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Abstract 4 

Civil infrastructure is subjected to multiple deterioration processes (e.g., gradual deterioration 5 

and shock deterioration) caused by environmental exposure and extreme events during its 6 

lifetime. To maintain performance and functionality, maintenance actions should be performed 7 

and the life-cycle cost may be affected. There is a need to explore the effect of maintenance 8 

actions and various uncertainties on the life-cycle performance of the system. This study 9 

proposes a probabilistic life-cycle analysis framework for civil infrastructure based on a set of 10 

performance indicators, e.g., reliability and maintenance cost. Stochastic uncertainties resulting 11 

from multiple dependent deterioration processes, system reliability, intervention actions, and 12 

maintenance cost are considered. In particular, the correlation between the maintenance 13 

interval and cost is highlighted. Previous studies generally assume they are independent. Such 14 

an assumption can be misleading and lead to inappropriate cost estimation. To address this 15 

concern, a copula-based multivariate renewal model is proposed to assess the life-cycle 16 

maintenance cost analytically and numerically. In addition to the expected cost, statistical 17 

moments (standard deviation, skewness, and kurtosis) are calculated to quantify uncertainties 18 

from higher-order moments. Two illustrative examples show that the dependence structure and 19 

uncertainties can have a large impact on the life-cycle cost, and decisions can be altered by 20 

considering statistical moments of the cost. 21 
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1. Introduction 29 

During the lifetime, civil infrastructure systems are subjected to multiple deterioration 30 

processes, such as gradual deterioration resulting from environmental influence (e.g., corrosion 31 

and crack growth) and shock deterioration caused by extreme events (e.g., hurricanes and 32 

earthquakes) [1, 2]. The combination effects of deterioration processes may lead to damages 33 

and failure [3, 4], thus threatening public safety and resulting in considerable financial and 34 

social losses. In order to maintain the functionality of civil infrastructure, various intervention 35 

actions such as repair and replacement are required. The incurred maintenance cost increases 36 

the life-cycle cost and directly affects the subsequent decision-making process. 37 

Due to various uncertainties associated with the life-cycle analysis, rational stochastic 38 

models and reliability analysis can be essential to assess the maintenance cost [5-7]. Although 39 

numerous studies have accounted for both gradual and shock deterioration processes [8-11], 40 

interaction and correlation between them are commonly neglected (i.e., assume they are 41 

independent). For instance, Sanchez-Silva et al. [12] studied the life-cycle performance of 42 

deteriorating structures by investigating the combined effects of progressive degradation and 43 

sudden events. Caballé and Castro [13] proposed a reliability-based analysis framework to 44 

assess the maintenance cost of the system with a finite lifetime subjected to internal continuous 45 

degradation and sudden events. The impact of dependent deterioration processes on system 46 

reliability has been explored in recent studies. For instance, Kumar et al. [14] proposed a 47 

stochastic framework for engineering systems to estimate the time to failure considering 48 

exposure to gradual degradation and sudden events. Wang et al. [15] developed a dependence 49 

framework to assess the time-dependent reliability of deteriorating structures considering the 50 

correlation between gradual and shock deterioration processes. Jia et al. [16] investigated the 51 

stochastic deterioration of reinforced concrete structures considering compound effects of 52 

corrosion, earthquakes, and ASR. However, the effects of dependent deterioration processes 53 

on maintenance planning and the associated cost have not been carefully explored in a life-54 

cycle context. 55 

In terms of the life-cycle cost analysis, most of the existing studies focus on one type of 56 

deterioration (either under gradual deterioration or shocks) and ignore their combined effects. 57 

For instance, Cheng et al. [17] presented an analytical framework to derive the probability 58 

distribution of maintenance cost of aging engineering systems subjected to gradual degradation 59 

by using the gamma process. Yang and Frangopol [1] assessed the life-cycle maintenance cost 60 
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subjected to independent shock and deterioration processes using renewal models. A few recent 61 

studies take correlated deterioration effects into account. For instance, Jia and Gardoni [18] 62 

introduced state-dependent models to the life-cycle cost analysis subjected to earthquake and 63 

corrosion damage. Liu et al. [19] investigated dependent degradation processes using copulas 64 

and the resulting impact on the life-cycle cost. However, in these studies, the impact of 65 

dependent deterioration processes on the maintenance cost has not been explicitly discussed. 66 

Despite considerable efforts on deterioration modeling and cost assessment, these studies 67 

commonly assume that the maintenance interval and cost are independent. The independence 68 

assumption has been widely used to simplify the analytical formulation associated with the 69 

renewal theory [17, 19, 20]. Neglecting the dependence and the associated uncertainties may 70 

result in an inappropriate estimation of the accumulative cost, thus misleading decision-makers 71 

during the life-cycle management. Pandey and Van Der Weide [20] also indicated that 72 

dependence between maintenance cost and renewal cycle cannot be ignored, especially when 73 

preventive maintenance is considered. To the best of the authors’ knowledge, the dependent 74 

maintenance interval and cost have not been considered in the life-cycle analysis. 75 

To incorporate the correlation between the maintenance interval and cost, statistical 76 

modeling of the joint probability distribution is essential. A conventional approach of 77 

multivariate modeling relies on an empirical multivariate joint distribution or a joint normal 78 

distribution [21, 22], but the approach is limited to a certain correlation relationship. Herein, a 79 

copula-based method is proposed. As an advanced mathematical tool, the copula model offers 80 

sufficient efficiency and flexibility in multivariate dependence modeling by considering the 81 

joint and marginal distributions separately [23, 24]. Due to this advantage, copulas have been 82 

increasingly applied in deterioration processes and reliability analysis. For instance, Goda [25] 83 

highlighted the importance of multi-variate seismic demand modeling by employing copulas. 84 

Fang et al. [24] provided an integrated approach to analyze the reliability of a degrading system 85 

by considering dependent component failures using the copula model. 86 

In addition to uncertainties resulting from the dependence model, uncertainties associated 87 

with statistical moments (mean, standard deviation, skewness, and kurtosis) of the life-cycle 88 

cost have not been thoroughly explored. Although the minimum expected cost has been utilized 89 

as a standard decision criterion, the impact of the other statistical moments on the life-cycle 90 

cost and decision-making process has been rarely discussed. Pandey and Van Der Weide [20] 91 

indicated that the variance of the life-cycle damage cost could be significant to indicate the 92 
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variability. Li et al. [26] stated the importance of higher-order moments (skewness and kurtosis) 93 

of the repair cost during system lifetime, as skewness and kurtosis imply potential tail risks. 94 

Hence, it is necessary to assess the statistical moments of the life-cycle maintenance cost. 95 

This study presents a copula-based life-cycle cost analysis framework for deteriorating 96 

civil infrastructure systems. The developed copula-based approach allows various complex 97 

dependence structures between the maintenance interval and the cost in a renewal process. The 98 

impact of dependent deterioration processes on the life-cycle performance of a system is 99 

investigated. Furthermore, the effect of correlated maintenance cost (considering preventive 100 

and essential maintenance) and maintenance interval on the life-cycle maintenance cost is 101 

evaluated based on the renewal process. The proposed copula model allows including practical 102 

maintenance data into the life-cycle analysis, by identifying the correlation between 103 

maintenance cost and interval. The proposed framework can aid the decision-making 104 

associated with maintenance planning and optimization. The remainder of the paper is 105 

organized as follows. The following Section 2 introduces the life-cycle framework and the 106 

relevant dependence. Section 3 illustrates the stochastic modeling of deterioration processes 107 

and the time-dependent reliability assessment. In section 4, a copula-based renewal model is 108 

proposed to assess the life-cycle maintenance cost analytically and numerically. Subsequently, 109 

two illustrative examples are presented in Section 5. Conclusions are drawn in the last section. 110 

