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Highlights

Highlights:

*  Adynamic Bayesian network-based durability assessment framework is developed;

e Time-varying environment and 2D chloride ingress are considered in durability
assessment;

* A novel computation method of conditional probability table calculation is
proposed;

* Avreal-world example is employed for the durability assessment of RC beams.
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Abstract: Reinforced concrete (RC) structures under the marine environment may be

subjected to chloride-induced corrosion of reinforcement, which significantly impacts
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the structural serviceability and reliability and further affects the sustainability and
10  development of society. However, most of the existing durability assessment methods
11  for RC structures only address their static and deterministic durability prediction and
12 assessment at the design stage given the constant environment, ignoring the influences
13  of stochastic environmental effects, uncertainties in structural properties, and inspection
14 results. To this end, this paper proposes a dynamic Bayesian network (DBN) based
15  durability assessment framework combined with a deterioration model that considers
16  random changes in environmental parameters, convective chloride ion transport, and
17  corrosion-induced cracking of concrete. In this framework, two-dimensional chloride
18 transport and its influences on the durability deterioration assessment are concerned
19  and achieved using the finite difference method. Besides, to reduce the deviations in
20  probabilistic evaluation, the good-lattice-point-set-partially stratified-sampling (GLP-
21  PSS) method is employed to establish a DBN framework. The proposed DBN
22 framework is used for sensitivity analysis through a real-world example to examine the
23  effects of the environmental model, chloride transport mode, and inspection results of

24 concrete crack on durability assessment.

25

26  Keywords: Dynamic Bayesian Network; environmental actions; durability assessment;
27  reinforced concrete (RC) structures.
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1. Introduction

Under long-term environmental effects (e.g., chloride ingress and concrete carbonation), the
durability of reinforced concrete (RC) infrastructures, including bridges and buildings, might
deteriorate progressively, affecting their reliability and safety and even threatening social
security and stability. In 2020, a report from American Road & Transportation Builders
Association (ARTBA) announced that more than 46,000 bridges in the USA are structurally
deficient and more than 37% of bridges need maintenance [1]. One severe issue related to the
durability deterioration of RC structures is erosion media-induced reinforcement corrosion. For
instance, under the marine atmospheric environment, chloride ingress is the main threat to the
durability of RC structures. According to a report from the Australasian Corrosion Association,
the maintenance cost of corrosion-related infrastructure such as bridges in Australia was
estimated to be eight billion Australian dollars [2]. It can be seen that the environmental impacts
and associated social impacts on the durability of RC structures are significant. Therefore, it is
of critical importance to estimate and predict the durability of RC structures under long-term
environmental actions.

The durability assessment for RC structures was usually based on deterministic or semi-
probabilistic methods [3,4], which might not be appropriate for the scenarios considering
random environmental parameters and structural properties. Therefore, it is necessary to
develop probability-based assessment methods for the durability assessment of RC structures.
For example, Li et al. [5,6] proposed a probabilistic three-stage prediction model to perform
the performance evaluation for RC structures subject to reinforcement corrosion. Since such a
model is based on mathematical equations, it is difficult to consider the physical mechanisms
of performance deterioration and thus may underestimate the non-linearity and stochasticity
within the life-cycle assessment of RC structures [7]. Therefore, many scholars have considered
the physical equations associated with chloride transport to assess the durability of RC
structures by reliability-based methods [8,9]. Furthermore, due to the non-linearity and
uncertainty of environmental factors, traditional reliability-based methods may be challenging
for the durability assessment of RC structures subject to complicated and harsh environments.

For this reason, Flint et al. [10] and Guo et al. [11] proposed a performance-based durability
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evaluation framework for integrating the effects of uncertainties within environmental effects,
e.g., global warming and physical models of erosion medium transport on durability evaluation.
Those durability assessments for RC structures focused on durability evaluation and prediction
during their design stages without considering the influence of inspections, while it has been
proven that inspections within the service life might affect the durability prediction results of
RC structures [12-14]. Thus, due to the negligence of inspection effects, most of the existing
durability assessments of RC structures might misestimate the durability performance of
structures and its uncertainty evolution in practical engineering. Therefore, it is necessary to
consider the effect of inspection on the durability assessment of RC structures.

In practice, Bayesian update methods are usually employed to perform probabilistic
inferences by integrating the collected data from monitoring systems or field inspections to
update the estimation results [15]. For instance, Estes and Frangopol [16] applied the inspected
data from bridge management systems to update the reliability of structures for life-cycle
analysis. Also, Stewart [17] utilized visual inspection of concrete cover damage to update the
durability and reliability of RC structures. However, since practical engineering systems
involve many influencing parameters, it may be challenging to implement data updating and
inference using the conventional Bayesian update methods. Recently, Bayesian network (BN)
methods have been widely used in uncertainty assessment and failure analysis in many fields,
including aerospace, electronic engineering, and civil engineering [18-20]. BNs are built based
on joint probability distributions among variables within the investigated system, and the
inspection data of certain variables can update the distribution information of all variables. To
date, BN has been widely used in the durability and reliability assessment of RC structures
[20,21]. Ma et al. [12] established BNs combined with in-situ loading tests to predict corrosion
damage and structural response of existing RC bridges. Besides, Deby et al. [13,14] performed
a probabilistic durability assessment for RC structures subject to chloride ingress based on BN
and reliability theory. In addition, Tran et al. [22—-24] proposed a BN-based method to identify
stochastic parameters in chloride transport models from inspection data. However, these studies
are usually based on static Bayesian networks (i.e., containing a one-time slice of the network)
and might have difficulties considering the time dependence among parameters (e.g.,
environment and material properties), which in turn may misestimate the time-dependent
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performance of RC structures. Therefore, applying static BNs in the durability assessment of
RC structures might be inappropriate under long-term environmental effects.

To deal with the time dependence issue within static BN inference, existing studies
extended static BNs to dynamic Bayesian networks (DBNs), which usually have more than one
time slice of the network to describe stochastic processes [25,26]. Based on DBNs, Straub [27]
proposed a stochastic framework for modeling structural deterioration processes and validated
its effectiveness by a case of fatigue crack evolution. Tran et al. [28] implement DBN to update
the time-dependent reliability via inspection data for decayed timber structures. Besides,
concerning the durability assessment for RC structures, Hackl [29] proposed a framework to
integrate DBN modeling and structural analysis for the time-dependent reliability assessment
of corroded RC structures. Based on Hackl’s framework, monitoring and inspection information
at different time instants can be integrated to achieve the life-cycle assessment for deteriorating
RC structures. However, many issues still need to be urgently addressed in the existing DBN
framework of RC structures. For instance, the existing DBN framework employed a simplified
one-dimensional Fick’s law for chloride transport prediction, which might be inappropriate for
two-dimensional components such as RC beams and columns in practical engineering [9]. In
addition, supposing that more advanced and complicated deterioration models were applied, it
would be challenging to capture the joint distribution information for the DBN model. The
primary reason is that a brute random sampling might cause a substantial computational burden
[30-32] while existing studies related to DBN modeling did not provide efficient
recommendations to address such an issue. As a result, it is still necessary to propose a new
framework for the durability assessment of RC structures to obtain an excellent trade-off
between the sophistication of the adopted deterioration models and the efficiency of the DBN
analysis.

