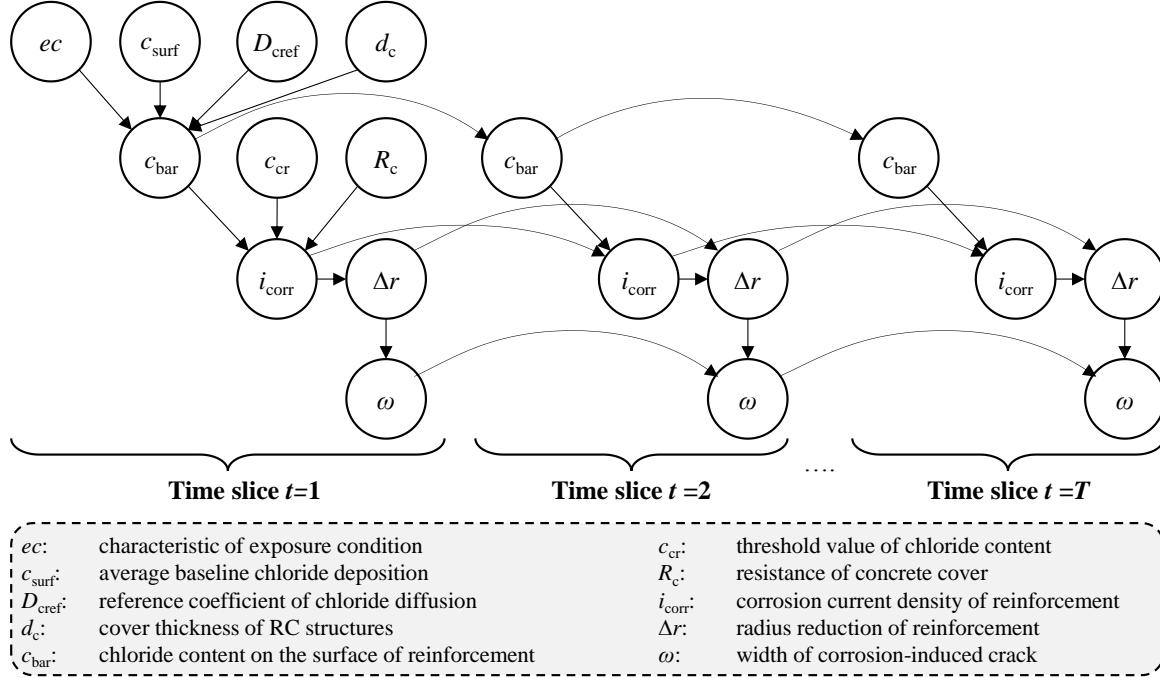


Fig. 4 DBN modeling for durability assessment of RC structures

4.2.1. Selection of representative samples

To accurately compute the probability distribution of each node, large-scale sampling is generally applied by Monte Carlo simulation (MCS) or Latin Hypercube simulation (LHS) in existing studies. While large-scale sampling usually brings accurate analysis results, such a sampling strategy can be time-consuming and inefficient, especially for high-complexity and nonlinear cases. In this study, the method of selecting representative points in PDFM is also employed in DBN modeling [30–32].

The first step in selecting representative samples for the DBN is to capture a point set θ for the parent nodes in Fig. 4. Then, the point set θ is substituted into the deterioration models in Section 3 to obtain the stochastic process for each child node in Fig. 4. Next, the point set θ and its corresponding stochastic processes of child nodes would be further utilized to compute the CPT of each node. Therefore, the uniformity of the point set θ might affect the accuracy of the prior information in the DBN modeling.

To obtain a uniform θ , it is necessary to get a uniformly distributed point set \mathbf{u} in $[0,1]$, and then the point set θ can be obtained by its cumulative distribution function (CDF), i.e., Eq.(27). Herein, the point set \mathbf{u} is gain by using a partially stratified sampling method (GLP-PSS) based on a good lattice point set (GLP) [53], whose basic algorithm is described in

374 Appendix A1.

375

$$\theta_i^{(j)} = F_{\Theta_i}^{-1} \left(u_i^{(j)} \right), i = 1, 2, \dots, s, j = 1, 2, \dots, N \quad (27)$$

376 where s and N are the number of parent nodes and representative samples; and $F_{\Theta_i}^{-1}(\cdot)$
 377 denotes the inverse CDF of the i -th parent node Θ_i .

378 Unlike the traditional sampling strategy, where each sample has a uniform weight ($1/N$),
 379 each representative sample may have a different weight, i.e., the assigned probability $p_{a,j}$, which
 380 could be computed by Eq.(28) [54].

381

$$p_{a,j} = \int_{\Theta \in \Omega_j} p_{\Theta}(\theta) d\theta, j = 1, 2, \dots, N \quad (28)$$

382 in which $p_{\Theta}(\theta)$ denotes the joint PDF of all parent nodes Θ ; and Ω_j is the Voronoi volume of
 383 the j -th sub-domain.

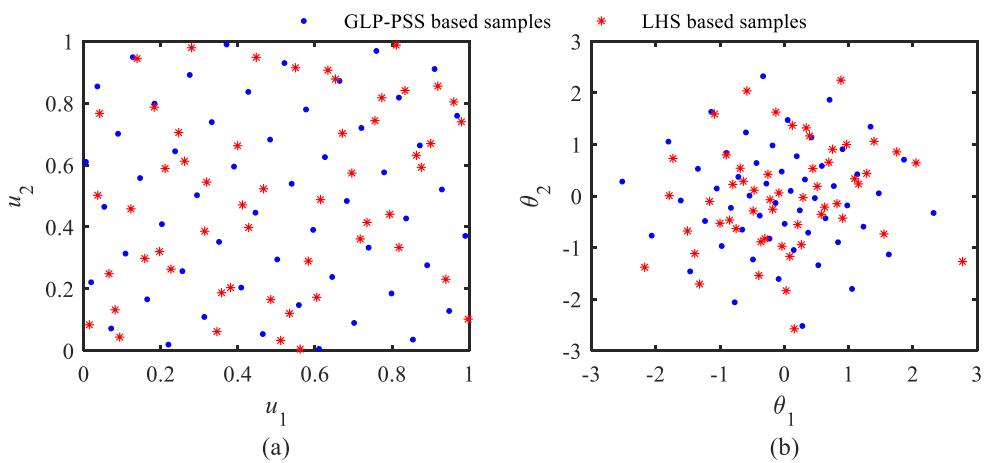
384 Furthermore, in terms of the assigned probability of each sample, point set θ could be
 385 revised into a new point set θ_0 by Eq.(29) [55]

386

$$\theta_{0,i}^{(j)} = F_{\Theta_i}^{-1} \left\{ \sum_{k=1}^N p_{a,k} \cdot I \left\{ \theta_i^{(k)} < \theta_i^{(j)} \right\} + 0.5 p_{a,j} \right\}, i = 1, 2, \dots, s, j = 1, 2, \dots, N \quad (29)$$

387 in which $I\{\cdot\}$ is an indicator function that equals one if the term in the bracket is actual.

388 To present the performance of the employed point selection method, 54 two-dimensional
 389 standard Gaussian distributed samples $\theta = [\theta_1, \theta_2]^T$ is selected, as illustrated in Fig. 5. It can be
 390 noticed that both the uniform points \mathbf{u} and Gaussian samples θ by the proposed method perform
 391 a better uniformity than those by LHS.



392
 393 Fig. 5 (a) 54 two-dimensional uniform point set \mathbf{u} , and (b) 54 two-dimensional Gaussian
 394 distributed point set θ
 395

396 **4.2.2. Node discretization and CPT computation**

397 Firstly, the parent nodes in Fig. 4 are investigated. The discretized parent nodes are denoted as
 398 $\Theta' = [\Theta'_1, \dots, \Theta'_s]$, the discrete number is noted as n_i , and the corresponding discretization
 399 scheme is represented as $D_i = [d_1, d_2, \dots, d_{n_i+1}]$ with equal intervals. Then, the PMF of the i -th
 400 parent node Θ'_i can be written as [52]:

401
$$P_{\Theta'_i}(k) = F_{\Theta_i}(d_{k+1}) - F_{\Theta_i}(d_k), k = 1, \dots, n_i, i = 1, 2, \dots, s \quad (30)$$

402 where $F_{\Theta_i}(\cdot)$ denotes the CDF of Θ_i . The lower and upper bounds (d_1 and d_{n_i+1}) could be preset
 403 for parent nodes. Supposing that Θ_i follows Gaussian distribution, d_1 and d_{n_i+1} could be
 404 calculated by Eq.(31).

405
$$d_1 = E(\Theta_i) - \alpha_i \cdot \sigma(\Theta_i), d_{n_i+1} = E(\Theta_i) + \alpha_i \cdot \sigma(\Theta_i) \quad (31)$$

406 in which $E(\cdot)$ and $\sigma(\cdot)$ are the mean value and standard deviation (STD) in the bracket; and α_i is
 407 the scaling factor ($\alpha_i = 4$ for Gaussian distribution).