 111 

2. Life-cycle analysis framework and dependence 112 

Appropriate maintenance relies on the life-cycle analysis of the structural performance. Figure 113 

1 shows the computational framework for the life-cycle maintenance cost assessment. There 114 

are various dependence relationships within the life-cycle analysis. To take the dependence 115 

into account, the analysis of deterioration and maintenance models also becomes more and 116 

more complicated. In previous studies, special attention has been paid to structural, economic, 117 

and stochastic dependencies of multi-component engineering systems [27, 28]. For instance, 118 

structural dependence has been widely explored to investigate the impact of the maintenance 119 

action of one component on other components [29, 9, 30]. Economic dependence refers to that 120 

the total maintenance cost of a system may be increased or decreased due to joint maintenance 121 

of components [31, 32]. Stochastic dependence has been considered for dependent 122 

deterioration or condition among components [9, 33]. In the life-cycle analysis of civil 123 

engineering, potential dependence associated with structural reliability can be related to 124 
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structural status variables, external conditions, model parameters, and time [18, 19, 15]. In the 125 

maintenance aspect, potential dependence exists among preventive maintenance cost, 126 

corrective maintenance cost, total maintenance cost, and time. 127 

In this study, the major contribution is associated with Stage 3 by considering the 128 

dependence between total maintenance cost within the maintenance interval and the interval. 129 

A copula-based renewal model is proposed. The deterioration modeling and the structural 130 

reliability analysis at Stages 1 and 2 aim to provide essential inputs of the expected maintenance 131 

cost and the maintenance interval for Stage 3. A gradual deterioration process and two shock 132 

processes are considered. Based on these inputs, the life-cycle maintenance cost can be 133 

assessed by using the copula-based renewal model.  134 

 135 

Figure 1. A flowchart of the proposed life-cycle analysis framework  136 

 137 

3. Structural deterioration and reliability-based maintenance 138 

3.1 Stochastic models of gradual deterioration and sudden events 139 

3.1.1 Gradual deterioration 140 

The stochastic gamma process has been widely used to model gradual deterioration [12, 34]. 141 

The gradual deterioration of an infrastructure system can be modeled by a stochastic gamma 142 

process. Over an interval (0, s], the cumulative degradation follows the gamma distribution, 143 

and its probability density function (PDF) ga(q; αs, β) and cumulative distribution function 144 

(CDF) Ga(q; αs, β) are given by 145 

Stage 1. Multiple deterioration 

processes modeling

Stage 2. Structural reliability & 

maintenance policy

Stage 3. Copula function for dependent 

maintenance cost and interval (Z, W)

Stage 4. Life-cycle maintenance cost

Maintenance cost 

E[Z] & interval E[W]

Life-cycle analysis framework
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where αs and β are shape and scale parameters, respectively; 
1

0
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        is the 146 

lower incomplete gamma function; and 
1

0
( ) s xs x e dx

      is the complete gamma 147 

function. 148 

3.1.2 Shock deterioration: external shock and fatal shock 149 

Different from gradual deterioration, shock deterioration indicates the abrupt decrease in the 150 

performance of a system caused by a shock event [13, 35]. There are two shock processes 151 

considered herein. One is the external shock process, which leads to the accumulation of shock 152 

deterioration and results in failure when the failure threshold is reached. The other one refers 153 

to a fatal shock process, which leads to immediate failure of the system. It is necessary to 154 

account for random fatal shocks, as the system can be subjected to extreme events with low-155 

frequency and high-consequence during the lifetime. Two shock processes are modeled by the 156 

Poisson processes, in which the occurrence rate of a fatal shock process λFaS is much smaller 157 

than that of an external shock process λExS. For a single shock process, the number of shocks 158 

follows a Poisson distribution, which gives 159 
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where q is the number of shocks with x = 0, 1, 2, … and λ is the occurrence rate of a shock 160 

process. The intensity of shock deterioration is a random variable, e.g., ExSR  denoting the 161 

intensity of a shock event is a random variable. In other words, the external shock and fatal 162 

shock processes are also compound Poisson processes. For the external shock, it is associated 163 

with the external demand. Herein, the external shock deterioration is assumed to follow 164 

lognormal distribution. The existence of a fatal shock results in an immediate failure, thus the 165 

distribution of the intensity is not specified herein. 166 

 167 
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3.2 System reliability analysis 168 

3.2.1 Stochastic demand and capacity  169 

The deterioration of a system has a direct influence on structural reliability. The time-170 

dependent reliability analysis relies on the assessment of demand and capacity subjected to 171 

stochastic deterioration. During the period (0, s], the random occurrence of external loads 172 

imposes demand { iD } with i = 1, 2, …, n upon the system. The associated arriving times of 173 

demands are t1, t2, …, tn. The external shock deterioration results from the demand due to 174 

external loading. In other words, the demand occurs at the same time as the external shock 175 

deterioration.  176 

 177 

Figure 2. Capacity and demand of a system subjected to gradual deterioration and external 178 

shock process. 179 

Figure 2 describes the demand and time-dependent resistance subjected to gradual 180 

deterioration and external shock. In this study, the gradual deterioration is modeled as a 181 

stochastic gamma process and the external shock is modeled by a Poisson process. The 182 

occurrence of demand is together with the external shock, thus also following a Poisson process. 183 

The period (0, s] is divided into n + 1 intervals by n number of load events, i.e., (0, t1], (t1, 184 

t2], …, (tn - 1, tn], (tn, tn + 1 = s]. The number of events n is a stochastic variable. The system 185 

resistance at time tn can be denoted as 
nt

R  186 
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where R0 represents the initial capacity of the system; nt


 and nt


 are the time immediately 187 

before and after tn; and 
i

ExS
tR  is the external shock deterioration at time ti. It should be noted 188 

that the demands and the shock deterioration are physically related. Herein, 189 

1( , ]
i

Gra Gra
t i iR R t t   denotes gradual deterioration within time interval (ti - 1, ti]. Figure 3 190 

describes the impact of gradual and shock deterioration on the system capacity at tn ( nt


 and 191 

nt


). 192 

 193 

Figure 3. Schematic diagram of deterioration of system capacity. 194 

For normalization, the capacity can be defined as the product of the deterioration function 195 

G(t) and the initial capacity R0, i.e., R(t) = R0·G(t). Accordingly, Eqs. (4) and (5) can be 196 

rearranged to the time-dependent deterioration functions, given by Eqs. (6) and (7) 197 
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Based on Figure 2, for a time instant δ, the deterioration function at time δ can also be 198 

described as  199 
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where N− is the maximum integer j with tj < s and N+ is the maximum integer j with tj ≤ s. 200 

Herein, N+ equals N−. N+ = N− + 1 is only for s = ti (i = 1, 2, …, n). In particular, let δ = s, the 201 

deterioration function at time s can be given as  202 
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3.2.2 Failure mechanisms and limit state function 203 

Two possible failure modes of the system are considered: one is that failure occurs when the 204 

demand exceeds its capacity, and the other one defines that the system fails when the 205 

cumulative deterioration or damage exceeds the threshold. For the first scenario, the system 206 

fails at the nth shock event with 
nt

R  <
nt

D  and the limit state function can be computed as 207 
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Given Eq. (11), the failure occurs when LSn is smaller than zero, i.e., LSn < 0. The demand 208 

nt
D  is a random variable. 209 

As the fatal shock process is taken into account, a fatal event results in immediate failure 210 

of the system. Additionally, failure may occur at an arbitrary time when the total deterioration 211 

exceeds the maximum deterioration level [14, 15]. For instance, the failure occurs when the 212 

total amount of deterioration caused by gradual deterioration and external shock exceeds the 213 

threshold (i.e., 1 – G(δ+) > Gmax), as shown in Eq. (12) 214 
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3.2.3 Dependence between deterioration processes using copulas 215 