This study proposes a DBN-based framework for the durability assessment of RC
structures subject to environmental actions. The framework mainly considers the stochastic
process of environmental parameters, uncertainties in the erosive media transport, and the
effects of inspection information on the durability assessment of RC structures. Based on the
existing studies, durability deterioration models are developed considering the time-varying
environment, two-dimensional diffusion and convection effects of chloride transport, and
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concrete cracking. Using a low-deviation pseudo-random sequence sampling method, i.e.,
good-lattice-point-set-partially stratified-sampling (GLP-PSS), and considering the weight of
each sample, the joint distribution of each parameter in DBN is determined by a limited number
of samples. The proposed DBN framework is employed for durability assessment and
sensitivity analysis of RC beams by a case study of RC beams in an actual environment to verify
the effects of the environmental model, chloride transport mode, and inspection results on

durability assessment.

2. Probabilistic durability assessment for RC structures

In this framework, the durability assessment of concrete structures is separated into three
primary steps, as shown in Fig. 1. The first step is to build a durability deterioration model for
RC structures. An appropriate deterministic model is essential since such a model is utilized to
provide the a priori information for subsequent Bayesian inference. In this paper, the
deterministic model for the durability of RC structures is established mainly in terms of
previous studies with experimental verifications [11,33,34]. The main processes of
deterministic analysis are as follows: (1) performing environmental modeling; (2) performing
erosion medium transport analysis based on the boundary conditions provided by the
environmental model; and (3) calculating corrosion degree and crack width on the concrete
surface. Since the main threat to RC structures in the marine atmospheric environment is
chloride attack, this study focuses on the physical modeling associated with chloride ingress
within concrete. More detailed information relating to durability assessment refers to Section 3.

Then, based on the proposed durability assessment model, a number of stochastic analyses
are performed in the second step, as shown in Fig. 1. However, using traditional large-scale
Monte Carlo simulations (MCS) is challenging given the uncertainties in environmental and
material properties and the non-linearities in durability assessment. In order to reduce the
computational burden, the thought of point evolution [30-32] is introduced to select a limited
number of representative samples and perform deterministic simulations separately (see Section
4.2.1 for more information). After completing the stochastic analysis, all computational results

need to be collected and used for the DBN modeling.
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Furthermore, a series of critical parameters are extracted as DBN nodes according to the
proposed durability deterioration model. Meanwhile, the relationships among the nodes under
the same and adjacent time points are determined in terms of physical models, and
corresponding links in DBN are established. Then, the prior probability distribution of each
node can be obtained through the results of the probabilistic analysis of each representative
sample in the second step. The main algorithms in DBN modeling refer to Section 4.2.2. During
the DBN modeling, the inspection nodes could be specified. Next, the time-dependent
probability distribution of other nodes of interest can be inferred in the subsequent inference
analysis via assigning posterior information to the inspection nodes. In this manner, a bridge
between the a priori probability distributions obtained by the physical models and the inspection

results from practical engineering can be established by using DBN.
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Fig. 1 General framework for durability assessment of RC structures

3. Deterioration models for RC structures

3.1. Environmental parameters modeling

Modeling environmental parameters such as ambient temperature, relative humidity (RH), and
chloride deposition are critical in the durability assessment of RC structures. However, due to
the non-linearity and uncertainty of the time-varying marine atmospheric environment, it is
challenging to predict climate evolution accurately. For this reason, a combination
environmental model proposed by Flint [10] is adopted to account for the uncertainty of global
warming and the daily and seasonal variation through the Fourier series, as shown in Eq.(1)

[11].
ep (er t) = epsea (t) + epdai (t) + epinc (e(:’t) + gep (1)

where ec is the characteristic value of exposure conditions (environmental temperature), i.e.,
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the average temperature increase from 1970 to 2090 [10]; ep denotes the environmental
parameters (i.e., temperature, RH, and chloride deposition) given ec and time t; and epsea(t),
epdai (t), epinc (ec, t), and eep are the seasonal variation, daily variation, increasing tendency, and

zero-mean noise, which could be computed by Egs. (2)-(4), respectively.

Clw (t —t ) | 2w, (t —t )
= . - -7 . -\ 7 2
P, (1) =2, sm{ 368 +bl}ta2 sm{ 365 +b, [+a, (2)
Py (t) = 3y, —ay, cos(w,t) +by, sin(w,t)—a,, cos(2w,,t)—b,, sin(2w,t) (3)

n(ec)

ep,,. (ec,t) =a(ec)-[(t—t,)/365] (4)
where t and trer are current and reference time (day); ao is the baseline average mean annual
value; a1, az, by, b2, w1, and w- are the parameters of seasonal variation; ao1, a1, a1, b1, b21 and
wi are the parameters of daily variation; and a(ec) and n(ec) are the parameters of increasing
tendency.

Considering the effects of global warming, the temperature rising is predicted by a power
function Eq. (4) whose parameters a(ec) and n(ec) could be acquired by fitting measured data.
For the scenario that lacks associated data, citation [10] provides an empirical model of a(ec)
and n(ec), i.e., Egs. (5) and (6).

a(ec) =5.04x10°ec* —3.57x10%ec +6.49x107° (5)

n(ec) =3.59x10'ec +3.33x10™ (6)

3.2. Calculation of chloride ingress
To assess the influences of environmental parameters on chlorine ingress, the following
phenomena must be considered: chloride transport, moisture diffusion, and heat transfer, which
can be indicated in the following form:

§%=divJ+divJ' (7

diffusion  convection

in which t is the time parameter; ¢, £, J, and J’ are the terms relying on the investigated physical
phenomenon, as listed in Table 1.

In general, the calculation process of chloride ingress is separated into four main steps [11]:
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(1) Obtaining the boundary conditions for each physical phenomenon via the model from
Section 3.1;
(2) Solving the heat transfer equation;
(3) Solving the moisture diffusion equation; and
(4) Solving the chloride transport equation.
Considering the high non-linearity of Eq.(7), the finite difference method (FDM) is
adopted to solve Eq.(7) numerically. Meanwhile, concerning two-dimensional transport, the

alternating-direction implicit (ADI) FDM would also be applied [35].

Table 1 Parameters in Eq.(7) under different physical phenomena

Physical phenomenon 0] ¢ J J’
Chloride transport Crc 1 D¢"VCrc CtDn"Vhgru
Moisture diffusion hrH OWe/ONRH DnVhgrnH 0
Heat transfer T PeCq AVT 0

The detailed meaning of each term in Eq.(7) and Table 1 will be introduced in the following
contents, where Cr is free chloride content (kg/m® of pore solution); hru is the RH of pore
solution; T is the temperature; we is the moisture content, i.e., evaporable water content (m?
pore solution/m? concrete) [36]; Dc" and Dy" are the apparent diffusion coefficients of chloride
and moisture (m?/s); pc, Cq, and / are concrete density, heat capacity, and thermal conductivity;
and Dn, denotes the coefficient of humidity diffusion (m?/s).

Regarding chloride transport, the governing equation could be written as Eq.(8) in terms

of Eq.(7) and Table 1 [9]
oC s . «
Fﬂ’:dlv(DCVCfC)+d|v(CfCDthRH) (8)
in which D¢ and D" could be described by Eq.(10), respectively.

