

1 **Copula-Based Multivariate Renewal Model for Life-Cycle Analysis of Civil 2 Infrastructure considering Multiple Dependent Deterioration Processes**

3 Yaohan Li¹, You Dong^{1 *}, and Hongyuan Guo¹

4 **Abstract**

5 Civil infrastructure is subjected to multiple deterioration processes (e.g., gradual deterioration
6 and shock deterioration) caused by environmental exposure and extreme events during its
7 lifetime. To maintain performance and functionality, maintenance actions should be performed
8 and the life-cycle cost may be affected. There is a need to explore the effect of maintenance
9 actions and various uncertainties on the life-cycle performance of the system. This study
10 proposes a probabilistic life-cycle analysis framework for civil infrastructure based on a set of
11 performance indicators, e.g., reliability and maintenance cost. Stochastic uncertainties resulting
12 from multiple dependent deterioration processes, system reliability, intervention actions, and
13 maintenance cost are considered. In particular, the correlation between the maintenance
14 interval and cost is highlighted. Previous studies generally assume they are independent. Such
15 an assumption can be misleading and lead to inappropriate cost estimation. To address this
16 concern, a copula-based multivariate renewal model is proposed to assess the life-cycle
17 maintenance cost analytically and numerically. In addition to the expected cost, statistical
18 moments (standard deviation, skewness, and kurtosis) are calculated to quantify uncertainties
19 from higher-order moments. Two illustrative examples show that the dependence structure and
20 uncertainties can have a large impact on the life-cycle cost, and decisions can be altered by
21 considering statistical moments of the cost.

22 **Keywords:** Copula; life-cycle cost; higher-order moments; stochastic deterioration; structural
23 reliability

24 ¹ Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hong Kong,
25 China.

26
27 *Corresponding Author: you.dong@polyu.edu.hk.

29 **1. Introduction**

30 During the lifetime, civil infrastructure systems are subjected to multiple deterioration
31 processes, such as gradual deterioration resulting from environmental influence (e.g., corrosion
32 and crack growth) and shock deterioration caused by extreme events (e.g., hurricanes and
33 earthquakes) [1, 2]. The combination effects of deterioration processes may lead to damages
34 and failure [3, 4], thus threatening public safety and resulting in considerable financial and
35 social losses. In order to maintain the functionality of civil infrastructure, various intervention
36 actions such as repair and replacement are required. The incurred maintenance cost increases
37 the life-cycle cost and directly affects the subsequent decision-making process.

38 Due to various uncertainties associated with the life-cycle analysis, rational stochastic
39 models and reliability analysis can be essential to assess the maintenance cost [5-7]. Although
40 numerous studies have accounted for both gradual and shock deterioration processes [8-11],
41 interaction and correlation between them are commonly neglected (i.e., assume they are
42 independent). For instance, Sanchez-Silva *et al.* [12] studied the life-cycle performance of
43 deteriorating structures by investigating the combined effects of progressive degradation and
44 sudden events. Caballé and Castro [13] proposed a reliability-based analysis framework to
45 assess the maintenance cost of the system with a finite lifetime subjected to internal continuous
46 degradation and sudden events. The impact of dependent deterioration processes on system
47 reliability has been explored in recent studies. For instance, Kumar *et al.* [14] proposed a
48 stochastic framework for engineering systems to estimate the time to failure considering
49 exposure to gradual degradation and sudden events. Wang *et al.* [15] developed a dependence
50 framework to assess the time-dependent reliability of deteriorating structures considering the
51 correlation between gradual and shock deterioration processes. Jia *et al.* [16] investigated the
52 stochastic deterioration of reinforced concrete structures considering compound effects of
53 corrosion, earthquakes, and ASR. However, the effects of dependent deterioration processes
54 on maintenance planning and the associated cost have not been carefully explored in a life-
55 cycle context.

56 In terms of the life-cycle cost analysis, most of the existing studies focus on one type of
57 deterioration (either under gradual deterioration or shocks) and ignore their combined effects.
58 For instance, Cheng *et al.* [17] presented an analytical framework to derive the probability
59 distribution of maintenance cost of aging engineering systems subjected to gradual degradation
60 by using the gamma process. Yang and Frangopol [1] assessed the life-cycle maintenance cost

61 subjected to independent shock and deterioration processes using renewal models. A few recent
62 studies take correlated deterioration effects into account. For instance, Jia and Gardoni [18]
63 introduced state-dependent models to the life-cycle cost analysis subjected to earthquake and
64 corrosion damage. Liu *et al.* [19] investigated dependent degradation processes using copulas
65 and the resulting impact on the life-cycle cost. However, in these studies, the impact of
66 dependent deterioration processes on the maintenance cost has not been explicitly discussed.

67 Despite considerable efforts on deterioration modeling and cost assessment, these studies
68 commonly assume that the maintenance interval and cost are independent. The independence
69 assumption has been widely used to simplify the analytical formulation associated with the
70 renewal theory [17, 19, 20]. Neglecting the dependence and the associated uncertainties may
71 result in an inappropriate estimation of the accumulative cost, thus misleading decision-makers
72 during the life-cycle management. Pandey and Van Der Weide [20] also indicated that
73 dependence between maintenance cost and renewal cycle cannot be ignored, especially when
74 preventive maintenance is considered. To the best of the authors' knowledge, the dependent
75 maintenance interval and cost have not been considered in the life-cycle analysis.

76 To incorporate the correlation between the maintenance interval and cost, statistical
77 modeling of the joint probability distribution is essential. A conventional approach of
78 multivariate modeling relies on an empirical multivariate joint distribution or a joint normal
79 distribution [21, 22], but the approach is limited to a certain correlation relationship. Herein, a
80 copula-based method is proposed. As an advanced mathematical tool, the copula model offers
81 sufficient efficiency and flexibility in multivariate dependence modeling by considering the
82 joint and marginal distributions separately [23, 24]. Due to this advantage, copulas have been
83 increasingly applied in deterioration processes and reliability analysis. For instance, Goda [25]
84 highlighted the importance of multi-variate seismic demand modeling by employing copulas.
85 Fang *et al.* [24] provided an integrated approach to analyze the reliability of a degrading system
86 by considering dependent component failures using the copula model.

87 In addition to uncertainties resulting from the dependence model, uncertainties associated
88 with statistical moments (mean, standard deviation, skewness, and kurtosis) of the life-cycle
89 cost have not been thoroughly explored. Although the minimum expected cost has been utilized
90 as a standard decision criterion, the impact of the other statistical moments on the life-cycle
91 cost and decision-making process has been rarely discussed. Pandey and Van Der Weide [20]
92 indicated that the variance of the life-cycle damage cost could be significant to indicate the

93 variability. Li *et al.* [26] stated the importance of higher-order moments (skewness and kurtosis)
94 of the repair cost during system lifetime, as skewness and kurtosis imply potential tail risks.
95 Hence, it is necessary to assess the statistical moments of the life-cycle maintenance cost.

96 This study presents a copula-based life-cycle cost analysis framework for deteriorating
97 civil infrastructure systems. The developed copula-based approach allows various complex
98 dependence structures between the maintenance interval and the cost in a renewal process. The
99 impact of dependent deterioration processes on the life-cycle performance of a system is
100 investigated. Furthermore, the effect of correlated maintenance cost (considering preventive
101 and essential maintenance) and maintenance interval on the life-cycle maintenance cost is
102 evaluated based on the renewal process. The proposed copula model allows including practical
103 maintenance data into the life-cycle analysis, by identifying the correlation between
104 maintenance cost and interval. The proposed framework can aid the decision-making
105 associated with maintenance planning and optimization. The remainder of the paper is
106 organized as follows. The following Section 2 introduces the life-cycle framework and the
107 relevant dependence. Section 3 illustrates the stochastic modeling of deterioration processes
108 and the time-dependent reliability assessment. In section 4, a copula-based renewal model is
109 proposed to assess the life-cycle maintenance cost analytically and numerically. Subsequently,
110 two illustrative examples are presented in Section 5. Conclusions are drawn in the last section.

111

112 **2. Life-cycle analysis framework and dependence**

113 Appropriate maintenance relies on the life-cycle analysis of the structural performance. Figure
114 1 shows the computational framework for the life-cycle maintenance cost assessment. There
115 are various dependence relationships within the life-cycle analysis. To take the dependence
116 into account, the analysis of deterioration and maintenance models also becomes more and
117 more complicated. In previous studies, special attention has been paid to structural, economic,
118 and stochastic dependencies of multi-component engineering systems [27, 28]. For instance,
119 structural dependence has been widely explored to investigate the impact of the maintenance
120 action of one component on other components [29, 9, 30]. Economic dependence refers to that
121 the total maintenance cost of a system may be increased or decreased due to joint maintenance
122 of components [31, 32]. Stochastic dependence has been considered for dependent
123 deterioration or condition among components [9, 33]. In the life-cycle analysis of civil
124 engineering, potential dependence associated with structural reliability can be related to

125 structural status variables, external conditions, model parameters, and time [18, 19, 15]. In the
126 maintenance aspect, potential dependence exists among preventive maintenance cost,
127 corrective maintenance cost, total maintenance cost, and time.

128 In this study, the major contribution is associated with Stage 3 by considering the
129 dependence between total maintenance cost within the maintenance interval and the interval.
130 A copula-based renewal model is proposed. The deterioration modeling and the structural
131 reliability analysis at Stages 1 and 2 aim to provide essential inputs of the expected maintenance
132 cost and the maintenance interval for Stage 3. A gradual deterioration process and two shock
133 processes are considered. Based on these inputs, the life-cycle maintenance cost can be
134 assessed by using the copula-based renewal model.

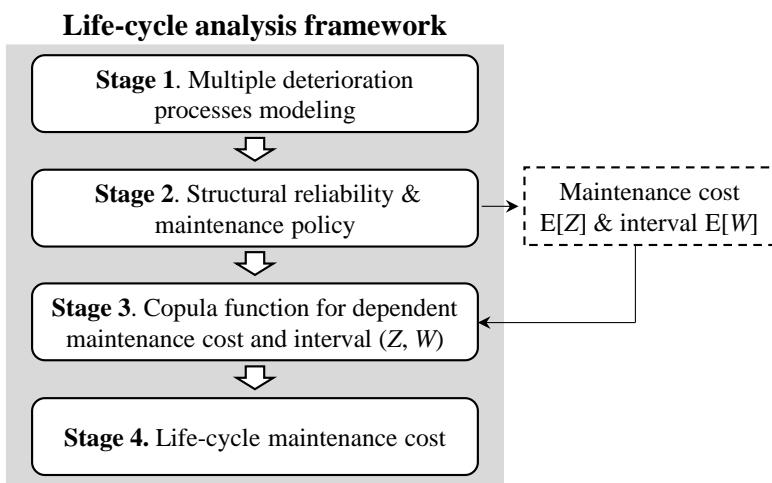


Figure 1. A flowchart of the proposed life-cycle analysis framework

3. Structural deterioration and reliability-based maintenance

3.1 Stochastic models of gradual deterioration and sudden events

3.1.1 Gradual deterioration

The stochastic gamma process has been widely used to model gradual deterioration [12, 34]. The gradual deterioration of an infrastructure system can be modeled by a stochastic gamma process. Over an interval $(0, s]$, the cumulative degradation follows the gamma distribution, and its probability density function (PDF) $ga(q; \alpha s, \beta)$ and cumulative distribution function (CDF) $Ga(q; \alpha s, \beta)$ are given by

$$ga(q; \alpha s, \beta) = \frac{q^{\alpha s-1} \exp(-q/\beta)}{\beta^{\alpha s} \Gamma(\alpha s)} \quad (1)$$

$$Ga(q; \alpha s, \beta) = \frac{\Upsilon(\alpha s, q/\beta)}{\Gamma(\alpha s)} \quad (2)$$

146 where αs and β are shape and scale parameters, respectively; $\Upsilon(\alpha s, \beta) = \int_0^\beta x^{\alpha s-1} e^{-x} dx$ is the
 147 lower incomplete gamma function; and $\Gamma(\alpha s) = \int_0^\infty x^{\alpha s-1} e^{-x} dx$ is the complete gamma
 148 function.

149 *3.1.2 Shock deterioration: external shock and fatal shock*

150 Different from gradual deterioration, shock deterioration indicates the abrupt decrease in the
 151 performance of a system caused by a shock event [13, 35]. There are two shock processes
 152 considered herein. One is the external shock process, which leads to the accumulation of shock
 153 deterioration and results in failure when the failure threshold is reached. The other one refers
 154 to a fatal shock process, which leads to immediate failure of the system. It is necessary to
 155 account for random fatal shocks, as the system can be subjected to extreme events with low-
 156 frequency and high-consequence during the lifetime. Two shock processes are modeled by the
 157 Poisson processes, in which the occurrence rate of a fatal shock process λ_{Fas} is much smaller
 158 than that of an external shock process λ_{ExS} . For a single shock process, the number of shocks
 159 follows a Poisson distribution, which gives

$$P[N(t) = x] = \frac{(\lambda t)^x \exp(-\lambda t)}{x!} \quad (3)$$

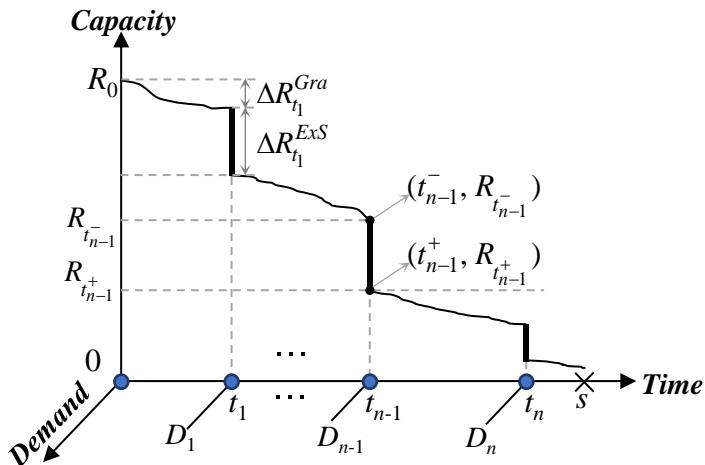
160 where q is the number of shocks with $x = 0, 1, 2, \dots$ and λ is the occurrence rate of a shock
 161 process. The intensity of shock deterioration is a random variable, e.g., ΔR^{ExS} denoting the
 162 intensity of a shock event is a random variable. In other words, the external shock and fatal
 163 shock processes are also compound Poisson processes. For the external shock, it is associated
 164 with the external demand. Herein, the external shock deterioration is assumed to follow
 165 lognormal distribution. The existence of a fatal shock results in an immediate failure, thus the
 166 distribution of the intensity is not specified herein.