Deterioration processes usually have interactive effects. For instance, cracks caused by external 216 

activities may accelerate the initiation and corrosion rate of reinforcement steel in terms of 217 

reinforced concrete structures [36]. The interactive effects in multiple stochastic processes have 218 

been widely investigated and different dependence models have been developed. For instance, 219 

Kumar et al. [14] introduced the correlation between the demand process and shock process by 220 
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developing the joint probability density function. Wang et al. [15] modeled the dependence 221 

among gradual and shock degradation by using copula models. Liu et al. [19] modeled multiple 222 

dependent degradation processes using Gamma processes and copula functions.  223 

Herein, the copula model is proposed to construct the multivariate dependency among 224 

parameters associated with deterioration processes. The advantage of using copula is that the 225 

simulation of multivariate probability distributions is separate from the univariate random 226 

variables, thus providing sufficient effectiveness during statistical modeling [37, 38]. A copula 227 

is a function that connects the multivariate distribution function of random variables to their 228 

marginal distributions [39]. For a sequence of continuous random variables X1, X2, …, Xn with 229 

marginal CDFs FX1, FX2, …, FXn, their dependence structure can be defined by the joint CDF 230 

H(x1, x2, …, xn). According to Sklar’s theorem [40], there exists a unique n-dimensional copula 231 

C for all (x1, x2, …, xn) [ , ]n    232 
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There are various copula functions. Commonly used copula families include elliptical 234 

copulas (e.g., Gaussian, Student’s-t) and Archimedean copulas (e.g., Gumbel, Clayton, and 235 

Frank copulas) for multivariate and bivariate cases. When applying the copula model, the 236 

dependence between the investigated parameters should be measured by correlation 237 

coefficients. There are three common correlation coefficients to measure the association: 238 

Pearson’s correlation coefficient, Kendall’s tau, and Spearman’s rho. Although Pearson’s 239 

correlation coefficient may be the most popular one in previous studies, it is limited to a linear 240 

relationship [40]. Pearson’s correlation coefficient for the correlated random vector (U, V) can 241 

be derived as 242 
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Due to the linear limitation, Kendall’s tau τ and Spearman’s rho ρ are more widely 243 

employed in recent studies, and given by [39] 244 
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Both these two coefficients are developed from the concept of concordance and give a 245 

similar interpretation of association in most cases [39, 42]. Given the correlation coefficient, 246 

the dependence parameter θ associated with a copula can be estimated. For instance, the 247 

maximum pseudo-likelihood method can be applied to compute the dependence parameter by 248 

maximizing the pseudo log-likelihood function [41-43] 249 
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where 
iUR  and 

iVR  are ranks of the correlated random vector (U, V). 
iUR  is the rank of Ui 250 

among U1, U2,… Un and 
iVR  is the rank of Vi among V1, V2,… Vn. The ranking process is 251 

performed by listing the monotone increasing U and V. For instance, when n = 2, there are two 252 

pairs of (U, V), i.e., (U1, V1) and (U2, V2). If the ranking of Ui and Vi gives U2 < U1, V1 < V2, 253 

then (
1UR , 

1VR ) = (2, 1) and (
2UR , 

2VR ) = (1, 2).  254 

In this study, the dependence among multiple deterioration processes is simulated based 255 

on the model described in Wang et al. [15]. The deterioration modeling aims to provide inputs 256 

for the life-cycle maintenance cost assessment. However, the impact of shock events on the 257 

parameters of gamma process is not considered. Future studies are encouraged to incorporate 258 

the interactions. Herein, a series of demands {Di} are associated with external shock 259 

deterioration. Meanwhile, the shock-induced deterioration interacts with the gradual 260 

deterioration. Herein, the interaction among different deterioration processes is modeled by a 261 

multivariate probability distribution function. The interaction in terms of shock deterioration 262 

focuses on the external shock deterioration, as the fatal shock deterioration always results in 263 

immediate failure of the system. Let 1 0( , ] /
i

Gra
t i iA R t t R , 0/

i i

ExS
t tB R R  , and 0/

it iD R   264 

represent the normalized gradual deterioration, external shock deterioration, and demand at 265 

time ti, respectively. The joint CDF of the three correlated random variables ( , , )
i i it t tA B   can 266 

be denoted as , , ( , , )A BF a b d . The CDF of the random vector ( , , )
i i it t tA B   can either be 267 

derived by empirical models or the advanced copula approach.  268 
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By using the copula model, the joint CDF of the random vector can be expressed as  269 

 , , ( , , ) ( ( ), ( ), ( ))A B A BF a b d C F a F b F d   (19) 

where C is the copula function; ( )AF a , ( )BF b , and ( )F d are the CDFs of the normalized 270 

gradual deterioration, external shock deterioration, and demand. The detailed explanation of 271 

copula theory and copula functions is provided in the following section. The detailed modeling 272 

of , , ( , , )A BF a b d  is provided in the illustrative example. 273 

Dependence and interaction between deterioration processes can be complicated. In 274 

addition to the introduced approach, other methods can also be used to capture the interaction 275 

between deterioration processes. Future studies are needed to explore a more detailed 276 

dependence model of deterioration processes by considering the stochastic frequency and 277 

magnitude.  278 

3.2.4 Assumptions 279 

Deterioration processes and the dependence effect on the system can be complex. There can be 280 

different methods to model the stochastic deterioration and interaction between deterioration 281 

processes. In this section, the proposed reliability analysis is based on several assumptions:  282 

1. The total deterioration of the system caused by gradual and shock deterioration is the sum 283 

of individual deterioration processes. 284 

2. The occurrence of multiple deterioration processes relies on the occurrence of shock events. 285 

3. The external shock process is the result of external load effects, while the load imposes the 286 

demand on the system. Thus, the occurrence of external shock and demand is simultaneous. 287 

4. The gradual deterioration, external shock deterioration, and demand are dependent, and 288 

their dependence can be modeled by the dependence model introduced in Eq. (19). 289 

3.2.5 Time-dependent reliability calculation 290 

In this study, the time-dependent reliability is calculated by a double-loop Monte Carlo 291 

simulation method. To begin with, the total time Tsum, time interval dT, and distribution 292 

parameters of all related random values and processes are determined. Then, at each time step 293 

Ti = k ∙ dT (k = 1, 2,….), the number of shocks nT is sampled according to its Poisson distribution 294 

parameters (Eq.(3)). If the value of nT is equal to zero, only the progressive deterioration is 295 
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considered, and its deterioration value 
it

A  is sampled. If the value of nT exceeds zero, both the 296 

progressive deterioration and sudden damage are concerned, and their values of  297 

, 1,..., 1
it TA i n   and , 1,...,

it TB i n  are sampled. Next, the conditional failure probability of 298 

Ti, Pf(Ti|Ati,Bti), could be expressed as 299 
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where Φ denotes the cumulative distribution function of standard normal distribution;  
ti

F   300 

is the marginal CDF of the demand 
it

 at time ti; A={aij, i,j=1,2,3} is the lower triangular 301 

matrix satisfying the coefficient matrix of U=(U1, U2, U3)=A AT, which could be computed by 302 

the correlation matrix of , , ( , , )A BF a b d  and Nataf transformation [15]. 303 

