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1 Copula-Based Multivariate Renewal Model for Life-Cycle Analysis of Civil
2 Infrastructure considering Multiple Dependent Deterioration Processes
3 Yaohan Lit, You Dong!”, and Hongyuan Guo?
4  Abstract

Civil infrastructure is subjected to multiple deterioration processes (e.g., gradual deterioration
and shock deterioration) caused by environmental exposure and extreme events during its
lifetime. To maintain performance and functionality, maintenance actions should be performed

and the life-cycle cost may be affected. There is a need to explore the effect of maintenance
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actions and various uncertainties on the life-cycle performance of the system. This study
10  proposes a probabilistic life-cycle analysis framework for civil infrastructure based on a set of
11 performance indicators, e.g., reliability and maintenance cost. Stochastic uncertainties resulting
12 from multiple dependent deterioration processes, system reliability, intervention actions, and
13 maintenance cost are considered. In particular, the correlation between the maintenance
14  interval and cost is highlighted. Previous studies generally assume they are independent. Such
15  an assumption can be misleading and lead to inappropriate cost estimation. To address this
16  concern, a copula-based multivariate renewal model is proposed to assess the life-cycle
17 maintenance cost analytically and numerically. In addition to the expected cost, statistical
18  moments (standard deviation, skewness, and kurtosis) are calculated to quantify uncertainties
19  from higher-order moments. Two illustrative examples show that the dependence structure and
20  uncertainties can have a large impact on the life-cycle cost, and decisions can be altered by
21 considering statistical moments of the cost.
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1. Introduction

During the lifetime, civil infrastructure systems are subjected to multiple deterioration
processes, such as gradual deterioration resulting from environmental influence (e.g., corrosion
and crack growth) and shock deterioration caused by extreme events (e.g., hurricanes and
earthquakes) [1, 2]. The combination effects of deterioration processes may lead to damages
and failure [3, 4], thus threatening public safety and resulting in considerable financial and
social losses. In order to maintain the functionality of civil infrastructure, various intervention
actions such as repair and replacement are required. The incurred maintenance cost increases

the life-cycle cost and directly affects the subsequent decision-making process.

Due to various uncertainties associated with the life-cycle analysis, rational stochastic
models and reliability analysis can be essential to assess the maintenance cost [5-7]. Although
numerous studies have accounted for both gradual and shock deterioration processes [8-11],
interaction and correlation between them are commonly neglected (i.e., assume they are
independent). For instance, Sanchez-Silva et al. [12] studied the life-cycle performance of
deteriorating structures by investigating the combined effects of progressive degradation and
sudden events. Caballé and Castro [13] proposed a reliability-based analysis framework to
assess the maintenance cost of the system with a finite lifetime subjected to internal continuous
degradation and sudden events. The impact of dependent deterioration processes on system
reliability has been explored in recent studies. For instance, Kumar et al. [14] proposed a
stochastic framework for engineering systems to estimate the time to failure considering
exposure to gradual degradation and sudden events. Wang et al. [15] developed a dependence
framework to assess the time-dependent reliability of deteriorating structures considering the
correlation between gradual and shock deterioration processes. Jia et al. [16] investigated the
stochastic deterioration of reinforced concrete structures considering compound effects of
corrosion, earthquakes, and ASR. However, the effects of dependent deterioration processes
on maintenance planning and the associated cost have not been carefully explored in a life-

cycle context.

In terms of the life-cycle cost analysis, most of the existing studies focus on one type of
deterioration (either under gradual deterioration or shocks) and ignore their combined effects.
For instance, Cheng et al. [17] presented an analytical framework to derive the probability
distribution of maintenance cost of aging engineering systems subjected to gradual degradation

by using the gamma process. Yang and Frangopol [1] assessed the life-cycle maintenance cost
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subjected to independent shock and deterioration processes using renewal models. A few recent
studies take correlated deterioration effects into account. For instance, Jia and Gardoni [18]
introduced state-dependent models to the life-cycle cost analysis subjected to earthquake and
corrosion damage. Liu et al. [19] investigated dependent degradation processes using copulas
and the resulting impact on the life-cycle cost. However, in these studies, the impact of

dependent deterioration processes on the maintenance cost has not been explicitly discussed.

Despite considerable efforts on deterioration modeling and cost assessment, these studies
commonly assume that the maintenance interval and cost are independent. The independence
assumption has been widely used to simplify the analytical formulation associated with the
renewal theory [17, 19, 20]. Neglecting the dependence and the associated uncertainties may
result in an inappropriate estimation of the accumulative cost, thus misleading decision-makers
during the life-cycle management. Pandey and Van Der Weide [20] also indicated that
dependence between maintenance cost and renewal cycle cannot be ignored, especially when
preventive maintenance is considered. To the best of the authors’ knowledge, the dependent

maintenance interval and cost have not been considered in the life-cycle analysis.

To incorporate the correlation between the maintenance interval and cost, statistical
modeling of the joint probability distribution is essential. A conventional approach of
multivariate modeling relies on an empirical multivariate joint distribution or a joint normal
distribution [21, 22], but the approach is limited to a certain correlation relationship. Herein, a
copula-based method is proposed. As an advanced mathematical tool, the copula model offers
sufficient efficiency and flexibility in multivariate dependence modeling by considering the
joint and marginal distributions separately [23, 24]. Due to this advantage, copulas have been
increasingly applied in deterioration processes and reliability analysis. For instance, Goda [25]
highlighted the importance of multi-variate seismic demand modeling by employing copulas.
Fang et al. [24] provided an integrated approach to analyze the reliability of a degrading system
by considering dependent component failures using the copula model.

In addition to uncertainties resulting from the dependence model, uncertainties associated
with statistical moments (mean, standard deviation, skewness, and kurtosis) of the life-cycle
cost have not been thoroughly explored. Although the minimum expected cost has been utilized
as a standard decision criterion, the impact of the other statistical moments on the life-cycle
cost and decision-making process has been rarely discussed. Pandey and VVan Der Weide [20]
indicated that the variance of the life-cycle damage cost could be significant to indicate the
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variability. Li et al. [26] stated the importance of higher-order moments (skewness and kurtosis)
of the repair cost during system lifetime, as skewness and kurtosis imply potential tail risks.

Hence, it is necessary to assess the statistical moments of the life-cycle maintenance cost.

This study presents a copula-based life-cycle cost analysis framework for deteriorating
civil infrastructure systems. The developed copula-based approach allows various complex
dependence structures between the maintenance interval and the cost in a renewal process. The
impact of dependent deterioration processes on the life-cycle performance of a system is
investigated. Furthermore, the effect of correlated maintenance cost (considering preventive
and essential maintenance) and maintenance interval on the life-cycle maintenance cost is
evaluated based on the renewal process. The proposed copula model allows including practical
maintenance data into the life-cycle analysis, by identifying the correlation between
maintenance cost and interval. The proposed framework can aid the decision-making
associated with maintenance planning and optimization. The remainder of the paper is
organized as follows. The following Section 2 introduces the life-cycle framework and the
relevant dependence. Section 3 illustrates the stochastic modeling of deterioration processes
and the time-dependent reliability assessment. In section 4, a copula-based renewal model is
proposed to assess the life-cycle maintenance cost analytically and numerically. Subsequently,

two illustrative examples are presented in Section 5. Conclusions are drawn in the last section.