167

168 3.2 System reliability analysis

169 *3.2.1 Stochastic demand and capacity*

170 The deterioration of a system has a direct influence on structural reliability. The time-
 171 dependent reliability analysis relies on the assessment of demand and capacity subjected to
 172 stochastic deterioration. During the period $(0, s]$, the random occurrence of external loads
 173 imposes demand $\{D_i\}$ with $i = 1, 2, \dots, n$ upon the system. The associated arriving times of
 174 demands are t_1, t_2, \dots, t_n . The external shock deterioration results from the demand due to
 175 external loading. In other words, the demand occurs at the same time as the external shock
 176 deterioration.



177

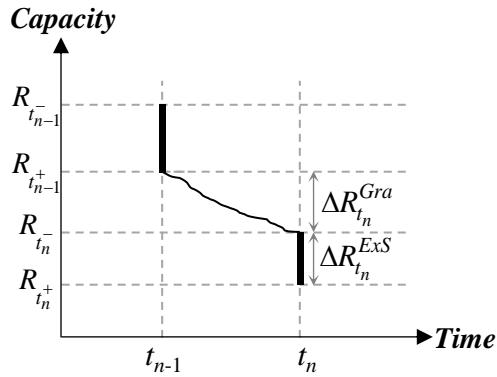
178 Figure 2. Capacity and demand of a system subjected to gradual deterioration and external
 179 shock process.

180 Figure 2 describes the demand and time-dependent resistance subjected to gradual
 181 deterioration and external shock. In this study, the gradual deterioration is modeled as a
 182 stochastic gamma process and the external shock is modeled by a Poisson process. The
 183 occurrence of demand is together with the external shock, thus also following a Poisson process.
 184 The period $(0, s]$ is divided into $n + 1$ intervals by n number of load events, i.e., $(0, t_1], (t_1,$
 185 $t_2], \dots, (t_{n-1}, t_n], (t_n, t_{n+1} = s]$. The number of events n is a stochastic variable. The system
 186 resistance at time t_n can be denoted as R_{t_n}

$$R(t_n^-) = R_0 - R^{Gra}(0, t_n] - \sum_{i=1}^{N(t)-1} \Delta R_{t_i}^{ExS} \quad (4)$$

$$R(t_n^+) = R(t_n^-) - \Delta R_{t_n}^{ExS} \quad (5)$$

187 where R_0 represents the initial capacity of the system; t_n^- and t_n^+ are the time immediately
 188 before and after t_n ; and $\Delta R_{t_i}^{ExS}$ is the external shock deterioration at time t_i . It should be noted
 189 that the demands and the shock deterioration are physically related. Herein,
 190 $\Delta R_{t_i}^{Gra} = R^{Gra}(t_{i-1}, t_i]$ denotes gradual deterioration within time interval $(t_{i-1}, t_i]$. Figure 3
 191 describes the impact of gradual and shock deterioration on the system capacity at t_n (t_n^- and
 192 t_n^+).



193

194 Figure 3. Schematic diagram of deterioration of system capacity.

195 For normalization, the capacity can be defined as the product of the deterioration function
 196 $G(t)$ and the initial capacity R_0 , i.e., $R(t) = R_0 \cdot G(t)$. Accordingly, Eqs. (4) and (5) can be
 197 rearranged to the time-dependent deterioration functions, given by Eqs. (6) and (7)

$$G(t_n^-) = 1 - R^{Gra}(0, t_n] / R_0 - \sum_{i=1}^{n-1} \Delta R_{t_i}^{ExS} / R_0 \quad (6)$$

$$G(t_n^+) = 1 - R^{Gra}(0, t_n] / R_0 - \sum_{i=1}^n \Delta R_{t_i}^{ExS} / R_0 \quad (7)$$

198 Based on Figure 2, for a time instant δ , the deterioration function at time δ can also be
 199 described as

$$G(\delta^-) = 1 - R^{Gra}(0, \delta] / R_0 - \sum_{i=1}^{N(\delta)^-} \Delta R_{t_i}^{ExS} / R_0 \quad (8)$$

$$G(\delta^+) = 1 - R^{Gra}(0, \delta] / R_0 - \sum_{i=1}^{N(\delta)^+} \Delta R_{t_i}^{ExS} / R_0 \quad (9)$$

200 where N^- is the maximum integer j with $t_j < s$ and N^+ is the maximum integer j with $t_j \leq s$.
 201 Herein, N^+ equals N^- . $N^+ = N^- + 1$ is only for $s = t_i$ ($i = 1, 2, \dots, n$). In particular, let $\delta = s$, the
 202 deterioration function at time s can be given as

$$G(s) = G(\delta^-) = G(\delta^+) = 1 - R^{Gra}(0, s] / R_0 - \sum_{i=1}^{N(s)} \Delta R_{t_i}^{ExS} / R_0 \quad (10)$$

203 *3.2.2 Failure mechanisms and limit state function*

204 Two possible failure modes of the system are considered: one is that failure occurs when the
 205 demand exceeds its capacity, and the other one defines that the system fails when the
 206 cumulative deterioration or damage exceeds the threshold. For the first scenario, the system
 207 fails at the n th shock event with $R_{t_n^-} < D_{t_n}$ and the limit state function can be computed as

$$LS_n = R_0 - R^{Gra}(0, t_n] / R_0 - \sum_{i=1}^{n-1} \Delta R_{t_i}^{ExS} - D_{t_n} \quad (11)$$

208 Given Eq. (11), the failure occurs when LS_n is smaller than zero, i.e., $LS_n < 0$. The demand
 209 D_{t_n} is a random variable.

210 As the fatal shock process is taken into account, a fatal event results in immediate failure
 211 of the system. Additionally, failure may occur at an arbitrary time when the total deterioration
 212 exceeds the maximum deterioration level [14, 15]. For instance, the failure occurs when the
 213 total amount of deterioration caused by gradual deterioration and external shock exceeds the
 214 threshold (i.e., $1 - G(\delta^+) > G_{\max}$), as shown in Eq. (12)

$$R^{Gra}(0, t_n] / R_0 + \sum_{i=1}^{N(t)} \Delta R_{t_i}^{ExS} / R_0 > G_{\max} \quad (12)$$

215 *3.2.3 Dependence between deterioration processes using copulas*

216 Deterioration processes usually have interactive effects. For instance, cracks caused by external
 217 activities may accelerate the initiation and corrosion rate of reinforcement steel in terms of
 218 reinforced concrete structures [36]. The interactive effects in multiple stochastic processes have
 219 been widely investigated and different dependence models have been developed. For instance,
 220 Kumar *et al.* [14] introduced the correlation between the demand process and shock process by

221 developing the joint probability density function. Wang *et al.* [15] modeled the dependence
 222 among gradual and shock degradation by using copula models. Liu *et al.* [19] modeled multiple
 223 dependent degradation processes using Gamma processes and copula functions.

224 Herein, the copula model is proposed to construct the multivariate dependency among
 225 parameters associated with deterioration processes. The advantage of using copula is that the
 226 simulation of multivariate probability distributions is separate from the univariate random
 227 variables, thus providing sufficient effectiveness during statistical modeling [37, 38]. A copula
 228 is a function that connects the multivariate distribution function of random variables to their
 229 marginal distributions [39]. For a sequence of continuous random variables X_1, X_2, \dots, X_n with
 230 marginal CDFs $F_{X_1}, F_{X_2}, \dots, F_{X_n}$, their dependence structure can be defined by the joint CDF
 231 $H(x_1, x_2, \dots, x_n)$. According to Sklar's theorem [40], there exists a unique n -dimensional copula
 232 C for all $(x_1, x_2, \dots, x_n) \in [-\infty, \infty]^n$

$$H(x_1, \dots, x_n) = C(F_{X_1}(x_1), \dots, F_{X_n}(x_n)) \quad (13)$$

233 The associated joint probability density function can be written as

$$c(x_1, \dots, x_n) = \frac{\partial^n C(x_1, \dots, x_n)}{\partial x_1, \dots, \partial x_n} \quad (14)$$

234 There are various copula functions. Commonly used copula families include elliptical
 235 copulas (e.g., Gaussian, Student's-t) and Archimedean copulas (e.g., Gumbel, Clayton, and
 236 Frank copulas) for multivariate and bivariate cases. When applying the copula model, the
 237 dependence between the investigated parameters should be measured by correlation
 238 coefficients. There are three common correlation coefficients to measure the association:
 239 Pearson's correlation coefficient, Kendall's tau, and Spearman's rho. Although Pearson's
 240 correlation coefficient may be the most popular one in previous studies, it is limited to a linear
 241 relationship [40]. Pearson's correlation coefficient for the correlated random vector (U, V) can
 242 be derived as

$$\gamma_d = \frac{\int (u - \bar{u})(v - \bar{v}) f_{U,V}(u, v) dudv}{\sqrt{\int (u - \bar{u})^2 f_V(v) dv \int (v - \bar{v})^2 f_U(u) du}} \quad (15)$$

243 Due to the linear limitation, Kendall's tau τ and Spearman's rho ρ are more widely
 244 employed in recent studies, and given by [39]

$$\tau(\theta) = 4 \int_{[0,1]^2} C_\theta(u, v) dC_\theta(u, v) - 1 \quad (16)$$

$$\rho(\theta) = 12 \int_{[0,1]^2} u v dC_\theta(u, v) - 3 \quad (17)$$

245 Both these two coefficients are developed from the concept of concordance and give a
 246 similar interpretation of association in most cases [39, 42]. Given the correlation coefficient,
 247 the dependence parameter θ associated with a copula can be estimated. For instance, the
 248 maximum pseudo-likelihood method can be applied to compute the dependence parameter by
 249 maximizing the pseudo log-likelihood function [41-43]

$$L(\theta) = \sum_{i=1}^n \log \left[c_\theta \left(\frac{R_{U_i}}{n+1}, \frac{R_{V_i}}{n+1} \right) \right] \quad (18)$$

250 where R_{U_i} and R_{V_i} are ranks of the correlated random vector (U, V) . R_{U_i} is the rank of U_i
 251 among U_1, U_2, \dots, U_n and R_{V_i} is the rank of V_i among V_1, V_2, \dots, V_n . The ranking process is
 252 performed by listing the monotone increasing U and V . For instance, when $n = 2$, there are two
 253 pairs of (U, V) , i.e., (U_1, V_1) and (U_2, V_2) . If the ranking of U_i and V_i gives $U_2 < U_1, V_1 < V_2$,
 254 then $(R_{U_1}, R_{V_1}) = (2, 1)$ and $(R_{U_2}, R_{V_2}) = (1, 2)$.

255 In this study, the dependence among multiple deterioration processes is simulated based
 256 on the model described in Wang *et al.* [15]. The deterioration modeling aims to provide inputs
 257 for the life-cycle maintenance cost assessment. However, the impact of shock events on the
 258 parameters of gamma process is not considered. Future studies are encouraged to incorporate
 259 the interactions. Herein, a series of demands $\{D_i\}$ are associated with external shock
 260 deterioration. Meanwhile, the shock-induced deterioration interacts with the gradual
 261 deterioration. Herein, the interaction among different deterioration processes is modeled by a
 262 multivariate probability distribution function. The interaction in terms of shock deterioration
 263 focuses on the external shock deterioration, as the fatal shock deterioration always results in
 264 immediate failure of the system. Let $A_{t_i} = R^{Gra}(t_{i-1}, t_i] / R_0$, $B_{t_i} = \Delta R_{t_i}^{ExS} / R_0$, and $\Psi_{t_i} = D_i / R_0$
 265 represent the normalized gradual deterioration, external shock deterioration, and demand at
 266 time t_i , respectively. The joint CDF of the three correlated random variables $(A_{t_i}, B_{t_i}, \Psi_{t_i})$ can
 267 be denoted as $F_{A, B, \Psi}(a, b, d)$. The CDF of the random vector $(A_{t_i}, B_{t_i}, \Psi_{t_i})$ can either be
 268 derived by empirical models or the advanced copula approach.

269 By using the copula model, the joint CDF of the random vector can be expressed as

$$F_{A,B,\Psi}(a,b,d) = C(F_A(a), F_B(b), F_\Psi(d)) \quad (19)$$

270 where C is the copula function; $F_A(a)$, $F_B(b)$, and $F_\Psi(d)$ are the CDFs of the normalized
271 gradual deterioration, external shock deterioration, and demand. The detailed explanation of
272 copula theory and copula functions is provided in the following section. The detailed modeling
273 of $F_{A,B,\Psi}(a,b,d)$ is provided in the illustrative example.

274 Dependence and interaction between deterioration processes can be complicated. In
275 addition to the introduced approach, other methods can also be used to capture the interaction
276 between deterioration processes. Future studies are needed to explore a more detailed
277 dependence model of deterioration processes by considering the stochastic frequency and
278 magnitude.

279 *3.2.4 Assumptions*

280 Deterioration processes and the dependence effect on the system can be complex. There can be
281 different methods to model the stochastic deterioration and interaction between deterioration
282 processes. In this section, the proposed reliability analysis is based on several assumptions:

- 283 1. The total deterioration of the system caused by gradual and shock deterioration is the sum
284 of individual deterioration processes.
- 285 2. The occurrence of multiple deterioration processes relies on the occurrence of shock events.
- 286 3. The external shock process is the result of external load effects, while the load imposes the
287 demand on the system. Thus, the occurrence of external shock and demand is simultaneous.
- 288 4. The gradual deterioration, external shock deterioration, and demand are dependent, and
289 their dependence can be modeled by the dependence model introduced in Eq. (19).