Meanwhile, nT, Ati, and Bti would be sampled Nmcs times to capture Nmcs of Pf(Ti|Ati, Bti) by 304 

using Eq. (20). Then, the failure probability of Ti, i.e., Pf(Ti), could be approximately evaluated 305 

through the mean value of all Pf(Ti|Ati, Bti). Such a computational process could be repeated 306 

until Ti reaches Tsum. In order to obtain high accuracy results of failure probability Pf(Ti), the 307 

sampling number Nmcs needs to be quite large. Such an algorithm is flexible to consider 308 

different deterioration scenarios and maintenance policies.  309 

 310 

3.3 Maintenance policy and cost 311 

The performance (e.g., capacity, reliability) of the system is reduced due to multiple 312 

deterioration processes, thus requiring maintenance actions to minimize potential failure risks 313 

and damage. The quantification of maintenance actions and costs relies on the performance of 314 

system. In this study, a reliability-based maintenance policy is proposed, consisting of 315 

preventive and essential maintenance interventions. The system reliability provided by the 316 

previous section is the main input for this section to determine the maintenance interval and 317 

cost. For instance, the probability of failure is taken as a performance indicator to implement 318 

the maintenance policy. Herein, preventive maintenance (PM) gives minimal repairs, while 319 

essential maintenance (EM) provides major repairs or replacement to enhance the system 320 

reliability to the initial level. Preventive maintenance is conducted when the probability of the 321 

system failure exceeds PPM. The resulting cost of preventive action is CPM. After a preventive 322 

maintenance action, the rate of gradual deterioration is reduced. Essential maintenance is 323 
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performed when the probability of failure exceeds a threshold PEM or the failure occurs. The 324 

cost of essential action is denoted as CEM. Following the essential maintenance, the structural 325 

resistance is restored to the initial level R0. In other words, the system is resumed and a renewal 326 

process is formed [17, 19].  327 

To determine the maintenance interval and the maintenance cost associated with the 328 

renewal process, the system reliability should be determined. Given the maintenance policy, 329 

the time-dependent limit state function becomes  330 
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in which rpre (rpre < 1) is the changing rate in terms of the gradual deterioration after a preventive 331 

maintenance action. Regarding the time-dependent reliability analysis described by Eq. (21), 332 

the maintenance effects on deterioration values could be easily considered by modifying the 333 

it
A  and 

it
B  in Eq. (20). Figure 4 provides an illustrative diagram to describe the effect of 334 

preventive and essential maintenance actions on the probability of failure associated with the 335 

system. 336 

 337 

Figure 4. An illustrative diagram of reliability-based preventive maintenance (PM) and 338 

essential maintenance (EM) actions. 339 

Based on the time-dependent reliability analysis, the maintenance interval and the cost can 340 

be identified accordingly. As mentioned above, the system is renewed after an essential 341 

maintenance and the process of restoration can be modeled as a renewal process. Based on the 342 

stochastic renewal process, the occurrence interval of essential maintenance actions can be 343 

defined as a renewal cycle W. Within the renewal cycle W, the total maintenance cost can be 344 
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denoted as the cycle cost Z. Then, the relationship between the system capacity and the renewal 345 

cycle W under multiple deterioration processes can be described as Figure 5(a). Both W and Z 346 

are random variables, and (0, tint] is the service period of the system. To determine W and Z, 347 

Figure 5(a) should be further shifted to Figure 5(b) based on reliability analysis using Eq. (21). 348 

Figure 5(b) shows an illustrative sketch to demonstrate the impact of maintenance actions on 349 

the system failure probability, renewal cycle W, and the associated maintenance cost Z. It can 350 

be noted that the total maintenance cost Z (i.e., cycle cost) within a cycle W consists of 351 

preventive maintenance cost CPM and essential maintenance cost CEM, i.e., Z = CPM + CEM. 352 

Herein, it is assumed that CPM and CEM are deterministic. Subsequently, the mean values of 353 

renewal cycle W and the maintenance cost Z can be obtained based on the reliability analysis 354 

and Monte Carlo simulation. The obtained mean values of renewal cycle W and maintenance 355 

cost Z are the key inputs for the life-cycle maintenance cost analysis. 356 

                  357 
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 360 

(b) 361 

Figure 5. Illustrative diagrams of stochastic renewal cycle W and maintenance cost Z 362 

associated with (a) the system capacity under deterioration processes and (b) the system 363 

reliability and maintenance policy. 364 

 365 

4. Life-cycle maintenance cost 366 

4.1 A multivariate copula-based renewal model 367 

After determining the renewal cycle and maintenance cost, the life-cycle maintenance cost 368 

within the period (0, tint] can be determined based on the stochastic renewal process. Meanwhile, 369 

the dependence between renewal cycle (i.e., maintenance interval) and maintenance cost (i.e., 370 

cycle cost) cannot be neglected during the life-cycle analysis. The maintenance cost Z naturally 371 

depends on the cycle length W as different maintenance actions are involved. Herein, the key 372 

challenge is to incorporate the dependence between random variables Z and W into the renewal 373 

process during the life-cycle maintenance cost assessment. A novel copula-based renewal 374 

model is proposed to address this problem. To the best of the authors’ knowledge, the 375 

dependent maintenance interval and cost have not been considered in the life-cycle analysis. 376 

For the proposed copula model, two types of methods can be considered to model dependent 377 

maintenance cost Z and renewal cycle W in the life-cycle analysis, as described in Figure 6. 378 

One can be based on historical data to achieve the copula function, and the other one is directly 379 

based on correlation and copula function.  380 
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 381 

Figure 6. Assessment of life-cycle maintenance cost using the proposed copula-based 382 

multivariate renewal model 383 

Based on the renewal process, during the investigated service period (0, tint], there can be 384 

a series of renewal cycles {W1, W2, …, Wk} due to the essential maintenance. The maintenance 385 

costs associated with the renewal cycles can be {Z1, Z2, …, Zk}. The chronological time in 386 

terms of the kth failure can be written as Tk, with Tk = W1 + W2 +…+ Wk. Wk and Zk (k = 1, 387 

2, …) are non-negative random variables. The life-cycle maintenance cost can be defined as 388 

LCC(tint). The renewal cycle Wk and maintenance cost Zk are dependent, while the joint 389 

probability distributions of (Zi, Wi) are independent of (Zk, Wk,) for any i ≠ k. Given these 390 

parameters, the life-cycle maintenance cost LCC(tint) is the accumulative cost of all the renewal 391 

cycles and gives 392 
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in which N(tint) is the total number of essential maintenance actions and a discount rate r is 393 

used to discount the future expense to the present. Also, as mentioned in the previous section, 394 

the mean values of Z and W can be determined based on system reliability and maintenance 395 

strategy by Monte Carlo simulation. The maintenance cost Z consists of the cost of preventive 396 
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maintenance CPM and the cost of essential maintenance CEM. The deterministic value of cost Z 397 

can be taken as the mean of Z, i.e., E[Z] = CPM + CEM, as indicated in Figure 5. 398 

To model the dependence between the renewal cycle and maintenance cost, the bivariate 399 

copula is employed. The dependence structure between Z and W can be described by a joint 400 

CDF FZ,W(z, t). Based on the copula theory, the joint CDF of the bivariate random vector (Zk, 401 

Wk) can be written as  402 

 , ( , ) ( ( ), ( ))Z W Z WF z t C F z F t  (23) 

in which FZ (z) and FW (t) are CDFs of maintenance cost and renewal cycle, respectively. C is 403 

the CDF of a copula function. The PDF of the random vector fZ,W (z, t) is given as  404 