2. Life-cycle analysis framework and dependence

Appropriate maintenance relies on the life-cycle analysis of the structural performance. Figure
1 shows the computational framework for the life-cycle maintenance cost assessment. There
are various dependence relationships within the life-cycle analysis. To take the dependence
into account, the analysis of deterioration and maintenance models also becomes more and
more complicated. In previous studies, special attention has been paid to structural, economic,
and stochastic dependencies of multi-component engineering systems [27, 28]. For instance,
structural dependence has been widely explored to investigate the impact of the maintenance
action of one component on other components [29, 9, 30]. Economic dependence refers to that
the total maintenance cost of a system may be increased or decreased due to joint maintenance
of components [31, 32]. Stochastic dependence has been considered for dependent
deterioration or condition among components [9, 33]. In the life-cycle analysis of civil

engineering, potential dependence associated with structural reliability can be related to
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structural status variables, external conditions, model parameters, and time [18, 19, 15]. In the

maintenance aspect, potential dependence exists among preventive maintenance cost,

corrective maintenance cost, total maintenance cost, and time.

dependence between total maintenance cost within the maintenance interval and the interval.
A copula-based renewal model is proposed. The deterioration modeling and the structural
reliability analysis at Stages 1 and 2 aim to provide essential inputs of the expected maintenance
cost and the maintenance interval for Stage 3. A gradual deterioration process and two shock

processes are considered. Based on these inputs, the life-cycle maintenance cost can be

assessed by using the copula-based renewal model.

3.

Life-cycle analysis framework

Stage 1. Multiple deterioration
processes modeling

<

Stage 2. Structural reliability &
maintenance policy

<

4 N\
Stage 3. Copula function for dependent
L maintenance cost and interval (Z, W) )

<

Stage 4. Life-cycle maintenance cost

\

In this study, the major contribution is associated with Stage 3 by considering the

Maintenance cost
E[Z] & interval E[W]

L

\ J

Figure 1. A flowchart of the proposed life-cycle analysis framework

Structural deterioration and reliability-based maintenance

3.1 Stochastic models of gradual deterioration and sudden events

3.1.1 Gradual deterioration

The stochastic gamma process has been widely used to model gradual deterioration [12, 34].
The gradual deterioration of an infrastructure system can be modeled by a stochastic gamma
process. Over an interval (0, s], the cumulative degradation follows the gamma distribution,

and its probability density function (PDF) ga(q; as, £) and cumulative distribution function

(CDF) Ga(q; as, p) are given by
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. _q”exp(-q/ p)
ga(q;as, ) = () )
Ga(q;azs, B) =W @)

: B asd —xa. -
where as and S are shape and scale parameters, respectively; Y(as, f) = JO X e dx is the

lower incomplete gamma function; and F(as)z.[:xas‘le‘xdx is the complete gamma

function.

3.1.2 Shock deterioration: external shock and fatal shock

Different from gradual deterioration, shock deterioration indicates the abrupt decrease in the
performance of a system caused by a shock event [13, 35]. There are two shock processes
considered herein. One is the external shock process, which leads to the accumulation of shock
deterioration and results in failure when the failure threshold is reached. The other one refers
to a fatal shock process, which leads to immediate failure of the system. It is necessary to
account for random fatal shocks, as the system can be subjected to extreme events with low-
frequency and high-consequence during the lifetime. Two shock processes are modeled by the
Poisson processes, in which the occurrence rate of a fatal shock process Aras is much smaller
than that of an external shock process Aexs. For a single shock process, the number of shocks
follows a Poisson distribution, which gives

(At)" exp(-At)
x!

P[N(t) =x] = (3)

where ¢ is the number of shocks with x =0, 1, 2, ... and 4 is the occurrence rate of a shock

process. The intensity of shock deterioration is a random variable, e.g., AR®*® denoting the
intensity of a shock event is a random variable. In other words, the external shock and fatal
shock processes are also compound Poisson processes. For the external shock, it is associated
with the external demand. Herein, the external shock deterioration is assumed to follow
lognormal distribution. The existence of a fatal shock results in an immediate failure, thus the

distribution of the intensity is not specified herein.
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3.2 System reliability analysis

3.2.1 Stochastic demand and capacity

The deterioration of a system has a direct influence on structural reliability. The time-
dependent reliability analysis relies on the assessment of demand and capacity subjected to
stochastic deterioration. During the period (0, s], the random occurrence of external loads

imposes demand { D;} with i = 1, 2, ..., n upon the system. The associated arriving times of

demands are ti, to, ..., tn. The external shock deterioration results from the demand due to
external loading. In other words, the demand occurs at the same time as the external shock

deterioration.

+
tha

Figure 2. Capacity and demand of a system subjected to gradual deterioration and external
shock process.

Figure 2 describes the demand and time-dependent resistance subjected to gradual
deterioration and external shock. In this study, the gradual deterioration is modeled as a
stochastic gamma process and the external shock is modeled by a Poisson process. The
occurrence of demand is together with the external shock, thus also following a Poisson process.
The period (0, s] is divided into n + 1 intervals by n number of load events, i.e., (0, t1], (t1,

t2], ..., (tn-1, ta], (tn, th+ 1 = s]. The number of events n is a stochastic variable. The system

resistance at time tn can be denoted as an

N (t)-1

R(t,)=R,-R*™*(0,t,]- X AR 4)
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R(ty) =R(t;) - AR™ (5)

where Ry represents the initial capacity of the system; t, and t. are the time immediately

before and after tn; and ARtiEXS is the external shock deterioration at time t;. It should be noted
that the demands and the shock deterioration are physically related. Herein,

ARZ™ =R®"(t; 1, t;] denotes gradual deterioration within time interval (ti -1, t]. Figure 3

describes the impact of gradual and shock deterioration on the system capacity at t, (t,, and

+
t,).
Capacity
A

R_
tn—l

R
th_

R 1 IARt(jra
th ExS

AR
th
»Time
tn-l tn

Figure 3. Schematic diagram of deterioration of system capacity.

For normalization, the capacity can be defined as the product of the deterioration function
G(t) and the initial capacity Ro, i.e., R(t) = Ro°G(t). Accordingly, Egs. (4) and (5) can be

rearranged to the time-dependent deterioration functions, given by Egs. (6) and (7)

n-1

G(t,) =1-R°*(0,t,]1/ R, — D AR™® /R, (6)
i=1

G(t;) =1-R°*(0,t,1/R, - D ART® /R, (7)
i=1

Based on Figure 2, for a time instant ¢, the deterioration function at time ¢ can also be
described as

N(5)

G(57)=1-R°*(0,51/R,— >, AR™* /R, (8)
i=1
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N(5)*
G(57)=1-R°*(0, 61/ Ry— D> AR™® /R, )
i=1
where N™ is the maximum integer j with tj < s and N is the maximum integer j with tj <s.
Herein, N* equals N". N* =N+ 1lisonly fors=ti (i=1, 2, ..., n). In particular, let § = s, the

deterioration function at time s can be given as

N(s)

G(s)=G(67)=G(5")=1-R**(0, ]/ Ry— Y ARF® IR, (10)
i=1

3.2.2 Failure mechanisms and limit state function

Two possible failure modes of the system are considered: one is that failure occurs when the
demand exceeds its capacity, and the other one defines that the system fails when the

cumulative deterioration or damage exceeds the threshold. For the first scenario, the system

fails at the nth shock event with Rt_ < Dtn and the limit state function can be computed as
n

n-1
LS, =R, —R®*(0,t,]1/Ry— > ARF* - D, (11)
i=1

Given Eq. (11), the failure occurs when LS, is smaller than zero, i.e., LS, < 0. The demand

D, is arandom variable.

As the fatal shock process is taken into account, a fatal event results in immediate failure
of the system. Additionally, failure may occur at an arbitrary time when the total deterioration
exceeds the maximum deterioration level [14, 15]. For instance, the failure occurs when the
total amount of deterioration caused by gradual deterioration and external shock exceeds the
threshold (i.e., 1 — G(6*) > Gmax), as shown in Eq. (12)

N(t)

R®™(0,t,1/Ry+ X AR™® /Ry > Gy (12)

i=1

3.2.3 Dependence between deterioration processes using copulas

Deterioration processes usually have interactive effects. For instance, cracks caused by external
activities may accelerate the initiation and corrosion rate of reinforcement steel in terms of
reinforced concrete structures [36]. The interactive effects in multiple stochastic processes have
been widely investigated and different dependence models have been developed. For instance,

Kumar et al. [14] introduced the correlation between the demand process and shock process by
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developing the joint probability density function. Wang et al. [15] modeled the dependence
among gradual and shock degradation by using copula models. Liu et al. [19] modeled multiple

dependent degradation processes using Gamma processes and copula functions.

