

1 ***In-situ* synthesizing carbon nanotubes on cement to develop**
2 **self-sensing cementitious composites for smart high-speed rail**
3 **infrastructures**

4 Siqi Ding¹, Yu Xiang², Yi-Qing Ni^{2,3}, Vijay Kumar Thakur^{4,5},

5 Xinyue Wang⁶, Baoguo Han^{6*}, Jinping Ou¹

6 ¹ School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen 518055 China

7 ² Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong
8 Kong S.A.R.

9 ³ National Rail Transit Electrification and Automation Engineering Technology Research Center (Hong Kong Branch), Hung
10 Hom, Kowloon, Hong Kong S.A.R.

11 ⁴ Biorefining and Advanced Materials Research Center, SRUC, Kings Buildings, Edinburgh, EH9 3JG, UK

12 ⁵ School of Engineering, University of Petroleum & Energy Studies (UPES), Dehradun 248007, Uttarakhand, India

13 ⁶ School of Civil Engineering, Dalian University of Technology, Dalian 116024, China

14 *Corresponding author: hanbaoguo@dlut.edu.cn; hithanbaoguo@163.com

16 **Abstract**

17 Self-sensing cementitious composites (SSCCs) with carbon nanotubes (CNTs) have
18 attracted extensive attention because of their excellent mechanical and durability properties
19 combined with multifunctional benefits. However, their performance modulation, as well as
20 scalable manufacturing and application, are limited by the uniform dispersion of CNTs inside
21 them. Here, a **straightforward** approach to ***in-situ*** synthesizing CNTs on cement (CNT@Cem)
22 toward alleviating the CNTs' dispersion issue and enhancing their composite efficiency and
23 effectiveness is explored. Due to the inherently containing silicate and ferrite phases, microscale
24 cement particles act as effective substrate-bound catalysts, facilitating high-yield and strongly
25 anchored CNTs growth. The hierarchically structured CNT@Cem integrates the dual functions of
26 reinforcement and conduction, **significantly affecting** early-age hydration, mechanical, electrical,
27 and self-sensing properties of the final SSCCs with CNT@Cem. **The CNT@Cem structure can**
28 **promote early-age hydration while slowing the later hydration rate and hindering the strength**
29 **development of the SSCCs. The addition of CNT@Cem can be effective in tailoring the electrical**
30 **microstructures to enhance the electrical conductivity and self-sensing sensitivity of the SSCCs.**

31 The SSCCs with CNT@Cem achieved a maximum stress sensitivity of 2.87 %/MPa with a gauge
32 factor of 748. They demonstrated excellent repeatability and stability, outstanding adaptability to
33 various applied conditions, and fast response and recovery. The developed SSCCs-engineered
34 smart track slab is competent in axle counting and speed detection. It opens up a new territory to
35 develop high-performance and versatile SSCCs-engineered smart components/structures for
36 long-term, wide distribution, and low-cost monitoring of **high-speed rail (HSR)** infrastructures.

37 **Keywords:** Self-sensing; carbon nanotube/cement; *in-situ* synthesis; cementitious
38 composites; smart high-speed rail infrastructures.

39 1. Introduction

40 Over the past decades, the massive high-speed rail (HSR) infrastructure development has
41 effectively alleviated the traffic burden and fostered coordinated regional economic growth. **Still**,
42 **it** has also raised growing safety concerns. With safety being a paramount priority in rail
43 transportation, tremendous efforts have been spent on infrastructure health monitoring in HSR
44 systems. Current sensing technologies for **onboard** and online monitoring of HSR systems from
45 vehicles to HSR infrastructures mainly involve video supervision, acoustic emission-based
46 techniques, ultrasonic-based techniques, electromagnetic induction techniques, and optical fiber
47 sensors, among others ^[1-3]. Although they are potent alternatives in addition to manual visual
48 inspection, most of them are expensive and of poor long-term durability and compatibility with
49 HSR infrastructures. **The majority of them** are mainly made of cementitious composites and
50 suffer from frequent service loads and harsh environmental conditions. In this regard, intrinsic
51 self-sensing cementitious composites (SSCCs) would be an appropriate supplement to the
52 existing sensing technologies, allowing for long-term, **wide distribution**, and low-cost monitoring
53 of HSR infrastructures.

54 As an emerging sensing technology, SSCCs, fabricated by adding conductive fillers into
55 conventional cementitious materials, can sense **their own conditions** and changes in the
56 surrounding environment by measuring the variation of electrical signals. Due to **their**
57 **cementitious nature, SSCCs feature** inherent host compatibility and an identical lifespan with the
58 construction materials. In addition, SSCCs can be directly used as a load-bearing component of
59 concrete infrastructures because of their superior mechanical properties and durability ^[4-8]. The

60 past several decades have witnessed the broad engineering applications of SSCCs, such as strain
61 sensing ^[9], damage detection and localization ^[10], structural modal identification ^[11], temperature
62 sensing ^[12], and traffic detection ^[13]. The SSCCs have also exhibited great **potential for**
63 monitoring railway concrete infrastructures ^[14]. For example, Lee et al. developed a wireless
64 smart railway sleeper using SSCCs. However, the SSCCs-based railway sleeper has yet to be
65 applied for real-time monitoring of HSR infrastructure ^[15].

66 To meet the high demand for SSCCs within the HSR field, next-generation SSCCs should
67 have the merits of high sensitivity, excellent repeatability, extensive dynamic range, fast response
68 and recovery time, and scalable manufacturing. As the functional agent, conductive fillers,
69 mainly including carbon-based and metallic materials, determine the sensing performance of the
70 resulting SSCCs ^[16]. Nano carbons, in particular carbon nanotubes (CNTs), which possess unique
71 structures and combined superior mechanical and electrical properties, are regarded as one of the
72 most promising conductive fillers for constructing SSCCs ^[17–22]. However, a critical factor
73 determining the properties of SSCCs is the uniform dispersion of CNTs inside them. Due to the
74 high aspect ratio and specific surface energy, and the van der Waals force, CNTs agglomerate too
75 easily in the matrix, leading to the formation of defective sites inside the composite and
76 compromised CNTs' filler efficiency ^[23,24]. Furthermore, non-uniformly distributed CNTs cannot
77 form stable and continuous conductive networks within the matrix, resulting in poor sensing
78 performance in terms of sensitivity and repeatability ^[25]. Chemical modifications of CNTs
79 combined with mechanical dispersion methods are often suggested to create a satisfactory
80 dispersion ^[24]. However, mechanical dispersion methods such as ultrasonication have low
81 dispersion efficiency and damage CNT structures. The re-agglomeration of CNTs in pore
82 solution is often found after the removal of ultrasonication ^[26]. Covalent functionalization of
83 CNTs via the introduction of functional groups can reduce the van der Waals interaction between
84 CNT bundles and generate electrostatic repulsion between the charged CNTs, thus improving the
85 CNTs dispersion ^[27]. However, covalent functionalization of CNTs involving aggressive
86 processes may introduce structural defects and break CNTs, detrimental to the electrical and
87 mechanical properties of CNTs ^[28]. Non-covalent modification of CNTs via surfactants
88 adsorption and polymers wrapping ^[29] can block the connectivity and conductivity of CNTs
89 network, entrap air in the cement paste and impede cement hydration ^[30]. These complicated,

90 multi-step dispersion methods restrict CNT's large-scale applications in many fields.

91 Recent advances in nano-synthetic and nanocomposite technologies offer new strategies
92 such as *in-situ* chemical vapor deposition (CVD), electroless deposition, microwave irradiation,
93 and electrostatic self-assembly for developing a new class of CNT-based hierarchical fillers through
94 the direct growth/graf of CNTs on microscale fillers such as carbon fibers and cement particles, to
95 deal with the dispersion issue of CNTs by transferring the nanoscale dispersion into the microdomain
96 as well as improving their composite effectiveness and efficiency ^[30-36]. Among these strategies,
97 the *in-situ* CVD-grown CNTs on cement particles (CNT@Cem) are more versatile, tunable,
98 straightforward, and scalable, enabling the synthesis and dispersion of CNTs in one step. On the
99 one hand, the morphology, structure, distribution, and interface of CNTs on cement particles can
100 be well mediated by varying CVD parameters such as carbon source, catalyst, gas composition,
101 feeding rate, growth temperature, and time to fulfill various applications scenarios ^[37]. On the
102 other hand, this strategy can eliminate any ultrasonication and functionalization steps, retaining
103 the integrity of CNT structures and properties and optimizing the performance retention of CNTs
104 in cement matrices ^[32]. The hierarchically structured CNT@Cem composites can act both as
105 functional fillers and as matrix materials themselves directly involved in the hydration and
106 hardening processes of the SSCCs. The production of the CNT@Cem is also expected to be
107 integrated into the cement production process to realize the low-cost, low-carbon, and
108 industrialized manufacturing ^[38]. However, investigations on the synthesis of such unique
109 nanostructure are limited and have mainly concentrated on the CVD process's parametric studies
110 ^[38-43]. Nasibulin et al. first explored the feasibility of using the CVD method to grow CNTs
111 directly on the surface of cement particles. They found that this method was highly efficient for
112 the low-temperature and high-yield synthesis of CNTs^[38]. CNTs have also been successfully
113 grown on silica fume, fly ash, sand, and soil using the CVD method ^[44]. Ghaharpour et al. studied
114 the effect of synthesis parameters on the yield and morphology of the grown CNTs and found
115 that the average diameter and yield of CNTs increased with reaction temperature, synthesis time,
116 and catalysts contents ^[40]. No study has looked at the effect of CNT@Cem on cement hydration
117 and properties of the resulting cementitious composites, particularly the self-sensing properties of
118 SSCCs with CNT@Cem.

119 Because of the enormous potential applications of SSCCs with CNT@Cem in HSR

120 infrastructure, herein, we report a **straightforward** method for scalable fabrication of next-
121 generation SSCCs with high conductivity and robust self-sensing performance, and extent their
122 application as a **monitoring** system integrated with an **SSCCs-engineered** smart track slab for
123 HSR train monitoring. We perform a detailed effort to synthesize hierarchically structured
124 CNT@Cem composite filler by growing CNTs on cement particles via the ***in-situ*** CVD method.
125 The as-synthesized CNT@Cem possesses a unique nest-like morphology with strong interfacial
126 bonding between the CNTs and the cement particles, which would be beneficial to the
127 reinforcement of mechanical properties of CNT@Cem/cement composites and avoid re-
128 agglomeration of CNTs in cement pastes. Crucially, the inclusion of CNT@Cem would
129 effectively tailor the electrical microstructures, enhancing the electrical conductivity and self-
130 sensing sensitivity of the SSCCs. In this paper, the SSCCs with CNT@Cem demonstrate a gauge
131 factor as high as 748, which outperforms most of the SSCCs reported previously. The distinctive
132 properties and functionalities compatible with the large-scale and sustainable manufacturing of
133 the SSCCs allow their potential applications for long-term, wide distribution, and low-cost
134 monitoring of HSR infrastructures.

135 **2. Experimental section**

136 **2.1. Synthesis of CNT@Cem via CVD**

137 Portland cement (PC, CEM I 52.5, BS EN197-1:2000) and nano-Al₂O₃ (99.99%, γ -phase, 20
138 nm, Aladdin) with a mixing ratio of 100:4 were introduced into Ni(NO₃)₃·9H₂O isopropanol
139 solution. The mixture was magnetically stirred, oven-dried, and calcinated to obtain Ni-Al-
140 Cement (NAC) catalyst, precursor. The NAC catalysts were heated at a rate of 10 °C/min to
141 desired growth temperatures in a CVD system under a gas mixture of C₂H₂/H₂/N₂ for different
142 growth time. After this, the sample was allowed to cool down to room temperature under N₂
143 (detailed synthesis process and chemical compositions of the catalyst precursor and CNT@Cem
144 are shown in Experimental Procedures and **Table S1** in the Supporting Information).