 , ( , ) ( ( ), ( )) ( ) ( )Z W Z W Z Wf z t c F z F t f z f t  (24) 

where c describes the PDF of a copula; fZ and fW are the univariate PDFs of maintenance cost 405 

and renewal cycle, respectively.  406 

To determine the copula function, there are generally two methods in terms of the cases 407 

with and without data, as shown in Figure 6. When there are detailed historical records, the 408 

selection of the copula model can be data-based [44, 45]. The data-based method requires two 409 

main parts: quantification of marginal distributions (i.e., FZ(z) and FW(t)) and selection of the 410 

most fitted copula by using the goodness-of-fit test. While there are limited data available, the 411 

dependence structure between variables is commonly determined according to correlation 412 

coefficients [24, 46]. Detailed descriptions of the two methods are shown in the section of 413 

illustrative examples. As practical data can be incorporated, the proposed copula approach can 414 

be significant for data-based decision-making during the life-cycle management of civil 415 

infrastructure. 416 

After selecting the copula model and estimation of the dependence parameter, the life-417 

cycle maintenance cost incorporating dependent maintenance cost and renewal cycle can be 418 

assessed. Due to complicated expressions of copulas, statistical modeling generally relies on 419 

numerical simulations. Simulations are flexible with various copulas but can be time-420 

consuming and expensive. The algorithm to assess the life-cycle maintenance cost using a 421 

Monte Carlo simulation is summarized as follows: 422 

 423 
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 424 

4.2 Analytical case: life-cycle analysis with FGM copula 425 

In addition to numerical modeling, an analytical case is developed in this section. The closed-426 

form expressions of statistical moments of the life-cycle maintenance cost considering an FGM 427 

copula are derived. Derivations are based on the renewal theory and Laplace Transform. Due 428 

to its analytical characteristics, the FGM copula was employed by Eryilmaz [47] to model 429 

dependent degradation rates for the reliability analysis of systems. The FGM copula is the first-430 

order Taylor approximation of the Frank copula and belongs to neither the elliptical family nor 431 

the Archimedean family [47]. 432 

The FGM copula demonstrates a weak correlation, including both positive and negative. 433 

The PDF of the FGM copula cθ
FGM is given as 434 

 ( , ) 1 (1 2 )(1 2 )FGMc u v u v    
 

(25) 

where the dependence parameter θ is between [-1, 1] and (u, v)  [0, 1] × [0, 1].  435 

The joint probability of (Z, W) can be expressed as follows using the copula 436 

Simulation algorithm 

(1) Inputs: tint, r, marginal PDFs or CDFs of Z and W (e.g., FZ(z), fZ(z), FW(t), fW(t)); 

(2) 
Establish dependence structure of the copula function and generate dependent random 

vectors (Zk, Wk); 

(3) 
Simulate a stochastic renewal process {N(tint)} by using {W1, W2, …, Wk} generated 

from Step (2); 

(4) Compute {T1, T2, …, Tk} of the process based on Step (3); 

(5) Compute LCC(tint) based on Eq. (22) by using {T1, T2, …, Tk} of Step (4), the associated 

{Z1, Z2, …, Zk} generated from Step (2), and the number of events N(tint) from Step (3); 

(6) Repeat Step (2) to (5) for NMC  times based on Monte Carlo simulation; and 

(7) Outputs: the mean, standard deviation, skewness, and kurtosis of LCC(tint) based on 

NMC samples. 
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4.2.1 Expectation and variance of life-cycle maintenance cost 437 

The expected life-cycle maintenance cost under a renewal process can be formulated by 438 

conditioning on the first arrival time y [48] 439 
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in which the first arrival time is equal to the first inter-arrival time T1 = y = W1. The conditional 440 

expectation of maintenance cost E[Z|W = y] can be expressed by the conditional probability 441 

 |

0

( )Z W yE Z W y z f z dz



      (28) 

where the conditional density function of maintenance cost fZ|W=y is associated with the bivariate 442 

joint probability fZ,W (z, t). Substituting the FGM copula according to Eq. (25), the conditional 443 

density function gives 444 
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Substituting Eq. (29) into Eq. (28), the conditional expectation of maintenance cost gives  445 
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in which E[Λ] is defined to combine the identical items  446 
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A Poisson process is the most common renewal process. It has exponentially distributed 447 

inter-arrival times. It gives that the inter-arrival time follows W ~ EXP(λ) with an occurrence 448 

rate λ. Hence, the PDF of the inter-arrival time fW(t) gives 449 
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 ( ) exp( )Wf t t  
 

(32) 

Herein, let ω(t; λ) represent the PDF fW(t) of W [49, 50]. This parameter can help simplify 450 

the derivation process in the Laplace transform, especially in higher-order moments. 451 

Consequently, the expected life-cycle maintenance cost can be rearranged as 452 
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(33

) 

Taking the Laplace transform of Eq. (33) on both sides, the Laplace transform of the 453 

expected life-cycle maintenance cost ( )LCC   can be written as  454 
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where the Laplace transform of the PDF of inter-arrival time ( ; )LCC    can be computed as 455 
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Substituting Eq. (35) into Eq. (34), the Laplace transform of expected life-cycle 456 

maintenance cost can be rearranged as 457 
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By taking inverse Laplace transform of Eq. (36) on both sides, the expected life-cycle 458 

maintenance cost under dependency is obtained 459 
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Following the similar procedure of the first moment, the second moment of life-cycle 460 

maintenance cost can be assessed by conditioning on the first arrival time y 461 
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(38) 

Following similar procedures in terms of the Laplace transform approach, the second 462 

moment of the life-cycle maintenance cost can be derived accordingly. The key derivation 463 

process and results are shown in Appendix A. Consequently, the variance can be evaluated 464 

from the first two moments as shown in Eqs. (A4) and (A5). 465 

When the dependence parameter is zero, the maintenance cost and renewal cycle become 466 

independent. The associated expectation and variance of life-cycle cost give identical outcomes 467 

as described in previous studies [26, 20], as shown in Eqs. (39) and (40) 468 
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4.2.2 Higher-order moments of life-cycle maintenance cost 469 

The mth order moment can also be evaluated using the Laplace transform approach. The mth 470 

order moment of life-cycle maintenance cost can be derived using the univariate distribution 471 

of inter-arrival time 472 
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where m ≥ 1 and 1 ≤ i < m.  473 

Similar to the first two moments, the mth order conditional expectation of maintenance 474 

cost can be expressed as 475 
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Substituting Eq. (42) into Eq. (41), the mth order moment of life-cycle maintenance cost 476 

gives 477 
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Considering the exponential distribution associated with the inter-arrival time fW(t), the 478 

mth order moment becomes 479 
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(44) 

Consequently, statistical moments can be derived analytically. The analytical case can be 480 

more effective than complicated numerical simulation. Based on the recursive moments (i.e., 481 

Eq. (44)) using an FGM copula, decision-makers can estimate the life-cycle cost under 482 

dependency effectively. Given more data, a more detailed dependence model can be further 483 

studied by using the proposed copula model. Future studies can investigate the multivariate 484 

distribution for the preventive maintenance cost, essential maintenance cost, and the renewal 485 

cycle by using the copula model. 486 

 487 

5. Illustrative example 488 

There are two illustrative examples provided to demonstrate the proposed copula-based life-489 

cycle analysis framework. The first example focuses on the impact of different copula models 490 

and the effect of multiple deterioration processes on the life-cycle maintenance cost. The 491 

second example aims to show a decision-making process based on practical data using the 492 

proposed copula model. The significance of considering higher-order moments of the life-cycle 493 

maintenance cost is highlighted. 494 
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5.1 Example 1: Life-cycle cost analysis of aging civil infrastructure 495 