Herein, the copula model is proposed to construct the multivariate dependency among
parameters associated with deterioration processes. The advantage of using copula is that the
simulation of multivariate probability distributions is separate from the univariate random
variables, thus providing sufficient effectiveness during statistical modeling [37, 38]. A copula
is a function that connects the multivariate distribution function of random variables to their
marginal distributions [39]. For a sequence of continuous random variables X1, Xo, ..., X with
marginal CDFs Fxi, Fx., ..., Fx, their dependence structure can be defined by the joint CDF
H(x1, X2, ..., Xn). According to Sklar’s theorem [40], there exists a unique n-dimensional copula

C for all (x1, X2, ..., Xn) € [-00,0]"

HOq, %) = C(Fy (%), Fy (%3) (13)

The associated joint probability density function can be written as

n
C(Xl,...,Xn):M
0%y, ..., 0X

(14)
n

There are various copula functions. Commonly used copula families include elliptical
copulas (e.g., Gaussian, Student’s-t) and Archimedean copulas (e.g., Gumbel, Clayton, and
Frank copulas) for multivariate and bivariate cases. When applying the copula model, the
dependence between the investigated parameters should be measured by correlation
coefficients. There are three common correlation coefficients to measure the association:
Pearson’s correlation coefficient, Kendall’s tau, and Spearman’s rho. Although Pearson’s
correlation coefficient may be the most popular one in previous studies, it is limited to a linear
relationship [40]. Pearson’s correlation coefficient for the correlated random vector (U, V) can

be derived as

j (U-T)(v-V) f,  (u,v)dudv
74 =
\/ [w-m? f, adv[ (v-0)? £, (u)du

(15)

Due to the linear limitation, Kendall’s tau z and Spearman’s rho p are more widely

employed in recent studies, and given by [39]

10
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7(0) =4 I[o,l]z C,(u,v)dC, (u,v) -1 (16)

p(6) =12 jm]z uvdC, (u,v) -3 (17)

Both these two coefficients are developed from the concept of concordance and give a
similar interpretation of association in most cases [39, 42]. Given the correlation coefficient,
the dependence parameter @ associated with a copula can be estimated. For instance, the
maximum pseudo-likelihood method can be applied to compute the dependence parameter by
maximizing the pseudo log-likelihood function [41-43]

L) ilog{ce(i i)} (18)
i=1

n+1' n+1

where R, and R, are ranks of the correlated random vector (U, V). R, is the rank of Ui

among Ui, Ua,... Uy and RVi is the rank of Vi among Vi, Va,... Va. The ranking process is

performed by listing the monotone increasing U and V. For instance, when n = 2, there are two
pairs of (U, V), i.e., (U, V1) and (U2, V). If the ranking of Ui and Vi gives Uz < Uz, V1 < Vo,

then (R,,, R,) = (2. 1) and (R, Ry,) = (1,2),

In this study, the dependence among multiple deterioration processes is simulated based
on the model described in Wang et al. [15]. The deterioration modeling aims to provide inputs
for the life-cycle maintenance cost assessment. However, the impact of shock events on the
parameters of gamma process is not considered. Future studies are encouraged to incorporate
the interactions. Herein, a series of demands {Di} are associated with external shock
deterioration. Meanwhile, the shock-induced deterioration interacts with the gradual
deterioration. Herein, the interaction among different deterioration processes is modeled by a
multivariate probability distribution function. The interaction in terms of shock deterioration

focuses on the external shock deterioration, as the fatal shock deterioration always results in
. . : G ExS _

immediate failure of the system. Let A, =R™™(t;_;,41/R;, B, =AR™ /Ry, and ¥\ =D /R,
represent the normalized gradual deterioration, external shock deterioration, and demand at

time ti, respectively. The joint CDF of the three correlated random variables (A, B;, ¥;) can

be denoted as Fp g y(a,b,d). The CDF of the random vector (A, B;,'¥;) can either be

derived by empirical models or the advanced copula approach.

11
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By using the copula model, the joint CDF of the random vector can be expressed as
Fa5.v(a0,d)=C(F,(a), F3(b), Fy (d)) (19)

where C is the copula function; F,(a), Fg(b), and Fy(d)are the CDFs of the normalized

gradual deterioration, external shock deterioration, and demand. The detailed explanation of
copula theory and copula functions is provided in the following section. The detailed modeling

of Fa g w(ab,d) is provided in the illustrative example.

Dependence and interaction between deterioration processes can be complicated. In
addition to the introduced approach, other methods can also be used to capture the interaction
between deterioration processes. Future studies are needed to explore a more detailed
dependence model of deterioration processes by considering the stochastic frequency and

magnitude.

3.2.4 Assumptions
Deterioration processes and the dependence effect on the system can be complex. There can be
different methods to model the stochastic deterioration and interaction between deterioration

processes. In this section, the proposed reliability analysis is based on several assumptions:

1. The total deterioration of the system caused by gradual and shock deterioration is the sum

of individual deterioration processes.
2. The occurrence of multiple deterioration processes relies on the occurrence of shock events.

3. The external shock process is the result of external load effects, while the load imposes the

demand on the system. Thus, the occurrence of external shock and demand is simultaneous.

4. The gradual deterioration, external shock deterioration, and demand are dependent, and

their dependence can be modeled by the dependence model introduced in Eqg. (19).

3.2.5 Time-dependent reliability calculation

In this study, the time-dependent reliability is calculated by a double-loop Monte Carlo
simulation method. To begin with, the total time Tsum, time interval dr, and distribution
parameters of all related random values and processes are determined. Then, at each time step
Ti=k-dr(k=1,2,....), the number of shocks nr is sampled according to its Poisson distribution

parameters (Eq.(3)). If the value of nr is equal to zero, only the progressive deterioration is

12



296

297

298

299

300

301

302

303

304
305
306
307
308
309

310

311

312
313
314
315
316
317
318
319
320
321
322
323

considered, and its deterioration value A is sampled. If the value of nr exceeds zero, both the

progressive deterioration and sudden damage are concerned, and their values of

Ai Jd=1..n +1and Bti ,J=1..,n, are sampled. Next, the conditional failure probability of

Ti, P#(Ti|As,Bti), could be expressed as

3 i=1l i=1

P (TIA.B, )= @{asi[opl[ﬁph [1-& | —EBti D—aglv1 —aszvzﬂ (20)

where © denotes the cumulative distribution function of standard normal distribution; Fy, ()

is the marginal CDF of the demand ‘¥, at time ti; A={ajj, i,j=1,2,3} is the lower triangular

matrix satisfying the coefficient matrix of U=(U1, Uz, U3)=A AT, which could be computed by

the correlation matrix of Fj 5 ¢ (a,b,d) and Nataf transformation [15].

Meanwhile, nt, Asi, and Bt would be sampled Nimcs times to capture Nmes of P#(TiAsi, Bti) by
using Eq. (20). Then, the failure probability of T, i.e., P+(Ti), could be approximately evaluated
through the mean value of all P¢(Ti|As, Bti). Such a computational process could be repeated
until Ti reaches Tsum. In order to obtain high accuracy results of failure probability P:(T;), the
sampling number Nmcs needs to be quite large. Such an algorithm is flexible to consider

different deterioration scenarios and maintenance policies.