Considering two-dimensional chloride transport, Eg.(8) could be rewritten as

2 2
ool S ale o) o
X X

where x and y are the horizontal and vertical coordinates (m) of cross-sections.

* — Dc,ref fl(T) f2 (t) f3(hRH) * — Dh,ref gl(T)gz(te)gs(hRH)
° 1+(1/w,)(6C, 18C,)" " 1+(1/w,)(8C,, /8C,,)

(10)
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in which Dcret and Dnrer are the reference coefficients of chloride and humidity diffusion,
respectively [37]; Cuxc is bound chloride content described by Langmuir isotherm, Eq.(11) [38];
te is the equivalent hydration period (d); T is the current temperature (K); f1(T), f2(t), and f3(h) are
the factors of temperature, time, and RH related to chloride transport; and g1(T), g2(te), and ga(h)
are the factors of temperature, time, and RH related to moisture transport, respectively.

Cbc = th - WeCfc = aLCfc/(l_'_ ﬂLCfc) (11)

in which C is the total chloride content (kg/m®); and a and S. are binding constants.

Table 2 Factors of temperature, time, and RH in Eq.(10)

Physical phenomenon fi/g1 f2lgo falgs
- U 1 l 7 Me _ 4 -1
Chloride transport exp| — -= Ler L )4
L Rgas Tref T i t (1— href )
U, (1 1) 13 1-a,
Moisture diffusion expl —-| —-= 0.3+ |== a, + -
p Rgas (Tref T] \/; ° l+((l_ hRH)/(l_hc)) "

Notes: Uc and Un are the activation energy of chloride diffusion and moisture diffusion, respectively; Rgas is
the gas constant; Trer, trer, and hret are the reference temperature, time, and RH in pore solution, respectively;
and ag is a ratio of Dn, min t0 Dp, max.

Besides, for moisture diffusion, the form of Eq. (7) can be substituted as [9]

e = e M =div(D,V(hg,)) =D, athH + ahRgH (12)
ot ohg, OX oy
where Dy is relying on T, te, and RH, which could be calculated through [39]
Dh (T 'te1 hRH) = Dh,ref gl(T)gz(te)gs(hRH) (13)

To evaluate moisture content we, a three-parameter model of the adsorption isotherm is
employed [40]
1-(1/N)|C-1
w, = SLABL ,C =exp(855/T),k, = [L-@/N)] ,
(1 k.hee )[1+(C = 1)k gy, C-1 (14)

N =(2.5+15/t)(0.33+2.2wc) N, V,, = (0.068-0.22/1)(0.85+0.45wc)V,

ct? 'm

ct?

in which V¢t and Nt are the factors of cement type (Vct=0.9 and N¢=1.1 for type | cement in
ASTM [40]).
In addition, a simple strategy from [11] was adopted considering the difference between

the wetting and drying processes, i.e., the hysteresis effect: [41,42]:
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(1) D, ref in EqQ. (13) is substituted by DY, ref = 3 x 10°2° m?/s under a decreasing hrry;
and
(2) D ref in Eq. (13) is substituted by D", rer = 15 x 1071% m?/s under an increasing hgn.

Concerning heat transfer, the form of Eq. (7) can be replaced by [43]

2 2
PPt S o -
ot ox~ oy

(15)
3.3. Prediction of reinforcement corrosion and concrete cracking

Once the chloride content on the reinforcement surface exceeds the critical value Cg,
reinforcement corrosion initiates and enters the corrosion propagation stage. In this stage, the

radius reduction Ar of steel bars could be computed by Eq.(16) in terms of Faraday’s law.

Ar = [0.0116i,, (t)dt (16)

in which icon(t) denotes the time-dependent corrosion current density. In this study, icor(t) is

predicted via an empirical model [33]

In(L.08i,,, (t)) = 7.89+0.7771In(L.69C,, ) —3006/T, —0.000116R, +2.24t, °*° & (17)

corr bar

where Cyar is the chloride content on the surface of steel bars; Tc is the temperature inside the
concrete; Rc (Ohms) denotes the resistance of concrete cover; tpro(year) is the time since the
corrosion propagation stage initiates; and ¢ is the term of white noise following N(0, 0.3312)
[10].

Furthermore, according to Eq.(16), the residual cross-sectional area Ar and the reduction

amount of the cross-sectional area AAs could be calculated by

2
A=7z(d0—2-Ar) AA = Ay - A (18)
where do and Ao are the initial reinforcement diameter and cross-sectional area, respectively.
On the other hand, for the sake of simplicity, based on the loss of cross-sectional area, the

width of corrosion-induced crack o (mm) is calculated by an empirical model [34]

w=K-(AA —AA)) (19)
where K is 0.0575 (mm™); and AAg is the reduction of the cross-sectional area when concrete

cracks are activated.

10
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AR, = A, {1—[1— 2/d,(7.53+9.32¢, /d, )10-3]2} (20)

where ¢t (mm) is the cover thickness of RC structures.

It is noteworthy that corrosion-induced cracks bring more complicated effects on the
durability performance of RC structures, with a comprehensive impact on their permeability,
thermal conductivity, and resistivity. Limited by existing studies and considering the effects of
corrosion-induced cracks on chloride ingress, it is usually assumed that the apparent diffusion
coefficients increase and could be predicted by empirical models once concrete cracking
happens [44,45]. For cracked concrete, the diffusions coefficient of chloride and humidity are

denoted as D¢» and Dn« and calculated by Eqgs.(21) [46] and (22) [47], respectively.

D” = fw1(a’)' D, (t) f (a)) =31.610° +4.73w+1, ®>0.1mm (21)

' Twl

*

DY =f,(®) D, (1), f, (@)=1+k, -o’/s, (22)
in which o is the width of concrete crack (mm); kn is a parameter relating to the environmental

conditions (10° mm [47]); and sn is the mean crack spacing (ranging from 70 mm to 300 mm

in [47]).

4. Dynamic Bayesian network and its implementation

4.1. Static and dynamic Bayesian Network

BNs are probabilistic models of directed acyclic graphs (DAGS) [25,48]. BNs consist of nodes
and links indicating dependencies among nodes. In general, nodes in BN are modeled through
continuous or discrete random variables (X1, Xz,..., Xn) and assigned conditional probability
density function (PDF) or probability mass function (PMF). As mentioned before, there exist
two types of BNs: static and dynamic BNs. For static BN, taking four discrete nodes (X1, X2,
X3, X4) static BN as one example, X1 and X; are the parent nodes of Xz and X4, while X3 and X4
are the child nodes of X1 and Xz, as illustrated in Fig. 2. The joint PMF of all nodes P(Xz1, X2,

X3, X4) could be expressed as follows:
P(Xy, X5, X4, X, )= P(X)P(X,)P( X, Xy, X,)P(X, [ X, X,) (23)

in which P(X1) and P(X>) are the PMFs of X1 and Xz, respectively; and P(X3|X1, X2) and P(X4|X1,

X2) denote the conditional PMFs of X3 and X4 given the values of X1 and X». For discrete nodes,

11
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the conditional PMF of each node is stored in the conditional probability table (CPT).