408 On the other hand, denoting that original and discretized child nodes are $\Psi = [\Psi_1, \dots, \Psi_c]$
 409 and $\Psi' = [\Psi'_1, \dots, \Psi'_c]$ (c is the number of child nodes), their lower d_1 and upper bounds d_{n_i+1}
 410 can be determined by the minimum and maximum values of these child nodes in the
 411 representative samples from Sections 3 and 4.2.1. Furthermore, unlike PMFs of parent nodes
 412 that could be computed directly by Eq.(30), the PMFs of child nodes (i.e., CPT) come from the
 413 joint distribution of investigated child nodes and their parent nodes. Inspired by Tran's study
 414 [22], the CPTs of child nodes Ψ'_m ($m = 1, \dots, c$) are computed by the following step:

415 (1) The discrete number of Ψ'_m is noted as n_Ψ , and parent nodes could be found via its DBN
 416 scheme (such as Fig. 4) and marked as a collection set $\Theta'_{\text{col}} = [\Theta'_b, \dots, \Theta'_e]$ (b and e denote
 417 the serial numbers of the parent nodes in topological order from the beginning to the end of
 418 the sequence). Corresponding discrete numbers are also collected as $\mathbf{n}_{\text{pa}} = [n_b, \dots, n_e]$. For
 419 the first representative sample and the first time slice, let $j = 1$ and $k = 1$. For other time
 420 slices, the child node of Ψ'_m at the last time slice is also a parent node, and Θ'_b and n_b equal
 421 Ψ'_m and n_Ψ , respectively;

422 (2) Determine the state X_Ψ of the j -th sample and the k -th time slice of Ψ'_m (denoted as $\Psi'^{[k]}_{m,j}$)

423 based on the discretization scheme D_{Ψ_m} of Ψ'_m ;
 424 (3) From n_b to n_e , determine the states of the j -th sample of parent nodes in topological order
 425 and store these states as $\mathbf{X}_{pa} = [X_{pa,b}, \dots, X_{pa,e}]$. Meanwhile, calculate a state variable X_{temp} by
 426 Eq. (32);

427

$$X_{temp} = X_{pa,b} + \sum_{p=b+1}^e (X_{pa,p} - 1) \cdot \prod_{o=b}^{p-1} n_o \quad (32)$$

428 (4) Then, the value of the X_{temp} -th row and X_Ψ -th column of CPT will be incremented by $p_{a,j}$,
 429 i.e., Eq. (33);

430

$$CPT(X_{temp}, X_\Psi) = CPT(X_{temp}, X_\Psi) + p_{a,j} \quad (33)$$

431 (5) For the CPT of the first time slice, if $j < N$, let $j = j + 1$, and repeat step (2). For the CPT of
 432 other time slices, if $k < T$, let $k = k + 1$, and repeat step (2); and
 433 (6) When step (5) is over, the final CPT could be normalizing itself.

434 The above steps are summarized in Algorithms 1.

435

Algorithm 1 CPT computation for child nodes

```

1: Determine the investigate child node  $\Psi'_m$ , and let  $\mathbf{n}_{pa} = [n_b, \dots, n_e]$ 
2: For  $j = 1, \dots, N$  (number of representative samples)
3:   For  $k = 1, \dots, T$ 
4:      $\mathbf{X}_\Psi$  = state of  $\Psi'^{[k]}_m$ 
5:      $X_{temp} = 0$ 
6:     For  $p = b, \dots, e$ 
7:        $X_{pa,p}$  = state of  $\Theta'_p$ 
8:       If  $p := b$ 
9:          $X_{temp} = X_{temp} + X_{pa,p}$ 
10:        Else
11:           $X_{temp} = X_{temp} + \sum_{p=b+1}^e (X_{pa,p} - 1) \cdot \prod_{o=b}^{p-1} n_o$ 
12:        End
13:      End
14:      Let  $CPT(X_{temp}, X_\Psi) = CPT(X_{temp}, X_\Psi) + p_{a,j}$ 
15:    End
16:  End
17: Normalize CPT

```

436

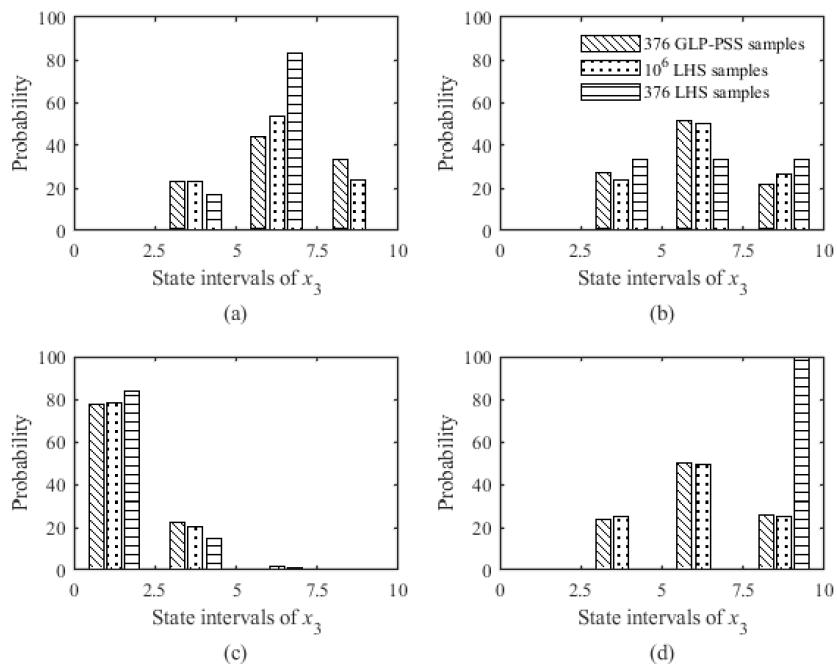
437 To demonstrate the efficiency of the proposed CPT calculation method, the BN in Fig. 2
 438 is taken as one example. Within the BN, x_1 and x_2 are supposed to follow the standard Gaussian
 439 distribution, and x_3 can be calculated by Eq.(34).

$$x_3 = x_1^2 + x_2^2 \quad (34)$$

441 Then, 376 GLP-PSS-based samples are selected according to Section 4.2.1, and the CPT
 442 of x_3 is calculated using the method in Algorithm 1. Meanwhile, 376 LHS and 10^6 LHS-based
 443 samples are generated to compute CPT of x_3 for comparisons. For the sake of simplicity, the
 444 discrete numbers of all nodes are set as 4, and the PMF of x_3 under four combinations of x_1 and
 445 x_2 are compared:

446 (1) $x_1 \in [-4, -2] \cap x_2 \in [-2, -0]$;
 447 (2) $x_1 \in [-4, -2] \cap x_2 \in [0, 2]$;
 448 (3) $x_1 \in [0, 2] \cap x_2 \in [0, 2]$; and
 449 (4) $x_1 \in [-2, 0] \cap x_2 \in [2, 4]$.

450 Those PMFs of x_3 by different methods are presented in Fig. 6. As indicated, in the above
 451 four scenarios, the PMFs of x_3 by 376 GLP-PSS-based samples agree with those by 10^6 LHS
 452 samples, while the PMFs of 376 LHS samples perform poorly compared to the proposed
 453 representative sample method. This phenomenon may be owing to the dispersion of the LHS
 454 samples (Fig. 5) and the equal weight of each sample. Such results also demonstrate the
 455 efficiency and accuracy of the proposed CPT calculation method in the case of a small number
 456 of representative points.



457 (c) (d)
458 Fig. 6 PMF of x_3 under different combinations: (a) $x_1 \in [-4, -2] \cap x_2 \in [-2, -0]$; (b) $x_1 \in [-4, -2] \cap x_2 \in [0, 2]$; (c) $x_1 \in [0, 2] \cap x_2 \in [0, 2]$; and (d) $x_1 \in [-2, 0] \cap x_2 \in [2, 4]$
459

460 **5. Numerical study**

461 **5.1. Problem description**

462 In this section, the durability of RC beams under the marine atmospheric environment is
463 investigated to demonstrate the applicability of the proposed framework. RC beams are
464 supposed to be located on the west coast of the Yellow Sea from 2010 [11]. The cross-section
465 and cover thickness are 200×400 mm and 25 mm, respectively. The primary information on
466 environmental parameters refers to previous studies [11,56], in which the parameters of Eqs.(1)
467 -(4) are summarized in Table 3. Based on the earlier studies, the distribution types and
468 parameters of all parent nodes in Fig. 4 are listed in Table 4.

469 According to the proposed framework, the first step is to generate 610 representative
470 samples according to the deterioration models from Section 3 and the point selection methods
471 in Section 4.2.1. Since all nodes are continuous variables, those nodes need to be discretized,
472 and their CPTs are computed and assigned to all nodes in all the time slices using the methods
473 in Section 4.2.2. For simplicity, the time interval and slices in DBN are preset to three years
474 and 18, and the discrete number of each node (both for parent and child nodes) is set to six.

475
476

Table 3 Environmental parameters in Eqs.(1)-(4) [11]

	Temperature (°C)	Humidity	Chloride deposition (% wt of concrete)		Temperature (°C)	Humidity	Chloride deposition (% wt of concrete)
a_0	12.78	0.76	C_{surf}	a_{01}	0.1326	-0.0942	-
a_1	-12.02	0.13	0.052	a_{11}	2.111	5.866	-
a_2	1.35	-0.03	-	b_{11}	1.012	-8.576	-
b_1	2.27	5.43	-0.056	w_{11}	0.2333	0.5206	-
b_2	-5.39	-0.29	-	a_{21}	2.188	6.334	-
w_1	6.33	6.84	-	b_{21}	0.3616	-2.548	-
t_{ref}	149	149	-		-	-	-

477
478
479

Table 4 Distribution types and values of parent nodes

Parameters	Distribution	μ	δ	Ref	Parameters	Distribution	μ	δ	Ref
ec (°C)	Uniform	0	3.5	[11]	d_c (mm)	Gaussian	25	0.05	[57]
c_{surf} (wt% of cement)	Gaussian	0.65	0.1	[11]	c_{cr} (wt% of cement)	Lognormal	0.4	0.1	[58]
D_0 (10^{-11} m 2 /s)	Lognormal	1.6	0.1	[59]	R_c (kΩ)	Lognormal	25	0.1	[10]

480 Note: μ and δ are the lower and upper bounds for the uniform distribution value, while μ and δ are the mean and
481 coefficient of variation (COV) for other distributions.