290 *3.2.5 Time-dependent reliability calculation*

291 In this study, the time-dependent reliability is calculated by a double-loop Monte Carlo
292 simulation method. To begin with, the total time T_{sum} , time interval d_T , and distribution
293 parameters of all related random values and processes are determined. Then, at each time step
294 $T_i = k \cdot d_T$ ($k = 1, 2, \dots$), the number of shocks n_T is sampled according to its Poisson distribution
295 parameters (Eq.(3)). If the value of n_T is equal to zero, only the progressive deterioration is

296 considered, and its deterioration value A_{t_i} is sampled. If the value of n_T exceeds zero, both the
 297 progressive deterioration and sudden damage are concerned, and their values of
 298 $A_{t_i}, i=1, \dots, n_T + 1$ and $B_{t_i}, i=1, \dots, n_T$ are sampled. Next, the conditional failure probability of
 299 $T_i, P_f(T_i|A_{ti}, B_{ti})$, could be expressed as

$$P_f(T_i | A_{t_i}, B_{t_i}) = \Phi \left[\frac{1}{a_{33}} \left(\Phi^{-1} \left(F_{\Psi_{t_i}} \left(1 - \sum_{i=1}^{n_T} A_{t_i} - \sum_{i=1}^{n_T-1} B_{t_i} \right) \right) - a_{31}v_1 - a_{32}v_2 \right) \right] \quad (20)$$

300 where Φ denotes the cumulative distribution function of standard normal distribution; $F_{\Psi_{t_i}}(\cdot)$
 301 is the marginal CDF of the demand Ψ_{t_i} at time t_i ; $\mathbf{A} = \{a_{ij}, i,j=1,2,3\}$ is the lower triangular
 302 matrix satisfying the coefficient matrix of $\mathbf{U} = (U_1, U_2, U_3) = \mathbf{A} \mathbf{A}^T$, which could be computed by
 303 the correlation matrix of $F_{A, B, \Psi}(a, b, d)$ and Nataf transformation [15].

304 Meanwhile, n_T, A_{ti} , and B_{ti} would be sampled N_{mcs} times to capture N_{mcs} of $P_f(T_i|A_{ti}, B_{ti})$ by
 305 using Eq. (20). Then, the failure probability of T_i , i.e., $P_f(T_i)$, could be approximately evaluated
 306 through the mean value of all $P_f(T_i|A_{ti}, B_{ti})$. Such a computational process could be repeated
 307 until T_i reaches T_{sum} . In order to obtain high accuracy results of failure probability $P_f(T_i)$, the
 308 sampling number N_{mcs} needs to be quite large. Such an algorithm is flexible to consider
 309 different deterioration scenarios and maintenance policies.

310

311 3.3 Maintenance policy and cost

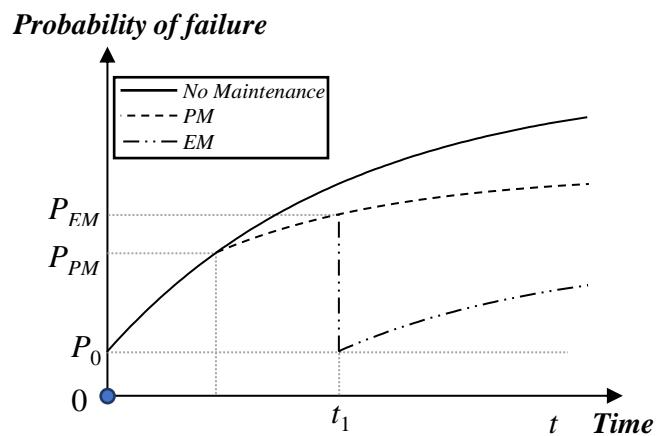
312 The performance (e.g., capacity, reliability) of the system is reduced due to multiple
 313 deterioration processes, thus requiring maintenance actions to minimize potential failure risks
 314 and damage. The quantification of maintenance actions and costs relies on the performance of
 315 system. In this study, a reliability-based maintenance policy is proposed, consisting of
 316 preventive and essential maintenance interventions. The system reliability provided by the
 317 previous section is the main input for this section to determine the maintenance interval and
 318 cost. For instance, the probability of failure is taken as a performance indicator to implement
 319 the maintenance policy. Herein, preventive maintenance (PM) gives minimal repairs, while
 320 essential maintenance (EM) provides major repairs or replacement to enhance the system
 321 reliability to the initial level. Preventive maintenance is conducted when the probability of the
 322 system failure exceeds P_{PM} . The resulting cost of preventive action is C_{PM} . After a preventive
 323 maintenance action, the rate of gradual deterioration is reduced. Essential maintenance is

324 performed when the probability of failure exceeds a threshold P_{EM} or the failure occurs. The
 325 cost of essential action is denoted as C_{EM} . Following the essential maintenance, the structural
 326 resistance is restored to the initial level R_0 . In other words, the system is resumed and a renewal
 327 process is formed [17, 19].

328 To determine the maintenance interval and the maintenance cost associated with the
 329 renewal process, the system reliability should be determined. Given the maintenance policy,
 330 the time-dependent limit state function becomes

$$LS_n = R_0 - r_{pre} \cdot R^{Gra}(0, t_n] - \sum_{i=1}^{n-1} \Delta R_{t_i}^{ExS} - D_{t_n} \quad (21)$$

331 in which r_{pre} ($r_{pre} < 1$) is the changing rate in terms of the gradual deterioration after a preventive
 332 maintenance action. Regarding the time-dependent reliability analysis described by Eq. (21),
 333 the maintenance effects on deterioration values could be easily considered by modifying the
 334 A_{t_i} and B_{t_i} in Eq. (20). Figure 4 provides an illustrative diagram to describe the effect of
 335 preventive and essential maintenance actions on the probability of failure associated with the
 336 system.

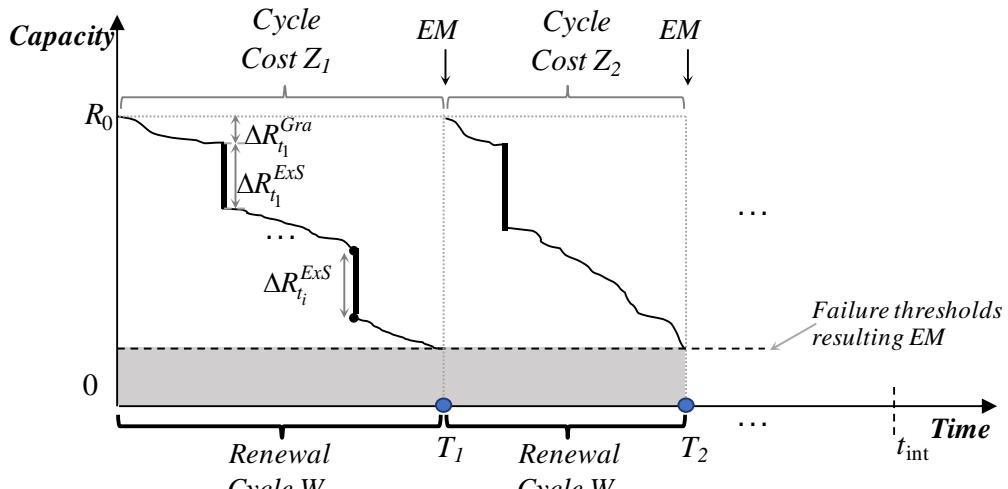


337

338 Figure 4. An illustrative diagram of reliability-based preventive maintenance (PM) and
 339 essential maintenance (EM) actions.

340 Based on the time-dependent reliability analysis, the maintenance interval and the cost can
 341 be identified accordingly. As mentioned above, the system is renewed after an essential
 342 maintenance and the process of restoration can be modeled as a renewal process. Based on the
 343 stochastic renewal process, the occurrence interval of essential maintenance actions can be
 344 defined as a renewal cycle W . Within the renewal cycle W , the total maintenance cost can be

denoted as the cycle cost Z . Then, the relationship between the system capacity and the renewal cycle W under multiple deterioration processes can be described as Figure 5(a). Both W and Z are random variables, and $(0, t_{int}]$ is the service period of the system. To determine W and Z , Figure 5(a) should be further shifted to Figure 5(b) based on reliability analysis using Eq. (21). Figure 5(b) shows an illustrative sketch to demonstrate the impact of maintenance actions on the system failure probability, renewal cycle W , and the associated maintenance cost Z . It can be noted that the total maintenance cost Z (i.e., cycle cost) within a cycle W consists of preventive maintenance cost C_{PM} and essential maintenance cost C_{EM} , i.e., $Z = C_{PM} + C_{EM}$. Herein, it is assumed that C_{PM} and C_{EM} are deterministic. Subsequently, the mean values of renewal cycle W and the maintenance cost Z can be obtained based on the reliability analysis and Monte Carlo simulation. The obtained mean values of renewal cycle W and maintenance cost Z are the key inputs for the life-cycle maintenance cost analysis.

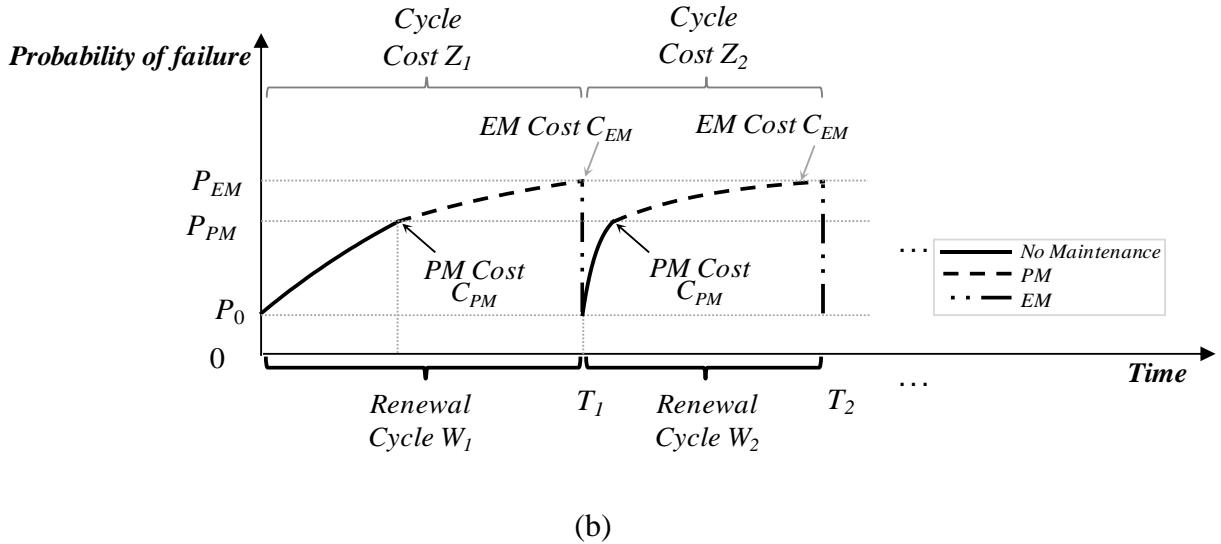


357

358

(a)

359



360

361

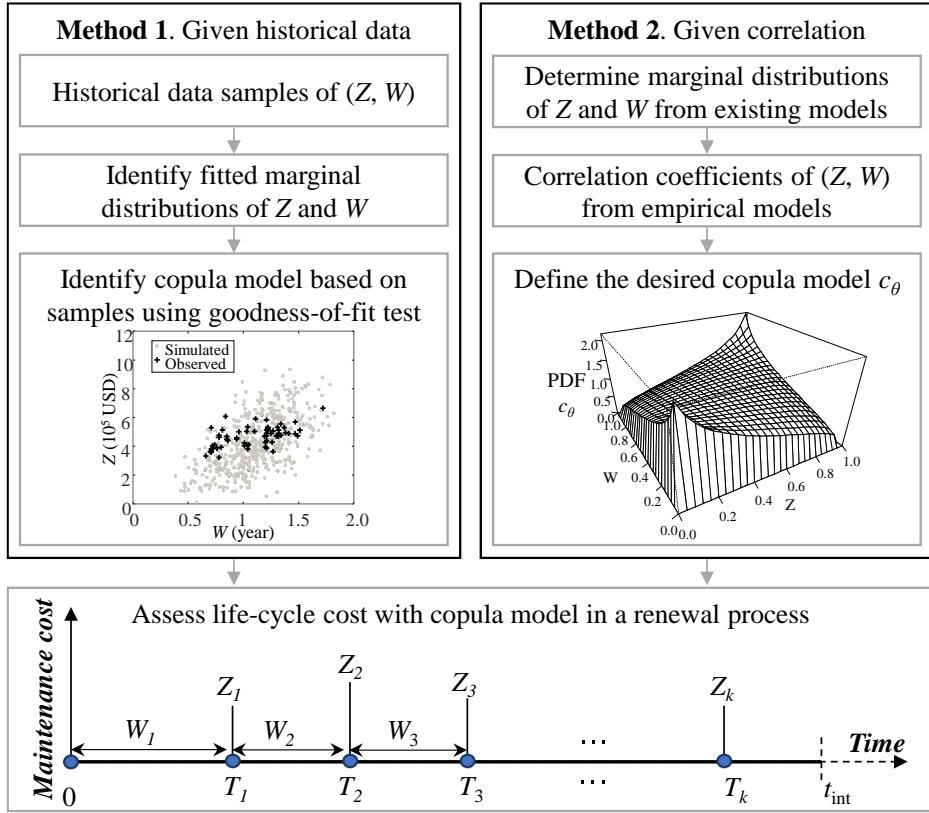
(b)

362 Figure 5. Illustrative diagrams of stochastic renewal cycle W and maintenance cost Z
 363 associated with (a) the system capacity under deterioration processes and (b) the system
 364 reliability and maintenance policy.