145 **2.2. Preparation of SSCCs with CNT@Cem**

146 The raw materials used for the preparation of SSCC specimens include as-received

147 CNT@Cem, raw PC (CEM I 52.5, Green Island Portland Cement Co., Ltd.), distilled water,
148 silica fume (920D, Shanghai Tian Kai Silicon Fume Co. Ltd.), and polycarboxylate
149 superplasticizer (ViscoCrete 3301E, Sika Ltd.). The mixture proportions are presented in **Table**
150 **S2**, in which the amounts of water, silica fume, and superplasticizer were by mass of cement,
151 composed of PC and CNT@Cem. The water to cement ratio of each mixture was kept constant at
152 0.4. First, the pre-weighed CNT@Cem powders were dry-mixed with silica fume and raw PC
153 using a mechanical stirrer (MXF-C, Shanghai Muxuan Industrial Co., Ltd.) at a low speed for 2
154 min. The polycarboxylate superplasticizer was diluted with water and then gradually added to the
155 dry mixture in three divided times, with 30 s of low-speed stirring followed by 2-min high-speed
156 stirring. The well-stirred mixtures were then cast in oiled steel molds (20 mm × 20 mm × 20 mm),
157 and two copper electrodes were inserted in each mixture with an interval of 10 mm. An electric
158 vibrator was used for mixture compaction. After 24-hour placement in an environmental chamber
159 (20 ±0.5 °C and 98% relative humidity), all specimens were demolded and transferred into a
160 lime-saturated curing tank at room temperature for 27 days.

161 **2.3. Characterization**

162 Field emission scanning electron microscopy (FESEM, Hitachi SU8020, Japan) at an
163 operating voltage of 5 kV and transmission electron microscope (JEOL 2100F, Japan) at an
164 operating voltage of 200 kV was used to characterize the morphologies of CNT@Cem. Energy-
165 dispersive X-ray spectroscopy (EDX) analysis was performed to determine the elemental maps of
166 the CNT@Cem. The amount of CNTs deposited on CNT@Cem was determined by
167 thermogravimetric analysis (TGA, Mettler-Toledo TGA/DSC3+, Switzerland), in which the
168 sample was heated to 900 °C under air atmosphere (23% oxygen) at a rate of 10 °C/min. The
169 crystalline structure of CNTs was evaluated using a Raman spectroscopy (Renishaw 2000,
170 Britain) equipped with a 632.8 nm helium-neon laser. The phase compositions of PC and
171 CNT@Cem were determined by X-ray diffraction (XRD) measurement (Bruker D8 Advance,
172 USA) with CuK α radiation operated at 40 kV and 40 mA. XRD patterns were collected in the 20
173 range of 5-80° with a step width of 0.02° and a step time of 1.0 s. The mineral compositions were
174 analyzed using quantitative XRD (QXRD, Rietveld refinement, TOPAS). The Brunauer-Emmett-
175 Teller (BET, Micromeritics Tristar ASAP 2020HD88, USA) specific surface area was measured

176 by N₂ adsorption measurements at about 77 K. The density of the CNT@Cem was measured
177 using a true density tester (JWGB JW-M100A, China) at 30 °C and 0.1 kPa.

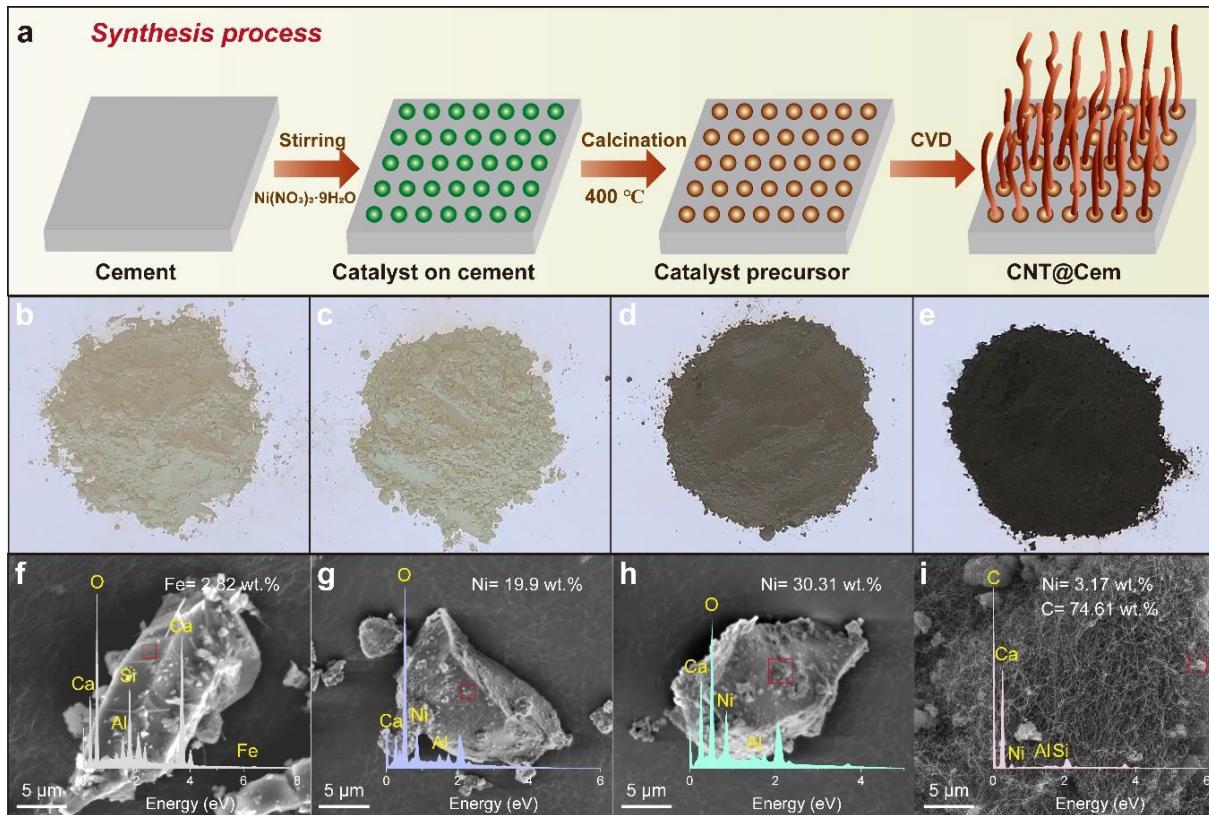
178 To determine the hydration phases of the SSCCs with CNT@Cem, TGA measurements with
179 a heating rate of 10 °C/min up to 1000°C under N₂ atmosphere and XRD measurements with the
180 same setting for CNT@Cem were performed. Before the testing ages of 1, 7, and 28 days, the
181 hydration of the ground sample was stopped by solvent exchange using isopropanol and then in
182 acetone for the 20s. Afterward, the samples were washed with isopropanol and stored in a
183 vacuum desiccator until further testing. The hydration heat evolution of SSCCs with CNT@Cem
184 was analyzed using an eight-channel isothermal calorimeter (TAM AIR TA, USA) under an
185 isothermal condition of 25 °C for three days. 10 g of the pastes were mixed in a beaker using a
186 glass rod for 2 minutes and then immediately placed into the calorimeter. The microstructure of
187 the SSCCs with CNT@Cem specimens after fracture was observed using a FESEM (Tescan
188 MAIA3, Czech). The compressive strength of the SSCCs with CNT@Cem specimens was tested
189 using a hydraulic material testing system (MTS810-50kN, MTS, USA) equipped with an auto-
190 alignment MTS compression platen (Model 643.06) at a constant loading rate of 1.2 mm/min.
191 Two longitudinal strain gauges were symmetrically deployed on a pair of opposite sides of each
192 specimen, and a dynamic data logger (DC-204R, TML, Japan) was used for strain measurement.

193 As to the electrical properties of the SSCCs with CNT@Cem, the direct current (DC)
194 electrical resistance of the unloaded SSCCs with CNT@Cem was measured by a two-probe
195 method using a digital multimeter (DMM7510, Keithley Instruments Inc., USA). Each
196 specimen's electrical resistance was calculated by taking the average of three data collected after
197 2 h to mitigate any shift due to the polarization effect.

198 The self-sensing properties of the SSCCs with CNT@Cem were performed under repeated
199 compression using the MTS810 machine. To investigate the self-sensing properties of SSCCs
200 with CNT@Cem, experiments were first conducted under monotonic uniaxial compression to 25
201 MPa at a loading rate of 1.2 mm/min. Prior to the tests, all samples were connected to the ends of
202 the multimeter for 2 h to minimize the polarization effect on resistance variations. The specimens
203 were separated from the compression platens by thin **insulating** plates to avoid electrical
204 interference. The compressive force, strain, and electrical resistance were simultaneously
205 collected at a sampling rate of 10 Hz during the loading process. All experiments were conducted

206 at room temperature.

207 To devise a monitoring system integrated with an SSCCs-engineered smart track slab, the
208 SSCCs connected with two shielded cables were directly embedded into the track slab of a
209 CRTS-II slab ballastless track and then encapsulated with rapid hardening polymer-based cement
210 mortar (PCM-II, China Academy of Railway Science). The electrical resistance change was
211 converted into a voltage signal by connecting the sensor with a reference resistor (1000 Ω) for
212 voltage sharing. The circuit was powered with a 1.5 V battery. The voltage signal was collected
213 using a data acquisition system consisting of a portable data acquisition card (NI USB-6009,
214 National Instruments Corporation, USA) and a computer with a sampling rate of 10 kHz. Note
215 that the tests were conducted during a maintenance window so that the trains were passed over at
216 a lower speed than the maximum speeds during commercial operation.


217 **3. Results and discussion**

218 **3.1. Morphology and structure of CNT@Cem**

219 The synthesis process of CNT@Cem, including catalyst impregnation, calcination, and
220 CVD growth, is schematically illustrated in **Figure 1a**. Briefly, PC and nano-Al₂O₃ was
221 introduced into Ni(NO₃)₃·9H₂O isopropanol solution, followed by magnetically stirring. The
222 suspension was then calcinated to obtain Ni-Al-Cement (NAC) catalyst precursor for CVD
223 treatment. Due to the doping of the green Ni(NO₃)₃·9H₂O catalyst, the color of cement particles
224 changed from grey to grey-green (**Figures 1b-e**). After calcination at 400 °C for 12 h, the color
225 became brown-black since the Ni(NO₃)₃·9H₂O was thermally decomposed into brown-black
226 Ni₂O₃ (**Figure 1d**) ^[45] and then turned dark-black after CVD treatment, indicating the successful
227 deposition of CNTs (**Figure 1e**). During heat treatment, the thermal decomposition of gypsum
228 (CaSO₄·2H₂O) in cement particles did not affect appearance change. The SEM observations
229 (**Figures 1e-h**) revealed that Ni-catalyst nanoparticles were uniformly deposited on the surface of
230 cement particles, thus causing appearance variations. The chemical composition identified by
231 EDX analysis shows that the amount of Fe on the raw PC surface was 2.82 wt.% (**Figure 1f**), and
232 no Ni element was identified, in agreement with the **X-ray fluorescence (XRF)** data (**Table S1**).
233 After catalyst impregnation (**Figure 1g**) and calcination (**Figure 1h**), the high amount of Ni

detected confirmed the presence of catalyst particles on cement surfaces to provide templates for CNT growth. **Figure 1i** shows a uniform and good coverage of CNTs on cement particles with lengths of several micrometers under a CVD condition of $C_2H_2/H_2/N_2=40/40/100$ sccm, $550\text{ }^\circ\text{C}$, 20 min.