482

483 **5.2. Inference results**

484 After establishing the DBN, the following task is to infer and evaluate the durability of RC
485 structures using Murphy's DBN inference algorithms [50]. In this case, it is supposed that the
486 probability of detection (PoD) equals one, the widths of concrete crack are detected at several
487 inspection instants, i.e., 3, 12, 21, 30, and 39 (years), and three possible inspection results of ω
488 (mm) are considered: $\omega_1 \in [0, 0.1]$, $\omega_2 \in [0.2, 0.3]$, and $\omega_3 \in [0.5, 0.6]$. The DBN was
489 applied to infer durability assessment parameters (e.g., c_{bar} , i_{corr} , Δr , and ω) subjected to
490 different inspection results and inspection instants to study the effects of inspections on the
491 durability of RC structures.

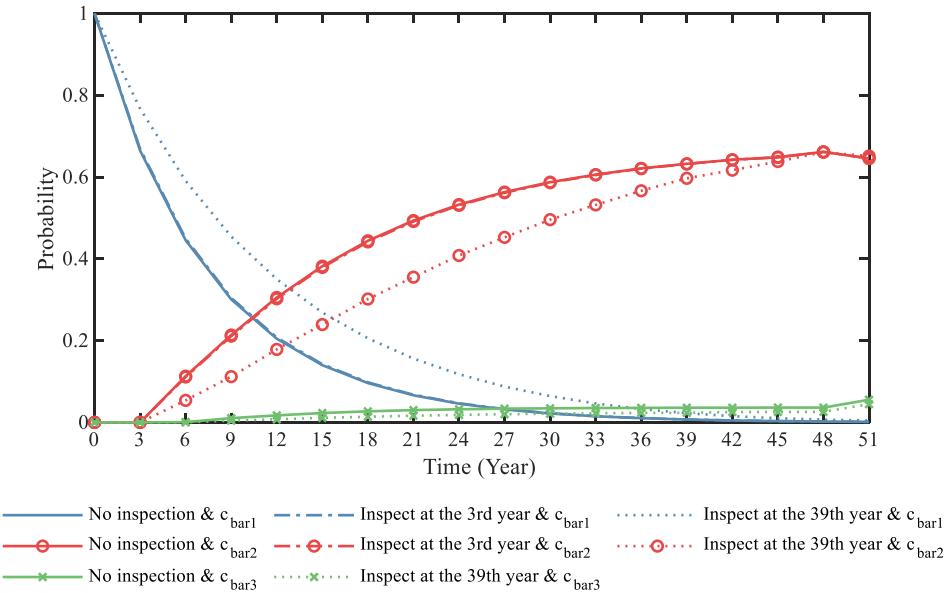
492

493 **5.2.1. Effects of inspections on chloride content of reinforcement surface**

494 This subsection investigates the influences of crack width detections on c_{bar} . For comparison
495 purposes, three ranges of c_{bar} (wt% of cement) are taken into account: $c_{\text{bar}1} \in [0, 0.2]$, $c_{\text{bar}2} \in$
496 $[0.4, 0.6]$, and $c_{\text{bar}3} \in [0.8, 1]$, representing low, middle, and high levels of total chloride content
497 C_{tc} , respectively. The time-dependent probabilities of c_{bar} under different inspection results are
498 illustrated in Fig. 7 and Fig. 8, where all the probabilities of $c_{\text{bar}1}$ decrease versus time, and those
499 of $c_{\text{bar}2}$ and $c_{\text{bar}3}$ increase with time. It can be noted that the probability of $c_{\text{bar}3}$ after 51 years
500 suddenly increases by about 100% compared to the previous year, while that of $c_{\text{bar}2}$ after 51
501 years slightly drops. Such phenomena indicate that chloride content on reinforcement surfaces
502 might increase dramatically at the end of service life due to the development of concrete cracks.

503 As shown in Fig. 7, it can be found that the PMFs of c_{bar} (including $c_{\text{bar}1}$, $c_{\text{bar}2}$, and $c_{\text{bar}3}$)
504 given the third-year inspection result of ω_1 basically agree with those without inspection,
505 meaning that the early inspection of small crack width has few influences on the probability
506 distribution of c_{bar} . In addition, given the third and 39th inspection of ω_1 , the probability of $c_{\text{bar}1}$
507 is exceeded by that of $c_{\text{bar}2}$ after 10 and 15 years, respectively, and exceeded by that of $c_{\text{bar}3}$ after
508 26 and 38 years, respectively. Thus, the delay of inspection instant of ω_1 reduces the decreasing
509 rate of the probability of $c_{\text{bar}1}$ over time. Furthermore, for $c_{\text{bar}1}$, its probability after 51 years
510 increases by 2.3 times, given the 39th-year inspection result of ω_1 compared to that without
511 inspection. Besides, the probability of $c_{\text{bar}2}$ decreases with the inspection instants (about 1.7%
512 to 52% compared to no inspection) from the sixth year to the 48th year. In Fig. 7, if small crack

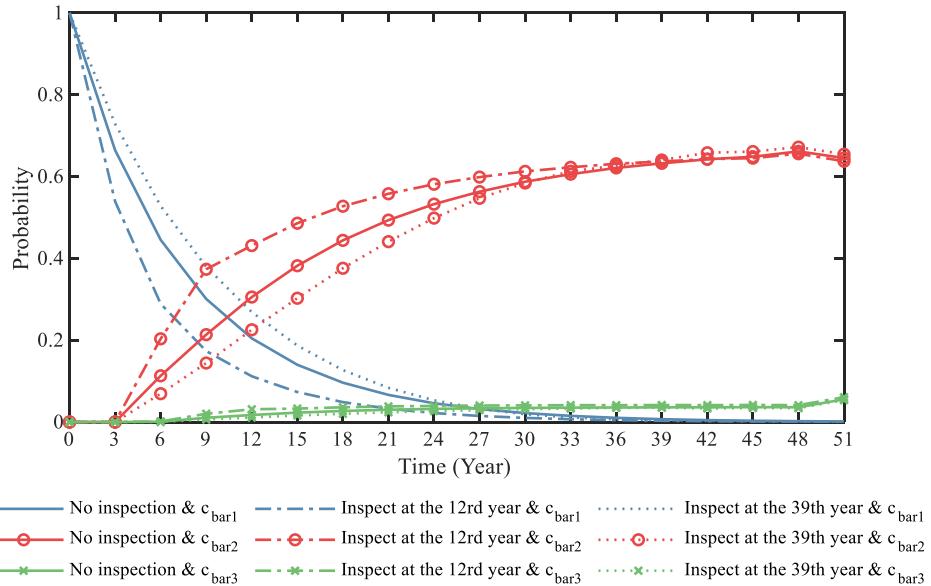
513 widths are detected at the end of service life, the probability of moderate chloride content on
 514 the steel surface might increase. In addition, long inspection instants can significantly reduce
 515 the probability of c_{bar3} by 46% to 60% compared to no inspection at the initial time, where such
 516 an effect also decreases over time. Generally, the probability distribution of c_{bar} given the
 517 concrete width of ω_1 is more likely to be concentrated at low to middle levels than no inspection,
 518 and such an effect became more pronounced with longer inspection instants.



519
 520 Fig. 7 Time-dependent probability of c_{bar} subject to ω_1 and different inspection instants
 521

522 Also, Fig. 8 displays the probabilities of c_{bar} at the inspection results of ω_2 . Given the 12th
 523 and 39th inspection of ω_2 , the probability of c_{bar1} is exceeded by that of c_{bar2} after 7 and 13 years,
 524 respectively, and exceeded by that of c_{bar3} after 20 and 28 years, respectively. Thus, for the
 525 inspection of ω_2 earlier than 21 years, inspection increases the changing rate of the probability
 526 of c_{bar} ; vice versa, inspection decrease the changing rate of the probability of c_{bar} . Besides,
 527 compared to no inspection, the PMF of c_{bar1} given the 12th year inspection of ω_2 decreases most
 528 by about 45% before 15 years. Besides, the 39th-year inspection resulted in a 2% to 34%
 529 increase in the PMF of c_{bar1} . Thus, it can be seen that the earlier the inspection, the lower the
 530 PMF of c_{bar1} . Besides, in Fig. 8, the PMF of c_{bar2} given the 12th year inspection of ω_2 rises most
 531 by 27% to 80% compared to no inspection from sixth to 15th year; and that given the 39th
 532 inspection declines most by 6% to 39% from sixth to 24th year. In addition, compared to no
 533 inspection, the PMFs of c_{bar3} given the 12th and 39th year inspections of ω_2 are found to increase

534 (82% to 114%) and decrease (36% to 50%) the most from the sixth year to 15th year. The above
 535 results suggest that the inspection of middle-level crack width mainly reduces the probability
 536 of low chloride content near the inspection instants and increases the probabilities of middle
 537 and high-level chloride content.