365

366 **4. Life-cycle maintenance cost**367 **4.1 A multivariate copula-based renewal model**

368 After determining the renewal cycle and maintenance cost, the life-cycle maintenance cost
 369 within the period $(0, t_{\text{int}}]$ can be determined based on the stochastic renewal process. Meanwhile,
 370 the dependence between renewal cycle (i.e., maintenance interval) and maintenance cost (i.e.,
 371 cycle cost) cannot be neglected during the life-cycle analysis. The maintenance cost Z naturally
 372 depends on the cycle length W as different maintenance actions are involved. Herein, the key
 373 challenge is to incorporate the dependence between random variables Z and W into the renewal
 374 process during the life-cycle maintenance cost assessment. A novel copula-based renewal
 375 model is proposed to address this problem. To the best of the authors' knowledge, the
 376 dependent maintenance interval and cost have not been considered in the life-cycle analysis.
 377 For the proposed copula model, two types of methods can be considered to model dependent
 378 maintenance cost Z and renewal cycle W in the life-cycle analysis, as described in Figure 6.
 379 One can be based on historical data to achieve the copula function, and the other one is directly
 380 based on correlation and copula function.



381

382 Figure 6. Assessment of life-cycle maintenance cost using the proposed copula-based
383 multivariate renewal model

384 Based on the renewal process, during the investigated service period $(0, t_{int}]$, there can be
385 a series of renewal cycles $\{W_1, W_2, \dots, W_k\}$ due to the essential maintenance. The maintenance
386 costs associated with the renewal cycles can be $\{Z_1, Z_2, \dots, Z_k\}$. The chronological time in
387 terms of the k th failure can be written as T_k , with $T_k = W_1 + W_2 + \dots + W_k$. W_k and Z_k ($k = 1, 2, \dots$) are non-negative random variables. The life-cycle maintenance cost can be defined as
389 $LCC(t_{int})$. The renewal cycle W_k and maintenance cost Z_k are dependent, while the joint
390 probability distributions of (Z_i, W_i) are independent of (Z_k, W_k) for any $i \neq k$. Given these
391 parameters, the life-cycle maintenance cost $LCC(t_{int})$ is the accumulative cost of all the renewal
392 cycles and gives

$$LCC(t_{int}) = \sum_{k=1}^{N(t_{int})} Z_k e^{-rT_k} \quad (22)$$

393 in which $N(t_{int})$ is the total number of essential maintenance actions and a discount rate r is
394 used to discount the future expense to the present. Also, as mentioned in the previous section,
395 the mean values of Z and W can be determined based on system reliability and maintenance
396 strategy by Monte Carlo simulation. The maintenance cost Z consists of the cost of preventive

397 maintenance C_{PM} and the cost of essential maintenance C_{EM} . The deterministic value of cost Z
398 can be taken as the mean of Z , i.e., $E[Z] = C_{PM} + C_{EM}$, as indicated in Figure 5.

399 To model the dependence between the renewal cycle and maintenance cost, the bivariate
400 copula is employed. The dependence structure between Z and W can be described by a joint
401 CDF $F_{Z,W}(z, t)$. Based on the copula theory, the joint CDF of the bivariate random vector $(Z_k,$
402 $W_k)$ can be written as

$$F_{Z,W}(z, t) = C(F_Z(z), F_W(t)) \quad (23)$$

403 in which $F_Z(z)$ and $F_W(t)$ are CDFs of maintenance cost and renewal cycle, respectively. C is
404 the CDF of a copula function. The PDF of the random vector $f_{Z,W}(z, t)$ is given as

$$f_{Z,W}(z, t) = c(F_Z(z), F_W(t))f_Z(z)f_W(t) \quad (24)$$

405 where c describes the PDF of a copula; f_Z and f_W are the univariate PDFs of maintenance cost
406 and renewal cycle, respectively.

407 To determine the copula function, there are generally two methods in terms of the cases
408 with and without data, as shown in Figure 6. When there are detailed historical records, the
409 selection of the copula model can be data-based [44, 45]. The data-based method requires two
410 main parts: quantification of marginal distributions (i.e., $F_Z(z)$ and $F_W(t)$) and selection of the
411 most fitted copula by using the goodness-of-fit test. While there are limited data available, the
412 dependence structure between variables is commonly determined according to correlation
413 coefficients [24, 46]. Detailed descriptions of the two methods are shown in the section of
414 illustrative examples. As practical data can be incorporated, the proposed copula approach can
415 be significant for data-based decision-making during the life-cycle management of civil
416 infrastructure.

417 After selecting the copula model and estimation of the dependence parameter, the life-
418 cycle maintenance cost incorporating dependent maintenance cost and renewal cycle can be
419 assessed. Due to complicated expressions of copulas, statistical modeling generally relies on
420 numerical simulations. Simulations are flexible with various copulas but can be time-
421 consuming and expensive. The algorithm to assess the life-cycle maintenance cost using a
422 Monte Carlo simulation is summarized as follows:

423

Simulation algorithm

- (1) Inputs: t_{int} , r , marginal PDFs or CDFs of Z and W (e.g., $F_Z(z), f_Z(z), F_W(t), f_W(t)$);
- (2) Establish dependence structure of the copula function and generate dependent random vectors (Z_k, W_k) ;
- (3) Simulate a stochastic renewal process $\{N(t_{\text{int}})\}$ by using $\{W_1, W_2, \dots, W_k\}$ generated from Step (2);
- (4) Compute $\{T_1, T_2, \dots, T_k\}$ of the process based on Step (3);
- (5) Compute $LCC(t_{\text{int}})$ based on Eq. (22) by using $\{T_1, T_2, \dots, T_k\}$ of Step (4), the associated $\{Z_1, Z_2, \dots, Z_k\}$ generated from Step (2), and the number of events $N(t_{\text{int}})$ from Step (3);
- (6) Repeat Step (2) to (5) for N_{MC} times based on Monte Carlo simulation; and
- (7) Outputs: the mean, standard deviation, skewness, and kurtosis of $LCC(t_{\text{int}})$ based on N_{MC} samples.

424

425 4.2 Analytical case: life-cycle analysis with FGM copula

426 In addition to numerical modeling, an analytical case is developed in this section. The closed-
427 form expressions of statistical moments of the life-cycle maintenance cost considering an FGM
428 copula are derived. Derivations are based on the renewal theory and Laplace Transform. Due
429 to its analytical characteristics, the FGM copula was employed by Eryilmaz [47] to model
430 dependent degradation rates for the reliability analysis of systems. The FGM copula is the first-
431 order Taylor approximation of the Frank copula and belongs to neither the elliptical family nor
432 the Archimedean family [47].

433 The FGM copula demonstrates a weak correlation, including both positive and negative.

434 The PDF of the FGM copula c_{θ}^{FGM} is given as

$$c_{\theta}^{FGM}(u, v) = 1 + \theta(1 - 2u)(1 - 2v) \quad (25)$$

435 where the dependence parameter θ is between $[-1, 1]$ and $(u, v) \in [0, 1] \times [0, 1]$.

436 The joint probability of (Z, W) can be expressed as follows using the copula

$$\begin{aligned}
f_{Z,W}(z,t) &= c_\theta^{FGM}(F_Z(z), F_W(t)) f_Z(z) f_W(t) \\
&= [1 + \theta(1 - 2F_Z(z))(1 - 2F_W(t))] f_Z(z) f_W(t)
\end{aligned} \tag{26}$$

437 4.2.1 *Expectation and variance of life-cycle maintenance cost*

438 The expected life-cycle maintenance cost under a renewal process can be formulated by
439 conditioning on the first arrival time y [48]

$$\begin{aligned}
\mu_{LCC}(t_{\text{int}}) &= E[LCC(t_{\text{int}})] = E\left[E[e^{-ry}Z_1 + e^{-ry}LCC(t_{\text{int}} - y) \mid W_1 = y]\right] \\
&= \int_0^{t_{\text{int}}} e^{-ry} E[Z \mid W = y] f_W(y) dy + \int_0^{t_{\text{int}}} e^{-ry} E[LCC(t_{\text{int}} - y)] f_W(y) dy
\end{aligned} \tag{27}$$

440 in which the first arrival time is equal to the first inter-arrival time $T_1 = y = W_1$. The conditional
441 expectation of maintenance cost $E[Z \mid W = y]$ can be expressed by the conditional probability

$$E[Z \mid W = y] = \int_0^{\infty} z f_{Z \mid W=y}(z) dz \tag{28}$$

442 where the conditional density function of maintenance cost $f_{Z \mid W=y}$ is associated with the bivariate
443 joint probability $f_{Z,W}(z, t)$. Substituting the FGM copula according to Eq. (25), the conditional
444 density function gives

$$f_{Z \mid W=y}(z) = \frac{f_{Z,W}(z,t)}{f_W(t)} = [1 + \theta(1 - 2F_Z(z))(1 - 2F_W(t))] f_Z(z) \tag{29}$$

445 Substituting Eq. (29) into Eq. (28), the conditional expectation of maintenance cost gives

$$\begin{aligned}
E[Z \mid W = y] &= \int_0^{\infty} z [1 + \theta(1 - 2F_Z(z))(1 - 2F_W(y))] f_Z(z) dz \\
&= E[Z](1 - \theta(1 - 2F_W(t))) + \theta(1 - 2F_W(y)) E[\Lambda]
\end{aligned} \tag{30}$$

446 in which $E[\Lambda]$ is defined to combine the identical items

$$E[\Lambda] = \int_0^{\infty} z (2 - 2F_Z(z)) f_Z(z) dz = \int_0^{\infty} (1 - F_Z(z))^2 dz \tag{31}$$

447 A Poisson process is the most common renewal process. It has exponentially distributed
448 inter-arrival times. It gives that the inter-arrival time follows $W \sim \text{EXP}(\lambda)$ with an occurrence
449 rate λ . Hence, the PDF of the inter-arrival time $f_W(t)$ gives

$$f_W(t) = \lambda \exp(-\lambda t) \quad (32)$$

450 Herein, let $\omega(t; \lambda)$ represent the PDF $f_W(t)$ of W [49, 50]. This parameter can help simplify
451 the derivation process in the Laplace transform, especially in higher-order moments.
452 Consequently, the expected life-cycle maintenance cost can be rearranged as

$$\begin{aligned} \mu_{LCC}(t_{int}) &= E[Z] \int_0^{t_{int}} \frac{\lambda}{\lambda+r} \omega(y; \lambda+r) dy + \theta(E[\Lambda] - E[Z]) \int_0^{t_{int}} \frac{2\lambda}{2\lambda+r} \omega(y; 2\lambda+r) dy \\ &\quad - \theta(E[\Lambda] - E[Z]) \int_0^{t_{int}} \frac{\lambda}{\lambda+r} \omega(y; \lambda+r) dy + \int_0^{t_{int}} \frac{\lambda}{\lambda+r} \omega(y; \lambda+r) \mu_{LCC}(t_{int} - y) dy \end{aligned} \quad (33)$$

453 Taking the Laplace transform of Eq. (33) on both sides, the Laplace transform of the
454 expected life-cycle maintenance cost $\tilde{\mu}_{LCC}(\tau)$ can be written as

$$\begin{aligned} \tilde{\mu}_{LCC}(\tau) &= E[Z] \frac{\lambda}{\lambda+r} \frac{\tilde{\omega}(\tau; \lambda+r)}{\tau} + \theta(E[\Lambda] - E[Z]) \frac{2\lambda}{2\lambda+r} \frac{\tilde{\omega}(\tau; 2\lambda+r)}{\tau} \\ &\quad - \theta(E[\Lambda] - E[Z]) \frac{\lambda}{\lambda+r} \frac{\tilde{\omega}(\tau; \lambda+r)}{\tau} + \frac{\lambda}{\lambda+r} \tilde{\omega}(\tau; \lambda+r) \tilde{\mu}_{LCC}(\tau) \end{aligned} \quad (34)$$

455 where the Laplace transform of the PDF of inter-arrival time $\tilde{\omega}_{LCC}(\tau; \lambda)$ can be computed as

$$\tilde{\omega}(\tau; \lambda) = \frac{\lambda}{\lambda + \tau} \quad (35)$$

456 Substituting Eq. (35) into Eq. (34), the Laplace transform of expected life-cycle
457 maintenance cost can be rearranged as

$$\tilde{\mu}_{LCC}(\tau) = \frac{E[Z]\lambda}{\tau(\tau+r)} + \frac{\theta\lambda(E[\Lambda]-E[Z])}{\tau(2\lambda+r+\tau)} \quad (36)$$

458 By taking inverse Laplace transform of Eq. (36) on both sides, the expected life-cycle
459 maintenance cost under dependency is obtained

$$\mu_{LCC}(t_{int}) = \frac{E[Z]\lambda}{r} (1 - e^{-rt_{int}}) + \frac{\theta\lambda(E[\Lambda]-E[Z])}{2\lambda+r} (1 - e^{-(2\lambda+r)t_{int}}) \quad (37)$$

460 Following the similar procedure of the first moment, the second moment of life-cycle
461 maintenance cost can be assessed by conditioning on the first arrival time y

$$\begin{aligned}
E[LCC^2(t_{\text{int}})] &= E\left[E[(e^{-ry}Z_1 + e^{-ry}LCC(t_{\text{int}} - y))^2 \mid W = y]\right] \\
&= \int_0^{t_{\text{int}}} e^{-2ry} E\left[Z^2 \mid W = y\right] f_W(y) dy + \int_0^{t_{\text{int}}} e^{-2ry} E[LCC^2(t_{\text{int}} - y)] f_W(y) dy \\
&\quad + 2 \int_0^{t_{\text{int}}} e^{-2ry} E\left[Z \mid W = y\right] \mu_{LCC}(t_{\text{int}} - y) f_W(y) dy
\end{aligned} \tag{38}$$

462 Following similar procedures in terms of the Laplace transform approach, the second
463 moment of the life-cycle maintenance cost can be derived accordingly. The key derivation
464 process and results are shown in Appendix A. Consequently, the variance can be evaluated
465 from the first two moments as shown in Eqs. (A4) and (A5).