Fig. 2 Four discrete nodes of static BN
The possibilities of the nodes can all be updated once new evidence is obtained. For

instance, if one inspection indicates that node Xz is a, the joint PMF of other nodes (i.e., X1, X2,

and X4) could be computed by Eq.(24).
CP(Xy Xpa, X)) P(X)P(X,)P(al X, X,)P(X, ] X, X,)
P(X0Xo X, ) = Pla) 3 P(X,)P(X,)P(a] Xy, X,) (24)

X1, X,

Eq.(24) is the critical bridge connecting the inspection results to the probability
distributions and dependencies among the investigated nodes. No matter how complicated the
static BN is, the primary inference algorithms of static BN remain unchanged. Concerning the
scenarios of discrete nodes, exact inference algorithms, e.g., junction tree algorithms, could be
adopted to achieve BN inference [49].

On the other hand, DBNs consist of a series of slices containing a static BN with a
collection of random variables Z'={X1', X2',..., Xn'} at the i-th time step [50]. Also, the slices in
DBNs are connected by directed links, and these links represent temporal dependencies
between nodes. The joint probability distribution of all random variables over time T, P(Z%,

Z?,....Z"), could be abbreviated as P(ZXT), which can be expressed as [29]:
P(Z”):ﬁP(Z‘+1|Z”) (25)
i=1
where P(Z"*YZY) is the conditional probability distribution at the i+1 th time slice given the
combination of nodes at all previous slices.
By adopting the Markov assumption that the probability distribution of each time slice
depends only on the probability distribution of the last time slice, Eq.(25) could be rewritten

as.

P(z”):ﬁp(zi+1 1Z') (26)

where P(Z"*Y|Z") is the conditional probability distribution at the i+1 th time slice given the

12
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combination of nodes at the i-th time slice.

Fig. 3 shows an example of two-time slices of DBN (i.e., 2TBN). Based on Markow’s
assumption, unrolling such a 2TBN to T time-slices of DBN requires the probabilistic
information of the first two time slices because the residual time slices are the same as the
second time slice. Such a strategy can effectively reduce the difficulties in DBN modeling.
Meanwhile, inference algorithms of BN could also be utilized for DBN inference. However, if
the time slices and the number of nodes increase, the computational burden might increase
dramatically. Thus, Murphy [50] proposed a frontier algorithm by a smoothing strategy
including the forward and backward operators to reduce the time complexity in DBN inference.

The detailed information on Murphy’s algorithms refers to [50].

1sttime sllce 2nd tlme slice

Fig. 3 Two time slices of dynamic BN

4.2. Establishment of DBN in durability assessment

The deterioration models in Section 3 are converted to a DBN to implement the probabilistic
durability assessment of RC structures. In terms of Eqgs.(1)-(22), some critical parameters such
as ec and Dcref are extracted as nodes, and directed links are determined, as illustrated in Fig. 4.
Some parent nodes in Fig. 4, such as ec and csurf, are time-independent variables that remain
constant in all time-slices, so these nodes only appear in the first time slice of the DBN, and
their probability distributions could be preset. Other child nodes, such as Coar and icorr, are
stochastic processes, so these nodes exist in all time slices. For those child nodes, their
probability distributions are calculated by sampling simulations based on the stochastic
processes of the deterioration models. In this study, for simplicity and exact inference, only
discrete random variables are considered in DBN modeling [51,52]. Therefore, discretization
is required for continuous random variables. After discretization, it is necessary to calculate the

CPT of each node to perform DBN inference. The detailed steps are described below.
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Fig. 4 DBN modeling for durability assessment of RC structures

4.2.1. Selection of representative samples

To accurately compute the probability distribution of each node, large-scale sampling is
generally applied by Monte Carlo simulation (MCS) or Latin Hypercube simulation (LHS) in
existing studies. While large-scale sampling usually brings accurate analysis results, such a
sampling strategy can be time-consuming and inefficient, especially for high-complexity and
nonlinear cases. In this study, the method of selecting representative points in PDFM is also
employed in DBN modeling [30-32].

The first step in selecting representative samples for the DBN is to capture a point set
for the parent nodes in Fig. 4. Then, the point set @ is substituted into the deterioration models
in Section 3 to obtain the stochastic process for each child node in Fig. 4. Next, the point set 8
and its corresponding stochastic processes of child nodes would be further utilized to compute
the CPT of each node. Therefore, the uniformity of the point set # might affect the accuracy of
the prior information in the DBN modeling.

To obtain a uniform @, it is necessary to get a uniformly distributed point set u in [0,1],
and then the point set @ can be obtained by its cumulative distribution function (CDF), i.e.,
Eq.(27). Herein, the point set u is gain by using a partially stratified sampling method (GLP-

PSS) based on a good lattice point set (GLP) [53], whose basic algorithm is described in
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o =F7, (W) =125, j=12,....N

(27)
where s and N are the number of parent nodes and representative samples; and F~, (-)

denotes the inverse CDF of the i-th parent node ©;.

Unlike the traditional sampling strategy, where each sample has a uniform weight (1/N),
each representative sample may have a different weight, i.e., the assigned probability paj, which
could be computed by Eq.(28) [54].

P =], Po(®) 80, =12...N (28)

in which pe(8) denotes the joint PDF of all parent nodes ©; and Q; is the Voronoi volume of
the j-th sub-domain.
Furthermore, in terms of the assigned probability of each sample, point set @ could be

revised into a new point set o by Eq.(29) [55]

) N )
o) = F®i‘l{z o 1{0" <9i(1)}+0.5pa’j},i =12,...,5,j=12,...N (29)
k=1

in which I{-} is an indicator function that equals one if the term in the bracket is actual.

To present the performance of the employed point selection method, 54 two-dimensional
standard Gaussian distributed samples @ = [61, 62]" is selected, as illustrated in Fig. 5. It can be
noticed that both the uniform points u and Gaussian samples @ by the proposed method perform

a better uniformity than those by LHS.

GLP-PSS based samples *  LHS based samples
3 . . .

1 % o7 T P

o« * ey,
¢ ° * % oF * 2r * *
08T, 2 . . N "; « *
. . %y
* . ¥ 1 2 R
0.6 x ¥ . % o ¥ 1 S
~ ° * * ° o ~ . LI -
N * . % * o < 0 *o x %g* e °
* ° * o o gx Yo -
0.4_ 0 * * . * 3 . * * e o*' .*
% . ¥ % 1 oy ¥ ]
* * * « ¥ *
L . * * o
0.2F . w*e L 5 *
* R * .
o, % ., . *
0 = : Heta : -3
0 0.2 0.4 0.6 0.8 1 -3 2 1 0 1 2 3
u, 91
(a) (b)

Fig. 5 (a) 54 two-dimensional uniform point set u, and (b) 54 two-dimensional Gaussian
distributed point set 8
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4.2.2. Node discretization and CPT computation

Firstly, the parent nodes in Fig. 4 are investigated. The discretized parent nodes are denoted as

0 :[G',..., @J, the discrete number is noted as ni, and the corresponding discretization

scheme is represented as Di=[d1, do,...,dni+1] With equal intervals. Then, the PMF of the i-th

parent node ®’; can be written as [52]:

P (K)=Fo (de.y)—Fo (d ) k=L,n,i =12, (30)

0,
where Fei(+) denotes the CDF of ®i. The lower and upper bounds (d; and dni+1) could be preset
for parent nodes. Supposing that ®; follows Gaussian distribution, di and dni+1 could be

calculated by Eq.(31).

d,=E(0,)- -0(9,),d, ., =E(0,)+a,-c(6,) (31)
in which E(+) and o(+) are the mean value and standard deviation (STD) in the bracket; and ai is
the scaling factor (oi = 4 for Gaussian distribution).