3.3 Maintenance policy and cost

The performance (e.g., capacity, reliability) of the system is reduced due to multiple
deterioration processes, thus requiring maintenance actions to minimize potential failure risks
and damage. The quantification of maintenance actions and costs relies on the performance of
system. In this study, a reliability-based maintenance policy is proposed, consisting of
preventive and essential maintenance interventions. The system reliability provided by the
previous section is the main input for this section to determine the maintenance interval and
cost. For instance, the probability of failure is taken as a performance indicator to implement
the maintenance policy. Herein, preventive maintenance (PM) gives minimal repairs, while
essential maintenance (EM) provides major repairs or replacement to enhance the system
reliability to the initial level. Preventive maintenance is conducted when the probability of the
system failure exceeds Ppm. The resulting cost of preventive action is Cpm. After a preventive

maintenance action, the rate of gradual deterioration is reduced. Essential maintenance is

13
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performed when the probability of failure exceeds a threshold Pem or the failure occurs. The
cost of essential action is denoted as Cem. Following the essential maintenance, the structural
resistance is restored to the initial level Ro. In other words, the system is resumed and a renewal
process is formed [17, 19].

To determine the maintenance interval and the maintenance cost associated with the
renewal process, the system reliability should be determined. Given the maintenance policy,

the time-dependent limit state function becomes
n-1
LS, =Ry - Fore - RS 0.t,] _ZARt:EXS N Dtn (2D
i=1

in which rpre (rpre < 1) is the changing rate in terms of the gradual deterioration after a preventive
maintenance action. Regarding the time-dependent reliability analysis described by Eq. (21),
the maintenance effects on deterioration values could be easily considered by modifying the
A and B, in Eq. (20). Figure 4 provides an illustrative diagram to describe the effect of
preventive and essential maintenance actions on the probability of failure associated with the

system.

Probability of failure
A

No Maintenance

b t Time

Figure 4. An illustrative diagram of reliability-based preventive maintenance (PM) and

essential maintenance (EM) actions.

Based on the time-dependent reliability analysis, the maintenance interval and the cost can
be identified accordingly. As mentioned above, the system is renewed after an essential
maintenance and the process of restoration can be modeled as a renewal process. Based on the
stochastic renewal process, the occurrence interval of essential maintenance actions can be

defined as a renewal cycle W. Within the renewal cycle W, the total maintenance cost can be

14
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denoted as the cycle cost Z. Then, the relationship between the system capacity and the renewal
cycle W under multiple deterioration processes can be described as Figure 5(a). Both W and Z
are random variables, and (0, tint] is the service period of the system. To determine W and Z,
Figure 5(a) should be further shifted to Figure 5(b) based on reliability analysis using Eq. (21).
Figure 5(b) shows an illustrative sketch to demonstrate the impact of maintenance actions on
the system failure probability, renewal cycle W, and the associated maintenance cost Z. It can
be noted that the total maintenance cost Z (i.e., cycle cost) within a cycle W consists of
preventive maintenance cost Cpm and essential maintenance cost Cewm, i.e., Z = Cpm + Cem.
Herein, it is assumed that Cpm and Cewm are deterministic. Subsequently, the mean values of
renewal cycle W and the maintenance cost Z can be obtained based on the reliability analysis
and Monte Carlo simulation. The obtained mean values of renewal cycle W and maintenance
cost Z are the key inputs for the life-cycle maintenance cost analysis.

»
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Cost Z; l Cost Z, l
|

|

Capacityf
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0 |
- . s G N
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Figure 5. Illlustrative diagrams of stochastic renewal cycle W and maintenance cost Z
associated with (a) the system capacity under deterioration processes and (b) the system

reliability and maintenance policy.

4. Life-cycle maintenance cost
4.1 A multivariate copula-based renewal model

After determining the renewal cycle and maintenance cost, the life-cycle maintenance cost
within the period (0, tin{] can be determined based on the stochastic renewal process. Meanwhile,
the dependence between renewal cycle (i.e., maintenance interval) and maintenance cost (i.e.,
cycle cost) cannot be neglected during the life-cycle analysis. The maintenance cost Z naturally
depends on the cycle length W as different maintenance actions are involved. Herein, the key
challenge is to incorporate the dependence between random variables Z and W into the renewal
process during the life-cycle maintenance cost assessment. A novel copula-based renewal
model is proposed to address this problem. To the best of the authors’ knowledge, the
dependent maintenance interval and cost have not been considered in the life-cycle analysis.
For the proposed copula model, two types of methods can be considered to model dependent
maintenance cost Z and renewal cycle W in the life-cycle analysis, as described in Figure 6.
One can be based on historical data to achieve the copula function, and the other one is directly

based on correlation and copula function.
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Figure 6. Assessment of life-cycle maintenance cost using the proposed copula-based

multivariate renewal model

Based on the renewal process, during the investigated service period (0, tin], there can be
a series of renewal cycles {W1, W, ..., Wi} due to the essential maintenance. The maintenance
costs associated with the renewal cycles can be {Z1, Z», ..., Z«}. The chronological time in
terms of the kth failure can be written as Tk, with Tk = W1 + W2 +...+ Wk. Wk and Zx (k = 1,
2, ...) are non-negative random variables. The life-cycle maintenance cost can be defined as
LCC(tint). The renewal cycle Wk and maintenance cost Zx are dependent, while the joint
probability distributions of (Zi, Wi) are independent of (Zx, Wk,) for any i # k. Given these
parameters, the life-cycle maintenance cost LCC(tint) is the accumulative cost of all the renewal
cycles and gives
N (tine)
LCC(ty)= >, Z,e™™ (22)
k=1
in which N(tint) is the total number of essential maintenance actions and a discount rate r is
used to discount the future expense to the present. Also, as mentioned in the previous section,
the mean values of Z and W can be determined based on system reliability and maintenance

strategy by Monte Carlo simulation. The maintenance cost Z consists of the cost of preventive
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maintenance Cpm and the cost of essential maintenance Cem. The deterministic value of cost Z

can be taken as the mean of Z, i.e., E[Z] = Cpm + Cewm, as indicated in Figure 5.

To model the dependence between the renewal cycle and maintenance cost, the bivariate
copula is employed. The dependence structure between Z and W can be described by a joint
CDF Fzw(z, t). Based on the copula theory, the joint CDF of the bivariate random vector (Z,
Wk) can be written as

Fyw (2,8) = C(F; (2), Fy (1)) 23)

in which Fz (z) and Fw (t) are CDFs of maintenance cost and renewal cycle, respectively. C is

the CDF of a copula function. The PDF of the random vector fzw (z, t) is given as
fow (z,8) =c(F;(2), Ry (1) T, (2) fy, () (24)

where ¢ describes the PDF of a copula; fz and fw are the univariate PDFs of maintenance cost

and renewal cycle, respectively.

To determine the copula function, there are generally two methods in terms of the cases
with and without data, as shown in Figure 6. When there are detailed historical records, the
selection of the copula model can be data-based [44, 45]. The data-based method requires two
main parts: quantification of marginal distributions (i.e., Fz(z) and Fw(t)) and selection of the
most fitted copula by using the goodness-of-fit test. While there are limited data available, the
dependence structure between variables is commonly determined according to correlation
coefficients [24, 46]. Detailed descriptions of the two methods are shown in the section of
illustrative examples. As practical data can be incorporated, the proposed copula approach can
be significant for data-based decision-making during the life-cycle management of civil

infrastructure.

After selecting the copula model and estimation of the dependence parameter, the life-
cycle maintenance cost incorporating dependent maintenance cost and renewal cycle can be
assessed. Due to complicated expressions of copulas, statistical modeling generally relies on
numerical simulations. Simulations are flexible with various copulas but can be time-
consuming and expensive. The algorithm to assess the life-cycle maintenance cost using a

Monte Carlo simulation is summarized as follows:
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Simulation algorithm

(1)

(2)

3)

(4)

)

(6)
(7)

Inputs: tint, 7, marginal PDFs or CDFs of Z and W (e.g., F(2), f2(z), Fw(?), fw(?));

Establish dependence structure of the copula function and generate dependent random

vectors (Zr, Wr);

Simulate a stochastic renewal process {N(tint)} by using {W1, Wa, ..., Wi} generated
from Step (2);

Compute {71, T, ..., Tx} of the process based on Step (3);

Compute LCC(tint) based on Eq. (22) by using {71, 7>, ..., Tk} of Step (4), the associated
{Z\, 2o, ..., Zi} generated from Step (2), and the number of events N(¢nt) from Step (3);

Repeat Step (2) to (5) for Nuc times based on Monte Carlo simulation; and

Outputs: the mean, standard deviation, skewness, and kurtosis of LCC(#n() based on

Nuc samples.