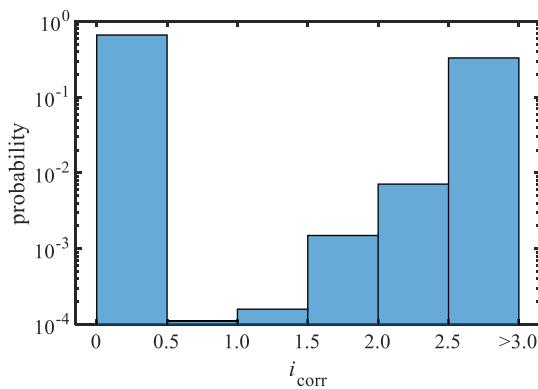


538
 539 Fig. 8 Time-dependent probability of c_{bar} subject to ω_2 and different inspection instant
 540

541 Furthermore, for the inspection of ω_3 , the scenario is the reverse of Fig. 7, where the PMFs
 542 of $c_{\text{bar}1}$ with the inspection are lower than those without inspection, and those of $c_{\text{bar}2}$ and $c_{\text{bar}3}$
 543 with the inspection are higher than no inspection. Such a phenomenon is consistent with the
 544 intuitive impression since the large width of concrete crack implies a medium/high level of
 545 chloride content on the reinforcement surface. Also, the PMFs of $c_{\text{bar}1}$ given the inspections of
 546 ω_3 at 21st and 30th year decrease by 15% to 57% compared to no inspection before 33 years.
 547 After 33 years, both the PMFs of $c_{\text{bar}1}$ given the inspections of ω_3 at 30th and 39th year
 548 dramatically decrease by about 63% to 65% compared to no inspection. Besides, before 21
 549 years, the PMFs of $c_{\text{bar}2}$ and $c_{\text{bar}3}$ given the inspections of ω_3 at 21st increase most by 21% to
 550 154% compared to no inspection. Above results indicate that the inspection of high-level crack
 551 width primary reduces the probability of low chloride content, increases that of middle chloride
 552 content initially and that of high chloride content all the time slices.
 553

554 **5.2.2. Effects of inspections on corrosion rate**

555 In terms of the existing studies on the corrosion rate inspection of corroded reinforcement
 556 [60,61], the corrosion rate i_{corr} can be classified into low, medium, and high levels: 0 to 0.5
 557 $\mu\text{A}/\text{cm}^2$, 0.5 to 1.0 $\mu\text{A}/\text{cm}^2$, and $>1.0 \mu\text{A}/\text{cm}^2$. Fig. 9 illustrates that all samples over time of i_{corr}
 558 follow bimodal distribution, with high probabilities only for the intervals with i_{corr} less than 0.5
 559 $\mu\text{A}/\text{cm}^2$ and i_{corr} beyond 1.0 $\mu\text{A}/\text{cm}^2$. Therefore, in this subsection, only the low corrosion rate
 560 $i_{\text{corr1}} \in [0,0.5] \mu\text{A}/\text{cm}^2$ and the high corrosion rate $i_{\text{corr2}} \in [1.0,+\infty] \mu\text{A}/\text{cm}^2$ are of interest and
 561 consideration.

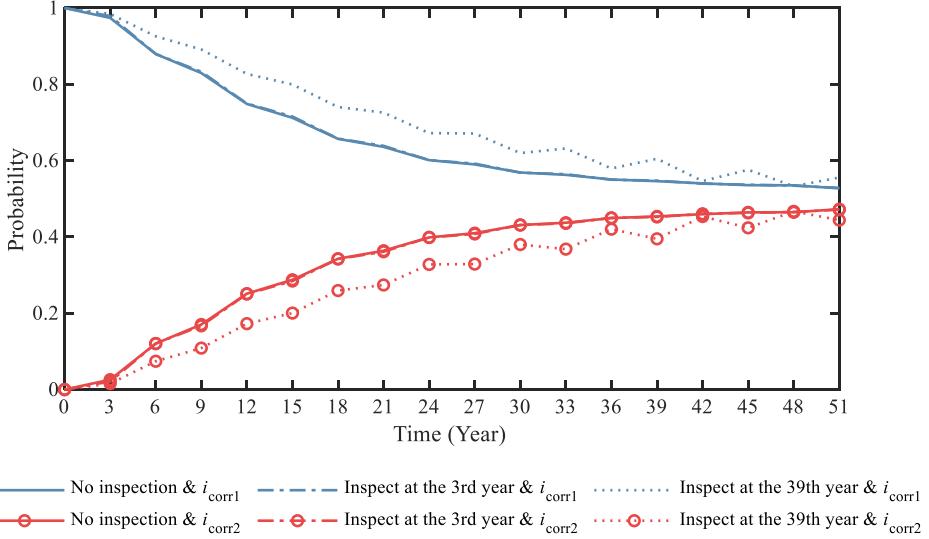


562

563 **Fig. 9 Histogram of discrete i_{corr}**

564

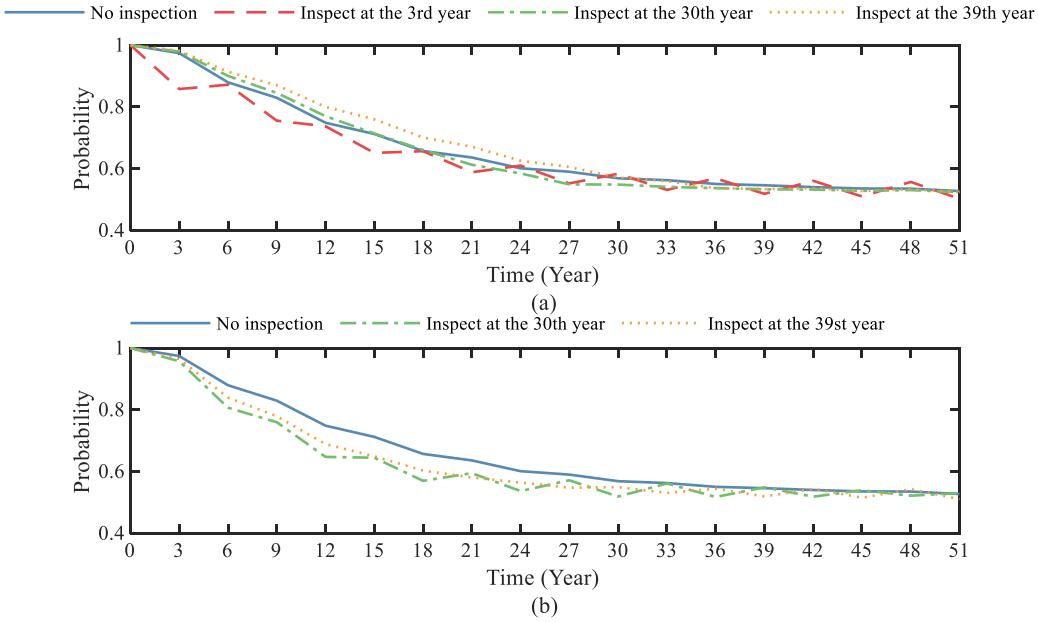
565 Fig. 10 and Fig. 11 show the probabilities of i_{corr} fluctuating with time given different
 566 inspection results. Similar to Fig. 7, Fig. 10 illustrates that the PMFs of i_{corr1} and i_{corr2} given a
 567 third-year inspection of ω_1 are basically the same as those of the PMFs without inspection,
 568 suggesting that the early small crack has little effect on the probability distribution of i_{corr} . Also,
 569 with the increase of inspection instants from the 12th year to the 39th year, the PMFs of i_{corr1}
 570 increase by around 6% to 14%, and those of i_{corr2} decrease by about 10% to 30% during the
 571 service life, compared to no inspection. Given the inspection results of ω_1 , the changing rates
 572 of the PMFs of i_{corr} will decrease with the inspection instant.



573

574 Fig. 10 Time-dependent probability of i_{corr} subject to ω_1 and different inspection instants
575

576 In addition, since Fig. 10 shows that the probabilities of i_{corr1} and i_{corr2} are essentially
577 complementary, Fig. 11 shows only the probability of i_{corr1} with the different instants of
578 inspection of ω_2 and ω_3 . All inspections in Fig. 11 have a more pronounced effect on the PMFs
579 of i_{corr} at the instants before and after the inspections. In Fig. 11a, the PMFs of i_{corr1} maximumly
580 decrease by 7% to 18% under the inspection instants at the 3rd to 30th year, while for the
581 inspection of ω_2 at the 39th year, the PMFs of i_{corr1} increase by about 1% to 7% compared to no
582 inspection. Thus, for the inspections of ω_2 earlier than the 30th year, the PMFs of i_{corr1} are
583 smaller than the no inspections, respectively. Furthermore, in Fig. 11b, the PMFs of i_{corr} with
584 inspection exhibit fluctuations and those of i_{corr1} with inspections of ω_3 are lower than those
585 without inspection. In addition, the PMFs of i_{corr1} is the lowest at their inspection instants, where
586 the PMFs of i_{corr1} with the 30th inspection decrease by 8%, compared to no inspection. Such
587 results indicate that high-level crack width significantly influences the PMFs of i_{corr} at
588 inspection instants.