On the other hand, denoting that original and discretized child nodes are ¥=[¥4,..., ¥]
and W =[¥,,..., ¥, |(cis the number of child nodes), their lower di and upper bounds dn1
can be determined by the minimum and maximum values of these child nodes in the
representative samples from Sections 3 and 4.2.1. Furthermore, unlike PMFs of parent nodes

that could be computed directly by Eq.(30), the PMFs of child nodes (i.e., CPT) come from the

joint distribution of investigated child nodes and their parent nodes. Inspired by Tran’s study

[22], the CPTs of child nodes W, (m=1,...,c) are computed by the following step:
(1) The discrete number of ¥ _ is noted as ny, and parent nodes could be found via its DBN

scheme (such as Fig. 4) and marked as a collection set @, = [@b(@e] (b and e denote

the serial numbers of the parent nodes in topological order from the beginning to the end of
the sequence). Corresponding discrete numbers are also collected as npa = [No,...,Ne]. For
the first representative sample and the first time slice, let j = 1 and k = 1. For other time
slices, the child node of W’ at the last time slice is also a parent node, and ®’, and n, equal

¥’m and ny, respectively;

(2) Determine the state Xy of the j-th sample and the k-th time slice of ¥ (denoted as \P,]Lk})
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based on the discretization scheme Dy, of W ;

(3) From np to ne, determine the states of the j-th sample of parent nodes in topological order
and store these states as Xpa= [Xpap,....Xpae]. Meanwhile, calculate a state variable Xeemp by
Eq. (32);

e p-1
Xtemp = Xpa,b + Z (Xpa,p _1) n, (32)
p=b+1 0=

(4) Then, the value of the Xemp-th row and Xy-th column of CPT will be incremented by paj,
i.e., Eq. (33);

CPT (X ygmp: Xy ) = CPT (X gps X )+ Ps (33)

temp? “*¥
(5) For the CPT of the first time slice, if j <N, let j=j+1, and repeat step (2). For the CPT of
other time slices, if k < T, let k = k+1, and repeat step (2); and
(6) When step (5) is over, the final CPT could be normalizing itself.

The above steps are summarized in Algorithms 1.

Algorithm 1 CPT computation for child nodes

1 Determine the investigate child node ¥, and let npa=[N,..., Ne]
2 For j=1, ..., N (number of representative samples)

3 Fork=1,...,T

4: Xy = state of ¥, "]

5: Xiemp = 0

6: Forp=h,...,e

7 Xpa,p = state of @

8 Ifp:=b

9: Xtemp = Xtemp + Xpa,p

10: Else

11: Keemp = Xeemp + Lp—ps1(Xpap — 1) - [Th=p 7o
12: End

13: End

14: Let CPT(Xiemp: Xow) = CPT(Xemps Xow) + P j

15; End

16: End

17: Normalize CPT

To demonstrate the efficiency of the proposed CPT calculation method, the BN in Fig. 2
is taken as one example. Within the BN, x1 and x> are supposed to follow the standard Gaussian

distribution, and x3 can be calculated by Eq.(34).
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X, =X + X (34)

Then, 376 GLP-PSS-based samples are selected according to Section 4.2.1, and the CPT
of x3 is calculated using the method in Algorithm 1. Meanwhile, 376 LHS and 10° LHS-based
samples are generated to compute CPT of x3 for comparisons. For the sake of simplicity, the
discrete numbers of all nodes are set as 4, and the PMF of x3 under four combinations of x1 and
X2 are compared:

(1) x1€[-4, -2] N x2€[-2, -0];

(2) i €[-4,-2] N €10, 2];

(3) x1€[0, 2] N x2€][0, 2]; and

4)x1€[-2,0] Nx2€[2, 4].

Those PMFs of x3 by different methods are presented in Fig. 6. As indicated, in the above
four scenarios, the PMFs of x3 by 376 GLP-PSS-based samples agree with those by 10° LHS
samples, while the PMFs of 376 LHS samples perform poorly compared to the proposed
representative sample method. This phenomenon may be owing to the dispersion of the LHS
samples (Fig. 5) and the equal weight of each sample. Such results also demonstrate the
efficiency and accuracy of the proposed CPT calculation method in the case of a small number

of representative points.

100 T T T 100 . . .
Eere] 376 GLP-PSS samples
N &0 . &0 10" LHS samples
é E E=—=1376 LHS sarmples
= 60 = G0
=] =] ‘ ]
g a € a0 Nk
= [-m &
20 20 §H SEERNE
B NE N
0 0 R
0 25 5 15 I 0 23 5 1.5 I
State intervals nh} State intervals nJ'.H
(a) (b)
100 100 =
80 &0 H
E ol E 60 =
=] = N | g E
g 40 : £ 40 % : =
& : & Nt =
20t R - 20 : § : =
H N 1N NE
25 5

5 73 10 ] 25 5 735 10
State intervals of x_ State intervals of x_
(c) i (d) )
Fig. 6 PMF of x3 under different combinations: (a) x1 €[-4, -2]Nx2 € [-2, -0]; (b) x1 €[4, -
2]1Nx2 €10, 2];(c) x1 €0, 2]Nx2 €10, 2] ; and (d) x1 E[-2, 0]Nx2 E[2, 4]
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5. Numerical study

5.1. Problem description

In this section, the durability of RC beams under the marine atmospheric environment is
investigated to demonstrate the applicability of the proposed framework. RC beams are
supposed to be located on the west coast of the Yellow Sea from 2010 [11]. The cross-section
and cover thickness are 200 x 400 mm and 25 mm, respectively. The primary information on
environmental parameters refers to previous studies [11,56], in which the parameters of Eqs.(1)
-(4) are summarized in Table 3. Based on the earlier studies, the distribution types and
parameters of all parent nodes in Fig. 4 are listed in Table 4.

According to the proposed framework, the first step is to generate 610 representative
samples according to the deterioration models from Section 3 and the point selection methods
in Section 4.2.1. Since all nodes are continuous variables, those nodes need to be discretized,
and their CPTs are computed and assigned to all nodes in all the time slices using the methods
in Section 4.2.2. For simplicity, the time interval and slices in DBN are preset to three years

and 18, and the discrete number of each node (both for parent and child nodes) is set to six.