466 When the dependence parameter is zero, the maintenance cost and renewal cycle become
467 independent. The associated expectation and variance of life-cycle cost give identical outcomes
468 as described in previous studies [26, 20], as shown in Eqs. (39) and (40)

$$\mu_{LCC}(t_{\text{int}}) = \frac{E[Z]\lambda}{r}(1 - e^{-rt_{\text{int}}}) \tag{39}$$

$$\sigma_{LCC}^2(t_{\text{int}}) = \frac{\lambda E[Z^2]}{2r}(1 - e^{-2rt_{\text{int}}}) \tag{40}$$

469 *4.2.2 Higher-order moments of life-cycle maintenance cost*

470 The m th order moment can also be evaluated using the Laplace transform approach. The m th
471 order moment of life-cycle maintenance cost can be derived using the univariate distribution
472 of inter-arrival time

$$\begin{aligned}
E[LCC^m(t_{\text{int}})] &= \int_0^{t_{\text{int}}} e^{-mry} E\left[Z^m \mid W = y\right] f_W(y) dy \\
&\quad + \int_0^{t_{\text{int}}} e^{-mry} E\left[LCC^m(t_{\text{int}} - y)\right] f_W(y) dy \\
&\quad + \sum_{i=1}^{m-1} \binom{m}{i} \int_0^{t_{\text{int}}} e^{-mry} E\left[Z^i \mid W = y\right] E\left[LCC^{m-i}(t_{\text{int}} - y)\right] f_W(y) dy
\end{aligned} \tag{41}$$

473 where $m \geq 1$ and $1 \leq i < m$.

474 Similar to the first two moments, the m th order conditional expectation of maintenance
475 cost can be expressed as

$$E[Z^m | W = y] = \int_0^\infty z^m f_{Z|W=y}(z) dz = \int_0^\infty z^m c_\theta^{FGM}(F_Z(z), F_W(t)) f_Z(z) dz \quad (42)$$

476 Substituting Eq. (42) into Eq. (41), the m th order moment of life-cycle maintenance cost
477 gives

$$\begin{aligned} E[LCC^m(t_{\text{int}})] &= \int_0^{t_{\text{int}}} \int_0^\infty e^{-mry} z^m f_{Z,W}(z, y) dz dy + \int_0^{t_{\text{int}}} e^{-mry} E[LCC^m(t_{\text{int}} - y)] f_W(y) dy \\ &\quad + \sum_{i=1}^{m-1} \binom{m}{i} \int_0^{t_{\text{int}}} \int_0^\infty e^{-mry} z^i f_{Z,W}(z, y) E[LCC^{m-i}(t_{\text{int}} - y)] dz dy \end{aligned} \quad (43)$$

478 Considering the exponential distribution associated with the inter-arrival time $f_W(t)$, the
479 m th order moment becomes

$$\begin{aligned} E[LCC^m(t_{\text{int}})] &= \lambda \int_0^{t_{\text{int}}} \int_0^\infty e^{-(\lambda+mr)y} z^m f_Z(z) c_\theta(F_Z(z), F_W(y)) dz dy + \lambda \int_0^{t_{\text{int}}} e^{-(\lambda+mr)y} E[LCC^m(t_{\text{int}} - y)] dy \\ &\quad + \lambda \sum_{i=1}^{m-1} \binom{m}{i} \int_0^{t_{\text{int}}} \int_0^\infty e^{-(\lambda+mr)y} z^{-(m-i)} c_\theta(F_Z(z), F_W(y)) f_Z(z) E[LCC^{m-i}(t_{\text{int}} - y)] dz dy \end{aligned} \quad (44)$$

480 Consequently, statistical moments can be derived analytically. The analytical case can be
481 more effective than complicated numerical simulation. Based on the recursive moments (i.e.,
482 Eq. (44)) using an FGM copula, decision-makers can estimate the life-cycle cost under
483 dependency effectively. Given more data, a more detailed dependence model can be further
484 studied by using the proposed copula model. Future studies can investigate the multivariate
485 distribution for the preventive maintenance cost, essential maintenance cost, and the renewal
486 cycle by using the copula model.

487

488 5. Illustrative example

489 There are two illustrative examples provided to demonstrate the proposed copula-based life-
490 cycle analysis framework. The first example focuses on the impact of different copula models
491 and the effect of multiple deterioration processes on the life-cycle maintenance cost. The
492 second example aims to show a decision-making process based on practical data using the
493 proposed copula model. The significance of considering higher-order moments of the life-cycle
494 maintenance cost is highlighted.

495 5.1 Example 1: Life-cycle cost analysis of aging civil infrastructure

496 This example aims to show the assessment process of the life-cycle maintenance cost of a
497 bridge considering reliability-based maintenance policy. The impact of different dependence
498 structures (i.e., different copulas) on the life-cycle maintenance cost is investigated. The effects
499 of fatal shocks and dependent deterioration processes on the maintenance interval, maintenance
500 cost, and the associated life-cycle maintenance cost are explored.

501 The investigated bridge is subjected to dependent deterioration processes, such as gradual
502 deterioration, external shock and fatal shock. For the gradual deterioration, a gamma process
503 is employed. The associated shape parameter α and scale parameter β of the gamma process
504 are 0.04 and 0.16, respectively. The detailed computation of the deterioration parameters of
505 aging bridges can be based on observation data [51]. An alternative way to define the inputs
506 for gamma process can rely on the deterioration amount. For instance, the initial resistance of
507 the investigated system is R_0 . At the end of a time period of 40 years, the expected cumulative
508 gradual deterioration is $0.2R_0$ with a coefficient of variation of 0.4, and the expectation of the
509 cumulative gradual deterioration changes linearly with time [51]. For the external shock
510 process, random shocks are caused by hazards and modeled by a Poisson process, with an
511 annual occurrence rate of $\lambda_{ExS} = 0.3$. The resulting deterioration in terms of the external shock
512 process is lognormally distributed. It has a mean of $0.03L$ and a coefficient of variation of 0.4.
513 Meanwhile, hazards impose demands acting on the bridge, thus following the same Poisson
514 process. It is assumed that demands follow a Gumbel distribution with a mean of $0.3L$ and a
515 coefficient of variation of 0.3. Herein, the L can be associated with the external load on bridges
516 such as the extreme wind load, wave and surge load caused by tropical cyclones, load caused
517 by vehicles hitting the structures, etc. The demands and the shock deterioration are physically
518 related. In civil engineering practice, they are usually associated with the loading effect. Herein,
519 it assumes $L = R_0/3$. For the fatal shock process, the occurrence is also modeled by a Poisson
520 process with an annual occurrence rate $\lambda_{FaS} = 1 \times 10^{-5}$. A low-frequency fatal event leads to
521 the immediate failure of a system and results in essential maintenance. The maximum
522 deterioration level G_{max} is 0.5.

523 Subsequently, the system reliability analysis can be performed. At this stage, the
524 dependence structure among multiple deterioration processes is incorporated using the copula
525 function, as described in Eq. (19). The multivariate dependence of the normalized gradual
526 deterioration, external shock deterioration, and demand $(A_{t_i}, B_{t_i}, \Psi_{t_i})$, as shown in Eq. (45), is

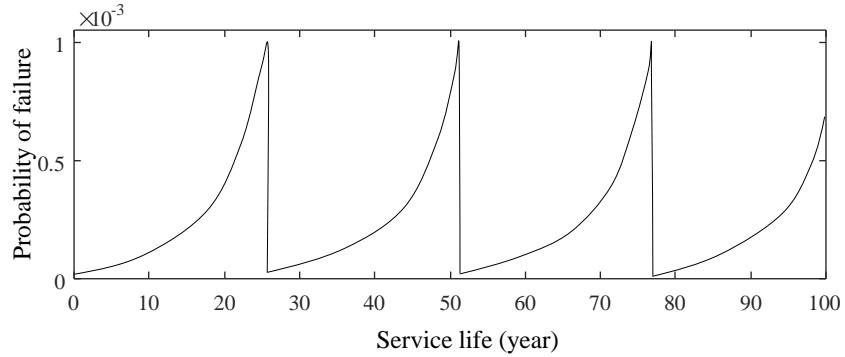
527 modeled by a Gaussian copula for illustrative purposes. The Gaussian copula has been widely
 528 applied in previous reliability studies due to its advantages in reducing the computational cost
 529 based on Nataf transformation [15, 52, 53]. Other copula models can be applied when there is
 530 more information provided. Based on the Gaussian copula, the joint CDF of the correlated
 531 random vector $(A_{t_i}, B_{t_i}, \Psi_{t_i})$ can be written as

$$\begin{aligned} F_{A,B,\Psi}(a,b,d) &= C_{Gau}(F_A(a), F_B(b), F_\Psi(d)) \\ &= \Phi_\zeta(\Phi^{-1}(F_A(a)), \Phi^{-1}(F_B(b)), \Phi^{-1}(F_\Psi(d))) \end{aligned} \quad (45)$$

532 in which $\Phi(\cdot)$ is the CDF of a multivariate normal distribution; ζ is the correlation matrix; and
 533 $\Phi^{-1}(\cdot)$ is the inverse CDF of the standard normal distribution. The correlation between random
 534 vectors is positive [54], as a stronger external load results in a larger decrease in resistance due
 535 to damage (e.g., crack). Meanwhile, changes in resistance further accelerate the gradual
 536 deterioration process (e.g., corrosion in terms of reinforcement). Herein, the associations
 537 between every two random variables are described by Pearson's correlation coefficient with γ_d
 538 = 0.3. The assigned values are presented here for illustrative purposes and can be upgraded
 539 with specific problems.

540 In addition to the deterioration processes and system reliability analysis, the assessment
 541 of maintenance interval W and maintenance cost Z for the life-cycle analysis requires
 542 parameters associated with maintenance policy. Herein, maintenance actions are performed
 543 when the probability of the system failure hits the associated thresholds, i.e., $P_{PM} = 1 \times 10^{-5}$ for
 544 preventive maintenance and $P_{EM} = 1 \times 10^{-3}$ for essential maintenance, respectively. The
 545 changing rate r_{pre} on gradual deterioration after the preventive maintenance is 0.5, as described
 546 in Eq. (21). Additionally, as mentioned previously, it is assumed that the bridge would be
 547 restored to the initial status after essential maintenance. In this example, the costs of preventive
 548 maintenance C_{PM} and essential maintenance C_{EM} are given as 50,000 USD and 487,100 USD,
 549 respectively [55, 56]. The bridge has a service life of 100 years, i.e., $t_{int} = 100$. Given these
 550 inputs, the expected renewal cycle can be determined based on system reliability analysis using
 551 Monte Carlo simulation with 10^6 replications, as shown in Figure 7. The figure describes the
 552 computed probability of failure of the bridge subjected to multiple dependent deterioration. It
 553 can be identified that the bridge experiences nearly four cycles of essential maintenance and
 554 resulting in a renewal cycle (i.e., maintenance interval) of $E[W] = 25.6$ years. The associated
 555 maintenance cost within a renewal cycle can also be obtained accordingly, i.e., $E[Z] = 537,100$

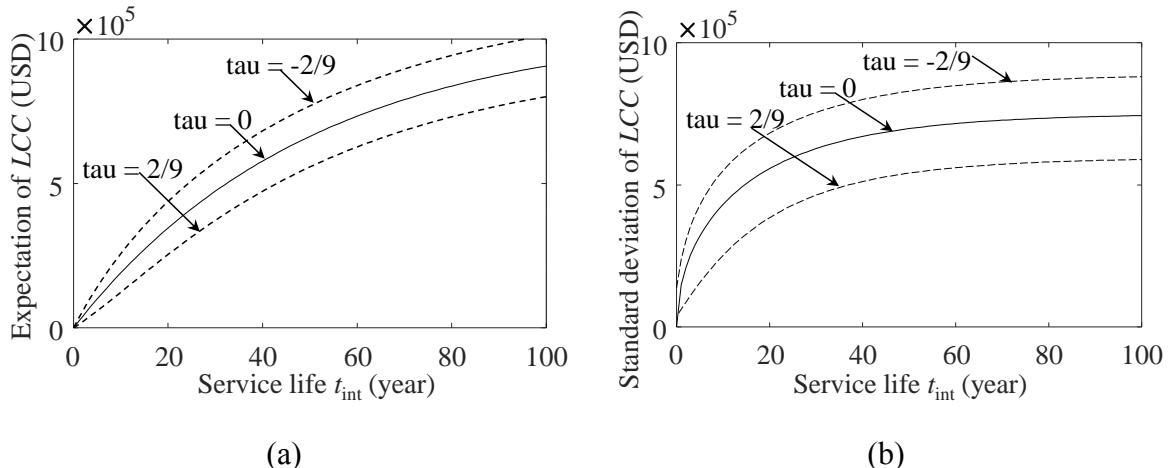
556 USD. The reliability analysis confirms that $E[Z]$ consists of one preventive intervention and
 557 one essential maintenance, i.e., $E[Z] = C_{PM} + C_{EM}$.



558

559 Figure 7. The probability of bridge failing subjected to multiple dependent deterioration
 560 processes considering preventive and essential maintenance actions.

561 Given the expected maintenance interval $E[W]$ and the maintenance cost $E[Z]$, the life-
 562 cycle maintenance cost can be evaluated. W and Z are random variables and they are assumed
 563 to follow exponential distributions herein. The monetary discount rate is 2%. In this example,
 564 the mean $E[LCC]$ and standard deviation $Std[LCC]$ of the life-cycle maintenance cost are of
 565 interest. The impact of dependent maintenance interval and cost on the $E[LCC]$ and $Std[LCC]$
 566 are explored using the proposed FGM copula. As the FGM copula indicates the weak
 567 correlation, the maximum positive correlation refers to Kendall's tau at 2/9. The associated
 568 expectation and standard deviation of life-cycle maintenance cost are computed as 800,152
 569 USD and 588,943 USD, respectively. If considering an independent case (i.e., tau of zero), the
 570 expectation and standard deviation of the life-cycle cost can be computed as 907,054 USD and
 571 743,714 USD, respectively. The analytical results have been validated by using numerical
 572 modeling based on Monte Carlo simulation. Figure 8 demonstrates the difference in the life-
 573 cycle maintenance cost by considering dependent maintenance interval and cost associated
 574 with an FGM copula. A negative correlation may exist when there is a different maintenance
 575 policy.