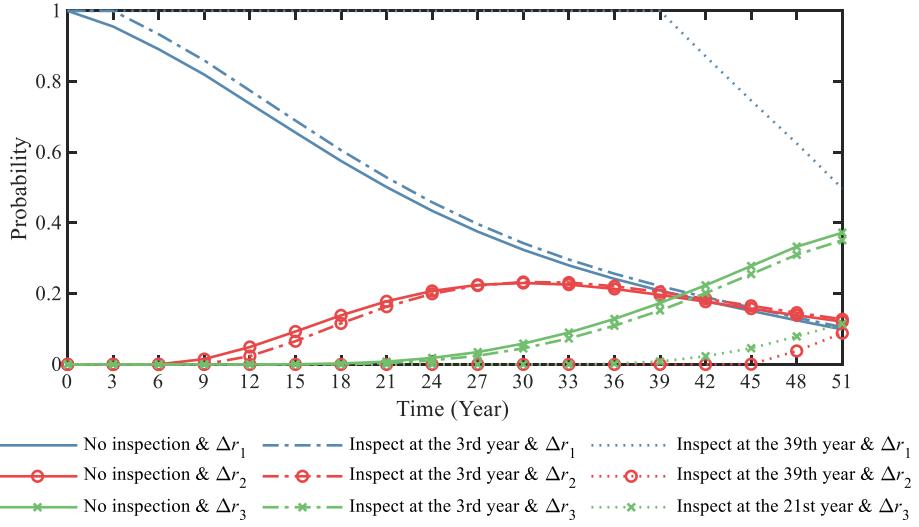
589
590 Fig. 11 Time-dependent probability of i_{corr1} subject to ω_2 and ω_3 and different inspection
591 instants: (a) ω_2 ; and (b) ω_3
592

593 **5.2.3. Effects of inspections on radius reduction and concrete crack width**

594 This subsection examines the effects of crack width inspection on the development of radius
595 reduction and crack width. For comparison purposes, three ranges of Δr (mm) are considered:
596 $\Delta r_1 \in [0, 0.05]$, $\Delta r_2 \in [0.1, 0.15]$, and $\Delta r_3 \in [0.2, 0.25]$, representing low, medium, and high levels
597 of radius reduction, respectively. Fig. 12 and Fig. 13 show the probabilities of Δr over time
598 under different inspection results, where the probabilities of Δr_1 decrease with time, those of
599 Δr_2 increase and then decrease with time, and those of Δr_3 increase with time. Also, Fig. 14
600 displays the probabilities of ω given its inspection results. Compared to Sections 5.2.1 and 5.2.2,
601 inspection results of ω have more dramatic effects on its own development and Δr .

602 In Fig. 12, it can be noticed that, given the inspection results of ω_1 , the PMFs of Δr_1 remain
603 one until the inspection instants and gradually decrease with time after the inspection instants.
604 For no inspection, the PMFs of Δr_1 are beyond those of Δr_2 and Δr_3 before 38 and 40 years,
605 respectively; and for third inspection of ω_1 , those of Δr_1 are beyond those of Δr_2 and Δr_3 before
606 43 and 42 years, respectively. For other inspections, the PMFs of Δr_1 are the highest over time,
607 followed by those of Δr_2 and Δr_3 . Thus, inspection of ω_1 implies that the PMFs of Δr_1 dominates.
608 In addition, compared to no inspection, the PMFs of Δr_1 with inspection increase by around 5%
609 to 402% and such rising ratio increases with inspection instants. Besides, the rising of PMFs of

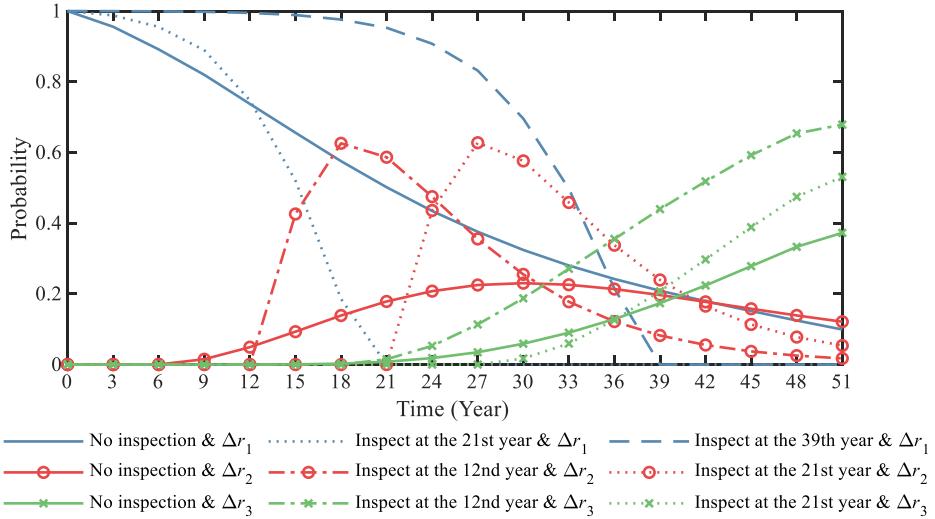
610 Δr_2 starts about six years later than the inspection instants, and the maximum probability of Δr_2
 611 is about 0.24. The PMFs of Δr_3 dramatically decrease with the inspection instants compared to
 612 no inspection. Above results indicate that the inspection results of ω_1 significantly increase and
 613 decrease the PMFs of Δr_1 and Δr_3 , respectively, and delay the development of Δr_2 .



614
 615 Fig. 12 Time-dependent probability of Δr subject to ω_1 and different inspection instants
 616

617 Moreover, Fig. 13 shows the probability of Δr given the inspection results of ω_2 , where
 618 the PMFs of Δr_1 and Δr_2 reach zero and rise after the inspection instants, respectively; and those
 619 of Δr_3 keep increasing and exceed those of Δr_2 after 31 and 39 years given the 12th and the
 620 21st year inspections. In Fig. 13, the PMFs of Δr_1 given the 21st to the 39th year inspections
 621 are initially 4% to 120% higher, and then 100% lower than no inspection. Also, the PMFs of
 622 Δr_2 increase immediately at inspection instants, and their maximum values are about 0.63, 170%
 623 higher than the peak value of no inspection. In addition, the PMFs of Δr_3 given the 12th year
 624 inspection of ω_2 are about 790% higher than no inspection; those given the 21st year inspection
 625 are firstly about 70% lower before 36 years but then 40% higher than no inspection. The above
 626 results indicate that the inspection results of ω_2 significantly affect the onset instants of the
 627 changes in the PMFs of Δr .

628

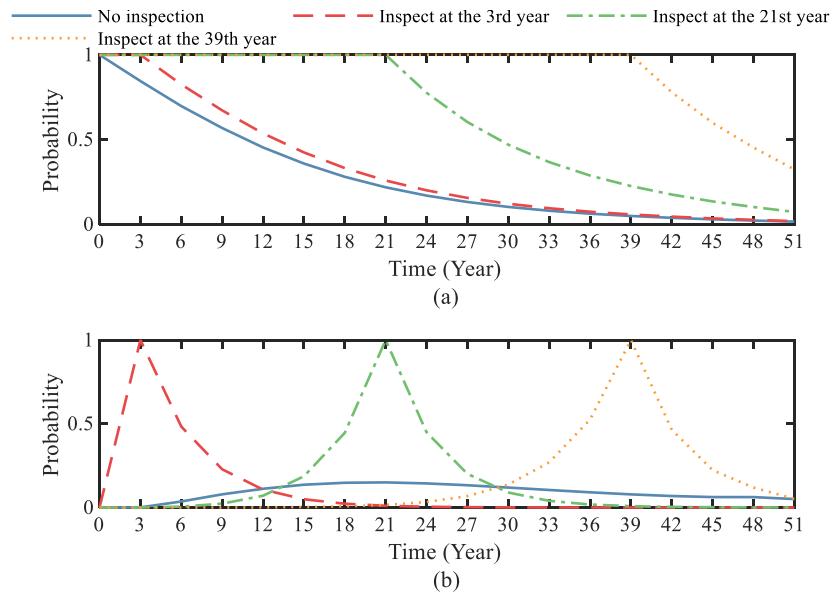


629
630 Fig. 13 Time-dependent probability of Δr subject to ω_2 and different inspection instants
631

632 Furthermore, regarding the inspection result of ω_3 , the PMFs of Δr are close to Fig. 13 but
633 the PMFs of Δr_3 are higher than the inspection result of ω_2 under the same inspection instants.
634 Besides, an earlier inspection instant cause higher the PMFs of Δr_2 , in which the PMFs of Δr_2
635 under the 12th year inspection of ω_3 maximumly increase to 1.0 by $1.2 \times 10^4\%$ compared to no
636 inspection before 12 years, but then decrease by 100 % after 12 years. In addition, the PMFs of
637 Δr_3 with the 12th year inspection increase maximumly by $2.6 \times 10^4\%$ compared to no inspection
638 at the 12th year. Thus, compared to c_{bar} and i_{corr} , high crack width levels significantly increase
639 the probabilities of radius loss at high and medium levels.