Table 3 Environmental parameters in Egs.(1)-(4) [11]

Temperature Humidit Chloride deposition Temperature Humidit Chloride deposition
(°C) y (% wt of concrete) (°C) Y (% wt of concrete)
ao 12.78 0.76 Csurt an 0.1326 -0.0942 -
a -12.02 0.13 0.052 an 2.111 5.866 -
az 1.35 -0.03 - b1 1.012 -8.576 -
b: 2.27 5.43 -0.056 Wi 0.2333 0.5206 -
b2 -5.39 -0.29 - axn 2.188 6.334 -
Wy 6.33 6.84 - D21 0.3616 -2.548 -
tref 149 149 - - - -
Table 4 Distribution types and values of parent nodes
Parameters Distribution 0  Ref | Parameters Distribution 0 Ref
ec(°C) Uniform 0 3.5 [11] | de(mm) Gaussian 25 0.05 [57]
Csurf (Wt% of cement)  Gaussian 0.65 0.1 [11] | ce(Wt% of cement) Lognormal 0.4 0.1  [58]
Do(10* m?/s) Lognormal 1.6 0.1 [59] | Re(kQ) Lognormal 25 0.1 [10]

Note: « and 6 are the lower and upper bounds for the uniform distribution value, while x and ¢ are the mean and
coefficient of variation (COV) for other distributions.
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5.2. Inference results

After establishing the DBN, the following task is to infer and evaluate the durability of RC
structures using Murphy’s DBN inference algorithms [50]. In this case, it is supposed that the
probability of detection (PoD) equals one/the widths of concrete crack are detected at several
inspection instants, i.e., 3, 12, 21, 30, and 39 (years), and three possible inspection results of w
(mm) are considered: w1 € [0, 0.1], w2 € [0.2, 0.3], and wzE [0.5, 0.6]. The DBN was
applied to infer durability assessment parameters (e.g., Coar, icorr, Ar, and w) subjected to
different inspection results and inspection instants to study the effects of inspections on the

durability of RC structures.

5.2.1. Effects of inspections on chloride content of reinforcement surface

This subsection investigates the influences of crack width detections on char. FOr comparison
purposes, three ranges of cnar (Wt% of cement) are taken into account: cparr € [0,0.2], Cbar2€
[0.4,0.6], and cpar3€ [0.8, 1], representing low, middle, and high levels of total chloride content
Ctc, respectively. The time-dependent probabilities of coar under different inspection results are
illustrated in Fig. 7 and Fig. 8, where all the probabilities of crar1 decrease versus time, and those
of char2 and Crarz increase with time. It can be noted that the probability of crars after 51 years
suddenly increases by about 100% compared to the previous year, while that of cpar after 51
years slightly drops. Such phenomena indicate that chloride content on reinforcement surfaces
might increase dramatically at the end of service life due to the development of concrete cracks.

As shown in Fig. 7, it can be found that the PMFs of Cpar (including Coart, Coar2, and Cparz)
given the third-year inspection result of w: basically agree with those without inspection,
meaning that the early inspection of small crack width has few influences on the probability
distribution of cpar. In addition, given the third and 39th inspection of w1, the probability of Char1
is exceeded by that of cparz after 10 and 15 years, respectively, and exceeded by that of Crars after
26 and 38 years, respectively. Thus, the delay of inspection instant of w1 reduces the decreasing
rate of the probability of char1 Over time. Furthermore, for coar1, its probability after 51 years
increases by 2.3 times, given the 39th-year inspection result of w: compared to that without
inspection. Besides, the probability of cware decreases with the inspection instants (about 1.7%

to 52% compared to no inspection) from the sixth year to the 48th year. In Fig. 7, if small crack
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widths are detected at the end of service life, the probability of moderate chloride content on
the steel surface might increase. In addition, long inspection instants can significantly reduce
the probability of chars by 46% to 60% compared to no inspection at the initial time, where such
an effect also decreases over time. Generally, the probability distribution of cwar given the
concrete width of w1 is more likely to be concentrated at low to middle levels than no inspection,

and such an effect became more pronounced with longer inspection instants.
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No inspection & ¢ Inspect at the 39th year & Cpar

bar3 3

Fig. 7 Time-dependent probability of cwar SUbject to w1 and different inspection instants

Also, Fig. 8 displays the probabilities of cpar at the inspection results of w.. Given the 12th
and 39th inspection of w., the probability of cpar1 is exceeded by that of cpar2 after 7 and 13 years,
respectively, and exceeded by that of cparz after 20 and 28 years, respectively. Thus, for the
inspection of w> earlier than 21 years, inspection increases the changing rate of the probability
of cwar; Vice versa, inspection decrease the changing rate of the probability of cvar. Besides,
compared to no inspection, the PMF of crar1 given the 12th year inspection of w2 decreases most
by about 45% before 15 years. Besides, the 39th-year inspection resulted in a 2% to 34%
increase in the PMF of charz. Thus, it can be seen that the earlier the inspection, the lower the
PMF of cChar1. Besides, in Fig. 8, the PMF of cwar2 given the 12th year inspection of w. rises most
by 27% to 80% compared to no inspection from sixth to 15th year; and that given the 39th
inspection declines most by 6% to 39% from sixth to 24th year. In addition, compared to no

inspection, the PMFs of cwars given the 12th and 39th year inspections of w: are found to increase
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(82% to 114%) and decrease (36% to 50%) the most from the sixth year to 15th year. The above
results suggest that the inspection of middle-level crack width mainly reduces the probability
of low chloride content near the inspection instants and increases the probabilities of middle

and high-level chloride content.
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Fig. 8 Time-dependent probability of cwar Subject to w2 and different inspection instant

Furthermore, for the inspection of w3, the scenario is the reverse of Fig. 7, where the PMFs
of char1 With the inspection are lower than those without inspection, and those of Coar2 and Cpars
with the inspection are higher than no inspection. Such a phenomenon is consistent with the
intuitive impression since the large width of concrete crack implies a medium/high level of
chloride content on the reinforcement surface. Also, the PMFs of char1 given the inspections of
w3 at 21st and 30th year decrease by 15% to 57% compared to no inspection before 33 years.
After 33 years, both the PMFs of char1 given the inspections of ws at 30th and 39th year
dramatically decrease by about 63% to 65% compared to no inspection. Besides, before 21
years, the PMFs of Coar2 and Coar2 given the inspections of w3 at 21st increase most by 21% to
154% compared to no inspection. Above results indicate that the inspection of high-level crack
width primary reduces the probability of low chloride content, increases that of middle chloride

content initially and that of high chloride content all the time slices.
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5.2.2. Effects of inspections on corrosion rate

In terms of the existing studies on the corrosion rate inspection of corroded reinforcement
[60,61], the corrosion rate icorr can be classified into low, medium, and high levels: 0 to 0.5
uAlcm?,0.5 to 1.0 Alcm?, and >1.0 uAlcm?. Fig. 9 illustrates that all samples over time of icorr
follow bimodal distribution, with high probabilities only for the intervals with icorr less than 0.5
uAlcm? and icorr beyond 1.0 uA/cm?, Therefore, in this subsection, only the low corrosion rate
icor1 €[0,0.5] uAlcm? and the high corrosion rate icor2 € [1.0,+00] uAlcm? are of interest and

consideration.