This example aims to show the assessment process of the life-cycle maintenance cost of a 496 

bridge considering reliability-based maintenance policy. The impact of different dependence 497 

structures (i.e., different copulas) on the life-cycle maintenance cost is investigated. The effects 498 

of fatal shocks and dependent deterioration processes on the maintenance interval, maintenance 499 

cost, and the associated life-cycle maintenance cost are explored. 500 

The investigated bridge is subjected to dependent deterioration processes, such as gradual 501 

deterioration, external shock and fatal shock. For the gradual deterioration, a gamma process 502 

is employed. The associated shape parameter αs and scale parameter β of the gamma process 503 

are 0.04 and 0.16, respectively. The detailed computation of the deterioration parameters of 504 

aging bridges can be based on observation data [51]. An alternative way to define the inputs 505 

for gamma process can rely on the deterioration amount. For instance, the initial resistance of 506 

the investigated system is R0. At the end of a time period of 40 years, the expected cumulative 507 

gradual deterioration is 0.2R0 with a coefficient of variation of 0.4, and the expectation of the 508 

cumulative gradual deterioration changes linearly with time [51]. For the external shock 509 

process, random shocks are caused by hazards and modeled by a Poisson process, with an 510 

annual occurrence rate of λExS = 0.3. The resulting deterioration in terms of the external shock 511 

process is lognormally distributed. It has a mean of 0.03L and a coefficient of variation of 0.4. 512 

Meanwhile, hazards impose demands acting on the bridge, thus following the same Poisson 513 

process. It is assumed that demands follow a Gumbel distribution with a mean of 0.3L and a 514 

coefficient of variation of 0.3. Herein, the L can be associated with the external load on bridges 515 

such as the extreme wind load, wave and surge load caused by tropical cyclones, load caused 516 

by vehicles hitting the structures, etc. The demands and the shock deterioration are physically 517 

related. In civil engineering practice, they are usually associated with the loading effect. Herein, 518 

it assumes L = R0/3. For the fatal shock process, the occurrence is also modeled by a Poisson 519 

process with an annual occurrence rate λFaS = 1 × 10−5. A low-frequency fatal event leads to 520 

the immediate failure of a system and results in essential maintenance. The maximum 521 

deterioration level Gmax is 0.5. 522 

Subsequently, the system reliability analysis can be performed. At this stage, the 523 

dependence structure among multiple deterioration processes is incorporated using the copula 524 

function, as described in Eq. (19). The multivariate dependence of the normalized gradual 525 

deterioration, external shock deterioration, and demand ( , , )
i i it t tA B  , as shown in Eq. (45), is 526 
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modeled by a Gaussian copula for illustrative purposes. The Gaussian copula has been widely 527 

applied in previous reliability studies due to its advantages in reducing the computational cost 528 

based on Nataf transformation [15, 52, 53]. Other copula models can be applied when there is 529 

more information provided. Based on the Gaussian copula, the joint CDF of the correlated 530 

random vector ( , , )
i i it t tA B   can be written as 531 

 
, ,

1 1 1

( , , ) ( ( ), ( ), ( ))

( ( ( )), ( ( )), ( ( )))
A B Gau A B

A B

F a b d C F a F b F d

F a F b F d

 
  





    
 (45) 

in which Φ(.) is the CDF of a multivariate normal distribution; ζ is the correlation matrix; and 532 

Φ-1(.) is the inverse CDF of the standard normal distribution. The correlation between random 533 

vectors is positive [54], as a stronger external load results in a larger decrease in resistance due 534 

to damage (e.g., crack). Meanwhile, changes in resistance further accelerate the gradual 535 

deterioration process (e.g., corrosion in terms of reinforcement). Herein, the associations 536 

between every two random variables are described by Pearson’s correlation coefficient with γd 537 

= 0.3. The assigned values are presented here for illustrative purposes and can be upgraded 538 

with specific problems. 539 

In addition to the deterioration processes and system reliability analysis, the assessment 540 

of maintenance interval W and maintenance cost Z for the life-cycle analysis requires 541 

parameters associated with maintenance policy. Herein, maintenance actions are performed 542 

when the probability of the system failure hits the associated thresholds, i.e., PPM = 1×10-5 for 543 

preventive maintenance and PEM = 1×10-3 for essential maintenance, respectively. The 544 

changing rate rpre on gradual deterioration after the preventive maintenance is 0.5, as described 545 

in Eq. (21). Additionally, as mentioned previously, it is assumed that the bridge would be 546 

restored to the initial status after essential maintenance. In this example, the costs of preventive 547 

maintenance CPM and essential maintenance CEM are given as 50,000 USD and 487,100 USD, 548 

respectively [55, 56]. The bridge has a service life of 100 years, i.e., tint = 100. Given these 549 

inputs, the expected renewal cycle can be determined based on system reliability analysis using 550 

Monte Carlo simulation with 106 replications, as shown in Figure 7. The figure describes the 551 

computed probability of failure of the bridge subjected to multiple dependent deterioration. It 552 

can be identified that the bridge experiences nearly four cycles of essential maintenance and 553 

resulting in a renewal cycle (i.e., maintenance interval) of E[W] = 25.6 years. The associated 554 

maintenance cost within a renewal cycle can also be obtained accordingly, i.e., E[Z] = 537,100 555 
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USD. The reliability analysis confirms that E[Z] consists of one preventive intervention and 556 

one essential maintenance, i.e., E[Z] = CPM + CEM.  557 

 558 

Figure 7. The probability of bridge failing subjected to multiple dependent deterioration 559 

processes considering preventive and essential maintenance actions. 560 

Given the expected maintenance interval E[W] and the maintenance cost E[Z], the life-561 

cycle maintenance cost can be evaluated. W and Z are random variables and they are assumed 562 

to follow exponential distributions herein. The monetary discount rate is 2%. In this example, 563 

the mean E[LCC] and standard deviation Std[LCC] of the life-cycle maintenance cost are of 564 

interest. The impact of dependent maintenance interval and cost on the E[LCC] and Std[LCC] 565 

are explored using the proposed FGM copula. As the FGM copula indicates the weak 566 

correlation, the maximum positive correlation refers to Kendall’s tau at 2/9. The associated 567 

expectation and standard deviation of life-cycle maintenance cost are computed as 800,152 568 

USD and 588,943 USD, respectively. If considering an independent case (i.e., tau of zero), the 569 

expectation and standard deviation of the life-cycle cost can be computed as 907,054 USD and 570 

743,714 USD, respectively. The analytical results have been validated by using numerical 571 

modeling based on Monte Carlo simulation. Figure 8 demonstrates the difference in the life-572 

cycle maintenance cost by considering dependent maintenance interval and cost associated 573 

with an FGM copula. A negative correlation may exist when there is a different maintenance 574 

policy. 575 
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(a) (b) 

Figure 8. (a) Expectation and (b) standard deviation of life-cycle maintenance cost with a 576 

FGM copula subjected to Kendall’s tau at -2/9, 0, and 2/9 577 

5.1.1 Effect of dependent correlated renewal sequences 578 

Apart from the weak correlation associated with the FGM copula, different correlation 579 

relationships and copulas may influence the life-cycle maintenance cost. Herein, the 580 

dependence structures described by Gaussian and Clayton copulas are also investigated by 581 

using numerical modeling. Figure 9 shows the three-dimensional schematic PDFs of FGM, 582 

Gaussian, and Clayton copulas with Kendall’s tau of 0.2. The PDF of the Gaussian copula can 583 

be written as 584 

 

1 1 2 1 2 1 2

22

1 2 ( ) ( ) ( ( ) ( ) )
( , ) exp

2(1 )(1 )

Gau u v u v
c u v

 



        
  

  
 

(46) 

   

(a) FGM copula (b) Gaussian copula (c) Clayton copula 

Figure 9. Three-dimensional PDFs of different copulas with Kendall’s tau = 0.2. 585 

The expectation and standard deviation of life-cycle maintenance cost with respect to the 586 

three copulas are shown in Figure 10. Both weak (i.e., Kendall’s tau of 0.2) and strong (i.e., 587 