4.2 Analytical case: life-cycle analysis with FGM copula

In addition to numerical modeling, an analytical case is developed in this section. The closed-

form expressions of statistical moments of the life-cycle maintenance cost considering an FGM

copula are derived. Derivations are based on the renewal theory and Laplace Transform. Due

to its analytical characteristics, the FGM copula was employed by Eryilmaz [47] to model

dependent degradation rates for the reliability analysis of systems. The FGM copula is the first-

order Taylor approximation of the Frank copula and belongs to neither the elliptical family nor
the Archimedean family [47].

The FGM copula demonstrates a weak correlation, including both positive and negative.

The PDF of the FGM copula cs™M is given as

¢/ (u,v) =1+ (1 2u)(1-2v) (25)

where the dependence parameter 6 is between [-1, 1] and (u, v) € [0, 1] % [0, 1].

The joint probability of (Z, W) can be expressed as follows using the copula
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fow(zt)= CHFGM (F;(2), Ry (1) f2 (2) £ (1)

(26)
=[+0Q-2F; (2))1-2F, ()], (2) fy, (1)

4.2.1 Expectation and variance of life-cycle maintenance cost

The expected life-cycle maintenance cost under a renewal process can be formulated by

conditioning on the first arrival time y [48]

e (i) = E[LCC(t;,)]=E [E[efryzl +e YLCC(t;, — y)‘Wl = y]}

27
= [ e E[Z|W =y]fy, (Y)dy+ [ e "E[LCC(ti — )] i (¥)dly
0 0

in which the first arrival time is equal to the first inter-arrival time T1 =y = Ws. The conditional

expectation of maintenance cost E[Z|W = y] can be expressed by the conditional probability
E[ZW =y]=[2fz_, (2)dz (28)
0

where the conditional density function of maintenance cost fzw=y is associated with the bivariate
joint probability fzw (z, t). Substituting the FGM copula according to Eq. (25), the conditional

density function gives

f,w(z,1)

=[1+0Q-2F; (2))1-2F, ()11, (2) (29)
fi ()

fZ[\N:y(Z) =
Substituting Eq. (29) into Eq. (28), the conditional expectation of maintenance cost gives

E[zwW=y]= T Z[1+ 01— 2F, (2))A-2F,, (Y))]f, (z)dx
0
E

(30)
= E[Z](1-0(1-2F, (1)) + 6(1-2F, (y))E[A]
in which E[A] is defined to combine the identical items
E[A]:TZ(Z—ZFZ(Z)) f,(z)dz :]o(l— F, (2))?dz (31)

0 0

A Poisson process is the most common renewal process. It has exponentially distributed
inter-arrival times. It gives that the inter-arrival time follows W ~ EXP(1) with an occurrence
rate 1. Hence, the PDF of the inter-arrival time fw(t) gives
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fiy (1) = Aexp(-At) (32)

Herein, let w(t; 1) represent the PDF fw(t) of W [49, 50]. This parameter can help simplify
the derivation process in the Laplace transform, especially in higher-order moments.

Consequently, the expected life-cycle maintenance cost can be rearranged as

tice (tn) = E[Z]Tiw(y 2+1)dy+0(E[A]-E[Z]) Tiww 24+ 1)dy
b b (33
O(EIN-EL2]) | - oy pendy [ oA e =YYy )
0

Taking the Laplace transform of Eq. (33) on both sides, the Laplace transform of the

expected life-cycle maintenance cost z .. (z) can be written as

24 (7,24 +7r)
2A+T T

e () = E121-2— 2220 (AL E12))
A aB(r;/1+r)+ A

A+r T A+r

(34)

—H(E[A]— E[Z]) o(T; A+ 1) iy cc (7)

where the Laplace transform of the PDF of inter-arrival time &, .. (z; ) can be computed as

A
A+t

a(r;A) = (35)

Substituting Eq. (35) into Eqg. (34), the Laplace transform of expected life-cycle

maintenance cost can be rearranged as

E[Z]A N OA(E[A]-E[Z])
(z+7) T(2A+r+7)

Hiec(7) = (36)
By taking inverse Laplace transform of Eq. (36) on both sides, the expected life-cycle
maintenance cost under dependency is obtained

E[Z]x% 04 (E[A]- E[Z])

2A+r

Lo (tint) — (1 *rtint) *(23+r)tint) (37)

Following the similar procedure of the first moment, the second moment of life-cycle

maintenance cost can be assessed by conditioning on the first arrival time y
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E[LCC? (t)] = E| EI(e™Z, + & ™LCC (t — Y)W = V1|

£ e E[ZAW =y | f, (y)dy+ J & EILCC -V Y 3,

tint

+2 I e?"E [Z|W = Y] Hice (tine = Y) fi (Y)dy
0

462 Following similar procedures in terms of the Laplace transform approach, the second
463  moment of the life-cycle maintenance cost can be derived accordingly. The key derivation
464  process and results are shown in Appendix A. Consequently, the variance can be evaluated
465  from the first two moments as shown in Eqgs. (A4) and (A5).

466 When the dependence parameter is zero, the maintenance cost and renewal cycle become
467  independent. The associated expectation and variance of life-cycle cost give identical outcomes
468  as described in previous studies [26, 20], as shown in Egs. (39) and (40)

E[Z]A

Hyce (tin) = Y (1-e ") (39)
Otec () = 2 (e ) (40)

469  4.2.2 Higher-order moments of life-cycle maintenance cost

470  The mth order moment can also be evaluated using the Laplace transform approach. The mth
471  order moment of life-cycle maintenance cost can be derived using the univariate distribution
472  of inter-arrival time

int

E[LCC™ (4,01 = | € ™E[Z"|W =y ] £, (y)dly
0

tint

+ [ e ™E[ LCC™ (ty — ¥) | fiw (y)dly (41)
0

i=1

r,njf e ™E|Z'W =y |E[LCC™ (b —¥) | fu (y)dy
0

473 wherem>1land1<i<m.

474 Similar to the first two moments, the mth order conditional expectation of maintenance

475  cost can be expressed as
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E|Z"W=y]|=

O 8

2"ty (2)dz = T 2"ci ™ (F, (2), Ry (1)) f, (2)dz (42)
0

Substituting Eq. (42) into Eq. (41), the mth order moment of life-cycle maintenance cost
gives
tint o tint
E[LCC" (t,)]= [ [e™ 2", (2, y)dzdy+ [ € ™E[LCC" (t, — y)] fu (Y)dy
00 0 (43)

i=1

+mz_1(r:]j i-r Te—mryzi fz,W (z, Y)E[LCCm_i (tine — Y)]dzdy
0

Considering the exponential distribution associated with the inter-arrival time fw(t), the

mth order moment becomes

E[LCC™ (t;y)]
int @ tint

t
=4[ [e ™z, (2)c, (F, (2), Ry (Y)dzdy + A [ e ™YE[LCC™ (t,, - Y)Idy )
00 0

+/1m211(rlnj iJrll e_(/1+mr)yz—(m—i)cg(|:Z (Z), FW (y)) fz (Z)E[LCC m—i (tint _ y)]dzdy
1= 0

Consequently, statistical moments can be derived analytically. The analytical case can be
more effective than complicated numerical simulation. Based on the recursive moments (i.e.,
Eqg. (44)) using an FGM copula, decision-makers can estimate the life-cycle cost under
dependency effectively. Given more data, a more detailed dependence model can be further
studied by using the proposed copula model. Future studies can investigate the multivariate
distribution for the preventive maintenance cost, essential maintenance cost, and the renewal

cycle by using the copula model.