238

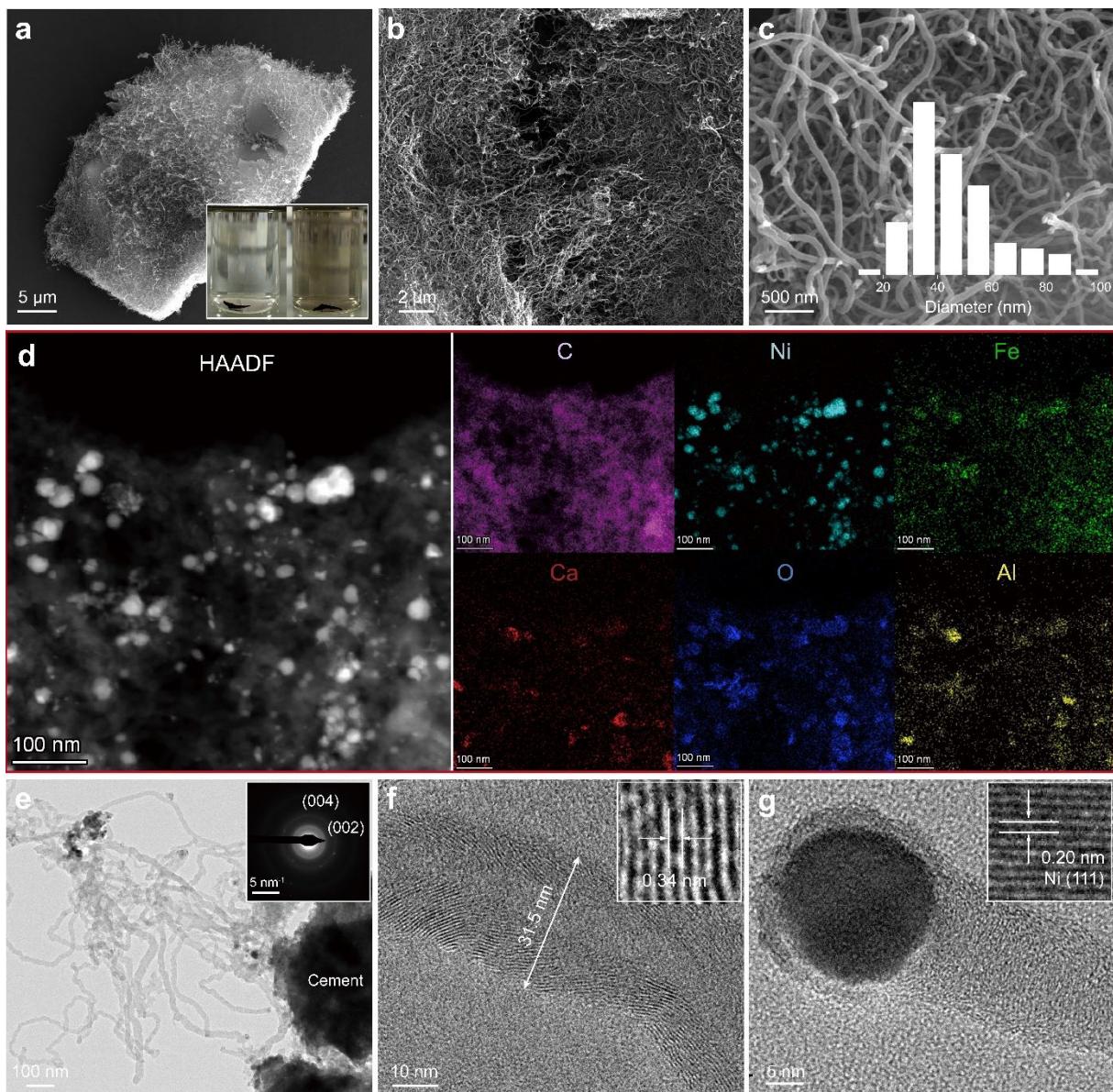


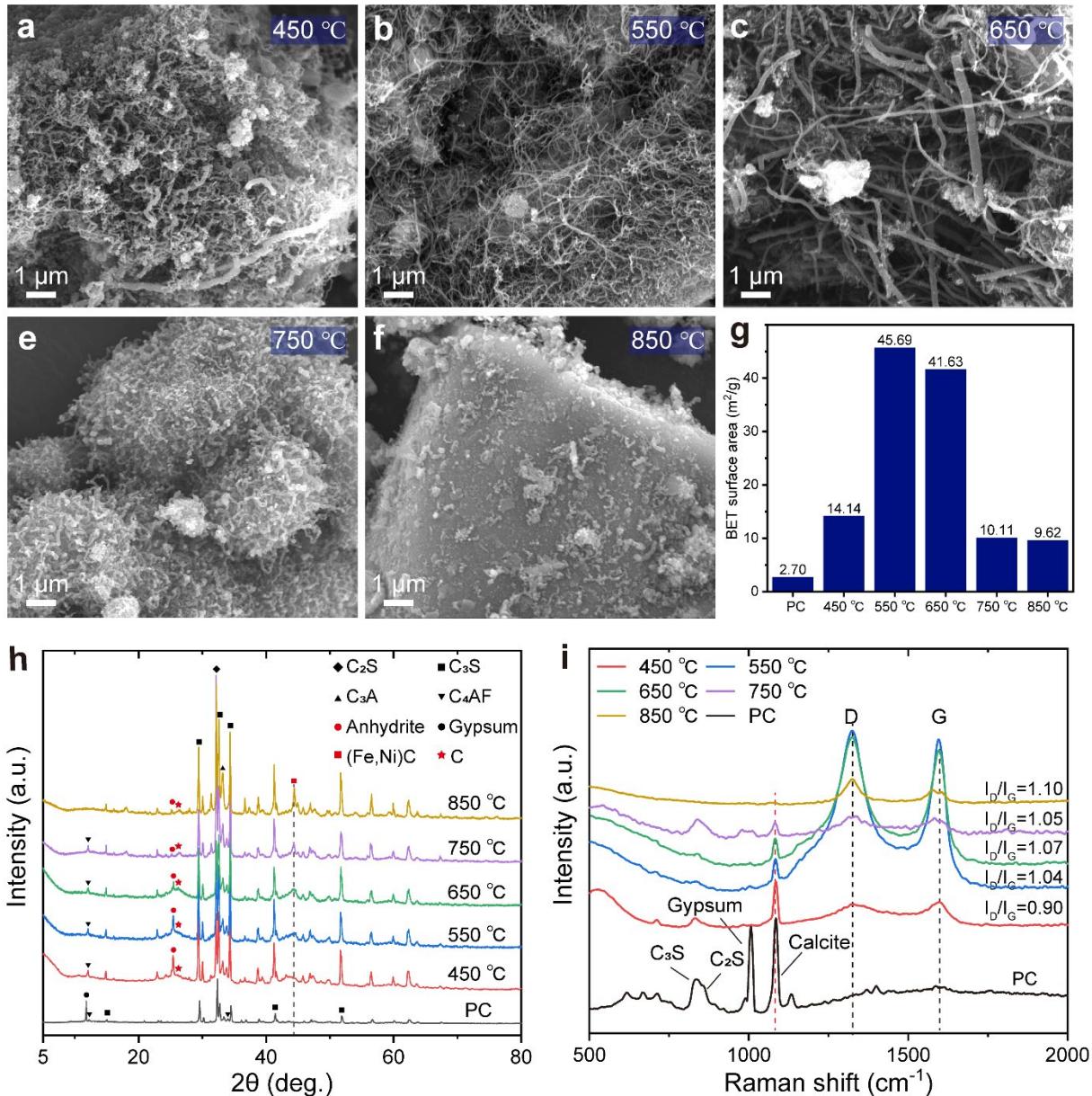
Figure 1. Synthesis of CNT@Cem via CVD method. (a) Schematic illustration of the synthesis process. The appearance of (a) PC particles. (b) CNT@Cem catalyst precursor after drying. (c) CNT@Cem catalyst precursor after calcination. (d) the as-grown CNT@Cem. SEM images and EDX spectra (Insets) (e) Raw PC particles. (f) CNT@Cem catalyst precursor after drying. (g) CNT@Cem catalyst precursor after calcination. (h) the as-grown CNT@Cem. Growth condition: $C_2H_2/H_2/N_2=40/40/100$ sccm, $550\text{ }^\circ\text{C}$, 20 min.

239
240 To validate the interfacial bond between the CNTs and the cement particles, the as-grown
241 CNT@Cem was sonicated in isopropanol using an ultrasonic cleaner (Crest, 45 kHz) for 30 min.
242 As shown in **Figure 2a**, the CNTs were firmly adhered to the cement surface without obvious
243 fall-offs, supported by the lack of obvious change in the isopropanol solution before and after
244 sonication (**Figure 2a**, inset). In contrast, the CNTs formed cross-linked networks and generated
245 a bridging effect between cement particles (**Figure 2b**), which would be beneficial to the

246 mechanical properties of CNT@Cem/cement composites ^[44], and avoid re-agglomeration of
247 CNTs in cement pastes ^[46]. The high-magnification SEM image of the CNT@Cem demonstrated
248 CNT's outer diameter mainly ranging from 25-55 nm, indicating the as-formed CNTs were
249 multi-walled (**Figure 2c**). The High-Angle Annular Dark Field scanning TEM (HAADF-STEM)
250 image and the corresponding elemental mapping images demonstrated the distribution of C, Ni,
251 Fe, Ca, O, and Al elements on the as-grown CNT@Cem. As observed, Ni elements were
252 homogeneously distributed in CNTs and separated from Ca, O, Al, and Fe elements associated
253 with cement particles (**Figure 2d**), suggesting the tip-based growth mechanism of the CNTs on
254 cement. Further evidence was given by TEM observation that Ni-catalyst nanoparticles were
255 observed among the CNTs, and the CNTs were synthesized into the cement particles in situ with
256 a vertical growth (**Figure 2e**). This is an essential feature of CNT@Cem in terms of strong
257 interfacial bonding between the CNTs and the cement matrix. The ring-like pattern in selected
258 area electron diffraction (SAED) in **Figure 2e** shows the (002) and (004) diffraction rings of
259 CNTs. Additionally, the HRTEM result shows the as-grown CNTs with Ni catalyst at the end
260 were multi-walled while poorly crystallized with an outer diameter of 31.5 nm, consistent with
261 the SEM results (**Figures 2f, g**). The apparent lattice fringes have a neighboring spacing of 0.34
262 nm corresponding to **graphite's (002) plane**. The detailed structure of the Ni-catalyst
263 nanoparticles during the growth process demonstrates lattice fringes with a periodicity of ~0.2
264 nm corresponding to the (111) planes in Ni (**Figure 2g**). The active Ni surface provides sites for
265 the nucleation and growth of graphene layers of the CNTs ^[48,49].

266

267
268 **Figure 2.** Morphology of CNT@Cem. (a) and (b) SEM images of the as-synthesized CNT@Cem
269 after 30 min sonication. Inset in (a) shows the as-grown CNT@Cem before and after sonication.
270 (c) High-magnification SEM image of the CNT@Cem after sonication. Inset shows the diameter
271 distribution. (d) HAADF-STEM image and the corresponding elemental mapping images of the
272 CNT@Cem. (e) TEM image of the CNT@Cem after sonication. Inset shows the selected area
273 electron diffraction (SAED) pattern. (f) HRTEM image of CNTs. (g) HRTEM image of Ni
274 nanoparticle encapsulated in CNTs. Growth condition: C₂H₂/H₂/N₂=40/40/100 sccm, 550 °C, 20
275 min.
276


277 **3.2. Effect of temperature on CNT@Cem growth**

278 The effect of temperature on CNT@Cem growth under a temperature range of 450 - 850 °C

279 with an interval of 100 °C was explored. As shown in **Figures 3a-f**, due to the high catalytic
280 activity of Ni species at low temperature, short and entangled CNTs were readily formed with
281 good coverage on the cement surface in the 450 °C sample, which is different from previous
282 works in which no carbon deposits were observed below 550 °C when using Fe species as
283 catalysts [41]. For CNT@Cem samples grown at 550 °C and 650 °C, the length of CNTs rapidly
284 increased and the average CNT diameter increasing with synthesis temperature is visible. Up to
285 750 °C, the CNT feature was no longer well-defined, forming enormous quantities of graphite or
286 coke. The BET surface areas of the CNT@Cem samples synthesized at different temperatures all
287 significantly increased concerning the raw cement after the deposition of carbon materials
288 (**Figure 3g**). The maximum BET surface area was found to be 45.69 m²/g for the 550 °C sample,
289 which agrees with the SEM result that the 550 °C sample had the most abundant CNTs.