10°
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21072k
Na)
2
o
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104 I
0 05 10 1.5 20 25 >30

i
corr

Fig. 9 Histogram of discrete icorr

Fig. 10 and Fig. 11 show the probabilities of icor fluctuating with time given different
inspection results. Similar to Fig. 7, Fig. 10 illustrates that the PMFs of icorr1 and icorr2 given a
third-year inspection of w: are basically the same as those of the PMFs without inspection,
suggesting that the early small crack has little effect on the probability distribution of icorr. Also,
with the increase of inspection instants from the 12th year to the 39th year, the PMFs of icorr1
increase by around 6% to 14%, and those of icorr2 decrease by about 10% to 30% during the
service life, compared to no inspection. Given the inspection results of w1, the changing rates

of the PMFs of icorr Will decrease with the inspection instant.
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Fig. 10 Time-dependent probability of icorr SUbject to w1 and different inspection instants

In addition, since Fig. 10 shows that the probabilities of icor1 and icorr2 are essentially
complementary, Fig. 11 shows only the probability of icor1 with the different instants of
inspection of w2 and wz. All inspections in Fig. 11 have a more pronounced effect on the PMFs
of icorr at the instants before and after the inspections. In Fig. 11a, the PMFs of icorrs maximumly
decrease by 7% to 18% under the inspection instants at the 3rd to 30th year, while for the
inspection of w: at the 39th year, the PMFs of icorr1 increase by about 1% to 7% compared to no
inspection. Thus, for the inspections of w> earlier than the 30th year, the PMFs of icor1 are
smaller than the no inspections, respectively. Furthermore, in Fig. 11b, the PMFs of icorr With
inspection exhibit fluctuations and those of icorrt With inspections of wz are lower than those
without inspection. In addition, the PMFs of icorr1 is the lowest at their inspection instants, where
the PMFs of icorrt With the 30th inspection decrease by 8%, compared to no inspection. Such
results indicate that high-level crack width significantly influences the PMFs of icor at

inspection instants.
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Fig. 11 Time-dependent probability of icorr1 SUbject to w2 and w3 and different inspection
instants: (a) wz; and (b) ws

5.2.3. Effects of inspections on radius reduction and concrete crack width

This subsection examines the effects of crack width inspection on the development of radius
reduction and crack width. For comparison purposes, three ranges of Ar (mm) are considered:
Ar1€[0,0.05], Ar.€10.1,0.15], and Ars €[0.2,0.25], representing low, medium, and high levels
of radius reduction, respectively. Fig. 12 and Fig. 13 show the probabilities of Ar over time
under different inspection results, where the probabilities of A ry decrease with time, those of
Ar2 increase and then decrease with time, and those of Ars increase with time. Also, Fig. 14
displays the probabilities of w given its inspection results. Compared to Sections 5.2.1 and 5.2.2,
inspection results of w have more dramatic effects on its own development and Ar.

In Fig. 12, it can be noticed that, given the inspection results of w1, the PMFs of Ary remain
one until the inspection instants and gradually decrease with time after the inspection instants.
For no inspection, the PMFs of Ary are beyond those of Ar, and Ars before 38 and 40 years,
respectively; and for third inspection of ws, those of Ar; are beyond those of Ar, and Arz before
43 and 42 years, respectively. For other inspections, the PMFs of Ar1 are the highest over time,
followed by those of Ar, and Ars. Thus, inspection of w1 implies that the PMFs of Ar; dominates.
In addition, compared to no inspection, the PMFs of Ary with inspection increase by around 5%

to 402% and such rising ratio increases with inspection instants. Besides, the rising of PMFs of
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Ar starts about six years later than the inspection instants, and the maximum probability of Ar
is about 0.24. The PMFs of Ars dramatically decrease with the inspection instants compared to
no inspection. Above results indicate that the inspection results of w1 significantly increase and

decrease the PMFs of Ary and Ars, respectively, and delay the development of Ar.
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Fig. 12 Time-dependent probability of Ar subject to w1 and different inspection instants

Moreover, Fig. 13 shows the probability of Ar given the inspection results of w2, where
the PMFs of Ary and Ar reach zero and rise after the inspection instants, respectively; and those
of Ars keep increasing and exceed those of Ar; after 31 and 39 years given the 12nd and the
21st year inspections. In Fig. 13, the PMFs of Ary given the 21st to the 39th year inspections
are initially 4% to 120% higher, and then 100% lower than no inspection. Also, the PMFs of
Ar2 increase immediately at inspection instants, and their maximum values are about 0.63, 170%
higher than the peak value of no inspection. In addition, the PMFs of Arz given the 12th year
inspection of w- are about 790% higher than no inspection; those given the 21st year inspection
are firstly about 70% lower before 36 years but then 40% higher than no inspection. The above
results indicate that the inspection results of w2 significantly affect the onset instants of the

changes in the PMFs of Ar.
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Fig. 13 Time-dependent probability of Ar subject to w» and different inspection instants

Furthermore, regarding the inspection result of ws, the PMFs of Ar are close to Fig. 13 but
the PMFs of Arz are higher than the inspection result of w2 under the same inspection instants.
Besides, an earlier inspection instant cause higher the PMFs of Arz, in which the PMFs of Ar»
under the 12th year inspection of ws maximumly increase to 1.0 by 1.2x10* % compared to no
inspection before 12 years, but then decrease by 100 % after 12 years. In addition, the PMFs of
Ars with the 12th year inspection increase maximumly by 2.6x10* % compared to no inspection
at the 12th year. Thus, compared to Crar and icorr, high crack width levels significantly increase
the probabilities of radius loss at high and medium levels.

To further investigate the inspection results of crack width on its development, Fig. 14
illustrates the PMFs of w1 and w2 given their own inspection results. Similar to Fig. 12, in Fig.
14a, the PMFs of w1 remain one before its inspection instant and decrease after inspection
instant. Compared to no inspection, the PMFs of w1 given the 3rd to 39th year inspection of w1
increase approximately by 18% to 1.9x10° %. Thus, the inspection of small crack width
suggests a small crack width before the inspection instant and a sudden drop after the inspection
instant. Also, like Fig. 13, Fig. 14b shows that the PMFs of w> firstly increase maximumly by
about 1.6x10°% before inspection instant then suddenly drops by about 100%, given the
inspection of w.. The inspection of w2 mainly influence the peak point of the PMFs of w> rather
than their trends over time. In addition, given the inspection of w3, all PMFs of w3 exceed those

without inspection, rapidly increase by about 50% to 2.6x10* % compared to no inspection,
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and remain one after inspection instants. The above results show that the inspection of crack
width has direct and significant effects on its development. Given the inspection results of low
and high levels of crack width, their PMFs keep one before and after inspection, respectively;
for the middle level of crack width, its PMFs equal one only at the inspection instant. Besides,
the PMFs of crack width versus time are consistent with those of radius reduction. Therefore,
the inspection of crack width is significant for indirectly assessing the corrosion degree of

reinforcement.
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Fig. 14 Time-dependent probability of w subject to different inspection instants and results:(a)
w1 and (b) w2

5.3. Further discussion
Based on the developed DBN, this section further discusses other factors, such as the effects of
exposure conditions ec, environmental models, and chloride transport modes, and their effects
on the parameters of durability assessment. For comparisons, the time-varying mean values E(x)
of parameters are investigated and computed by Eq.(35). Herein, only one inspection scenario
is considered, i.e., the 21st year inspection of w.