5. Hlustrative example

There are two illustrative examples provided to demonstrate the proposed copula-based life-
cycle analysis framework. The first example focuses on the impact of different copula models
and the effect of multiple deterioration processes on the life-cycle maintenance cost. The
second example aims to show a decision-making process based on practical data using the
proposed copula model. The significance of considering higher-order moments of the life-cycle

maintenance cost is highlighted.
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5.1 Example 1: Life-cycle cost analysis of aging civil infrastructure

This example aims to show the assessment process of the life-cycle maintenance cost of a
bridge considering reliability-based maintenance policy. The impact of different dependence
structures (i.e., different copulas) on the life-cycle maintenance cost is investigated. The effects
of fatal shocks and dependent deterioration processes on the maintenance interval, maintenance

cost, and the associated life-cycle maintenance cost are explored.

The investigated bridge is subjected to dependent deterioration processes, such as gradual
deterioration, external shock and fatal shock. For the gradual deterioration, a gamma process
is employed. The associated shape parameter as and scale parameter 5 of the gamma process
are 0.04 and 0.16, respectively. The detailed computation of the deterioration parameters of
aging bridges can be based on observation data [51]. An alternative way to define the inputs
for gamma process can rely on the deterioration amount. For instance, the initial resistance of
the investigated system is Ro. At the end of a time period of 40 years, the expected cumulative
gradual deterioration is 0.2Ro with a coefficient of variation of 0.4, and the expectation of the
cumulative gradual deterioration changes linearly with time [51]. For the external shock
process, random shocks are caused by hazards and modeled by a Poisson process, with an
annual occurrence rate of Aexs = 0.3. The resulting deterioration in terms of the external shock
process is lognormally distributed. It has a mean of 0.03L and a coefficient of variation of 0.4.
Meanwhile, hazards impose demands acting on the bridge, thus following the same Poisson
process. It is assumed that demands follow a Gumbel distribution with a mean of 0.3L and a
coefficient of variation of 0.3. Herein, the L can be associated with the external load on bridges
such as the extreme wind load, wave and surge load caused by tropical cyclones, load caused
by vehicles hitting the structures, etc. The demands and the shock deterioration are physically
related. In civil engineering practice, they are usually associated with the loading effect. Herein,
it assumes L = Ro/3. For the fatal shock process, the occurrence is also modeled by a Poisson
process with an annual occurrence rate Aras = 1 x 107°. A low-frequency fatal event leads to
the immediate failure of a system and results in essential maintenance. The maximum

deterioration level Gmax is 0.5.

Subsequently, the system reliability analysis can be performed. At this stage, the
dependence structure among multiple deterioration processes is incorporated using the copula
function, as described in Eqg. (19). The multivariate dependence of the normalized gradual

deterioration, external shock deterioration, and demand (A , B, ‘¥, ), as shown in Eq. (45), is
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modeled by a Gaussian copula for illustrative purposes. The Gaussian copula has been widely
applied in previous reliability studies due to its advantages in reducing the computational cost
based on Nataf transformation [15, 52, 53]. Other copula models can be applied when there is
more information provided. Based on the Gaussian copula, the joint CDF of the correlated

random vector (A, B, ¥, ) can be written as

Fa5,(a,0,d) = Ceq, (Fa(a), F (b), Fy (d))
=0 (O7(F,(a), @ (B(b))iqyl(F‘P(d)))

(45)

in which ®(.) is the CDF of a multivariate normal distribution; { is the correlation matrix; and
®1(.) is the inverse CDF of the standard normal distribution. The correlation between random
vectors is positive [54], as a stronger external load results in a larger decrease in resistance due
to damage (e.g., crack). Meanwhile, changes in resistance further accelerate the gradual
deterioration process (e.g., corrosion in terms of reinforcement). Herein, the associations
between every two random variables are described by Pearson’s correlation coefficient with yq
= 0.3. The assigned values are presented here for illustrative purposes and can be upgraded

with specific problems.

In addition to the deterioration processes and system reliability analysis, the assessment
of maintenance interval W and maintenance cost Z for the life-cycle analysis requires
parameters associated with maintenance policy. Herein, maintenance actions are performed
when the probability of the system failure hits the associated thresholds, i.e., Pem = 1x107 for
preventive maintenance and Pem = 1x10° for essential maintenance, respectively. The
changing rate rpre On gradual deterioration after the preventive maintenance is 0.5, as described
in Eq. (21). Additionally, as mentioned previously, it is assumed that the bridge would be
restored to the initial status after essential maintenance. In this example, the costs of preventive
maintenance Cpm and essential maintenance Cewm are given as 50,000 USD and 487,100 USD,
respectively [55, 56]. The bridge has a service life of 100 years, i.e., tint = 100. Given these
inputs, the expected renewal cycle can be determined based on system reliability analysis using
Monte Carlo simulation with 108 replications, as shown in Figure 7. The figure describes the
computed probability of failure of the bridge subjected to multiple dependent deterioration. It
can be identified that the bridge experiences nearly four cycles of essential maintenance and
resulting in a renewal cycle (i.e., maintenance interval) of E[W] = 25.6 years. The associated

maintenance cost within a renewal cycle can also be obtained accordingly, i.e., E[Z] = 537,100
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USD. The reliability analysis confirms that E[Z] consists of one preventive intervention and

one essential maintenance, i.e., E[Z] = Cpm + Cewm.

x10°

=
T

Probability of failure
o
(6]

o
o

10 20 30 40 50 60 70 80 90 100
Service life (year)

Figure 7. The probability of bridge failing subjected to multiple dependent deterioration

processes considering preventive and essential maintenance actions.

Given the expected maintenance interval E[W] and the maintenance cost E[Z], the life-
cycle maintenance cost can be evaluated. W and Z are random variables and they are assumed
to follow exponential distributions herein. The monetary discount rate is 2%. In this example,
the mean E[LCC] and standard deviation Std[LCC] of the life-cycle maintenance cost are of
interest. The impact of dependent maintenance interval and cost on the E[LCC] and Std[LCC]
are explored using the proposed FGM copula. As the FGM copula indicates the weak
correlation, the maximum positive correlation refers to Kendall’s tau at 2/9. The associated
expectation and standard deviation of life-cycle maintenance cost are computed as 800,152
USD and 588,943 USD, respectively. If considering an independent case (i.e., tau of zero), the
expectation and standard deviation of the life-cycle cost can be computed as 907,054 USD and
743,714 USD, respectively. The analytical results have been validated by using numerical
modeling based on Monte Carlo simulation. Figure 8 demonstrates the difference in the life-
cycle maintenance cost by considering dependent maintenance interval and cost associated
with an FGM copula. A negative correlation may exist when there is a different maintenance

policy.
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Figure 8. (a) Expectation and (b) standard deviation of life-cycle maintenance cost with a

FGM copula subjected to Kendall’s tau at -2/9, 0, and 2/9

5.1.1 Effect of dependent correlated renewal sequences

100

Apart from the weak correlation associated with the FGM copula, different correlation

relationships and copulas may influence the life-cycle maintenance cost. Herein, the

dependence structures described by Gaussian and Clayton copulas are also investigated by

using numerical modeling. Figure 9 shows the three-dimensional schematic PDFs of FGM,

Gaussian, and Clayton copulas with Kendall’s tau of 0.2. The PDF of the Gaussian copula can

be written as

20071 (U)D (V) — 0% (@7 (u)? + D H(v)?)

exp

(a) FGM copula

2(1-6%)

(b) Gaussian copula

S

SR, SN
=

0090

(c) Clayton copula

Figure 9. Three-dimensional PDFs of different copulas with Kendall’s tau = 0.2.