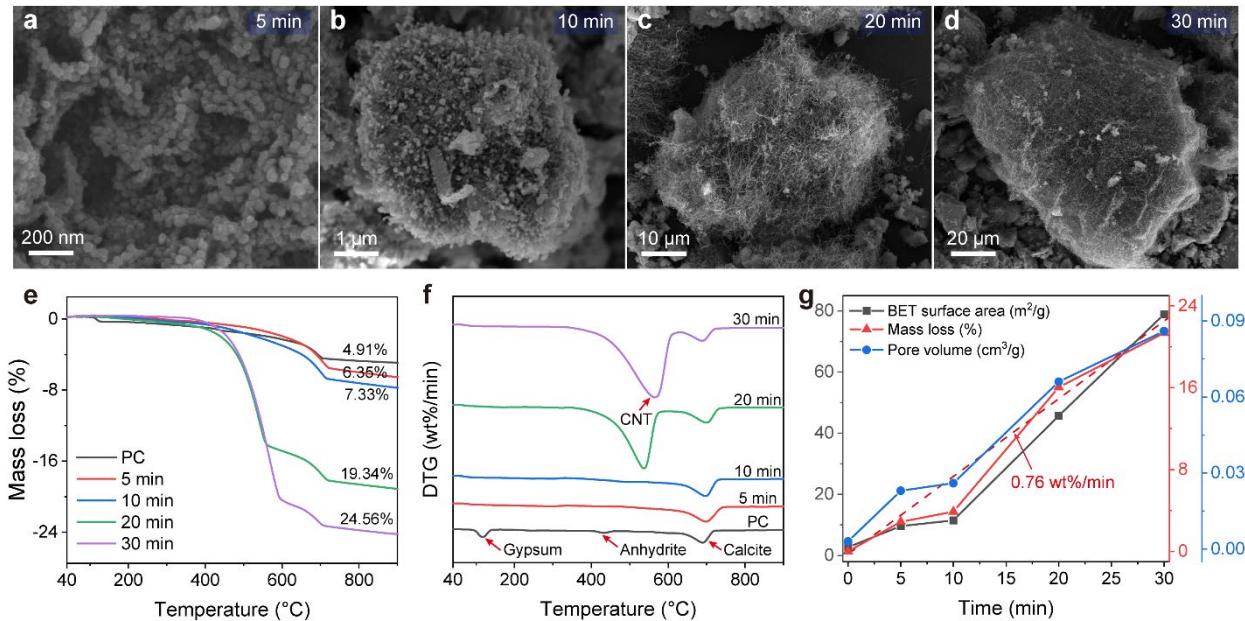
290 The temperature-dependent CNT growth was also evidenced by XRD analysis (**Figure 3h**),
291 with the peak at $2\theta = 26^\circ$ (indexed as C(002)) corresponding to the interplanar spacing of 0.34
292 nm of the CNTs visible in the case of 450 - 650 °C while vanishing for the 750 °C and 850 °C
293 samples. The XRD spectra also observed the phase transitions of PC and CNT@Cem samples
294 synthesized at different temperatures. The peak at $2\theta = 11.7^\circ$ assigned to gypsum (CaSO₄·2H₂O)
295 vanished due to its thermal decomposition after calcination and CVD process, transiting into
296 anhydrite (CaSO₄, peak at $2\theta = 25.5^\circ$), which is also indicated in the Raman spectrum (**Figure**
297 **3i**) where the Raman band of gypsum (1010 cm⁻¹) disappeared. **Moreover**, the peak intensities
298 decreased with the increasing temperature due to the further decomposition of anhydrite at high
299 temperatures. The most significant change is that the peak intensity of (Fe, Ni)C solid solution
300 ($2\theta = 45^\circ$) was enhanced with the increasing temperature [50]. The peak of C₄AF was disappeared
301 at 850 °C, indicating the strong interactions among Ni, Fe, and C species [51]. This could be one of
302 the reasons for the reduced CNTs at high temperatures, as the formation of metallic carbide
303 causes the catalyst deactivation [52-54].

304

Figure 3. Effect of temperature on CNT@Cem growth. SEM images of CNT@Cem grown at (a) 450 °C. (b) 550 °C. (c) 650 °C. (d) 750 °C and (e) 850 °C. (g) BET surface areas of raw cement and the CNT@Cem grown at different temperatures. (h) XRD analysis of phase evolutions of the CNT@Cem grown at different temperatures. (i) Raman spectra of raw cement and the CNT@Cem grown at different temperatures. Growth condition:

$\text{C}_2\text{H}_2/\text{H}_2/\text{N}_2=40/40/100$ sccm, 20 min.

305


306 The comparable I_D/I_G values of all CNT@Cem samples within the range of 0.9 - 1.1 are
 307 lower than the commercial CNTs ($I_D/I_G = 0.68$) ^[33], indicating the formation of poorly
 308 crystallized CNTs associated with a large number of defects. In the Raman spectrum of the PC,

309 C₃S at 828 cm⁻¹, C₂S at 864 cm⁻¹, gypsum at 1010 cm⁻¹ and CaCO₃ at 1086 cm⁻¹ were detected [55-
310 57]. The intensity of CaCO₃ at 1086 cm⁻¹ gradually attenuated with increasing temperature and
311 completely disappeared at 850 °C, indicating that CaCO₃ was completely decomposed under this
312 CVD condition. The decomposition of CaCO₃ leads to the release of CO₂ as an etching agent that
313 results in the deactivation of the catalyst particles for CNT synthesis at such a high temperature
314 [38]. In addition, the C₂H₂ decomposition is extremely fast at high temperatures, resulting in the
315 total amount of carbon deposited on the catalyst exceeding the catalyst solubility, forming
316 encapsulating coke on the catalyst (**Figure 3f**). The high temperature would also facilitate the
317 mobility of Ni catalyst particles, thus forming too large Ni agglomerations for optimum CNT
318 growth [40,58]. This may be another reason for the reduced CNT synthesis at high temperatures.
319 Conclusively, the most acceptable temperature range for the CNT@Cem growth was 550-650 °C,
320 as revealed in this study.

321 **3.3. Evolution of CNT@Cem with reaction time**

322 **Figures 4a-d** show the SEM results of the CNT@Cem samples grown for different reaction
323 time. As shown in **Figure 4a**, only nano-sized carbon dots were formed on the catalyst, which
324 would act as seeds for sustainable CNT growth. With increasing reaction time, the density of the
325 CNTs and size of the CNT@Cem increased remarkably. The initially vertical growth direction of
326 CNTs became irregular due to different growth rates and the restriction of dense CNT coverage,
327 forming a nest-like morphology of CNT@Cem after 30 min (**Figure 4d**). TG-DTG analysis was
328 performed in an air atmosphere to estimate the growth rate of CNTs. As shown in **Figures 4e, f**,
329 the PC demonstrates three DTG peaks at around 120 °C, 440 °C, and 700 °C, corresponding to
330 the dehydration of CaSO₄·2H₂O, decomposition of CaSO₄ and decarbonation of CaCO₃ [59]. In
331 comparison, a temperature range of 480 - 550 °C attributed to the decomposition of CNTs and a
332 CaCO₃ decomposition peak at around 700 °C were observed in the DTG curves of the
333 CNT@Cem samples. The prolonged growth time caused an increase in the decomposition
334 temperature of CNT, indicating a higher level of crystallinity. While no peaks at around 120 °C
335 and 440 °C were observed in the CNT@Cem samples as the gypsum and anhydrite were
336 decomposed after the CVD process, which was validated by the XRD (**Figure 3h**) and Raman
337 characterizations (**Figure 3i**).

338

Figure 4. SEM images of CNT@Cem grown for (a) 5 min. (b) 10 min. (c) 20 min. (d) 30 min. (e) TG analysis. (f) DTG analysis of CNT@Cem grown for different reaction time. (g) Mass losses derived from TG curves, BET surface areas, and pore volumes of CNT@Cem grown as a function of reaction time. Growth condition: $\text{C}_2\text{H}_2/\text{H}_2/\text{N}_2=40/40/100$ sccm, 550°C .

339

340

Figure 4g presents the mass loss accounting for the CNT decomposition of each sample.

341

Using linear regression, a mass loss rate of 0.76 wt.%/min was obtained. The BET surface areas and pore volumes of the CNT@Cem samples showed a similar trend as the TG-DTG results. The 30-min sample has a BET surface area as high as $78.89 \text{ m}^2/\text{g}$ (30 times higher than the raw cement of $2.7 \text{ m}^2/\text{g}$) and pore volume of $0.086 \text{ cm}^3/\text{g}$ (28 times higher than the raw cement of $0.003 \text{ cm}^3/\text{g}$) due to the decoration of CNT forests. In fact, CNT growth under certain CVD conditions is unable to proceed indefinitely. Slowing or even cessation of CNT growth after a certain amount of time has been previously reported in CNT grown on other substrates such as silica powder [60], alkaline earth carbonate [61], and quartz plates [62] due to catalyst encapsulation or deactivation. The fact that CNTs grow continuously for 30 min in this study indicates that the nickel catalyst particles remain catalytically active on this long reaction time.

351

3.4. Properties of CNT@Cem engineered SSCCs

352

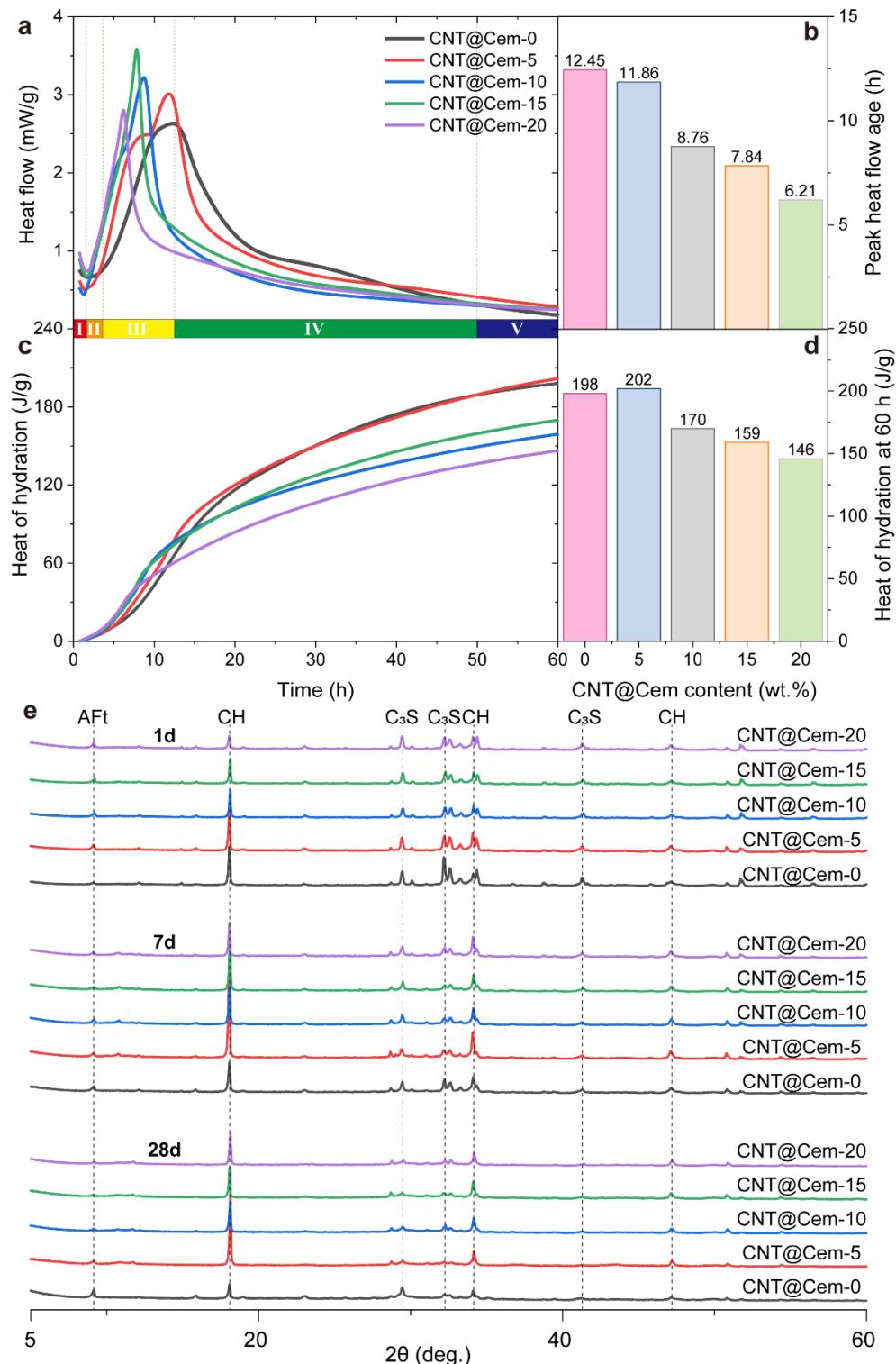
As discussed above, the nest-like CNT@Cem has dense and long CNTs covalently anchored to cement particles and has distinctive characteristics with raw cement such as enhanced specific

353

354 surface area and reduced gypsum and CaCO_3 contents. The replacement of cement by
355 CNT@Cem is expected to affect the properties of CNT@Cem/cement composites and endows
356 functionality. To investigate the utilization of the as-synthesized CNT@Cem hierarchical fillers
357 in tailoring SSCC performance, a batch of CNT@Cem was afterward prepared using 100 mM
358 $\text{Ni}(\text{NO}_3)_3 \cdot 9\text{H}_2\text{O}$ isopropanol solutions as catalyst precursors with a CVD regime of
359 $\text{C}_2\text{H}_2/\text{H}_2/\text{N}_2=40/40/100$ sccm at 550 °C for 30 min, based on a criterion of growing CNTs with
360 high density and long length. Then, the SSCC specimens, including as-received CNT@Cem, raw
361 PC, water, silica fume, and polycarboxylate superplasticizer, were prepared according to the
362 mixture proportions presented in **Table S2**.