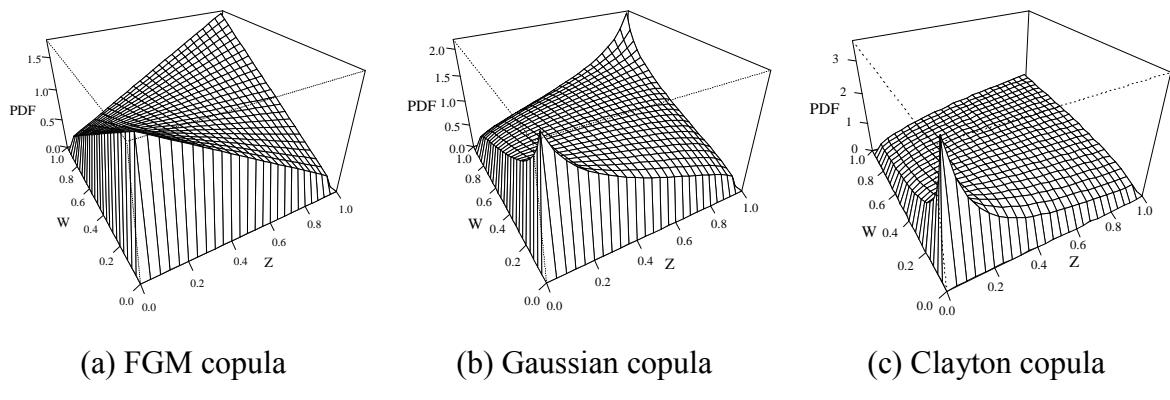


576 Figure 8. (a) Expectation and (b) standard deviation of life-cycle maintenance cost with a
 577 FGM copula subjected to Kendall's tau at $-2/9$, 0 , and $2/9$

5.1.1 Effect of dependent correlated renewal sequences

579 Apart from the weak correlation associated with the FGM copula, different correlation
 580 relationships and copulas may influence the life-cycle maintenance cost. Herein, the
 581 dependence structures described by Gaussian and Clayton copulas are also investigated by
 582 using numerical modeling. Figure 9 shows the three-dimensional schematic PDFs of FGM,
 583 Gaussian, and Clayton copulas with Kendall's tau of 0.2. The PDF of the Gaussian copula can
 584 be written as

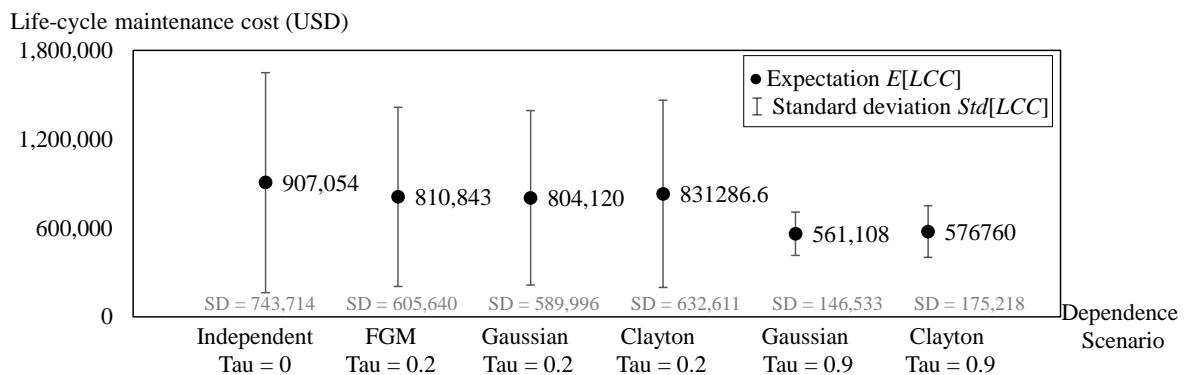
$$c_{\theta}^{Gau}(u, v) = \frac{1}{\sqrt{1-\theta^2}} \exp\left(\frac{2\theta\Phi^{-1}(u)\Phi^{-1}(v) - \theta^2(\Phi^{-1}(u)^2 + \Phi^{-1}(v)^2)}{2(1-\theta^2)}\right) \quad (46)$$



585 Figure 9. Three-dimensional PDFs of different copulas with Kendall's tau = 0.2.

586 The expectation and standard deviation of life-cycle maintenance cost with respect to the
 587 three copulas are shown in Figure 10. Both weak (i.e., Kendall's tau of 0.2) and strong (i.e.,
 588 Kendall's tau of 0.9) positive correlations are considered. The FGM copula only illustrates the
 589 weak correlation. Compared with the independent case, the positive correlation decreases the

590 expected life-cycle maintenance cost and standard deviation. A stronger correlation can lead to
 591 a more significant reduction. The interpretation of such a trend is that increasing the
 592 maintenance cost (e.g., with more frequent preventive cost) leads to a longer maintenance
 593 interval, as more preventive actions delay the occurrence of essential maintenance.
 594 Consequently, the life-cycle maintenance cost is reduced. Such findings can assist researchers
 595 and decision-makers in exploring the optimization of maintenance policy by comparing the
 596 life-cycle cost. In Figure 10, with the same correlation coefficients (i.e., Kendall's tau), the
 597 expectation and standard deviations of the life-cycle maintenance cost are not significantly
 598 affected by different copula models. Under the weak correlation, the results associated with the
 599 FGM copula show similar estimates compared with the Gaussian and Clayton copulas.
 600 Therefore, the proposed analytical approach using an FGM copula provides an effective tool
 601 for decision-makers to estimate the life-cycle cost considering weak correlation. The analytical
 602 estimation significantly accelerates the computation process, as numerical modeling of copula
 603 functions can be complicated and time-consuming.



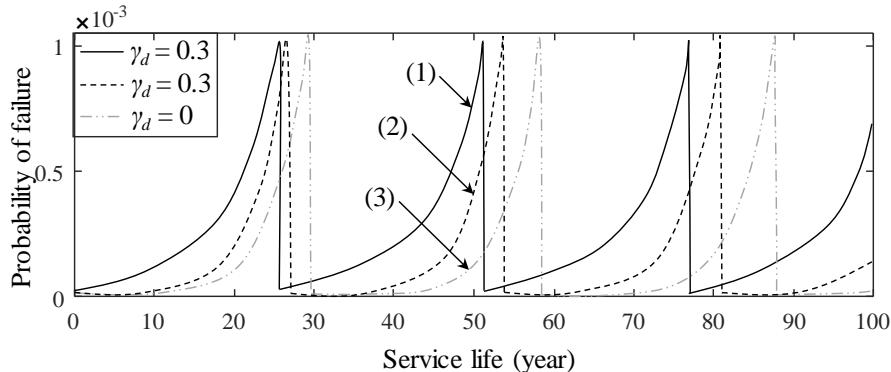
604

605 Figure 10. Expected life-cycle cost and standard deviation of different dependence scenarios.

606 *5.1.2 Effect of fatal shock and dependent deterioration processes*

607 In addition to the dependence structure, the interaction between deterioration processes affects
 608 the maintenance interval, maintenance cost, and life-cycle cost. For instance, the renewal cycle
 609 (i.e., maintenance interval) is particularly affected by deterioration processes. Figure 11
 610 presents the probability of bridge failing subjected to deterioration under three scenarios:
 611 dependent deterioration processes (correlation coefficient $\gamma_d = 0.3$) with fatal shocks, dependent
 612 deterioration processes ($\gamma_d = 0.3$) without fatal shocks, and independent deterioration process
 613 ($\gamma_d = 0$) without fatal shocks. The expected maintenance interval $E[W]$ with respect to the three
 614 scenarios are 25.6, 26.8, and 29.2 years, respectively. The associated maintenance cost remains
 615 unchanged at 537,100 USD. Considering a FGM copula (Kendall's tau = 2/9), the expected

616 life-cycle maintenance costs associated with the three scenarios are 800,153 USD, 760,552
 617 USD, and 691,311 USD, respectively. It shows that dependent deterioration processes and fatal
 618 shocks slightly shorten the maintenance interval and increase the life-cycle maintenance cost.



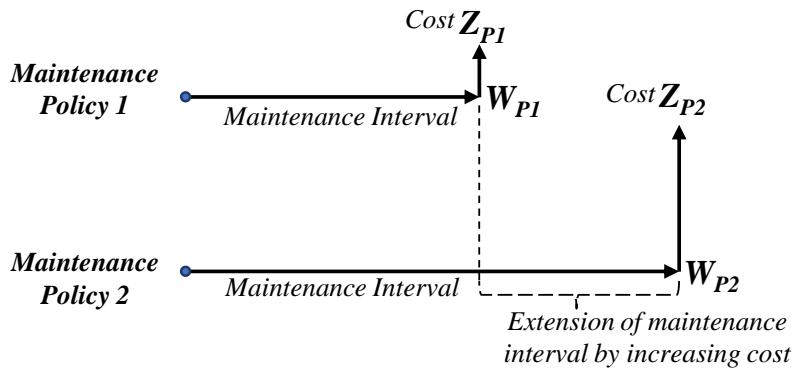
619
 620 Figure 11. The probability of failure subjected to dependent gradual deterioration, external
 621 shock and fatal shock deterioration processes under three scenarios: (1) With dependence $\gamma_d =$
 622 0.3 and with fatal shock; (2) With dependence $\gamma_d = 0.3$ and without fatal shock; and (3)
 623 Without dependence $\gamma_d = 0$ and without fatal shock.

624 The maintenance cost is more likely affected by the maintenance policy, e.g., maintenance
 625 threshold. For instance, if maintenance thresholds for preventive and essential action change
 626 to 1×10^{-5} and 0.1, respectively, the maintenance interval and cost can be significantly altered.
 627 The interval is extended to 56 years, while the maintenance cost remains unchanged. The
 628 maintenance cost changes with different preventive and essential maintenance actions.
 629 Considering the FGM copula (Kendall's tau = 2/9), the associated expected life-cycle cost
 630 becomes 328,906 USD with a standard deviation of 369,844 USD. Therefore, the maintenance
 631 interval can be sensitive to the maintenance thresholds. The associated parameters should be
 632 carefully examined during the life-cycle analysis.

633
 634 5.2 Example 2: Maintenance decision-making using higher-order moments of the life-cycle
 635 cost
 636 In previous studies, the minimum expected life-cycle cost has been broadly utilized as a
 637 standard criterion in the decision-making process. However, decisions exclusively based on the
 638 expected cost may not be optimal, as uncertainties associated with the other three statistical
 639 moments have been ignored [25]. Herein, an illustrative example is provided to apply statistical
 640 moments of the life-cycle maintenance cost in the decision-making process. Based on the

641 proposed copula approach and historical records, a data-based decision-making process is
 642 provided to determine an appropriate maintenance policy for a reinforced concrete bridge.

643 There are two maintenance policies considered for the bridge, as shown in Figure 12.
 644 Maintenance Policy 1 is provided based on the historical records of 50 similar reinforced
 645 concrete bridges from the U.S. National Bridge Inventory (NBI) database [57]. The
 646 maintenance interval of Policy 1 has a mean of 16.14 years and a mean maintenance cost per
 647 unit deck area of 4298.02 USD/m². As the sizes of bridges vary significantly, the maintenance
 648 cost is conditioned on the unit deck area. In contrast, Maintenance Policy 2 is proposed based
 649 on [57] with engineering justification, in which the maintenance interval is extended by
 650 increasing the maintenance cost. Policy 2 has a mean maintenance interval of 24.10 years and
 651 a mean maintenance cost per unit deck area of 6390.55 USD/m². Data associated with
 652 Maintenance Policy 2 are provided for illustrative purposes. Between the two alternatives,
 653 decisions should be made to select an appropriate policy for the bridge by considering statistical
 654 moments of the life-cycle maintenance cost.



655

656 Figure 12. Two maintenance policies with different maintenance interval W and maintenance
 657 cost Z .

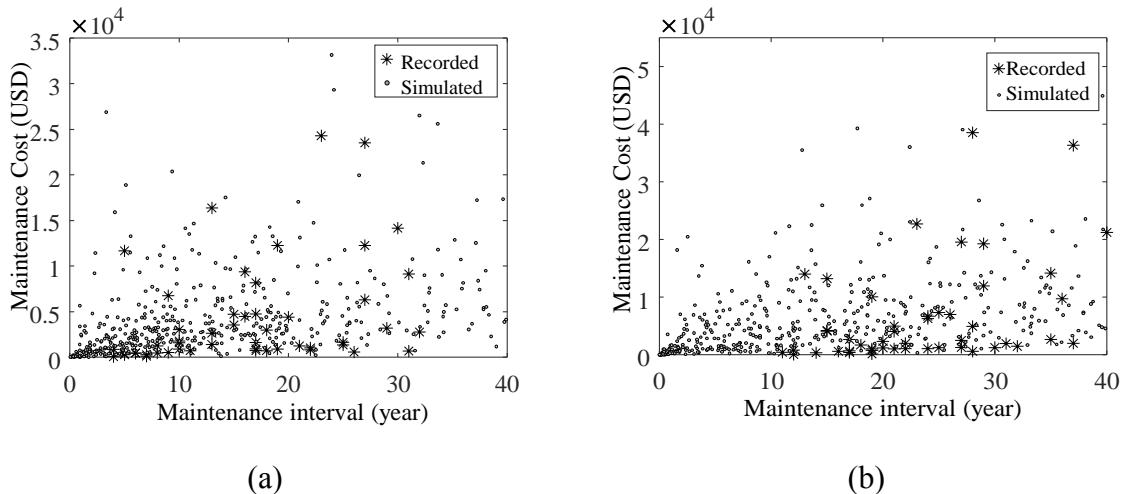
658 For maintenance policy 1, the dependence structure between the maintenance interval W
 659 and maintenance cost Z can be examined using the presented Method 1 as described in Figure
 660 6. Firstly, marginal distributions of W and Z should be fitted. It is identified that there are many
 661 distribution alternatives due to limited data records. Herein, their marginal distributions are
 662 fitted into exponential distributions. Subsequently, the copula function for the correlated W and
 663 Z is assessed using the goodness-of-fit test [58, 59]. Based on the Akaike information criterion
 664 (AIC) and Bayesian information criterion (BIC), the Clayton copula is selected among
 665 candidates (i.e., Gaussian, Student's t , Clayton, Gumbel, and Frank copulas) for the two

666 policies. Detailed fitting procedures and the goodness-of-fit test follow the process of copula
 667 selection described in Li *et al.* [37]. The PDF of the Clayton copula can be described as

$$c_{\theta}^{Clay}(u, v) = (\theta + 1)(uv)^{-(\theta+1)}(u^{-\theta} + v^{-\theta} - 1)^{-\frac{2\theta+1}{\theta}} \quad (47)$$

668 where θ is the dependence parameter.