The expectation and standard deviation of life-cycle maintenance cost with respect to the
three copulas are shown in Figure 10. Both weak (i.e., Kendall’s tau of 0.2) and strong (i.c.,
Kendall’s tau of 0.9) positive correlations are considered. The FGM copula only illustrates the

weak correlation. Compared with the independent case, the positive correlation decreases the
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expected life-cycle maintenance cost and standard deviation. A stronger correlation can lead to
a more significant reduction. The interpretation of such a trend is that increasing the
maintenance cost (e.g., with more frequent preventive cost) leads to a longer maintenance
interval, as more preventive actions delay the occurrence of essential maintenance.
Consequently, the life-cycle maintenance cost is reduced. Such findings can assist researchers
and decision-makers in exploring the optimization of maintenance policy by comparing the
life-cycle cost. In Figure 10, with the same correlation coefficients (i.e., Kendall’s tau), the
expectation and standard deviations of the life-cycle maintenance cost are not significantly
affected by different copula models. Under the weak correlation, the results associated with the
FGM copula show similar estimates compared with the Gaussian and Clayton copulas.
Therefore, the proposed analytical approach using an FGM copula provides an effective tool
for decision-makers to estimate the life-cycle cost considering weak correlation. The analytical
estimation significantly accelerates the computation process, as numerical modeling of copula

functions can be complicated and time-consuming.

Life-cycle maintenance cost (USD)

1,800,000
e Expectation E[LCC]
I Standard deviation Std[LCC]
1,200,000
¢ 907,054 810,843 804,120 831286.6
600,000 % 561,108 % 576760
SD = 743,714 SD = 605,640 SD = 589,996 SD =632,611 SD = 146,533 SD =175,218 Dependence

Independent FGM Gaussian Clayton Gaussian Clayton Scenario
Tau=0 Tau=0.2 Tau=0.2 Tau=0.2 Tau=0.9 Tau=0.9

Figure 10. Expected life-cycle cost and standard deviation of different dependence scenarios.

5.1.2 Effect of fatal shock and dependent deterioration processes

In addition to the dependence structure, the interaction between deterioration processes affects
the maintenance interval, maintenance cost, and life-cycle cost. For instance, the renewal cycle
(i.e., maintenance interval) is particularly affected by deterioration processes. Figure 11
presents the probability of bridge failing subjected to deterioration under three scenarios:
dependent deterioration processes (correlation coefficient yq = 0.3) with fatal shocks, dependent
deterioration processes (yq¢ = 0.3) without fatal shocks, and independent deterioration process
(ya = 0) without fatal shocks. The expected maintenance interval E[W] with respect to the three
scenarios are 25.6, 26.8, and 29.2 years, respectively. The associated maintenance cost remains
unchanged at 537,100 USD. Considering a FGM copula (Kendall’s tau = 2/9), the expected
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life-cycle maintenance costs associated with the three scenarios are 800,153 USD, 760,552
USD, and 691,311 USD, respectively. It shows that dependent deterioration processes and fatal
shocks slightly shorten the maintenance interval and increase the life-cycle maintenance cost.

Probabilit)é of failure
on

50 100
Service life (year)

Figure 11. The probability of failure subjected to dependent gradual deterioration, external
shock and fatal shock deterioration processes under three scenarios: (1) With dependence yq =
0.3 and with fatal shock; (2) With dependence yq = 0.3 and without fatal shock; and (3)
Without dependence yq = 0 and without fatal shock.

The maintenance cost is more likely affected by the maintenance policy, e.g., maintenance
threshold. For instance, if maintenance thresholds for preventive and essential action change
to 1x10° and 0.1, respectively, the maintenance interval and cost can be significantly altered.
The interval is extended to 56 years, while the maintenance cost remains unchanged. The
maintenance cost changes with different preventive and essential maintenance actions.
Considering the FGM copula (Kendall’s tau = 2/9), the associated expected life-cycle cost
becomes 328,906 USD with a standard deviation of 369,844 USD. Therefore, the maintenance
interval can be sensitive to the maintenance thresholds. The associated parameters should be

carefully examined during the life-cycle analysis.

5.2 Example 2: Maintenance decision-making using higher-order moments of the life-cycle

cost

In previous studies, the minimum expected life-cycle cost has been broadly utilized as a
standard criterion in the decision-making process. However, decisions exclusively based on the
expected cost may not be optimal, as uncertainties associated with the other three statistical
moments have been ignored [25]. Herein, an illustrative example is provided to apply statistical

moments of the life-cycle maintenance cost in the decision-making process. Based on the
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proposed copula approach and historical records, a data-based decision-making process is

provided to determine an appropriate maintenance policy for a reinforced concrete bridge.

There are two maintenance policies considered for the bridge, as shown in Figure 12.
Maintenance Policy 1 is provided based on the historical records of 50 similar reinforced
concrete bridges from the U.S. National Bridge Inventory (NBI) database [57]. The
maintenance interval of Policy 1 has a mean of 16.14 years and a mean maintenance cost per
unit deck area of 4298.02 USD/m?. As the sizes of bridges vary significantly, the maintenance
cost is conditioned on the unit deck area. In contrast, Maintenance Policy 2 is proposed based
on [57] with engineering justification, in which the maintenance interval is extended by
increasing the maintenance cost. Policy 2 has a mean maintenance interval of 24.10 years and
a mean maintenance cost per unit deck area of 6390.55 USD/m?. Data associated with
Maintenance Policy 2 are provided for illustrative purposes. Between the two alternatives,
decisions should be made to select an appropriate policy for the bridge by considering statistical

moments of the life-cycle maintenance cost.

Maintenance
Policy 1

Maintenance Interval

Maintenance i
Policy 2 Maintenance Interval ________ __ J

I .
Extension of maintenance
interval by increasing cost

Figure 12. Two maintenance policies with different maintenance interval W and maintenance

cost Z.

For maintenance policy 1, the dependence structure between the maintenance interval W
and maintenance cost Z can be examined using the presented Method 1 as described in Figure
6. Firstly, marginal distributions of W and Z should be fitted. It is identified that there are many
distribution alternatives due to limited data records. Herein, their marginal distributions are
fitted into exponential distributions. Subsequently, the copula function for the correlated W and
Z is assessed using the goodness-of-fit test [58, 59]. Based on the Akaike information criterion
(AIC) and Bayesian information criterion (BIC), the Clayton copula is selected among

candidates (i.e., Gaussian, Student’s t, Clayton, Gumbel, and Frank copulas) for the two
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policies. Detailed fitting procedures and the goodness-of-fit test follow the process of copula

selection described in Li et al. [37]. The PDF of the Clayton copula can be described as

20+

¢S (u,v) = (@+D(uv) P Ul +v -1 @

(47)
where 0 is the dependence parameter.

The recorded and simulated maintenance interval and maintenance cost based on the fitted
Clayton copula associated with two policies are shown in Figure 13. For Policy 1 (e.g., Figure
13(a)), the dependence parameter for the Clayton copula is 1.24, and the correlation between
W and Z is measured by Kendall’s tau as 0.38. For Policy 2 in Figure 13(b), the associated
dependence parameter is 0.89, and Kendall’s tau is computed to be 0.31. Given the fitted copula
models, the life-cycle maintenance costs with respect to two policies can be assessed. The
service life of the bridge is defined as 100 years. The associated expectation, standard deviation,

skewness, and kurtosis are computed using the Monte Carlo simulation, as shown in Table 1.

4 4
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35 g ‘ — *‘R "
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D
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Maintenance interval (year) Maintenance interval (year)
(a) (b)

Figure 13. Scatter plots of the recorded and simulated data of the maintenance interval W and

maintenance cost Z of (a) Maintenance Policy 1 and (b) Maintenance Policy 2.

Table 1. Mean, standard deviation (S.D.), skewness, and kurtosis of the life-cycle maintenance

cost associated with two maintenance policies.