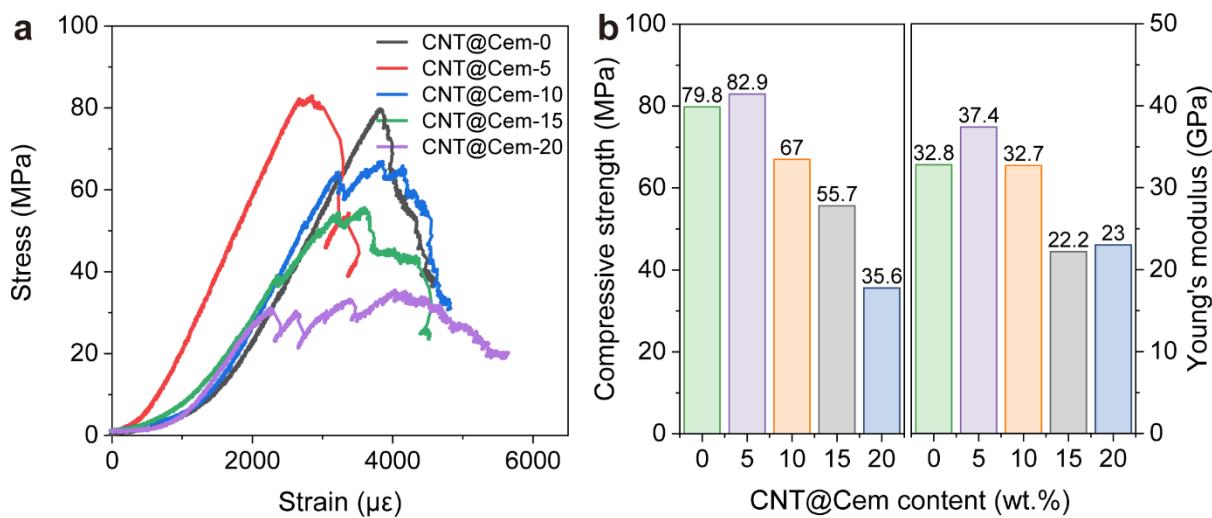
363 *3.4.1. Hydration*

364 The hydration heat evolution of the SSCCs with different contents of CNT@Cem for a
365 period of up to 60 hours is shown in **Figure 5**. The addition of CNT@Cem did not cause a
366 significant change in the hydration process of the SSCC blends, which can be divided into five
367 stages, i.e., initial period (I), induction period (II), acceleration period (III), deceleration or
368 retardation period (IV) and steady period (V) (**Figure 5a**)^[63]. Due to superficial reactions of
369 tricalcium aluminate (C_3A), the initial period occurred within just a few minutes. No apparent
370 difference between the control (labeled as CNT@Cem-0) and the SSCCs with CNT@Cem was
371 observed in such a short period. For the induction period, in comparison with the control, the
372 addition of CNT@Cem shortened the induction period. It brought forward the onset of the
373 acceleration period, which is consistent with the observations made by Makar et al.^[64] and Li et
374 al.^[65]. The end of the acceleration period was also significantly hastened. **Figure 5b** shows that
375 the age at peak heat flow indicated the final set decreased with increasing CNT@Cem content.
376 The maximum peak shift was observed in the CNT@Cem-20 composite as 6.21 h, which is
377 50.12 % earlier compared with the control (12.45 h). As the acceleration period is mainly
378 determined by the hydration of tricalcium silicate (C_3S), the observed change in hydration
379 behaviors is attributed to the interaction between CNTs and C_3S hydration products (e.g., C-S-H
380 gel and calcium hydroxide (CH))^[64]. The existence of CNTs on cement surfaces would provide
381 nucleation sites for C-S-H and CH formation so that an increase of CNT@Cem significantly
382 accelerated the SSCC hydration process^[65–67]. Moreover, the reduced gypsum content in SSCCs
383 would slow down the formation of ettringite that precipitates at the cement particle surface at an


384 early age, thus promoting the SSCC early-age hydration [63].

385 **Figure 5c** shows the total cumulative heat curves of the SSCCs with different contents of
386 CNT@Cem up to 60 h. Except for the CNT@Cem-5 sample, the CNT@Cem samples basically
387 have higher heats of hydration at the initial stages, falling below the control after 2.5 days. The
388 slight increase in the heat of hydration at 2.5 days for the CNT@Cem-5 sample was found as 4 J
389 g^{-1} . However, the cumulative heat release obviously reduced with increasing CNT@Cem content
390 (**Figure 5d**). This is to be expected since the presence of CNTs on cement restricts the space
391 available for hydration products growth. On the one hand, the CNTs can strongly wrap around
392 cement surface and take up the nucleation sites, thus inhibiting the longitudinal growth of
393 hydration products [64]. On the other hand, although the more nucleation sites can accelerate the
394 hydration reactions at first, the extremely large specific surface area of CNTs would trap water
395 molecules via electrostatic forces, in turn lowering the amount of water required to dissolve the
396 anhydrous grains and complete the hydration in long-term evolution [68,69]. Therefore, the heat of
397 hydration at later ages decreased due to the replacement of cement by CNT@Cem.

398 The TG-DTG results (**Figure S1**) for the SSCCs with CNT@Cem at ages of 1, 7, and 28
399 days agreed well with the thermal calorimetry that the CNT@Cem can promote the early-age
400 hydration of cement while restricting the hydration rate at later ages, as evidenced by the overall
401 mass loss of the control being much lower than the values measured for the CNT@Cem samples.
402 As the curing age increased, the overall mass loss in the control caught up at 7 days and even
403 overtook the CNT@Cem composites at 28 days. The peak intensity of C₃S in the XRD spectrum
404 of the control (**Figure 5e**) was more remarkable than that of the CNT@Cem samples, indicating
405 the lower hydration degree of the control at 1 day. The intensities of the main diffraction peaks of
406 CH in the CNT@Cem composites increased with increasing curing ages while mirrored in the
407 control, which is exactly consistent with the TG-DTG results. Similarly, the strongest peak
408 intensity of CH in the CNT@Cem-5 sample followed the TG-DTG analysis that the CNT@Cem-
409 5 had the largest mass loss due to the decomposition of CH. In addition, the CH formed in
410 CNT@Cem composites had a preferred orientation to the (001) crystal plane, which always takes
411 place in the porous zone where free space is available [70]. Except for the control, the mass loss
412 associated with the decomposition of CH also increased with increasing hydration age, indicating
413 the sustained formation of CH. The decrease of CH in control may be attributed to the


414 carbonation of CH into CaCO_3 and the consumption in “secondary pozzolanic reactions” with
415 silica fume ^[59], as evidenced by increasing C-S-H and CaCO_3 peak areas in DTG curves. The CH
416 content in the CNT@Cem composites was higher than that in control regardless of curing age,
417 suggesting an improved formation of CH with the addition of CNT@Cem.

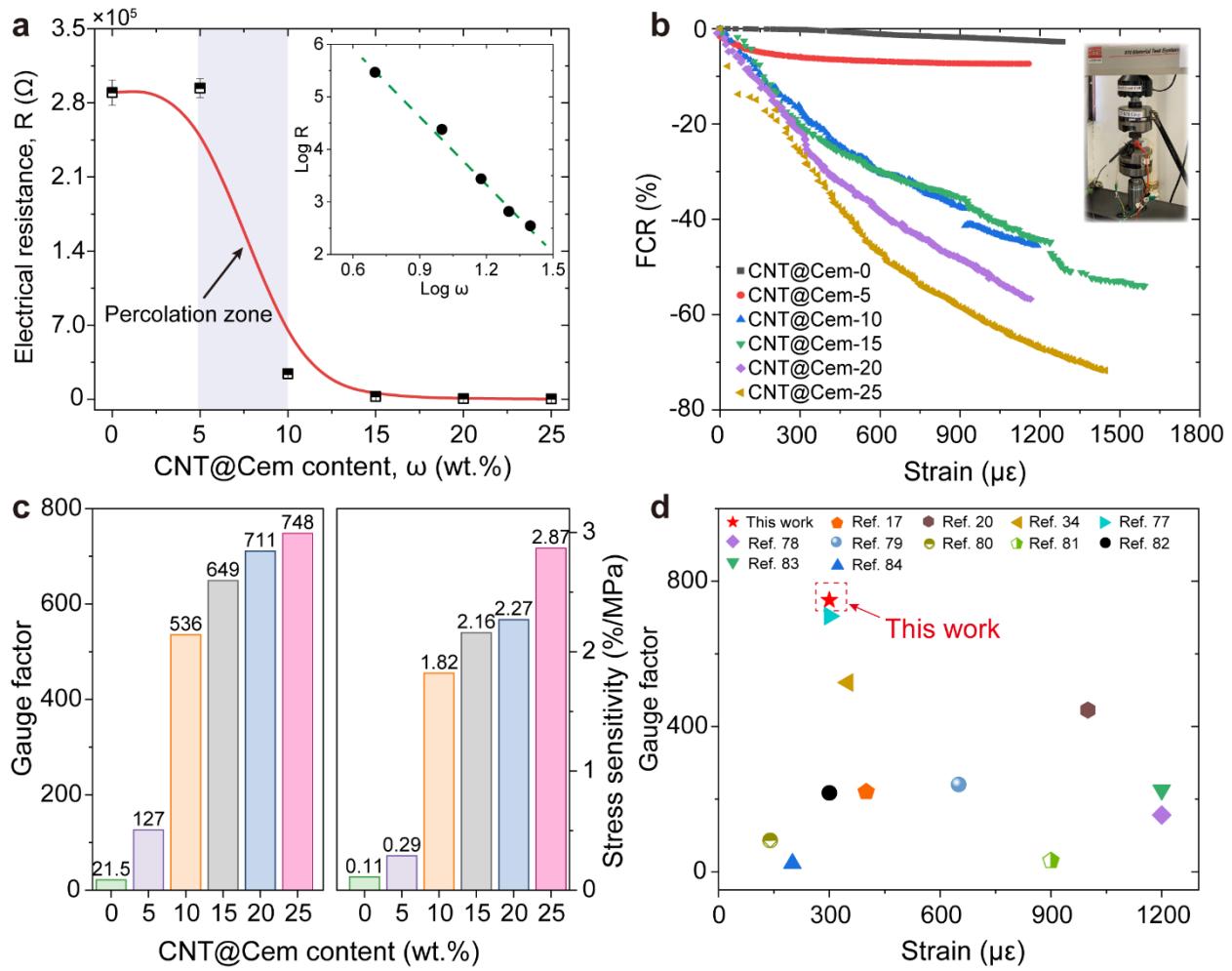
418 Both the XRD and TG-DTG results revealed that the CNT@Cem could increase the
419 formation of CH at late ages, in contrast to previous studies that the addition of CNTs can reduce
420 the size and crystal orientation of CH ^[71] or even have no effect on the formation of CH ^[66]. This
421 phenomenon may be attributed to the nest-like CNT@Cem with a large surface area and a porous
422 structure that would act as a “barrier” to prevent water from getting into the CNT@Cem
423 hierarchical structure to reacting with the innermost cement. The structure in the vicinity of the
424 CNT@Cem surface may be similar to the interfacial transition zone (ITZ) around aggregate,
425 where preferentially oriented CH crystals are formed ^[72]. As evidenced by SEM observations
426 (**Figure S2**), many unhydrated CNT@Cem particles existed in the composites after 28 days of
427 curing, surrounded by abundant hexagonal plate-like CH phases can be found. Because the dense
428 CNT forest on cement particles prevented water from reacting with the carpeted cement clinker,
429 voids and CNTs not wrapped by hydration products were formed, which may have a negative
430 impact on the final strength of the SSCCs. On the other hand, the incorporation of CNT@Cem
431 provided CNTs reinforced C-S-H, CNT pull-out, and CNT bridging effects that would, in turn,
432 enhance the mechanical properties of the SSCCs.