Kendall’s tau of 0.9) positive correlations are considered. The FGM copula only illustrates the 588 

weak correlation. Compared with the independent case, the positive correlation decreases the 589 
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expected life-cycle maintenance cost and standard deviation. A stronger correlation can lead to 590 

a more significant reduction. The interpretation of such a trend is that increasing the 591 

maintenance cost (e.g., with more frequent preventive cost) leads to a longer maintenance 592 

interval, as more preventive actions delay the occurrence of essential maintenance. 593 

Consequently, the life-cycle maintenance cost is reduced. Such findings can assist researchers 594 

and decision-makers in exploring the optimization of maintenance policy by comparing the 595 

life-cycle cost. In Figure 10, with the same correlation coefficients (i.e., Kendall’s tau), the 596 

expectation and standard deviations of the life-cycle maintenance cost are not significantly 597 

affected by different copula models. Under the weak correlation, the results associated with the 598 

FGM copula show similar estimates compared with the Gaussian and Clayton copulas. 599 

Therefore, the proposed analytical approach using an FGM copula provides an effective tool 600 

for decision-makers to estimate the life-cycle cost considering weak correlation. The analytical 601 

estimation significantly accelerates the computation process, as numerical modeling of copula 602 

functions can be complicated and time-consuming.  603 

 604 

Figure 10. Expected life-cycle cost and standard deviation of different dependence scenarios. 605 

5.1.2 Effect of fatal shock and dependent deterioration processes 606 

In addition to the dependence structure, the interaction between deterioration processes affects 607 

the maintenance interval, maintenance cost, and life-cycle cost. For instance, the renewal cycle 608 

(i.e., maintenance interval) is particularly affected by deterioration processes. Figure 11 609 

presents the probability of bridge failing subjected to deterioration under three scenarios: 610 

dependent deterioration processes (correlation coefficient γd = 0.3) with fatal shocks, dependent 611 

deterioration processes (γd = 0.3) without fatal shocks, and independent deterioration process 612 

(γd = 0) without fatal shocks. The expected maintenance interval E[W] with respect to the three 613 

scenarios are 25.6, 26.8, and 29.2 years, respectively. The associated maintenance cost remains 614 

unchanged at 537,100 USD. Considering a FGM copula (Kendall’s tau = 2/9), the expected 615 
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life-cycle maintenance costs associated with the three scenarios are 800,153 USD, 760,552 616 

USD, and 691,311 USD, respectively. It shows that dependent deterioration processes and fatal 617 

shocks slightly shorten the maintenance interval and increase the life-cycle maintenance cost.  618 

  619 

Figure 11. The probability of failure subjected to dependent gradual deterioration, external 620 

shock and fatal shock deterioration processes under three scenarios: (1) With dependence γd = 621 

0.3 and with fatal shock; (2) With dependence γd = 0.3 and without fatal shock; and (3) 622 

Without dependence γd = 0 and without fatal shock. 623 

The maintenance cost is more likely affected by the maintenance policy, e.g., maintenance 624 

threshold. For instance, if maintenance thresholds for preventive and essential action change 625 

to 1×10-5 and 0.1, respectively, the maintenance interval and cost can be significantly altered. 626 

The interval is extended to 56 years, while the maintenance cost remains unchanged. The 627 

maintenance cost changes with different preventive and essential maintenance actions. 628 

Considering the FGM copula (Kendall’s tau = 2/9), the associated expected life-cycle cost 629 

becomes 328,906 USD with a standard deviation of 369,844 USD. Therefore, the maintenance 630 

interval can be sensitive to the maintenance thresholds. The associated parameters should be 631 

carefully examined during the life-cycle analysis. 632 

 633 

5.2 Example 2: Maintenance decision-making using higher-order moments of the life-cycle 634 

cost 635 

In previous studies, the minimum expected life-cycle cost has been broadly utilized as a 636 

standard criterion in the decision-making process. However, decisions exclusively based on the 637 

expected cost may not be optimal, as uncertainties associated with the other three statistical 638 

moments have been ignored [25]. Herein, an illustrative example is provided to apply statistical 639 

moments of the life-cycle maintenance cost in the decision-making process. Based on the 640 

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

10-3

Service life (year)

P
ro

b
ab

ili
ty

 o
f 

fa
ilu

re

×

(1)
γd = 0.3

γd = 0

γd = 0.3

(2)

(3)



30 

proposed copula approach and historical records, a data-based decision-making process is 641 

provided to determine an appropriate maintenance policy for a reinforced concrete bridge. 642 

There are two maintenance policies considered for the bridge, as shown in Figure 12. 643 

Maintenance Policy 1 is provided based on the historical records of 50 similar reinforced 644 

concrete bridges from the U.S. National Bridge Inventory (NBI) database [57]. The 645 

maintenance interval of Policy 1 has a mean of 16.14 years and a mean maintenance cost per 646 

unit deck area of 4298.02 USD/m2. As the sizes of bridges vary significantly, the maintenance 647 

cost is conditioned on the unit deck area. In contrast, Maintenance Policy 2 is proposed based 648 

on [57] with engineering justification, in which the maintenance interval is extended by 649 

increasing the maintenance cost. Policy 2 has a mean maintenance interval of 24.10 years and 650 

a mean maintenance cost per unit deck area of 6390.55 USD/m2. Data associated with 651 

Maintenance Policy 2 are provided for illustrative purposes. Between the two alternatives, 652 

decisions should be made to select an appropriate policy for the bridge by considering statistical 653 

moments of the life-cycle maintenance cost. 654 

 655 

Figure 12. Two maintenance policies with different maintenance interval W and maintenance 656 

cost Z. 657 

For maintenance policy 1, the dependence structure between the maintenance interval W 658 

and maintenance cost Z can be examined using the presented Method 1 as described in Figure 659 

6. Firstly, marginal distributions of W and Z should be fitted. It is identified that there are many 660 

distribution alternatives due to limited data records. Herein, their marginal distributions are 661 

fitted into exponential distributions. Subsequently, the copula function for the correlated W and 662 

Z is assessed using the goodness-of-fit test [58, 59]. Based on the Akaike information criterion 663 

(AIC) and Bayesian information criterion (BIC), the Clayton copula is selected among 664 

candidates (i.e., Gaussian, Student’s t, Clayton, Gumbel, and Frank copulas) for the two 665 
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policies. Detailed fitting procedures and the goodness-of-fit test follow the process of copula 666 

selection described in Li et al. [37]. The PDF of the Clayton copula can be described as 667 

 
2 1

( 1)( , ) ( 1)( ) ( 1)Clayc u v uv u v

  

 
        (47) 

where θ is the dependence parameter.  668 

The recorded and simulated maintenance interval and maintenance cost based on the fitted 669 

Clayton copula associated with two policies are shown in Figure 13. For Policy 1 (e.g., Figure 670 

13(a)), the dependence parameter for the Clayton copula is 1.24, and the correlation between 671 

W and Z is measured by Kendall’s tau as 0.38. For Policy 2 in Figure 13(b), the associated 672 

dependence parameter is 0.89, and Kendall’s tau is computed to be 0.31. Given the fitted copula 673 

models, the life-cycle maintenance costs with respect to two policies can be assessed. The 674 

service life of the bridge is defined as 100 years. The associated expectation, standard deviation, 675 

skewness, and kurtosis are computed using the Monte Carlo simulation, as shown in Table 1. 676 

  

(a) (b) 