Mean (USD/m?) S.D. (USD/m?)  Skewness Kurtosis
Maintenance Policy 1 10231.86 5555.48 1.04 1.89

Maintenance Policy 2 10068.05 7010.80 1.32 2.83
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To determine an appropriate maintenance policy, four statistical moments are defined as
four different decision criteria. For the investment in maintaining civil infrastructure, decision-
makers may tend to be risk-averse [60], as they tend to avoid large variability and extreme cost.
For instance, risk averters tend to seek a smaller standard deviation and a positive skewness of

the investment return [26, 61].

In this example, the decision process is based on the multi-attribute utility theory. The
multi-attribute utility theory generally consists of four steps: quantification of attributes,
identification of utility functions, assessment of relative weights, and decision on the maximum
utility [62]. Four statistical moments are considered as four attributes. As smaller expected life-
cycle maintenance cost is preferred, the normalized attribute function of the mean can be
defined as [63, 64]

_ ELLTL,

E[LTL] (48)

in which E[LTL]min is the minimum mean value between the considered maintenance policies.
Based on the risk-averse attitude, a smaller standard deviation should be chosen. Meanwhile,
risk averters avoid extreme events associated with low-probability and high-consequence. The
extreme situation can be implied by the potential tail risk in terms of skewness and kurtosis
[25, 26]. Therefore, attributes for skewness and kurtosis should be defined based on the
aversion of a heavy tail associated with the huge cost. For the investigated case, as the life-
cycle maintenance cost indicates negative investment return, smaller skewness and kurtosis are
favored [61, 65]. Accordingly, similar to the mean attribute described in Eq. (46), the minimum
values of the other three attributes (i.e., standard deviation, skewness, and kurtosis) are also
preferred. Hence, all four attributes can be defined as the ratio of minimum value over the
attribute value.

After defining attributes, the utility function of each attribute can be formulated. In this
example, the same utility functions are utilized for the four attributes, as they are all statistical
characteristics of the life-cycle maintenance cost. The utility function is commonly fitted by a
few points in the utility curve, which is typically concave for risk averters [63, 66]. Herein, a

risk-averse utility function is directly given for illustrative purpose [67], as shown in Eq. (49)

u(e) =5.5exp(-2/¢) (49)
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Subsequently, the additive multi-attribute utility function can be formulated. The utility of
each attribute is multiplied by the associated weighting factor and then summed over. The

multi-attribute utility function can be described as Eq. (50)

U, 7, (mean, sd, skew, Kurt) = Wo,Unean +WegUsg +We

ean ' mean u

kew™ skew + Wkurtukurt (5 0)

where Umean, Usd, Uskew, @Nd Ukurt are the utility values of the four attributes (i.e., mean, standard
deviation, skewness, and kurtosis); Wmean, Wsd, Wskew, and Wiurt are weighting factors with respect
to the attributes. Typically, weighting factors are allocated considering information provided
by decision-makers [68]. Herein, the four weighting factors, Wmean, Wsd, Wskew, and Wiurt, are
allocated as 0.40, 0.25, 0.20, and 0.15, respectively. These values can be adjusted based on the
preferences of decision-makers.

Given these inputs of attributes, the utility of Maintenance Policy 1 and Policy 2 can be
computed as 0.735 and 0.535, respectively. As Policy 1 gives the maximum utility value
between alternatives, Policy 1 should be chosen as the appropriate maintenance policy for the
bridge. However, if the decision is purely based on the mean value (i.e., the expected life-cycle
maintenance cost) as shown in Table 1, Policy 2 should be selected due to a relatively lower
expected cost. A different decision outcome is attained due to the consideration of statistical
moments. Therefore, statistical moments should be considered during the life-cycle analysis
and decision-making process. The proposed copula tool also provides an effective data-based

model for decision-making.

6. Conclusions

This study proposed a copula-based life-cycle analysis framework for deteriorating civil
infrastructure systems considering uncertainties and correlation effects (e.g., dependent
maintenance interval and maintenance cost). Statistical moments associated with the life-cycle
maintenance cost can be effectively estimated analytically and numerically using the copula
approach. Multiple dependent deterioration processes are considered in the proposed
framework, including gradual deterioration, external shock, and fatal shock. Reliability-based
preventive and essential maintenance actions are performed based on system reliability.

Several significant conclusions are drawn as follows:
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1. The joint probability distribution of the maintenance interval and the maintenance cost

can be effectively modeled by the proposed copula approach. An analytical case, i.e.,
the FGM copula, is employed to derive statistical moments of the life-cycle cost under
the weak correlation, due to its unique mathematically trackable form. Results show
that even only with a weak correlation, the dependence can significantly affect the life-

cycle maintenance cost.

The proposed copula-based approach is flexible to incorporate practical data to
determine the correlation between the maintenance interval and the cost, thus delivering
data-based models for the life-cycle analysis. In addition to the expectation, the other
statistical moments (i.e., standard deviation, skewness, and kurtosis) of the life-cycle
maintenance cost should be considered during the life-cycle cost assessment, as
different decision results can be attained due to the exclusion of the other three

statistical moments.

In addition to the FGM copula, the Gaussian and Clayton copulas are also applied to
explore the effect of different dependence structures on the life-cycle cost. Results show
that the expectation and standard deviation of the life-cycle cost will decrease when the
correlation increases. Under the same degree of dependence (i.e., with identical
Kendall’s tau), the life-cycle maintenance cost is not significantly affected by different

copula models.

Dependent deterioration processes and maintenance policy affect the maintenance
interval and maintenance cost, thus influencing the life-cycle maintenance cost. For
instance, in the illustrative example, considering dependent deterioration processes and
fatal shocks results in a significant decrease in the maintenance interval and an increase
of the life-cycle maintenance cost. Changing maintenance thresholds also leads to

considerable differences in the maintenance interval and the life-cycle maintenance cost.

Future studies are needed to explore the dependence model of deterioration processes
by incorporating data and considering the stochastic frequency and magnitude. Future
studies may investigate the impact of different intervention actions on the maintenance
cost and the life-cycle cost. The implementation of higher-order moments during the
life-cycle analysis and decision-making process needs to be explored. The employed

model of dependent deterioration processes relies on several assumptions. Future
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768 studies are encouraged to relax these restrictive assumptions and analytical solutions

769 should be investigated.

770

771 Appendix A. Second moment of life-cycle cost with an FGM copula

772 Analytical formulation of the second moment of the life-cycle maintenance cost with an FGM
773 copula is presented. Following Eq. (38), the conditional second moment of maintenance cost

774  can be computed and rearranged as

E[zz\w - y] =sz2 fowy ()02 = E[Z2]+ 0 E[A?]- E[Z2]) A 2F,, (¥)) (A1)
0
775  where
E[A%]= ]O 22(2—-2F, (2)) f, (2)dz =T2z(1— F, (2))2dz (A2)
0 0
776 The PDF of the renewal cycle can be denoted as w(t, ). Consequently, the second moment

777 of life-cycle maintenance cost can be computed as

tint

E[LOC? (4] = E[2] | 2 a(yi A+ 23y
0

t.
int 21 /1
0(E[A?]-E[Z? 124+2r) - ;A+2r) |d
+0(E[A*]-E ])ﬂ%ﬂw(y +ar) -y A+ r)}y
t.
int /1
+2E[Z]E[ mw(y; A+2r) pec (G — Y)dy (A3
tim )
+29(E[A]—E[Z])j[ 24 a)(y;24+r)—/1a)(y;/1+2r)}z (tie — Y)dy
sl 24+2r A+2r ree
tim Z,
—~—w(y; 1+ 2r)E[LCC?(t;,, — y)Id
+£M2rw(y +2r)E[LCC? (t, — y)Idy
778 By taking the Laplace transform of Eq. (A3) on both sides and performing the associated

779  inversion, the second moment of life-cycle cost under dependency can be derived as
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780 Consequently, the variance can be evaluated from the first two moments

0 Ecc (ti) =Var[LCC(t,,)] = E[ LCC? (tine)] = (et cc (i )’ (A5)
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