640 To further investigate the inspection results of crack width on its development, Fig. 14
641 illustrates the PMFs of ω_1 and ω_2 given their own inspection results. Similar to Fig. 12, in Fig.
642 14a, the PMFs of ω_1 remain one before its inspection instant and decrease after inspection
643 instant. Compared to no inspection, the PMFs of ω_1 given the 3rd to 39th year inspection of ω_1
644 increase approximately by 18% to $1.9 \times 10^3\%$. Thus, the inspection of small crack width
645 suggests a small crack width before the inspection instant and a sudden drop after the inspection
646 instant. Also, like Fig. 13, Fig. 14b shows that the PMFs of ω_2 firstly increase maximumly by
647 about $1.6 \times 10^5\%$ before inspection instant then suddenly drops by about 100%, given the
648 inspection of ω_2 . The inspection of ω_2 mainly influence the peak point of the PMFs of ω_2 rather
649 than their trends over time. In addition, given the inspection of ω_3 , all PMFs of ω_3 exceed those
650 without inspection, rapidly increase by about 50% to $2.6 \times 10^4\%$ compared to no inspection,

651 and remain one after inspection instants. The above results show that the inspection of crack
 652 width has direct and significant effects on its development. Given the inspection results of low
 653 and high levels of crack width, their PMFs keep one before and after inspection, respectively;
 654 for the middle level of crack width, its PMFs equal one only at the inspection instant. Besides,
 655 the PMFs of crack width versus time are consistent with those of radius reduction. Therefore,
 656 the inspection of crack width is significant for indirectly assessing the corrosion degree of
 657 reinforcement.



658
 659 Fig. 14 Time-dependent probability of ω subject to different inspection instants and results:(a)
 660 ω_1 and (b) ω_2
 661

662 5.3. Further discussion

663 Based on the developed DBN, this section further discusses other factors, such as the effects of
 664 exposure conditions ec , environmental models, and chloride transport modes, and their effects
 665 on the parameters of durability assessment. For comparisons, the time-varying mean values $E(x)$
 666 of parameters are investigated and computed by Eq.(35). Herein, only one inspection scenario
 667 is considered, i.e., the 21st year inspection of ω_2 .

668

$$E(x) = 0.5 \cdot \sum_{k=1}^{n_x} (d_k + d_{k+1}) \cdot P_x(k) \quad (35)$$

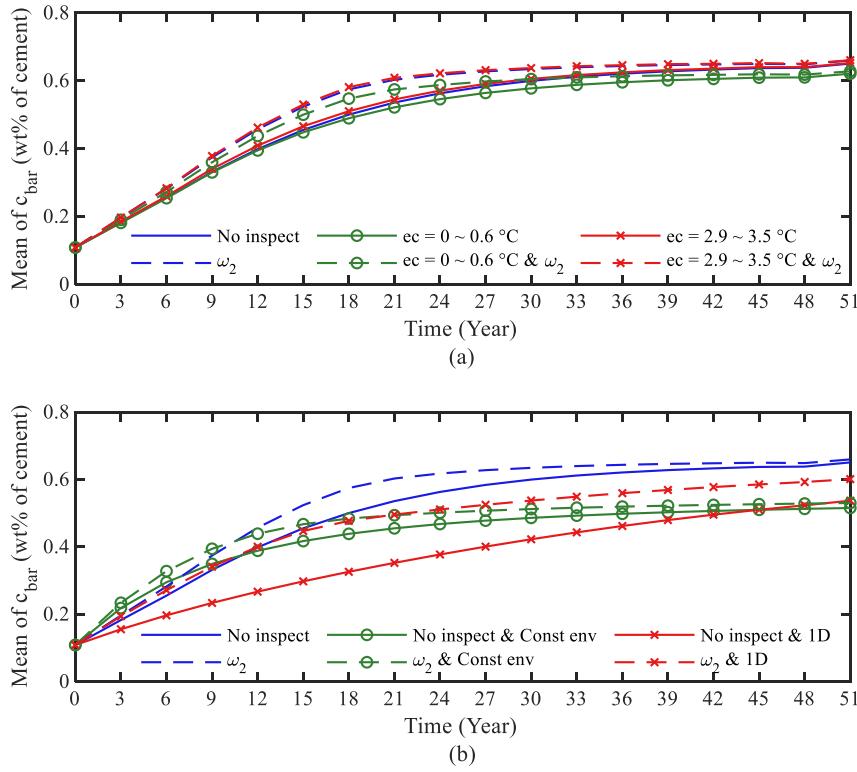
669 in which x is the investigated durability parameter; $[d_1, d_2, \dots, d_{n_x+1}]$ is the discretization scheme
 670 of x ; and $P_x(k)$ is the PMF of x at its k -th interval.

671 Regarding ec ($^{\circ}\text{C}$) as another inspection node, low and high levels of ec are taken into
672 consideration: $ec_1 \in [0, 0.6]$ and $ec_2 \in [2.9, 3.5]$. Fig. 15a compares the mean values of c_{bar} under
673 exposure conditions and inspection results. As shown, the mean values of the durability
674 parameters corresponding to ec_1 are minimum, and those corresponding to ec_2 are the maximum
675 at a given instant, no matter whether the inspection occurs or not. For the scenarios of no
676 inspection of ω , it can be seen in Fig. 15a that given ec_1 and ec_2 , the mean values of c_{bar}
677 maximumly decrease and increase by 4.6% and 2.6%, respectively, compared to no given ec .
678 In addition, given the 21st-year inspection of ω_2 and ec_1 , the mean values of c_{bar} maximumly
679 decrease by 4.9%, compared to no given ec , while, given ec_2 , those of c_{bar} maximumly increase
680 by 1.2%. Compared to no inspection of ω , the mean values of c_{bar} with ω_2 maximumly increase
681 by about 11.8% to 15.1%. The above results indicate that the inspection of ω has more
682 influences on c_{bar} than ec .

683 In addition, to study the influences of proposed time-varying environmental models on
684 durability assessment, a traditional constant model is adopted by ignoring the seasonal and daily
685 variation of environmental parameters (Eqs.(2) and (3)) and only considers global warming
686 (Eq.(4)). Fig. 15b illustrates the mean values of c_{bar} subject to different environmental models.
687 For the constant model, it can be noticed that the mean values of c_{bar} maximumly decrease by
688 21% compared to the time-varying model. In addition, given the 21st-year inspection of ω_2 and
689 the constant model, the mean values of c_{bar} maximumly decrease by 19.6%. Given the
690 inspection of ω_2 , the effects of environmental models on durability assessment decrease
691 compared to no inspection. Besides, regarding the constant model, Fig. 15b also presents that
692 given the inspection of ω_2 , the mean values of c_{bar} maximumly increase by about 13.0%
693 compared to no inspection of ω . Thus, environmental models might have more effects on c_{bar}
694 than inspection.

695 Furthermore, to investigate the effect of two-dimensional chloride transport on the
696 durability assessment, the conventional one-dimensional chloride transport model is introduced
697 herein. Fig. 15b shows the mean values of c_{bar} based on different chloride transport models. It
698 can be noted that under the one-dimensional transport, the mean values of c_{bar} decrease by up
699 to 34.8% compared to the two-dimensional transport. Moreover, given the 21st-year inspection
700 for ω_2 and one-dimensional transport, the mean values of c_{bar} are maximally reduced by 17.8%.

701 Given the inspection of ω_2 , the effects of chloride transport modes on the c_{bar} are reduced
 702 compared to no inspection. Furthermore, regarding the one-dimensional transport, Fig. 15b also
 703 shows that given the inspection of ω_2 , the mean values of c_{bar} increase by a maximum of about
 704 50.2% compared to no inspection of ω . Thus, for one-dimensional transport, the inspections of
 705 concrete cracks might have more critical influences on c_{bar} than two-dimensional transport.



706
 707
 708
 709

Fig. 15 Mean values of c_{bar} under different scenarios: (a) exposure conditions; and (b)
 environmental models and chloride transport modes

710 6. Conclusions

711 In this study, a DBN-based framework is developed for the durability assessment of RC
 712 structures suffering from long-term environmental actions. This framework adopts a
 713 comprehensive durability deterioration model for RC structures, considering time-varying
 714 environmental parameters, two-dimensional chloride transport, and concrete cracking. Besides,
 715 the thought of point-evolution is used to compute CPT for each node in DBN. Meanwhile, the
 716 durability of RC beams under the marine atmospheric environment is investigated through the
 717 developed framework. The following conclusions could be drawn:

718 (1) Using a simple mathematical example, it is demonstrated that the proposed GLP-PSS-based
719 CPT calculation method is more accurate than the traditional LHS-based brute MCS with
720 the same sample size and more efficient compared with a large-scale MCS;

721 (2) Inferences results demonstrate that inspection of crack widths ω significantly affects the
722 chloride content of reinforcement surface c_{bar} and such effects rely on the inspection results
723 and instants. Given the inspection of low-level ω , the probabilities of low-level c_{bar} might
724 increase by 230%, those of middle and high-level c_{bar} might decrease by 60%, compared to
725 no inspection. In addition, for the inspected high-level ω , the probabilities of low-level c_{bar}
726 might decrease by 65%, and those of middle and high-level c_{bar} might increase by 154%.
727 Different levels of crack inspection mainly affect the probabilities of corresponding levels
728 of c_{bar} ;

729 (3) With respect to different inspection results of ω , corrosion rate i_{corr} and its probability of
730 reinforcement fluctuate with time. For instance, given the inspected high-level ω , the
731 probabilities of low-level i_{corr} might decrease by 8%, which might not be as significant as
732 c_{bar} . In addition, the effects of inspected ω on radius reduction Δr and ω itself are consistent
733 and more pronounced than other durability parameters. For an inspected high-level ω , the
734 probabilities of middle and high-level Δr might increase maximumly by $1.2 \times 10^4\%$ and
735 $2.6 \times 10^4\%$, respectively;