Figure 13. Scatter plots of the recorded and simulated data of the maintenance interval W and 677 

maintenance cost Z of (a) Maintenance Policy 1 and (b) Maintenance Policy 2. 678 

Table 1. Mean, standard deviation (S.D.), skewness, and kurtosis of the life-cycle maintenance 679 

cost associated with two maintenance policies. 680 

 Mean (USD/m2) S.D. (USD/m2) Skewness Kurtosis 

Maintenance Policy 1 10231.86 5555.48 1.04 1.89 

Maintenance Policy 2 10068.05 7010.80 1.32 2.83 
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To determine an appropriate maintenance policy, four statistical moments are defined as 682 

four different decision criteria. For the investment in maintaining civil infrastructure, decision-683 

makers may tend to be risk-averse [60], as they tend to avoid large variability and extreme cost. 684 

For instance, risk averters tend to seek a smaller standard deviation and a positive skewness of 685 

the investment return [26, 61].  686 

In this example, the decision process is based on the multi-attribute utility theory. The 687 

multi-attribute utility theory generally consists of four steps: quantification of attributes, 688 

identification of utility functions, assessment of relative weights, and decision on the maximum 689 

utility [62]. Four statistical moments are considered as four attributes. As smaller expected life-690 

cycle maintenance cost is preferred, the normalized attribute function of the mean can be 691 

defined as [63, 64] 692 

 
min[ ]

[ ]

E LTL

E LTL
   (48) 

in which E[LTL]min is the minimum mean value between the considered maintenance policies. 693 

Based on the risk-averse attitude, a smaller standard deviation should be chosen. Meanwhile, 694 

risk averters avoid extreme events associated with low-probability and high-consequence. The 695 

extreme situation can be implied by the potential tail risk in terms of skewness and kurtosis 696 

[25, 26]. Therefore, attributes for skewness and kurtosis should be defined based on the 697 

aversion of a heavy tail associated with the huge cost. For the investigated case, as the life-698 

cycle maintenance cost indicates negative investment return, smaller skewness and kurtosis are 699 

favored [61, 65]. Accordingly, similar to the mean attribute described in Eq. (46), the minimum 700 

values of the other three attributes (i.e., standard deviation, skewness, and kurtosis) are also 701 

preferred. Hence, all four attributes can be defined as the ratio of minimum value over the 702 

attribute value.  703 

After defining attributes, the utility function of each attribute can be formulated. In this 704 

example, the same utility functions are utilized for the four attributes, as they are all statistical 705 

characteristics of the life-cycle maintenance cost. The utility function is commonly fitted by a 706 

few points in the utility curve, which is typically concave for risk averters [63, 66]. Herein, a 707 

risk-averse utility function is directly given for illustrative purpose [67], as shown in Eq. (49) 708 

 ( ) 5.5exp( 2 / )u     (49) 
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Subsequently, the additive multi-attribute utility function can be formulated. The utility of 709 

each attribute is multiplied by the associated weighting factor and then summed over. The 710 

multi-attribute utility function can be described as Eq. (50) 711 

 ( , , , )LTL mean mean sd sd skew skew kurt kurtu mean sd skew kurt w u w u w u w u     (50) 

where umean, usd, uskew, and ukurt are the utility values of the four attributes (i.e., mean, standard 712 

deviation, skewness, and kurtosis); wmean, wsd, wskew, and wkurt are weighting factors with respect 713 

to the attributes. Typically, weighting factors are allocated considering information provided 714 

by decision-makers [68]. Herein, the four weighting factors, wmean, wsd, wskew, and wkurt, are 715 

allocated as 0.40, 0.25, 0.20, and 0.15, respectively. These values can be adjusted based on the 716 

preferences of decision-makers. 717 

Given these inputs of attributes, the utility of Maintenance Policy 1 and Policy 2 can be 718 

computed as 0.735 and 0.535, respectively. As Policy 1 gives the maximum utility value 719 

between alternatives, Policy 1 should be chosen as the appropriate maintenance policy for the 720 

bridge. However, if the decision is purely based on the mean value (i.e., the expected life-cycle 721 

maintenance cost) as shown in Table 1, Policy 2 should be selected due to a relatively lower 722 

expected cost. A different decision outcome is attained due to the consideration of statistical 723 

moments. Therefore, statistical moments should be considered during the life-cycle analysis 724 

and decision-making process. The proposed copula tool also provides an effective data-based 725 

model for decision-making. 726 

 727 

6. Conclusions 728 

This study proposed a copula-based life-cycle analysis framework for deteriorating civil 729 

infrastructure systems considering uncertainties and correlation effects (e.g., dependent 730 

maintenance interval and maintenance cost). Statistical moments associated with the life-cycle 731 

maintenance cost can be effectively estimated analytically and numerically using the copula 732 

approach. Multiple dependent deterioration processes are considered in the proposed 733 

framework, including gradual deterioration, external shock, and fatal shock. Reliability-based 734 

preventive and essential maintenance actions are performed based on system reliability. 735 

Several significant conclusions are drawn as follows: 736 
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1. The joint probability distribution of the maintenance interval and the maintenance cost 737 

can be effectively modeled by the proposed copula approach. An analytical case, i.e., 738 

the FGM copula, is employed to derive statistical moments of the life-cycle cost under 739 

the weak correlation, due to its unique mathematically trackable form. Results show 740 

that even only with a weak correlation, the dependence can significantly affect the life-741 

cycle maintenance cost. 742 

2. The proposed copula-based approach is flexible to incorporate practical data to 743 

determine the correlation between the maintenance interval and the cost, thus delivering 744 

data-based models for the life-cycle analysis. In addition to the expectation, the other 745 

statistical moments (i.e., standard deviation, skewness, and kurtosis) of the life-cycle 746 

maintenance cost should be considered during the life-cycle cost assessment, as 747 

different decision results can be attained due to the exclusion of the other three 748 

statistical moments. 749 

3. In addition to the FGM copula, the Gaussian and Clayton copulas are also applied to 750 

explore the effect of different dependence structures on the life-cycle cost. Results show 751 

that the expectation and standard deviation of the life-cycle cost will decrease when the 752 

correlation increases. Under the same degree of dependence (i.e., with identical 753 

Kendall’s tau), the life-cycle maintenance cost is not significantly affected by different 754 

copula models. 755 

4. Dependent deterioration processes and maintenance policy affect the maintenance 756 

interval and maintenance cost, thus influencing the life-cycle maintenance cost. For 757 

instance, in the illustrative example, considering dependent deterioration processes and 758 

fatal shocks results in a significant decrease in the maintenance interval and an increase 759 

of the life-cycle maintenance cost. Changing maintenance thresholds also leads to 760 

considerable differences in the maintenance interval and the life-cycle maintenance cost. 761 

5. Future studies are needed to explore the dependence model of deterioration processes 762 

by incorporating data and considering the stochastic frequency and magnitude. Future 763 

studies may investigate the impact of different intervention actions on the maintenance 764 

cost and the life-cycle cost. The implementation of higher-order moments during the 765 

life-cycle analysis and decision-making process needs to be explored. The employed 766 

model of dependent deterioration processes relies on several assumptions. Future 767 
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studies are encouraged to relax these restrictive assumptions and analytical solutions 768 

should be investigated. 769 

 770 

Appendix A. Second moment of life-cycle cost with an FGM copula 771 

Analytical formulation of the second moment of the life-cycle maintenance cost with an FGM 772 

copula is presented. Following Eq. (38), the conditional second moment of maintenance cost 773 

can be computed and rearranged as 774 

  2 2 2 2 2
|

0

( ) [ ] [ ] [ ] (1 2 ( ))Z W y WE Z W y z f z dz E Z E E Z F y



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The PDF of the renewal cycle can be denoted as ω(t, λ). Consequently, the second moment 776 

of life-cycle maintenance cost can be computed as 777 
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) 

By taking the Laplace transform of Eq. (A3) on both sides and performing the associated 778 

inversion, the second moment of life-cycle cost under dependency can be derived as 779 
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Consequently, the variance can be evaluated from the first two moments 780 

 
2 2 2
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