E(x)=05->(d+d,.;)-P,(k) (35)

k=1

in which x is the investigated durability parameter; [d1, da,...,dn«1] IS the discretization scheme

of x; and Px(k) is the PMF of x at its k-th interval.
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Regarding ec (°C) as another inspection node, low and high levels of ec are taken into
consideration: ec: € [0,0.6] and ecz € [2.9, 3:5]. Fig. 15a compares the mean values of Cnar under
exposure conditions and inspection results. As shown, the mean values of the durability
parameters corresponding to ec; are minimum, and those corresponding to ec. are the maximum
at a given instant, no matter whether the inspection occurs or not. For the scenarios of no
inspection of w, it can be seen in Fig. 15a that given ec: and ec,, the mean values of Cpar
maximumly decrease and increase by 4.6% and 2.6%, respectively, compared to no given ec.
In addition, given the 21st-year inspection of w2 and ecy, the mean values of cpar maximumly
decrease by 4.9%, compared to no given ec, while, given ec, those of coar maximumly increase
by 1.2%. Compared to no inspection of w, the mean values of cpar With w2 maximumly increase
by about 11.8% to 15.1%. The above results indicate that the inspection of w has more
influences on cpar than ec.

In addition, to study the influences of proposed time-varying environmental models on
durability assessment, a traditional constant model is adopted by ignoring the seasonal and daily
variation of environmental parameters (Egs.(2) and (3)) and only considers global warming
(Eq.(4)). Fig. 15b illustrates the mean values of Cwar Subject to different environmental models.
For the constant model, it can be noticed that the mean values of char maximumly decrease by
21% compared to the time-varying model. In addition, given the 21st-year inspection of w2 and
the constant model, the mean values of Char maximumly decrease by 19.6%. Given the
inspection of w», the effects of environmental models on durability assessment decrease
compared to no inspection. Besides, regarding the constant model, Fig. 15b also presents that
given the inspection of w2, the mean values of char maximumly increase by about 13.0%
compared to no inspection of w. Thus, environmental models might have more effects on Coar
than inspection.

Furthermore, to investigate the effect of two-dimensional chloride transport on the
durability assessment, the conventional one-dimensional chloride transport model is introduced
herein. Fig. 15b shows the mean values of cnar based on different chloride transport models. It
can be noted that under the one-dimensional transport, the mean values of cwar decrease by up
to 34.8% compared to the two-dimensional transport. Moreover, given the 21st-year inspection
for w2 and one-dimensional transport, the mean values of cwar are maximally reduced by 17.8%.
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Given the inspection of w», the effects of chloride transport modes on the cnar are reduced
compared to no inspection. Furthermore, regarding the one-dimensional transport, Fig. 15b also
shows that given the inspection of w2, the mean values of cnar increase by a maximum of about
50.2% compared to no inspection of w. Thus, for one-dimensional transport, the inspections of

concrete cracks might have more critical influences on cpar than two-dimensional transport.
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Fig. 15 Mean values of cpnar under different scenarios: (a) exposure conditions; and (b)
environmental models and chloride transport modes

6. Conclusions

In this study, a DBN-based framework is developed for the durability assessment of RC
structures suffering from long-term environmental actions. This framework adopts a
comprehensive durability deterioration model for RC structures, considering time-varying
environmental parameters, two-dimensional chloride transport, and concrete cracking. Besides,
the thought of point-evolution is used to compute CPT for each node in DBN. Meanwhile, the
durability of RC beams under the marine atmospheric environment is investigated through the

developed framework. The following conclusions could be drawn:
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(1) Using a simple mathematical example, it is demonstrated that the proposed GLP-PSS-based

CPT calculation method is more accurate than the traditional LHS-based brute MCS with

the same sample size and more efficient compared with a large-scale MCS;

(2) Inferences results demonstrate that inspection of crack widths w significantly affects the

chloride content of reinforcement surface coar and such effects rely on the inspection results
and instants. Given the inspection of low-level w, the probabilities of low-level cpar might
increase by 230%, those of middle and high-level cwar might decrease by 60%, compared to
no inspection. In addition, for the inspected high-level w, the probabilities of low-level cCpar
might decrease by 65%, and those of middle and high-level coar might increase by 154%.
Different levels of crack inspection mainly affect the probabilities of corresponding levels

of Cpar;

(3) With respect to different inspection results of w, corrosion rate icorr and its probability of

reinforcement fluctuate with time. For instance, given the inspected high-level w, the
probabilities of low-level icor might decrease by 8%, which might not be as significant as
Coar. In addition, the effects of inspected w on radius reduction Ar and w itself are consistent
and more pronounced than other durability parameters. For an inspected high-level w, the
probabilities of middle and high-level Ar might increase maximumly by 1.2x10%% and

2.6x10%%, respectively;

(4) Given an exposure condition ec (°C) of [0, 0.6], the mean values of char decrease by 4.6%

to 4.9 %, compared to no specific ec; given an ec of [2.9, 3.5], those increase by 1.2% to
2.6%. Also, applying a constant environment model and one-dimensional chloride transport
model decreases those by 19% to 35%, compared to the time-varying and two-dimensional
model, respectively. Thus, ignoring the time-varying environment and two-dimensional
transport mode might dramatically underestimate the values of durability parameters.
Besides, inspection results of w might have greater effects on cwar than exposure condition
and chloride transport models but fewer effects than environmental modes;

In conclusion, it is practical to use the developed DBN framework for the durability

assessment of RC structures. The proposed approach can integrate inspection data with the
durability design and management of RC infrastructure and significantly reduce the

uncertainties in structural durability assessment. Besides, this study considers only macroscopic
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genera within the chloride transport and more complicated scenarios, for example, investigating

the depth and longitudinal dimensions of crack distribution. In addition, it would be helpful to

apply the proposed framework to the mechanical performance assessment and reliability

analysis of RC structures and to improve the robustness of the proposed framework in the future.
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Appendix:

Al. Basic procedures of GLP-PSS

The primary thought of GLP-PSS is to separate the sample space Qu into ns disjoint di (di<s)-
dimensional orthogonal subspaces Qsk (k=1,2,..., ns). For each Qs, stratified sampling is
achieved by good lattice points (GLP) [62]. For the sake of simplicity, the dimension of each
subspace di is determined as two, and point set within the first subspace u®=(u;®), u,t9)

(i=1,2; =1, 2,...,N) can be written as:

ui(l,j) — 2JQ| _1_int(2JQi _1j (36)
2N 2N

where int () denotes an integer operator that trims the fractional part in the bracket; and Qi

(i=1,2) denotes the generator parameters where Q: equals one and Q: relies on N, as

summarized in Table Al [63].

Table Al Parameters of Q2 and N
N 8 13 21 34 55 89 144 377 610 987 1597
Q2 5 8 13 21 34 55 89 144 377 610 987

Then, the j-th sample u® (j=1, 2...., N) of GLP-PSS could be written as:

' T
) [ D=2 ifsiseven
ut) 2
B . . e . s+1
[u(“),u(z' )yl o D,J)} D=="ifsisodd
(37)

. . T
u™) uf, ufz'r“) : uf%), s ul(D’rD*j) , ugD'rD"')} D= % Jifsiseven

. . T
ul(1,J) , Ugl'J) , ul(zv"z,j) ’ u£2vrz,i) . ul(Dflv"D-l,j) , ugD’ler-l‘j) ’ ul(D*rD,i):| , D= —S +1 , |fS iS Odd

k,rkyj)

where u®™) is obtained by Eq.(36); and u' is a pair of two-dimensional points by

implementing random permutation u®?,
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