736 (4) Given an exposure condition ec ($^{\circ}\text{C}$) of $[0, 0.6]$, the mean values of c_{bar} decrease by 4.6%
737 to 4.9 %, compared to no specific ec ; given an ec of $[2.9, 3.5]$, those increase by 1.2% to
738 2.6%. Also, applying a constant environment model and one-dimensional chloride transport
739 model decreases those by 19% to 35%, compared to the time-varying and two-dimensional
740 model, respectively. Thus, ignoring the time-varying environment and two-dimensional
741 transport mode might dramatically underestimate the values of durability parameters.
742 Besides, inspection results of ω might have greater effects on c_{bar} than exposure condition
743 and chloride transport models but fewer effects than environmental modes;

744 In conclusion, it is practical to use the developed DBN framework for the durability
745 assessment of RC structures. The proposed approach can integrate inspection data with the
746 durability design and management of RC infrastructure and significantly reduce the
747 uncertainties in structural durability assessment. Besides, this study considers only macroscopic

748 genera within the chloride transport and more complicated scenarios, for example, investigating
749 the depth and longitudinal dimensions of crack distribution. In addition, it would be helpful to
750 apply the proposed framework to the mechanical performance assessment and reliability
751 analysis of RC structures and to improve the robustness of the proposed framework in the future.
752

753 Acknowledgments

754 **Funding:** The study has been supported by Research Grants Council of the Hong Kong Special
755 Administrative Region, China (No. T22-502/18-R and No. PolyU 15219819) and Natural
756 Science Foundation of China (Grant No. 52078448).
757

758 References

- 759 [1] American Road & Transportation Builders Association (ARTBA), 2020 Bridge Report,
760 (2020) 4.
- 761 [2] A. Review, Corrosion Cost and Impact: Ausralasian Review, (2021).
- 762 [3] DS/EN 1992-1-1, Eurocode 2 : Design of concrete structures – Part 1-1: General rules
763 and rules for buildings, (1992).
- 764 [4] Duracrete, DuraCrete: Probabilistic Performance based Durability Design of Concrete
765 Structures - Final Technical Report: General guidelines for durability design and
766 redesign, Lyngby, 2000.
- 767 [5] C.Q. Li, Corrosion initiation of reinforcing steel in concrete under natural salt spray
768 and service loading-results and analysis, ACI Struct. J. 97 (2000) 690–697.
769 <https://doi.org/10.14359/9983>.
- 770 [6] C.Q. Li, Reliability based service life prediction of corrosion affected concrete
771 structures, J. Struct. Eng. 130 (2004) 1570–1577. [https://doi.org/10.1061/\(ASCE\)0733-9445\(2004\)130](https://doi.org/10.1061/(ASCE)0733-9445(2004)130).
- 773 [7] H.Y. Guo, Y. Dong, E. Bastidas-Arteaga, X.L. Gu, Probabilistic failure analysis,
774 performance assessment, and sensitivity analysis of corroded reinforced concrete
775 structures, Eng. Fail. Anal. 124 (2021) 105328.
776 <https://doi.org/10.1016/j.englfailanal.2021.105328>.
- 777 [8] Z.H. Lu, Y.G. Zhao, Z.W. Yu, F.X. Ding, Probabilistic evaluation of initiation time in
778 RC bridge beams with load-induced cracks exposed to de-icing salts, Cem. Concr. Res.
779 41 (2011) 365–372. <https://doi.org/10.1016/j.cemconres.2010.12.003>.
- 780 [9] D. V. Val, P.A. Trapper, Probabilistic evaluation of initiation time of chloride-induced
781 corrosion, Reliab. Eng. Syst. Saf. 93 (2008) 364–372.
782 <https://doi.org/10.1016/j.ress.2006.12.010>.
- 783 [10] M.M. Flint, J.W. Baker, S.L. Billington, A modular framework for performance-based
784 durability engineering: From exposure to impacts, Struct. Saf. 50 (2014) 78–93.
785 <https://doi.org/10.1016/j.strusafe.2014.03.003>.

786 [11] H.Y. Guo, Y. Dong, X.L. Gu, Durability assessment of reinforced concrete structures
787 considering global warming: A performance-based engineering and experimental
788 approach, *Constr. Build. Mater.* 233 (2020) 117251.
789 <https://doi.org/10.1016/j.conbuildmat.2019.117251>.

790 [12] Y. Ma, L. Wang, J. Zhang, Y. Xiang, Y. Liu, Bridge Remaining Strength Prediction
791 Integrated with Bayesian Network and In Situ Load Testing, *J. Bridg. Eng.* 19 (2014)
792 04014037. [https://doi.org/10.1061/\(asce\)be.1943-5592.0000611](https://doi.org/10.1061/(asce)be.1943-5592.0000611).

793 [13] F. Deby, M. Carcasses, A. Sellier, Simplified models for the engineering of concrete
794 formulations in a marine environment through a probabilistic method, *Eur. J. Environ.
795 Civ. Eng.* 16 (2012) 362–374. <https://doi.org/10.1080/19648189.2012.667716>.

796 [14] F. Deby, M. Carcasses, A. Sellier, Toward a probabilistic design of reinforced concrete
797 durability: Application to a marine environment, *Mater. Struct. Constr.* 42 (2009)
798 1379–1391. <https://doi.org/10.1617/s11527-008-9457-8>.

799 [15] T. Peng, A. Saxena, K. Goebel, Y. Xiang, S. Sankararaman, Y. Liu, A novel Bayesian
800 imaging method for probabilistic delamination detection of composite materials, *Smart
801 Mater. Struct.* 22 (2013). <https://doi.org/10.1088/0964-1726/22/12/125019>.

802 [16] A.C. Estes, D.M. Frangopol, Updating Bridge Reliability Based on Bridge
803 Management Systems Visual Inspection Results, *J. Bridg. Eng.* 8 (2003) 374–382.
804 [https://doi.org/10.1061/\(asce\)1084-0702\(2003\)8:6\(374\)](https://doi.org/10.1061/(asce)1084-0702(2003)8:6(374)).

805 [17] M.G. Stewart, Reliability safety assessment of corroding reinforced concrete structures
806 based on visual inspection information, *ACI Struct. J.* 107 (2010) 671–679.
807 <https://doi.org/10.14359/51664015>.

808 [18] F. Sahin, M.Ç. Yavuz, Z. Arnavut, Ö. Uluyol, Fault diagnosis for airplane engines
809 using Bayesian networks and distributed particle swarm optimization, *Parallel Comput.*
810 33 (2007) 124–143. <https://doi.org/10.1016/j.parco.2006.11.005>.

811 [19] E. Bobbio, A.; Portinale, L.; Minichino, M.; Ciancamerla, A. Bobbio, L. Portinale, M.
812 Minichino, E. Ciancamerla, Improving the Analysis of Dependable Systems by
813 Mapping Fault Trees into Bayesian Networks, *Reliab. Eng. Syst. Saf.* 71. 71 (2001)
814 249–260. [https://doi.org/10.1016/S0951-8320\(00\)00077-6](https://doi.org/10.1016/S0951-8320(00)00077-6).

815 [20] D. Straub, A. Der Kiureghian, Bayesian Network Enhanced with Structural Reliability
816 Methods: Application, *J. Eng. Mech.* 136 (2010) 1259–1270.
817 [https://doi.org/10.1061/\(asce\)em.1943-7889.0000170](https://doi.org/10.1061/(asce)em.1943-7889.0000170).

818 [21] D. Straub, A. Der Kiureghian, Bayesian Network Enhanced with Structural Reliability
819 Methods: Methodology, *J. Eng. Mech.* 136 (2010) 1248–1258.
820 [https://doi.org/10.1061/\(asce\)em.1943-7889.0000173](https://doi.org/10.1061/(asce)em.1943-7889.0000173).

821 [22] T.B. Tran, A Bayesian Network framework for probabilistic identification of model
822 parameters from normal and accelerated tests: application to chloride ingress into
823 concrete, University of Nantes, France, 2015.

824 [23] T.B. Tran, E. Bastidas-Arteaga, F. Schoefs, S. Bonnet, A Bayesian network framework
825 for statistical characterisation of model parameters from accelerated tests: application
826 to chloride ingress into concrete, *Struct. Infrastruct. Eng.* 14 (2018) 580–593.
827 <https://doi.org/10.1080/15732479.2017.1377737>.

828 [24] T.B. Tran, E. Bastidas-Arteaga, F. Schoefs, Improved Bayesian network configurations
829 for random variable identification of concrete chlorination models, *Mater. Struct.*

830 Constr. 49 (2016) 4705–4718. <https://doi.org/10.1617/s11527-016-0818-4>.

831 [25] F. V Jensen, T.D. Nielsen, Bayesian networks and decision graphs, Springer, 2007.

832 [26] S. Wu, L. Zhang, W. Zheng, Y. Liu, M.A. Lunteigen, A DBN-based risk assessment

833 model for prediction and diagnosis of offshore drilling incidents, J. Nat. Gas Sci. Eng.

834 34 (2016) 139–158. <https://doi.org/10.1016/j.jngse.2016.06.054>.