669 The recorded and simulated maintenance interval and maintenance cost based on the fitted
 670 Clayton copula associated with two policies are shown in Figure 13. For Policy 1 (e.g., Figure
 671 13(a)), the dependence parameter for the Clayton copula is 1.24, and the correlation between
 672 W and Z is measured by Kendall's tau as 0.38. For Policy 2 in Figure 13(b), the associated
 673 dependence parameter is 0.89, and Kendall's tau is computed to be 0.31. Given the fitted copula
 674 models, the life-cycle maintenance costs with respect to two policies can be assessed. The
 675 service life of the bridge is defined as 100 years. The associated expectation, standard deviation,
 676 skewness, and kurtosis are computed using the Monte Carlo simulation, as shown in Table 1.



677 Figure 13. Scatter plots of the recorded and simulated data of the maintenance interval W and
 678 maintenance cost Z of (a) Maintenance Policy 1 and (b) Maintenance Policy 2.

679 Table 1. Mean, standard deviation (S.D.), skewness, and kurtosis of the life-cycle maintenance
 680 cost associated with two maintenance policies.

	Mean (USD/m ²)	S.D. (USD/m ²)	Skewness	Kurtosis
Maintenance Policy 1	10231.86	5555.48	1.04	1.89
Maintenance Policy 2	10068.05	7010.80	1.32	2.83

681

682 To determine an appropriate maintenance policy, four statistical moments are defined as
 683 four different decision criteria. For the investment in maintaining civil infrastructure, decision-
 684 makers may tend to be risk-averse [60], as they tend to avoid large variability and extreme cost.
 685 For instance, risk averters tend to seek a smaller standard deviation and a positive skewness of
 686 the investment return [26, 61].

687 In this example, the decision process is based on the multi-attribute utility theory. The
 688 multi-attribute utility theory generally consists of four steps: quantification of attributes,
 689 identification of utility functions, assessment of relative weights, and decision on the maximum
 690 utility [62]. Four statistical moments are considered as four attributes. As smaller expected life-
 691 cycle maintenance cost is preferred, the normalized attribute function of the mean can be
 692 defined as [63, 64]

$$\varepsilon = \frac{E[LTL]_{\min}}{E[LTL]} \quad (48)$$

693 in which $E[LTL]_{\min}$ is the minimum mean value between the considered maintenance policies.
 694 Based on the risk-averse attitude, a smaller standard deviation should be chosen. Meanwhile,
 695 risk averters avoid extreme events associated with low-probability and high-consequence. The
 696 extreme situation can be implied by the potential tail risk in terms of skewness and kurtosis
 697 [25, 26]. Therefore, attributes for skewness and kurtosis should be defined based on the
 698 aversion of a heavy tail associated with the huge cost. For the investigated case, as the life-
 699 cycle maintenance cost indicates negative investment return, smaller skewness and kurtosis are
 700 favored [61, 65]. Accordingly, similar to the mean attribute described in Eq. (46), the minimum
 701 values of the other three attributes (i.e., standard deviation, skewness, and kurtosis) are also
 702 preferred. Hence, all four attributes can be defined as the ratio of minimum value over the
 703 attribute value.

704 After defining attributes, the utility function of each attribute can be formulated. In this
 705 example, the same utility functions are utilized for the four attributes, as they are all statistical
 706 characteristics of the life-cycle maintenance cost. The utility function is commonly fitted by a
 707 few points in the utility curve, which is typically concave for risk averters [63, 66]. Herein, a
 708 risk-averse utility function is directly given for illustrative purpose [67], as shown in Eq. (49)

$$u(\varepsilon) = 5.5 \exp(-2 / \varepsilon) \quad (49)$$

709 Subsequently, the additive multi-attribute utility function can be formulated. The utility of
710 each attribute is multiplied by the associated weighting factor and then summed over. The
711 multi-attribute utility function can be described as Eq. (50)

$$u_{LTL}(mean, sd, skew, kurt) = w_{mean}u_{mean} + w_{sd}u_{sd} + w_{skew}u_{skew} + w_{kurt}u_{kurt} \quad (50)$$

712 where u_{mean} , u_{sd} , u_{skew} , and u_{kurt} are the utility values of the four attributes (i.e., mean, standard
713 deviation, skewness, and kurtosis); w_{mean} , w_{sd} , w_{skew} , and w_{kurt} are weighting factors with respect
714 to the attributes. Typically, weighting factors are allocated considering information provided
715 by decision-makers [68]. Herein, the four weighting factors, w_{mean} , w_{sd} , w_{skew} , and w_{kurt} , are
716 allocated as 0.40, 0.25, 0.20, and 0.15, respectively. These values can be adjusted based on the
717 preferences of decision-makers.

718 Given these inputs of attributes, the utility of Maintenance Policy 1 and Policy 2 can be
719 computed as 0.735 and 0.535, respectively. As Policy 1 gives the maximum utility value
720 between alternatives, Policy 1 should be chosen as the appropriate maintenance policy for the
721 bridge. However, if the decision is purely based on the mean value (i.e., the expected life-cycle
722 maintenance cost) as shown in Table 1, Policy 2 should be selected due to a relatively lower
723 expected cost. A different decision outcome is attained due to the consideration of statistical
724 moments. Therefore, statistical moments should be considered during the life-cycle analysis
725 and decision-making process. The proposed copula tool also provides an effective data-based
726 model for decision-making.

727

728 6. Conclusions

729 This study proposed a copula-based life-cycle analysis framework for deteriorating civil
730 infrastructure systems considering uncertainties and correlation effects (e.g., dependent
731 maintenance interval and maintenance cost). Statistical moments associated with the life-cycle
732 maintenance cost can be effectively estimated analytically and numerically using the copula
733 approach. Multiple dependent deterioration processes are considered in the proposed
734 framework, including gradual deterioration, external shock, and fatal shock. Reliability-based
735 preventive and essential maintenance actions are performed based on system reliability.
736 Several significant conclusions are drawn as follows:

- 737 1. The joint probability distribution of the maintenance interval and the maintenance cost
738 can be effectively modeled by the proposed copula approach. An analytical case, i.e.,
739 the FGM copula, is employed to derive statistical moments of the life-cycle cost under
740 the weak correlation, due to its unique mathematically trackable form. Results show
741 that even only with a weak correlation, the dependence can significantly affect the life-
742 cycle maintenance cost.
- 743 2. The proposed copula-based approach is flexible to incorporate practical data to
744 determine the correlation between the maintenance interval and the cost, thus delivering
745 data-based models for the life-cycle analysis. In addition to the expectation, the other
746 statistical moments (i.e., standard deviation, skewness, and kurtosis) of the life-cycle
747 maintenance cost should be considered during the life-cycle cost assessment, as
748 different decision results can be attained due to the exclusion of the other three
749 statistical moments.
- 750 3. In addition to the FGM copula, the Gaussian and Clayton copulas are also applied to
751 explore the effect of different dependence structures on the life-cycle cost. Results show
752 that the expectation and standard deviation of the life-cycle cost will decrease when the
753 correlation increases. Under the same degree of dependence (i.e., with identical
754 Kendall's tau), the life-cycle maintenance cost is not significantly affected by different
755 copula models.
- 756 4. Dependent deterioration processes and maintenance policy affect the maintenance
757 interval and maintenance cost, thus influencing the life-cycle maintenance cost. For
758 instance, in the illustrative example, considering dependent deterioration processes and
759 fatal shocks results in a significant decrease in the maintenance interval and an increase
760 of the life-cycle maintenance cost. Changing maintenance thresholds also leads to
761 considerable differences in the maintenance interval and the life-cycle maintenance cost.
- 762 5. Future studies are needed to explore the dependence model of deterioration processes
763 by incorporating data and considering the stochastic frequency and magnitude. Future
764 studies may investigate the impact of different intervention actions on the maintenance
765 cost and the life-cycle cost. The implementation of higher-order moments during the
766 life-cycle analysis and decision-making process needs to be explored. The employed
767 model of dependent deterioration processes relies on several assumptions. Future

768 studies are encouraged to relax these restrictive assumptions and analytical solutions
 769 should be investigated.

770

771 **Appendix A. Second moment of life-cycle cost with an FGM copula**

772 Analytical formulation of the second moment of the life-cycle maintenance cost with an FGM
 773 copula is presented. Following Eq. (38), the conditional second moment of maintenance cost
 774 can be computed and rearranged as

$$E[Z^2|W=y] = \int_0^{\infty} z^2 f_{Z|W=y}(z) dz = E[Z^2] + \theta(E[\Lambda^2] - E[Z^2])(1 - 2F_W(y)) \quad (A1)$$

775 where

$$E[\Lambda^2] = \int_0^{\infty} z^2 (2 - 2F_Z(z)) f_Z(z) dz = \int_0^{\infty} 2z(1 - F_Z(z))^2 dz \quad (A2)$$

776 The PDF of the renewal cycle can be denoted as $\omega(t, \lambda)$. Consequently, the second moment
 777 of life-cycle maintenance cost can be computed as

$$\begin{aligned} E[LCC^2(t_{\text{int}})] &= E[Z^2] \int_0^{t_{\text{int}}} \frac{\lambda}{\lambda + 2r} \omega(y; \lambda + 2r) dy \\ &+ \theta(E[\Lambda^2] - E[Z^2]) \int_0^{t_{\text{int}}} \left[\frac{2\lambda}{2\lambda + 2r} \omega(y; 2\lambda + 2r) - \frac{\lambda}{\lambda + 2r} \omega(y; \lambda + 2r) \right] dy \\ &+ 2E[Z] \int_0^{t_{\text{int}}} \frac{\lambda}{\lambda + 2r} \omega(y; \lambda + 2r) \mu_{LCC}(t_{\text{int}} - y) dy \\ &+ 2\theta(E[\Lambda] - E[Z]) \int_0^{t_{\text{int}}} \left[\frac{2\lambda}{2\lambda + 2r} \omega(y; 2\lambda + r) - \frac{\lambda}{\lambda + 2r} \omega(y; \lambda + 2r) \right] \mu_{LCC}(t_{\text{int}} - y) dy \\ &+ \int_0^{t_{\text{int}}} \frac{\lambda}{\lambda + 2r} \omega(y; \lambda + 2r) E[LCC^2(t_{\text{int}} - y)] dy \end{aligned} \quad (A3)$$

778 By taking the Laplace transform of Eq. (A3) on both sides and performing the associated
 779 inversion, the second moment of life-cycle cost under dependency can be derived as

$$\begin{aligned}
E[LCC^2(t_{\text{int}})] &= \frac{\lambda E[Z^2]}{2r} (1 - e^{-2rt_{\text{int}}}) + 2\lambda^2 E[Z]^2 \left(\frac{1 - 2e^{-rt_{\text{int}}} + e^{-2rt_{\text{int}}}}{2r^2} \right) \\
&\quad + \theta\lambda \left(E[\Lambda^2] - E[L^2] \right) \left(\frac{1 - e^{-(2\lambda+2r)t_{\text{int}}}}{2\lambda+2r} \right) \\
&\quad + 2\theta\lambda^2 E[Z] (E[\Lambda] - E[Z]) \left(\frac{e^{-(2\lambda+r)t_{\text{int}}}}{(2\lambda-r)(2\lambda+r)} - \frac{e^{-2rt_{\text{int}}}}{2r(2\lambda-r)} + \frac{1}{2r(2\lambda+r)} \right) \\
&\quad + 2\theta\lambda^2 E[Z] (E[\Lambda] - E[Z]) \left(\frac{e^{-(2\lambda+2r)t_{\text{int}}}}{2(2\lambda+r)(\lambda+r)} + \frac{1}{2r(\lambda+r)} - \frac{e^{-rt_{\text{int}}}}{r(2\lambda+r)} \right) \\
&\quad + 2\theta^2\lambda^2 (E[\Lambda] - E[Z])^2 \left(\frac{1}{2(2\lambda+r)(\lambda+r)} - \frac{e^{-(2\lambda+r)t_{\text{int}}}}{r(2\lambda+r)} + \frac{e^{-(2\lambda+2r)t_{\text{int}}}}{2r(2\lambda+r)} \right)
\end{aligned} \tag{A4}$$

780 Consequently, the variance can be evaluated from the first two moments

$$\sigma_{LCC}^2(t_{\text{int}}) = \text{Var}[LCC(t_{\text{int}})] = E[LCC^2(t_{\text{int}})] - (\mu_{LCC}(t_{\text{int}}))^2 \tag{A5}$$

781

782 **Acknowledgements**

783 The study has been supported by the National Natural Science Foundation of China (Grant no. 784 51808476 and 52078448), the Research Grant Council of Hong Kong (Project no. PolyU 785 252161/18E and PolyU 15219819), and the National Key R&D Program of China (No. 786 2019YFB2102700 and No. 2019YFB1600702). The support is gratefully acknowledged. The 787 opinions and conclusions presented in this paper are those of the authors and do not necessarily 788 reflect the views of the sponsoring organizations.

789

790 **References**

- 791 1. Yang, D.Y. and D.M. Frangopol. (2019). Life-cycle management of deteriorating civil 792 infrastructure considering resilience to lifetime hazards: A general approach based on 793 renewal-reward processes. *Reliability Engineering & System Safety*. 183: 197-212.
- 794 2. Iannaccone, L., N. Sharma, A. Tabandeh, and P. Gardoni. (2022). Modeling time- 795 varying reliability and resilience of deteriorating infrastructure. *Reliability Engineering & 796 System Safety*. 217: 108074.
- 797 3. Tavangar, M. and M. Hashemi. (2022). Reliability and maintenance analysis of 798 coherent systems subject to aging and environmental shocks. *Reliability Engineering & 799 System Safety*. 218: 108170.
- 800 4. Adumene, S., F. Khan, S. Adedigba, S. Zendehboudi, and H. Shiri. (2021). Dynamic 801 risk analysis of marine and offshore systems suffering microbial induced stochastic 802 degradation. *Reliability Engineering & System Safety*. 207: 107388.