Figure 5. Calorimetric measurements of the SSCCs with CNT@Cem. (a) Heat flow. (b) Peak heat flow age. (c) Cumulative heat evolution. (d) The heat of hydration at 60 h. (e) XRD analysis of the SSCCs with CNT@Cem at 1, 7, and 28 days.

433 As shown in **Figure 6**, the compressive strength of the CNT@Cem-5 sample after 28 days
 434 was the highest. The increasing amount of CNT@Cem led to a decrease in the compressive stress
 435 at first-cracking (**Figure 6a**) despite a minor increase observed for the CNT@Cem-5 sample.
 436 Specifically, compared with the CNT@Cem-0 sample, the compressive strength increased by 3.1
 437 MPa/3.9% for the CNT@Cem-5 sample and decreased by 12.8 MPa/16%, 24.1 MPa/30%, and
 438 44.2 MPa/55% for CNT@Cem-10, CNT@Cem-15, and CNT@Cem-20 samples, respectively.
 439 Moreover, the addition of CNT@Cem negatively impacted Young's modulus (**Figure 6b**).
 440 However, it was observed from the compressive stress/strain curves that the addition of
 441 CNT@Cem led to a strain-hardening portion after the first peak due to the crack-bridging effect
 442 of CNTs ^[73]. The effect was more pronounced with the increasing CNT@Cem content. The
 443 decrease in the compressive strength of the SSCCs with the increasing amount of CNT@Cem
 444 may be attributed to three main mechanisms: (1) The increasing CNT@Cem incorporation in
 445 cement paste indicates a higher amount of water absorbed by CNTs, thus hampering cement paste
 446 hydration ^[74]; (2) The nest-like morphology of CNT@Cem leads to the excessive formation of
 447 highly oriented CH crystals around while reduces the amount of C-S-H gel, thereby less
 448 formation of hydration products that contribute to the strength of the composites ^[73,75]; and (3)
 449 The presence of voids and CNTs uncoated with hydration products may also be important factors
 450 for the compromised compressive strength of SSCCs with high contents of CNT@Cem.

Figure 6. Effect of CNT@Cem on compressive properties of SSCCs with CNT@Cem after 28 days. (a) Relationship between compressive stress and strain. (b) Compressive strength and Young's modulus.

452 3.4.2. *Electrically conductive and self-sensing properties*


453 Due to the excellent conductive nature of CNTs, CNT@Cem is envisioned as an effective
 454 filler to enhance the electrical conductivity of the SSCCs, hence achieving self-sensing properties.
 455 **Figure 7a** shows the DC electrical resistances of the SSCCs with CNT@Cem as a function of
 456 filler content. A continuous decrease in the DC electrical resistance of SSCCs was observed with
 457 the increase of CNT@Cem content. As indicated in the log-log plot (**Figure 7a**, inset), the
 458 electrical resistance of the composites perfectly followed the principle of the percolation model.
 459 Percolation in the composites occurred when the filler content was near 5 wt.% (the pure CNT
 460 content is estimated to be 1.02 ± 0.06 wt.%), above which a rapid decrease in the DC electrical
 461 resistance took place from values of 2.94×10^5 Ω at 5 wt.% to 2.41×10^4 Ω at 10 wt.%. The
 462 percolation zone was almost the same as the SSCCs with commercial CNTs^[34,76] and much
 463 lower than the CNT/NCB fillers^[34,77] and multi-layered graphene^[78]. Such an applaudive
 464 percolation behavior was evidence of homogeneous dispersion of CNTs in the cementitious
 465 composites. An increase in CNT@Cem content above 10 wt.% produced a more gradual decrease
 466 in electrical resistance, with values of 2.76×10^3 Ω at 15 wt.% and 660 Ω at 20 wt.%. At
 467 CNT@Cem content as high as 25 wt.%, the electrical resistance can be as low as 350 Ω , which is
 468 approximately three orders of magnitude less than the control. At this time, the conductivity of
 469 the SSCCs is dominated by the CNT network of many connected paths through the cement
 470 matrix^[4].

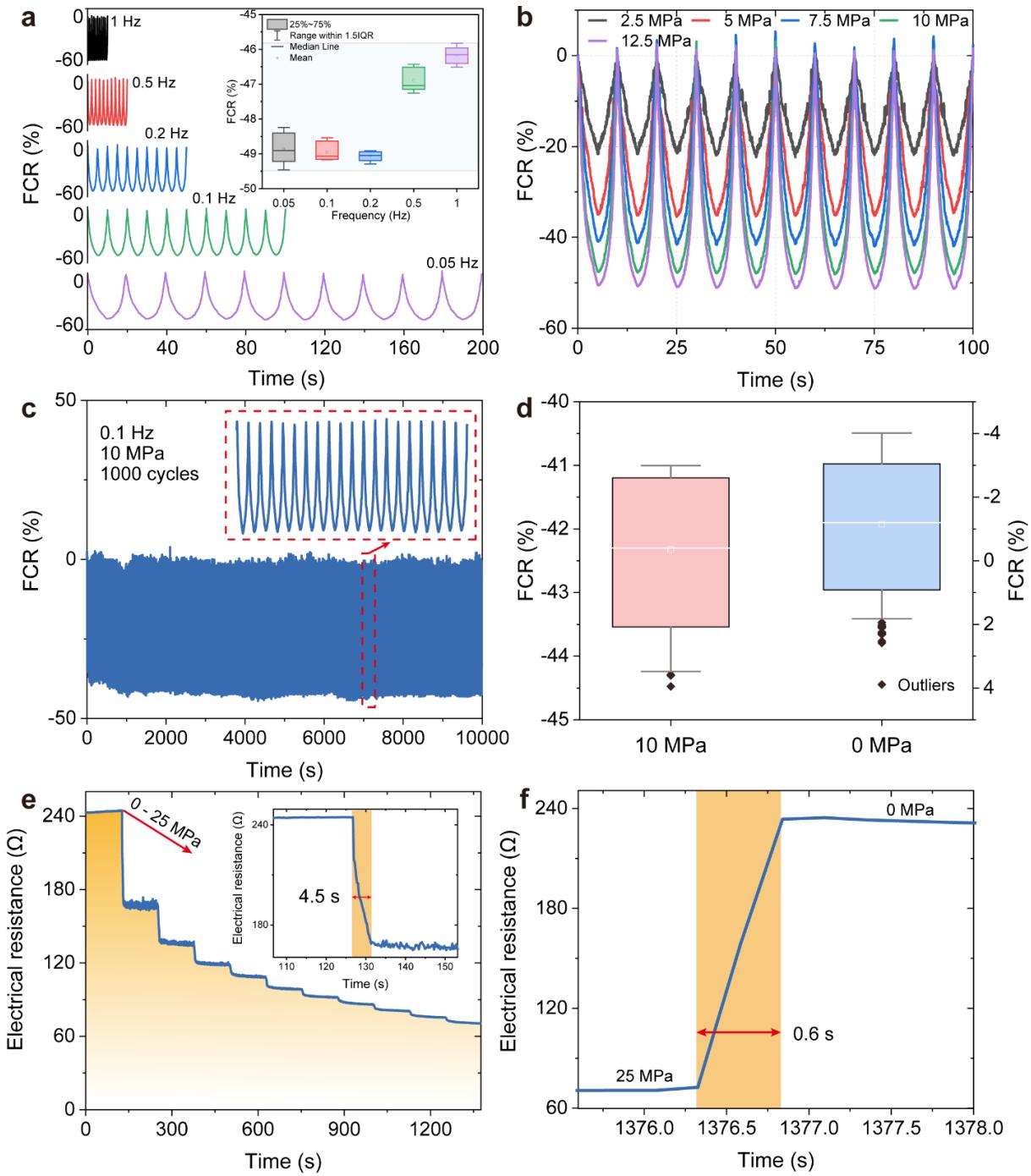
471 The relationship between compressive strain and the fractional change in electrical
 472 resistance (*FCR*) of the composites is presented in **Figure 7b**. The FCR of the control sample was
 473 nearly unaffected by the compression, indicating its poor strain/stress sensitivity. The
 474 CNT@Cem addition evidently enlarged the *FCR*, and such enhancement became more prominent
 475 as the CNT@Cem content increased, indicating a much higher sensitivity. The stress sensitivity
 476 was slightly increased from 0.11 %/MPa for CNT@Cem-0 to 0.29 %/MPa for CNT@Cem-5
 477 (**Figure 7c**). When the CNT@Cem content increased to 10 wt.%, i.e., the percolation threshold, a
 478 remarkable increase in stress sensitivity was obtained as 1.82 %/MPa, which is 18 times higher
 479 than the control. This is consistent with the fact that the SSCCs with a filler content near the
 480 percolation threshold undergo an abrupt change of electrical resistance upon deformation, i.e., a
 481 high sensitivity^[4]. Further increase of CNT@Cem content continuously increased the stress

482 sensitivity, achieving a maximum of 2.87 %/MPa for the CNT@Cem-25 sample. To obtain the
483 gauge factor ($|FCR|/\varepsilon$, where ε is compressive strain), the linear parts of the plots (Figure 7b,
484 within 300 $\mu\varepsilon$) were applied for the linear fitting. As shown in Figure 7c, the gauge factor of the
485 control was determined as 21.5 and increased to 748 for the CNT@Cem-25 sample. The results
486 indicated the extremely high sensitivity of the SSCCs with CNT@Cem under low levels of
487 deformation. The gauge factor of the SSCCs with CNT@Cem-25 outperformed most of the
488 SSCCs with commercial CNTs^[17,79,80] as well as other reported conductive fillers including CB
489^[81], CF^[20], multi-layer graphene^[78], CNT/TiO₂^[82], CNT/NCB^[30,83] and stainless steel wire^[84],
490 as demonstrated in Figure 7d.

491 In general, three mechanisms explaining the self-sensing behavior of the SSCCs with CNTs
492 have been proposed^[16]: (1) the change of intrinsic resistance of CNTs; (2) the change of contact
493 resistance between CNTs due to the formation/breakage of CNT-CNT junctions; and (3) the
494 change of tunnelling resistance due to the variations in the distance between adjacent CNTs. For
495 the CNT@Cem-5 sample where filler content is below the percolation threshold, tunnelling
496 conduction plays a key role in electrical conductivity, hence the decrease in tunnelling resistance
497 under compression dominates the sensing mechanism. However, because of the strong bonding
498 between the CNTs and the matrix and its high Young's modulus (Figure 6b), the sensitivity of
499 the CNT@Cem-5 sample is not significantly enhanced compared to the control. When the
500 CNT@Cem content reaches the percolation threshold, the abundant conductive paths formed by
501 CNT@Cem increase the number of CNT-CNT junctions and the possibility of tunnelling
502 conduction. In addition, the nest-like CNT@Cem could further increase the formation of CNT-
503 CNT junctions against the commercial CNTs and other conductive fillers. Therefore, the
504 breakages/formations of CNT junctions and variations in tunnelling resistance upon deformation
505 are more likely. Furthermore, different from other single-scale fillers, the intrinsic resistance of
506 the hierarchically structured CNT@Cem as a whole would change, resulting in the ultrahigh
507 sensitivity of the SSCCs. The change of intrinsic resistance of CNT@Cem may further improve
508 the sensitivity of the SSCCs with filler content being much higher than the percolation threshold,
509 i.e., the CNT@Cem-25 contains an additional capacitance effect. The increase in capacitance
510 effect has been proved a positive factor in terms of sensitivity^[85,86].