835 [27] D. Straub, Stochastic Modeling of Deterioration Processes through Dynamic Bayesian

836 Networks, J. Eng. Mech. 135 (2009) 1089–1099.

837 [https://doi.org/10.1061/\(asce\)em.1943-7889.0000024](https://doi.org/10.1061/(asce)em.1943-7889.0000024).

838 [28] T.B. Tran, E. Bastidas-Arteaga, Y. Aoues, A Dynamic Bayesian Network framework

839 for spatial deterioration modelling and reliability updating of timber structures

840 subjected to decay, Eng. Struct. 209 (2020) 110301.

841 <https://doi.org/10.1016/j.engstruct.2020.110301>.

842 [29] J. Hackl, J. Kohler, Reliability assessment of deteriorating reinforced concrete

843 structures by representing the coupled effect of corrosion initiation and progression by

844 Bayesian networks, Struct. Saf. 62 (2016) 12–23.

845 <https://doi.org/10.1016/j.strusafe.2016.05.005>.

846 [30] H.Y. Guo, Y. Dong, P. Gardoni, Efficient subset simulation for rare-event integrating

847 point-evolution kernel density and adaptive polynomial chaos kriging, Mech. Syst.

848 Signal Process. 169 (2022) 108762. <https://doi.org/10.1016/j.ymssp.2021.108762>.

849 [31] H.Y. Guo, Y. Dong, X.L. Gu, Two-step translation method for time-dependent

850 reliability of structures subject to both continuous deterioration and sudden events,

851 Eng. Struct. 225 (2020) 111291. <https://doi.org/10.1016/j.engstruct.2020.111291>.

852 [32] H.Y. Guo, Y. Dong, P. Gardoni, X.L. Gu, Time-dependent reliability analysis based on

853 point-evolution kernel density estimation: comprehensive approach with continuous

854 and shock deterioration and maintenance, ASCE-ASME J. Risk Uncertain. Eng. Syst.

855 Part A Civ. Eng. 7 (2021) 04021032. <https://doi.org/10.1061/ajr ua6.0001153>.

856 [33] T. Liu, R.W. Weyers, Modeling the dynamic corrosion process in chloride

857 contaminated concrete structures, Cem. Concr. Res. 28 (1998) 365–379.

858 [https://doi.org/10.1016/S0008-8846\(98\)00259-2](https://doi.org/10.1016/S0008-8846(98)00259-2).

859 [34] T. Vidal, A. Castel, R. François, Analyzing crack width to predict corrosion in

860 reinforced concrete, Cem. Concr. Res. 34 (2004) 165–174.

861 [https://doi.org/10.1016/S0008-8846\(03\)00246-1](https://doi.org/10.1016/S0008-8846(03)00246-1).

862 [35] B. Carnahan, H.A. Luther, Applied numerical methods, John Wiley & Sons, New

863 York, 1969.

864 [36] B. Martín-Pérez, S.J. Pantazopoulou, M.D. a. Thomas, Numerical solution of mass

865 transport equations in concrete structures, Comput. Struct. 79 (2001) 1251–1264.

866 [https://doi.org/10.1016/S0045-7949\(01\)00018-9](https://doi.org/10.1016/S0045-7949(01)00018-9).

867 [37] A. V. Saetta, R. V. Scotta, R. V. Vitaliani, Analysis of chloride diffusion into partially

868 saturated concrete, ACI Mater. J. 90 (1993) 441–451. <https://doi.org/10.14359/3874>.

869 [38] T. Luping, L.O. Nilsson, Chloride binding capacity and binding isotherms of OPC

870 pastes and mortars, Cem. Concr. Res. 23 (1993) 247–253.

871 [https://doi.org/10.1016/0008-8846\(93\)90089-R](https://doi.org/10.1016/0008-8846(93)90089-R).

872 [39] A. V Saetta, B.A. Schrefler, R. V Vitaliani, The carbonation of concrete and the

873 mechanism of moisture, heat and carbon dioxide flow through porous materials, Cem.

918 https://doi.org/10.1016/j.probengmech.2011.08.019.

919 [55] J.B. Chen, J.Y. Yang, J. Li, A GF-discrepancy for point selection in stochastic seismic
920 response analysis of structures with uncertain parameters, *Struct. Saf.* 59 (2016) 20–31.
921 https://doi.org/10.1016/j.strusafe.2015.11.001.

922 [56] H. Zhang, W. Zhang, X. Gu, X. Jin, N. Jin, Chloride penetration in concrete under
923 marine atmospheric environment – analysis of the influencing factors, *Struct.*
924 *Infrastruct. Eng.* 12 (2016) 1428–1438.
925 https://doi.org/10.1080/15732479.2015.1134588.

926 [57] B. Tu, Y. Dong, Z. Fang, Time-Dependent Reliability and Redundancy of Corroded
927 Prestressed Concrete Bridges at Material, Component, and System Levels, *J. Bridg.*
928 *Eng.* 24 (2019). https://doi.org/10.1061/(ASCE)BE.1943-5592.0001461.

929 [58] E. Bastidas-Arteaga, F. Schoefs, M.G. Stewart, X. Wang, Influence of global warming
930 on durability of corroding RC structures: A probabilistic approach, *Eng. Struct.* 51
931 (2013) 259–266. https://doi.org/10.1016/j.engstruct.2013.01.006.

932 [59] D. V. Val, R.E. Melchers, Reliability of deteriorating RC slab bridges, *J. Struct. Eng.*
933 123 (1997) 1638–1644. https://doi.org/10.1061/(ASCE)0733-9445(1997)123:12(1638).

934 [60] G.J. Okunaga, I.N. Robertson, C. Newtson, Laboratory study of concrete produced
935 with admixtures intended to inhibit corrosion, Hawaii, 2005.

936 [61] C. Andrade, C. Alonso, J. Fullea, PRO 18: International Workshop MESINA on
937 Measurement and Interpretation of the On-site Corrosion Rate, RILEM Publications,
938 2000.

939 [62] M.D. Shields, J. Zhang, The generalization of Latin hypercube sampling, *Reliab. Eng.*
940 *Syst. Saf.* 148 (2016) 96–108. https://doi.org/10.1016/j.ress.2015.12.002.

941 [63] J. Li, J.B. Chen, The number theoretical method in response analysis of nonlinear
942 stochastic structures, *Comput. Mech.* 39 (2007) 693–708.
943 https://doi.org/10.1007/s00466-006-0054-9.

946 **Appendix:**

947 **A1. Basic procedures of GLP-PSS**

948 The primary thought of GLP-PSS is to separate the sample space Ω_U into n_s disjoint d_i ($d_i < s$)-
949 dimensional orthogonal subspaces $\Omega_{s,k}$ ($k=1,2,\dots, n_s$). For each $\Omega_{s,k}$, stratified sampling is
950 achieved by good lattice points (GLP) [62]. For the sake of simplicity, the dimension of each
951 subspace d_i is determined as two, and point set within the first subspace $\mathbf{u}^{(1,j)}=(u_1^{(1,j)}, u_2^{(1,j)})$
952 ($i=1,2; j=1, 2,\dots, N$) can be written as:

953
$$u_i^{(1,j)} = \frac{2jQ_i - 1}{2N} - \text{int}\left(\frac{2jQ_i - 1}{2N}\right) \quad (36)$$

954 where $\text{int}(\cdot)$ denotes an integer operator that trims the fractional part in the bracket; and Q_i
955 ($i=1,2$) denotes the generator parameters where Q_1 equals one and Q_2 relies on N , as
956 summarized in Table A1 [63].

957

958 **Table A1 Parameters of Q_2 and N**

N	8	13	21	34	55	89	144	377	610	987	1597
Q_2	5	8	13	21	34	55	89	144	377	610	987

959

960 Then, the j -th sample $\mathbf{u}^{(j)}$ ($j=1, 2,\dots, N$) of GLP-PSS could be written as:

961
$$\mathbf{u}^{(j)} = \begin{cases} \left[\mathbf{u}^{(1,j)}, \mathbf{u}^{(2,r_{2,j})}, \dots, \mathbf{u}^{(D,r_{D,j})} \right]^T, D = \frac{s}{2}, & \text{if } s \text{ is even} \\ \left[\mathbf{u}^{(1,j)}, \mathbf{u}^{(2,r_{2,j})}, \dots, \mathbf{u}^{(D-1,r_{D-1,j})}, u_1^{(D,r_{D,j})} \right]^T, D = \frac{s+1}{2}, & \text{if } s \text{ is odd} \end{cases} \quad (37)$$

$$= \begin{cases} \left[u_1^{(1,j)}, u_2^{(1,j)}, u_1^{(2,r_{2,j})}, u_2^{(2,r_{2,j})}, \dots, u_1^{(D,r_{D,j})}, u_2^{(D,r_{D,j})} \right]^T, D = \frac{s}{2}, & \text{if } s \text{ is even} \\ \left[u_1^{(1,j)}, u_2^{(1,j)}, u_1^{(2,r_{2,j})}, u_2^{(2,r_{2,j})}, \dots, u_1^{(D-1,r_{D-1,j})}, u_2^{(D-1,r_{D-1,j})}, u_1^{(D,r_{D,j})} \right]^T, D = \frac{s+1}{2}, & \text{if } s \text{ is odd} \end{cases}$$

962 where $\mathbf{u}^{(1,j)}$ is obtained by Eq.(36); and $\mathbf{u}^{(k,r_{k,j})}$ is a pair of two-dimensional points by
963 implementing random permutation $\mathbf{u}^{(1,j)}$.