- 803 5. Alaswad, S. and Y. Xiang. (2017). A review on condition-based maintenance
804 optimization models for stochastically deteriorating system. *Reliability Engineering &*
805 *System Safety*. 157: 54-63.
- 806 6. Han, X., Z. Wang, M. Xie, Y. He, Y. Li, and W. Wang. (2021). Remaining useful life
807 prediction and predictive maintenance strategies for multi-state manufacturing systems
808 considering functional dependence. *Reliability Engineering & System Safety*. 210:
809 107560.
- 810 7. Yang, L., Y. Zhao, R. Peng, and X. Ma. (2018). Hybrid preventive maintenance of
811 competing failures under random environment. *Reliability Engineering & System*
812 *Safety*. 174: 130-140.
- 813 8. Li, Q., C. Wang, and B.R. Ellingwood. (2015). Time-dependent reliability of aging
814 structures in the presence of non-stationary loads and degradation. *Structural Safety*.
815 52: 132-141.
- 816 9. Hong, H.-P., W. Zhou, S. Zhang, and W. Ye. (2014). Optimal condition-based
817 maintenance decisions for systems with dependent stochastic degradation of
818 components. *Reliability Engineering System Safety*. 121: 276-288.
- 819 10. Giouvanidis, A. and Y. Dong. (2020). Seismic loss and resilience assessment of
820 single- column rocking bridges. *Bulletin of Earthquake Engineering*. 18: 4481-4513.
- 821 11. Gong, C. and D.M. Frangopol. (2019). An efficient time-dependent reliability method.
822 *Structural Safety*. 81: 101864.
- 823 12. Sanchez-Silva, M., G.-A. Klutke, and D.V. Rosowsky. (2011). Life-cycle performance
824 of structures subject to multiple deterioration mechanisms. *Structural Safety*. 33(3):
825 206-217.
- 826 13. Caballé, N. and I. Castro. (2017). Analysis of the reliability and the maintenance cost
827 for finite life cycle systems subject to degradation and shocks. *Applied Mathematical*
828 *Modelling*. 52: 731-746.
- 829 14. Kumar, R., D.B. Cline, and P. Gardoni. (2015). A stochastic framework to model
830 deterioration in engineering systems. *Structural Safety*. 53: 36-43.
- 831 15. Wang, C., H. Zhang, and Q. Li. (2017). Reliability assessment of aging structures
832 subjected to gradual and shock deteriorations. *Reliability Engineering & System Safety*.
833 161: 78-86.
- 834 16. Jia, G., P. Gardoni, D. Trejo, and V. Mazarei. (2021). Stochastic Modeling of
835 Deterioration and Time-Variant Performance of Reinforced Concrete Structures under
836 Joint Effects of Earthquakes, Corrosion, and ASR. *Journal of Structural Engineering*.
837 147(2): 04020314.
- 838 17. Cheng, T., M.D. Pandey, and J.A. van der Weide. (2012). The probability distribution
839 of maintenance cost of a system affected by the gamma process of degradation: Finite
840 time solution. *Reliability Engineering & System Safety*. 108: 65-76.
- 841 18. Jia, G. and P. Gardoni. (2019). Stochastic life-cycle analysis: Renewal-theory life-cycle
842 analysis with state-dependent deterioration stochastic models. *Structure and*
843 *Infrastructure Engineering*. 15(8): 1001-1014.
- 844 19. Liu, B., X. Zhao, G. Liu, and Y. Liu. (2020). Life cycle cost analysis considering
845 multiple dependent degradation processes and environmental influence. *Reliability*
846 *Engineering & System Safety*. 197: 106784.
- 847 20. Pandey, M.D. and J. Van Der Weide. (2017). Stochastic renewal process models for
848 estimation of damage cost over the life-cycle of a structure. *Structural Safety*. 67: 27-
849 38.
- 850 21. Ataei, N. and J.E. Padgett. (2013). Probabilistic modeling of bridge deck unseating
851 during hurricane events. *Journal of Bridge Engineering*. 18(4): 275-286.

- 852 22. Lucas, C. and C.G. Soares. (2015). Bivariate distributions of significant wave height
853 and mean wave period of combined sea states. *Ocean Engineering*. 106: 341-353.
- 854 23. Pan, Y., S. Ou, L. Zhang, W. Zhang, X. Wu, and H. Li. (2019). Modeling risks in
855 dependent systems: A Copula-Bayesian approach. *Reliability Engineering & System
856 Safety*. 188: 416-431.
- 857 24. Fang, G., R. Pan, and Y. Hong. (2020). Copula-based reliability analysis of degrading
858 systems with dependent failures. *Reliability Engineering & System Safety*. 193: 106618.
- 859 25. Goda, K. (2010). Statistical modeling of joint probability distribution using copula:
860 application to peak and permanent displacement seismic demands. *Structural Safety*.
861 32(2): 112-123.
- 862 26. Li, Y., Y. Dong, and J. Qian. (2020). Higher-order analysis of probabilistic long-term
863 loss under nonstationary hazards. *Reliability Engineering & System Safety*. 203:
864 107092.
- 865 27. Nicolai, R. P., and Dekker, R. (2008). Optimal maintenance of multi-component
866 systems: a review. *Complex system maintenance handbook*, 263-286.
- 867 28. Keizer, M. C. O., Flapper, S. D. P., and Teunter, R. H. (2017). Condition-based
868 maintenance policies for systems with multiple dependent components: A review.
869 *European Journal of Operational Research*, 261(2), 405-420.
- 870 29. Liu, B., Xu, Z., Xie, M., and Kuo, W. (2014). A value-based preventive maintenance
871 policy for multi-component system with continuously degrading components.
872 *Reliability Engineering & System Safety*, 132, 83-89.
- 873 30. Dinh, D. H., Do, P., and Iung, B. (2020). Degradation modeling and reliability
874 assessment for a multi-component system with structural dependence. *Computers &
875 Industrial Engineering*, 144, 106443.
- 876 31. Vu, H. C., Do, P., Barros, A., and Bérenguer, C. (2014). Maintenance grouping strategy
877 for multi-component systems with dynamic contexts. *Reliability Engineering & System
878 Safety*, 132, 233-249.
- 879 32. Zhou, Y., Lin, T. R., Sun, Y., and Ma, L. (2016). Maintenance optimisation of a
880 parallel-series system with stochastic and economic dependence under limited
881 maintenance capacity. *Reliability Engineering & System Safety*, 155, 137-146.
- 882 33. Oakley, J. L., Wilson, K. J., and Philipson, P. (2022). A condition-based maintenance
883 policy for continuously monitored multi-component systems with economic and
884 stochastic dependence. *Reliability Engineering & System Safety*, 222, 108321.
- 885 34. Iervolino, I., M. Giorgio, and E. Chioccarelli. (2013). Gamma degradation models for
886 earthquake-resistant structures. *Structural Safety*. 45: 48-58.
- 887 35. Guo, H.-Y., Y. Dong, and X.-L. Gu. (2020). Two-step translation method for time-
888 dependent reliability of structures subject to both continuous deterioration and sudden
889 events. *Engineering Structures*. 225: 111291.
- 890 36. Otieno, M., M. Alexander, and H.-D. Beushausen. (2010). Corrosion in cracked and
891 uncracked concrete—Influence of crack width, concrete quality and crack reopening.
892 *Magazine of Concrete Research*. 62(6): 393-404.
- 893 37. Joe, H. (2014). *Dependence modeling with copulas*. Boca Raton, FL: CRC press.
- 894 38. Zhang, Y., C.-W. Kim, M. Beer, H. Dai, and C.G. Soares. (2018). Modeling
895 multivariate ocean data using asymmetric copulas. *Coastal Engineering*. 135: 91-111.
- 896 39. Nelsen, R.B. (2006). *An introduction to copulas*. New York: Springer Science &
897 Business Media.
- 898 40. Sklar, A. (1959). Fonctions de Répartition à n Dimensions et Leurs Marges.
899 *Publications de l'Institut Statistique de l'Université de Paris*. 8: 229-231.

- 900 41. Genest, C., K. Ghoudi, and L.-P. Rivest. (1995). A semiparametric estimation
 901 procedure of dependence parameters in multivariate families of distributions.
 902 *Biometrika*. 82(3): 543-552.
- 903 42. Genest, C., and Favre, A. C. (2007). Everything you always wanted to know about
 904 copula modeling but were afraid to ask. *Journal of hydrologic engineering*, 12(4), 347-
 905 368.
- 906 43. Kim, D., and Kim, J. M. (2014). Analysis of directional dependence using asymmetric
 907 copula-based regression models. *Journal of Statistical Computation and Simulation*,
 908 84(9), 1990-2010.
- 909 44. Li, Y., Y. Dong, and D. Zhu. (2020). Copula-Based Vulnerability Analysis of Civil
 910 Infrastructure subjected to Hurricanes. *Frontiers in Built Environment*. 6: 170.
- 911 45. Jane, R.A., D.J. Simmonds, B.P. Gouldby, J.D. Simm, L. Dalla Valle, and A.C. Raby.
 912 (2018). Exploring the potential for multivariate fragility representations to alter flood
 913 risk estimates. *Risk Analysis*. 38(9): 1847-1870.
- 914 46. Hong, H.-P., W. Zhou, S. Zhang, and W. Ye. (2014). Optimal condition-based
 915 maintenance decisions for systems with dependent stochastic degradation of
 916 components. *Reliability Engineering & System Safety*. 121: 276-288.
- 917 47. Eryilmaz, S. (2016). A reliability model for a three-state degraded system having
 918 random degradation rates. *Reliability Engineering & System Safety*. 156: 59-63.
- 919 48. Li, Y., Y. Dong, D.M. Frangopol, and D. Gautam. (2020). Long-term resilience and
 920 loss assessment of highway bridges under multiple natural hazards. *Structure and*
 921 *Infrastructure Engineering*. 16(4): 626-641.
- 922 49. Ross, S.M. (2014). *Introduction to probability models*. Amsterdam: Academic press.
- 923 50. Barges, M., H. Cossette, S. Loisel, and E. Marceau. (2011). On the moments of the
 924 aggregate discounted claims with dependence introduced by a FGM copula. *Astin*
 925 *Bulletin*. 41(1): 215-238.
- 926 51. Wang, C., Q.-w. Li, A.-m. Zou, and L. Zhang. (2015). A realistic resistance
 927 deterioration model for time-dependent reliability analysis of aging bridges. *Journal of*
 928 *Zhejiang University-SCIENCE A*. 16(7): 513-524.
- 929 52. Lebrun, R. and A. Dutfoy. (2009). An innovating analysis of the Nataf transformation
 930 from the copula viewpoint. *Journal of Probabilistic Engineering Mechanics*. 24(3):
 931 312-320.
- 932 53. Gong, C. and D.M. Frangopol. (2020). Reliability of steel girder bridges with dependent
 933 corrosion growth. *Engineering Structures*. 224: 111125.
- 934 54. Dieulle, L., C. Bérenguer, A. Grall, and M. Roussignol. (2003). Sequential condition-
 935 based maintenance scheduling for a deteriorating system. *European Journal of*
 936 *operational research*. 150(2): 451-461.
- 937 55. Okasha, N.M. and D.M. Frangopol. (2010). Novel approach for multicriteria
 938 optimization of life-cycle preventive and essential maintenance of deteriorating
 939 structures. *Journal of Structural Engineering*. 136(8): 1009-1022.
- 940 56. Mondoro, A., D.M. Frangopol, and M. Soliman. (2017). Optimal risk-based
 941 management of coastal bridges vulnerable to hurricanes. *Journal of Infrastructure*
 942 *Systems*. 23(3).
- 943 57. Federal Highway Administration (FHWA). (2020). US Department of Transportation:
 944 National Bridge Inventory Data, U.D.o. Transportation, Editor.
- 945 58. Genest, C., B. Rémillard, and D. Beaudoin. (2009). Goodness-of-fit tests for copulas:
 946 A review and a power study. *Insurance: Mathematics and economics*. 44(2): 199-213.
- 947 59. Genest, C., J.F. Quessy, and B. Rémillard. (2006). Goodness - of - fit procedures for
 948 copula models based on the probability integral transformation. *Scandinavian Journal*
 949 *of Statistics*. 33(2): 337-366.

- 950 60. Cha, E.J. and B.R. Ellingwood. (2012). Risk-averse decision-making for civil
951 infrastructure exposed to low-probability, high-consequence events. *Reliability*
952 *Engineering & System Safety*. 104: 27-35.
- 953 61. Brockett, P.L. and Y. Kahane. (1992). Risk, return, skewness and preference.
954 *Management Science*. 38(6): 851-866.
- 955 62. Jansen, S.J. (2011). *The multi-attribute utility method*, in *The Measurement and*
956 *Analysis of Housing Preference and Choice*. Springer. 101-125.
- 957 63. Anwar, G.A., Y. Dong, and Y. Li. (2020). Performance-based decision-making of
958 buildings under seismic hazard considering long-term loss, sustainability, and
959 resilience. *Structure and Infrastructure Engineering*. 1-17.
- 960 64. Gumus, H., D. Aydemir, E. Altuntas, R. Kurt, and E. Imren. (2020). Cellulose
961 nanofibrils and nano-scaled titanium dioxide-reinforced biopolymer nanocomposites:
962 Selecting the best nanocomposites with multicriteria decision-making methods.
963 *Journal of Composite Materials*. 54(7): 923-935.
- 964 65. Maringer, D. and P. Parpas. (2009). Global optimization of higher order moments in
965 portfolio selection. *Journal of Global Optimization*. 43(2): 219-230.
- 966 66. Wang, H.-F. and F.-C. Hsu. (2009). An integrated operation module for individual risk
967 management. *European Journal of Operational Research*. 198(2): 610-617.
- 968 67. Garmabaki, A., A. Ahmadi, and M. Ahmadi. (2016). *Maintenance optimization using*
969 *multi-attribute utility theory*, in *Current trends in reliability, availability,*
970 *maintainability and safety*. Springer. 13-25.
- 971 68. Jiménez, A., S. Ríos-Insua, and A. Mateos. (2003). A decision support system for
972 multiattribute utility evaluation based on imprecise assignments. *Decision Support*
973 *Systems*. 36(1): 65-79.
- 974
- 975