511 Furthermore, the stability and repeatability of the SSCCs with CNT@Cem were evaluated
512 under 10 cycles of repetitive compression with an amplitude of 10 MPa and a loading rate of 0.1
513 Hz (**Figure S3**). Under cyclic compression, the FCR of all SSCCs steadily increased upon
514 compression and then symmetrically decreased during unloading in each cycle. At the same time,
515 the FCR of the control still demonstrated a sustained decay over time due to the remaining
516 polarization influence. The SSCCs with CNT@Cem all exhibited excellent repeatability in
517 response to the cyclic compression, as evidenced by the constant maximum FCR value in each
518 cycle. In addition, the stress sensitivity of each sample increased with increasing CNT@Cem
519 content and reached the maximum at 25 wt.%, which is consistent with the results of monotonic
520 compression. The excellent self-sensing performance indicates the uniform dispersion of CNTs in
521 the composites [19,25,87]. To further investigate the repeatability of self-sensing behavior, the
522 CNT@Cem-25 sample taken as representative was dynamically compressed at different
523 frequencies (0.05, 0.1, 0.2, 0.5, and 1 Hz at 12.5 MPa, **Figure 8a**) and different stress amplitudes
524 (2.5, 5, 7.5, 10 and 12.5 MPa at 0.1 Hz, **Figure 8b**). The CNT@Cem-25 sample demonstrated
525 stable and consistent cyclic responses and outstanding adaptability to various applied conditions.
526 **Figure 8c** shows the stability of the CNT@Cem-25 sample evaluated by 1000 cyclic
527 compression with an amplitude of 10 MPa and a frequency of 0.1 Hz. It can be observed that the
528 response became almost constant after only several cycles, indicating excellent stability of the
529 self-sensing property of the CNT@Cem-25 sample. To further describe the stability, the peak
530 value at 0 MPa and 10 MPa for each cycle was counted and statistically analyzed using a box plot
531 at a 95% confidence level (**Figure 8d**). The responses to loading (10 MPa) and unloading (0
532 MPa) showed no statistically significant changes during the 1000 cycles. Only 2 outliers (outside
533 1.5 times the interquartile range) and 4 outliers were observed with respect to loading and
534 unloading, respectively. This indicated that the CNT@Cem-25 sample has exceptionally high
535 quality in terms of stability and repeatability. In addition, good durability of the sensing
536 performance was observed over a long period of 13 months (**Figure S4**).
537

Figure 7. (a) Electrical resistance of the SSCCs with CNT@Cem as a function of CNT@Cem content. Inset shows log-log plot. (b) FCR versus Strain for SSCCs with CNT@Cem under monotonic compression with an amplitude of 25 MPa. (c) Gauge factor and stress sensitivity of SSCCs with different CNT@Cem contents. (d) Comparison of the gauge factor of the SSCCs with CNT@Cem-25 with the reported SSCCs with different conductive fillers [17,20,34,77–84].


538

539 **Figure 8e** shows the electrical resistance response of the CNT@Cem-25 sample to the
 540 constant loadings from 0 MPa to 25 MPa for a period of 2 min. It is noticed that the resistance
 541 instantaneously decreased when the compression was applied and was unchanged when the
 542 compression remained constant. The response time of the CNT@Cem-25 sample upon
 543 compression was estimated as less than 0.2 s if excluding the loading time (about 4.3 s) (**Figure**
 544 **8e**, inset). In addition, the recovery time was less than 0.59 s by releasing a 25 MPa compression.
 545 Note that there was only a slight difference between the resistance after release (238 Ω) and the
 546 initial resistance (241 Ω), which could be understood by the plastic deformation of the sample in

547 compression. It can be concluded that the CNT@Cem, as a new type of functional filler, has a
548 great potential in the fabrication of SSCCs with the advantages of tailored design, scalable
549 manufacturing, high cost-efficiency, ultra-high sensitivity, excellent robustness, ultra-fast
550 response, and recovery, which significantly expands the practical applications in the fields of
551 SHM and traffic detection.

552

553

554
555
556
557
558
559
560
561
562

Figure 8. Self-sensing properties of the CNT@Cem-25. (a) FCR under cyclic compression at frequencies of 0.05, 0.1, 0.2, 0.5 and 1 Hz with a stress amplitude of 12.5 MPa. Inset shows FCR versus frequency. (b) FCR under cyclic compression at stress amplitudes of 2.5, 5, 7.5, 10, and 12.5 MPa with a frequency of 0.1 Hz. (c) FCR under 10 MPa cyclic compression at a frequency of 0.1 Hz for 1000 cycles. (d) Evaluation of the CNT@Cem-25 composite stability by counted peak values at 0 MPa and 10 MPa, at a 95% confidence level. (e) Electrical resistance change under constant loadings from 0 - 25 MPa for a period of 2 min. Inset shows response time under 1 MPa compression. (f) Recovery time after 25 MPa compression.

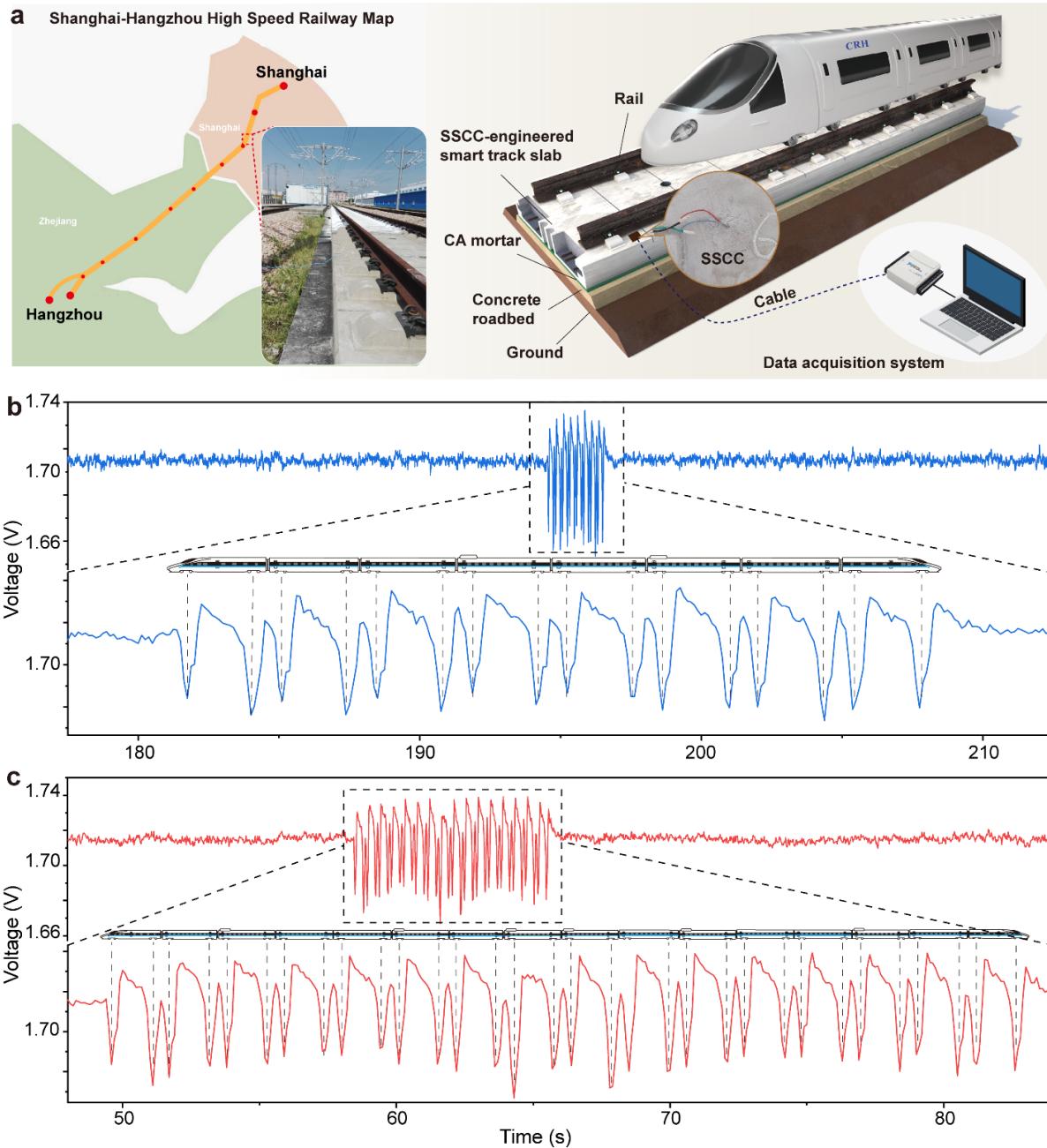
563 **3.5. Feasibility verification to develop SSCCs-engineered smart high-speed rail infrastructures**

564 Benefiting from the excellent self-sensing performance and favorable compatibility with
 565 HSR concrete track slabs, SSCCs with CNT@Cem could be potentially applied as smart
 566 components/structures for HSR monitoring. Here, we devised a **monitoring** system integrated
 567 with an **SSCCs-engineered** smart track slab using SSCCs with 10 wt.% CNT@Cem and
 568 presented preliminary study research for monitoring railway footprints of high-speed trains. The
 569 devised smart monitoring system was implemented on a real HSR line (Shanghai-Hangzhou
 570 High-speed Railway, K005, China), as shown in **Figure 9a**. There are two types of high-speed
 571 trains, including CRH380A and CRH380BL, in service in the test line. **Table S3** lists the
 572 principal differences between the two trains.

573 **Figures 9b, c** show the typical traces obtained at the 8-car and 16-car high-speed train
 574 passages, respectively. Each bogie passing through the **SSCCs-engineered** smart track slab was
 575 clearly identified as a sharp peak of voltage change in the trace. It is easy to obtain the train type
 576 circulating in the network by counting the number of successive sharp peaks. The **SSCCs-
 577 engineered smart** track slab has been employed as an axle counter for thousands of train passages
 578 and has never observed any faults. However, the individual wheel in each bogie was unable to be
 579 identified from the peak since the wheelbase is short, and the **SSCCs-engineered** smart track slab
 580 was constantly compressed during the bogie passing. **In addition, the voltage change of the train
 581 passage was not very significant because the sensor was installed aside from the rail, on the
 582 shoulder of the track slab, and between two sleepers along the rail direction. The maximum
 583 dynamic compressive stress (lower than 1 MPa) at such a position should be several times lower
 584 than that under the fastener in contact with the rail, according to the theoretical and finite element
 585 analyses on the dynamic response of vehicle-track coupling system [88-90]. Further improvement
 586 will be achieved by considering the optimal layout of SSCCs in high-speed rail infrastructures.**

587 After identifying the train type and given that the distances between bogie centers are known
 588 for each type of train, the instantaneous and average train speed can be simply obtained. In
 589 addition, by comparing the first car's instantaneous speed and the last car's instantaneous speed,
 590 the acceleration of the whole train can be distinguished. **Table 1** gives the train speeds calculated
 591 using the two traces in **Figure 9**. It can be seen that the average speeds of the two trains stand
 592 exactly between the first car's instantaneous speed and the last car's instantaneous speed. The

593 train, CRH380A, entered the instrumented sector decelerating but left the sector accelerating,
 594 which is the opposite of the train, CRH380BL. Also, we can find that the peak amplitude
 595 corresponding to each bogie was different due to the different weight of each car, indicating that
 596 the **SSCCs-engineered** smart track slab can be used for train dynamic load estimation. In this
 597 way, excessive load that causes degradation in the trains and the railway infrastructure would be
 598 refrained. **However, customized design, installation, and calibration of the **SSCCs-engineered****
 599 **smart track slab are still needed for its precise measurement of trainload in the future application.**


600

601

Table 1. Average and instantaneous speeds of the two trains.

Train type	Average speed (km/h)	Instantaneous speed of the first car (km/h)	Instantaneous speed of last car (km/h)	Sign of acceleration
CRH380A	34.67	34.99	33.16	-
CRH380BL	43.33	41.58	44.52	+

602

Figure 9. SSCCs-engineered smart track slab for high-speed rail monitoring. (a) Schematic of test site and setup. (b) Representative response to an 8-car high-speed train passage. (c) Representative response to a 16-car high-speed train passage.

603 4. Conclusions

604 The paper has reported a **fabrication method** for next-generation SSCCs comprising a
 605 hierarchically structured functional filler, which can alleviate the CNT's dispersion problem and

enable scalable manufacturing of SSCCs with outstanding self-sensing performance. The hierarchically structured CNT@Cem composite filler was *in-situ* CVD synthesized by directly growing CNTs on cement particles. The as-synthesized nest-like CNT@Cem structure processed enhanced specific surface area and reduced gypsum content, thus providing abundant nucleation sites for cement products formation and accelerating early-age hydration of the SSCCs. In addition, the CNT@Cem led to the excessive formation of highly oriented CH crystals around while reducing the amount of C-S-H gel, thus less formation of hydration products that contribute to the strength of the SSCCs with CNT@Cem. The addition of CNT@Cem can effectively tailor the electrical microstructures, thus enhancing the electrical conductivity of the SSCCs. The nest-like CNT@Cem significantly enhanced the sensitivity of the SSCCs. Increasing CNT@Cem content can continuously improve the sensitivity, achieving a maximum stress sensitivity of 2.87 %/MPa and the gauge factor of 748 for the CNT@Cem-25 sample. The CNT@Cem also demonstrated excellent repeatability and stability, outstanding adaptability to various applied conditions, fast response and recovery, showing great potential for practical applications in long-term and real-time HSR infrastructure monitoring. Future work will focus on the performance modulation of SSCCs with CNT@Cem synthesized under different CVD regimes and catalysts to identify how the hierarchical structures' morphologies (i.e., length, diameter, and density) produced affect the resultant SSCC's performance. The underlying growth mechanism will be further verified by the *in-situ* growing of CNTs on individual cement components such as cement clinker, gypsum, C₃S, and C₃A. Besides cement particles, supplementary cementitious materials such as fly ash, silica fume, and fine and coarse aggregates would be promising alternatives for CNT growth support. More efforts are needed to integrate and optimize the synthesis process of CNTs on these supplementary cementitious materials with the traditional cement manufacturing of processes to realize mass production, energy saving, and cost reduction. In addition, the evaluation of CNT@Cem cost as well as SSCCs' and their smart HSR infrastructures' life cycle cost should be considered emphatically.

632

633 Acknowledgments

634 The work described in this paper is partially supported by the grants from the National

635 Science Foundation of China (51978127 and 51578110), a grant from The Hong Kong
 636 Polytechnic University (Project No.: 1-BBAG), and a grant from the Research Grants Council of
 637 the Hong Kong Special Administrative Region, China (Project No. T22-502/18-R). The authors
 638 appreciate the funding support by the Chinese National Engineering Research Centre on Rail
 639 Transit Electrification and Automation (Hong Kong Branch) of the Hong Kong Polytechnic
 640 University. Thanks are due to Prof. Yanbin Cui at Chinese Academy of Sciences, Prof. Xufeng
 641 Dong at Dalian University of Technology, and Dr. Peigang Li at Shanghai Institute of
 642 Technology for their assistance with the experiments, and to Prof. Xun Yu at New York Institute
 643 of Technology for valuable discussions.

644

645 **References**

646 [1] R. Clark, *NDT & E International* **2004**, 37, 111.
 647 [2] J. Wang, X.-Z. Liu, Y.-Q. Ni, *Computer-Aided Civil and Infrastructure Engineering*
 648 **2018**, 33, 21.
 649 [3] M. L. Filograno, P. C. Guillen, A. Rodriguez-Barrios, S. Martin-Lopez, M. Rodriguez-
 650 Plaza, Á. Andres-Alguacil, M. Gonzalez-Herraez, *IEEE Sensors Journal* **2012**, 12, 85.
 651 [4] S. Ding, S. Dong, A. Ashour, B. Han, *Journal of Applied Physics* **2019**, 126, 241101.
 652 [5] B. Han, S. Ding, X. Yu, *Measurement* **2015**, 59, 110.
 653 [6] B. Han, L. Zhang, J. Ou, *Smart and Multifunctional Concrete toward Sustainable*
 654 *Infrastructures*. Springer Singapore, **2017**.
 655 [7] D. Dimov, I. Amit, O. Gorrie, M. D. Barnes, N. J. Townsend, A. I. S. Neves, F. Withers,
 656 S. Russo, M. F. Craciun, *Advanced Functional Materials* **2018**, 28, 1705183.
 657 [8] M. Krystek, A. Ciesielski, P. Samorì, *Advanced Functional Materials* **2021**, 31, 2101887.
 658 [9] O. Galao, F. J. Baeza, E. Zornoza, P. Garcés, *Cement and Concrete Composites* **2014**, 46,
 659 90.
 660 [10] E. García-Macías, F. Ubertini, *Earthquake Engineering & Structural Dynamics* **2019**, 48,
 661 548.
 662 [11] S. Ding, Y.-W. Wang, Y.-Q. Ni, B. Han, *Smart Materials and Structures* **2020**, 29,
 663 055013.
 664 [12] S. Ding, C. Xu, Y.-Q. Ni, B. Han, *Smart Materials and Structures* **2021**, 30, 065010.
 665 [13] B. Han, X. Yu, E. Kwon, *Nanotechnology* **2009**, 20, 445501.
 666 [14] G. Jing, M. Siahkouhi, J. Riley Edwards, M. S. Dersch, N. A. Hoult, *Construction and*
 667 *Building Materials* **2021**, 271, 121533.
 668 [15] S. J. Lee, D. Ahn, I. You, D. Y. Yoo, Y. S. Kang, *Automation in Construction* **2020**, 119,
 669 103323.
 670 [16] B. Han, X. Yu, J. Ou, *Self-Sensing Concrete in Smart Structures*, Elsevier, **2014**.
 671 [17] A. L. Materazzi, F. Ubertini, A. D'Alessandro, *Cement and Concrete Composites* **2013**,
 672 37, 2.

673 [18] S. Dong, D. Wang, A. Ashour, B. Han, J. Ou, *Composites Part A: Applied Science and*
674 *Manufacturing* **2021**, *141*, 106228.

675 [19] G. Y. Li, P. M. Wang, X. Zhao, *Cement and Concrete Composites* **2007**, *29*, 377.

676 [20] F. Azhari, N. Banthia, *Cement and Concrete Composites* **2012**, *34*, 866.

677 [21] M. F. L. De Volder, S. H. Tawfick, R. H. Baughman, A. J. Hart, *Science* **2013**, *339*, 535.

678 [22] A. P. Kumar, D. Depan, N. Singh Tomer, R. P. Singh, *Progress in Polymer Science* **2009**,
679 *34*, 479.

680 [23] A. Sobolkina, V. Mechtcherine, V. Khavrus, D. Maier, M. Mende, M. Ritschel, A.
681 Leonhardt, *Cement and Concrete Composites* **2012**, *34*, 1104.

682 [24] S. Parveen, S. Rana, R. Fangueiro, M. C. Paiva, *Cement and Concrete Research* **2015**, *73*,
683 215.

684 [25] B. Han, S. Sun, S. Ding, L. Zhang, X. Yu, J. Ou, *Composites Part A: Applied Science and*
685 *Manufacturing* **2015**, *70*, 69-81.

686 [26] S. J. Chen, C. Y. Qiu, A. H. Korayem, M. R. Barati, W. H. Duan, *Powder Technology*
687 **2016**, *301*, 412.

688 [27] S. Banerjee, T. Hemraj-Benny, S. S. Wong, *Advanced Materials* **2005**, *17*, 17.

689 [28] H. Park, J. Zhao, J. P. Lu, *Nano Letters* **2006**, *6*, 916.

690 [29] S. W. Kim, T. Kim, Y. S. Kim, H. S. Choi, H. J. Lim, S. J. Yang, C. R. Park, *Carbon*
691 **2012**, *50*, 3.

692 [30] B. Han, S. Ding, S. Sun, L. Zhang, J. Ou, In *Chemical Functionalization of Carbon*
693 *Nanomaterials* (Ed.: Thakur, V. K.), CRC Press, **2015**, pp. 748–773.

694 [31] C. He, N. Zhao, C. Shi, E. Liu, J. Li, *Advanced Materials* **2015**, *27*, 5422.

695 [32] S. Sun, X. Yu, B. Han, J. Ou, *Construction and Building Materials* **2013**, *49*, 835.

696 [33] M. Zhan, G. Pan, F. Zhou, R. Mi, S. P. Shah, *Cement and Concrete Composites* **2020**,
697 *108*, 103518.

698 [34] L. Zhang, S. Ding, L. Li, S. Dong, D. Wang, X. Yu, B. Han, *Composites Part A: Applied*
699 *Science and Manufacturing* **2018**, *109*, 303.

700 [35] Z. Liu, J. Wang, V. Kushvaha, S. Poyraz, H. Tippur, S. Park, M. Kim, Y. Liu, J. Bar, H.
701 Chen, X. Zhang, *Chemical Communications* **2011**, *47*, 9912.

702 [36] J. Foroughi, G. M. Spinks, D. Antiohos, A. Mirabedini, S. Gambhir, G. G. Wallace, S. R.
703 Ghorbani, G. Peleckis, M. E. Kozlov, M. D. Lima, R. H. Baughman, *Advanced Functional*
704 *Materials* **2014**, *24*, 5859.

705 [37] M. Kumar, Y. Ando, *Journal of Nanoscience and Nanotechnology* **2010**, *10*, 3739.

706 [38] A. G. Nasibulin, S. D. Shandakov, L. I. Nasibulina, A. Cwirzen, P. R. Mudimela, K.
707 Habermehl-Cwirzen, D. A. Grishin, Y. V. Gavrilov, J. E. M. Malm, U. Tapper, Y. Tian, V.
708 Penttala, M. J. Karppinen, E. I. Kauppinen, *New Journal of Physics* **2009**, *11*, 23013.

709 [39] P. Ludvig, J. M. Calixto, L. O. Ladeira, I. C. P. Gaspar, *Materials* **2010**, *4*, 575.

710 [40] F. Ghaharpour, A. Bahari, M. Abbasi, A. A. Ashkaran, *Construction and Building*
711 *Materials* **2016**, *113*, 523.

712 [41] C. Warakulwit, S. Yadnum, V. Paluka, O. Phuakkong, M. Niamlaem, K.
713 Pongpaisanseree, S. Sinthupinyo, J. Limtrakul, *Chemical Engineering Journal* **2015**, *278*, 150.

714 [42] T. Buasiri, K. Habermehl-Cwirzen, L. Krzeminski, A. Cwirzen, *Nanomaterials* **2019**, *9*,
715 594.

716 [43] P. R. Mudimela, L. I. Nasibulina, A. G. Nasibulin, A. Cwirzen, M. Valkeapää, K.
717 Habermehl-Cwirzen, J. E. M. Malm, M. J. Karppinen, V. Penttala, T. S. Koltsova, O. V.

718 Tolochko, E. I. Kauppinen, *Journal of Nanomaterials* **2009**, 2009, 29.

719 [44] A. G. Nasibulin, T. Koltsova, L. I. Nasibulina, I. V. Anoshkin, A. Semencha, O. V.

720 Tolochko, E. I. Kauppinen, *Acta Materialia* **2013**, 61, 1862.

721 [45] W. Brockner, C. Ehrhardt, M. Gjikaj, *Thermochimica Acta* **2007**, 456, 64.

722 [46] C. Stephens, L. Brown, F. Sanchez, *Carbon* **2016**, 107, 482.

723 [47] D. He, M. Bozlar, M. Genestoux, J. Bai, *Carbon* **2010**, 48, 1159.

724 [48] S. Helveg, C. López-Cartes, J. Sehested, P. L. Hansen, B. S. Clausen, J. R. Rostrup-

725 Nielsen, F. Abild-Pedersen, J. K. Nørskov, *Nature* **2004**, 427, 426.

726 [49] S. Hofmann, R. Sharma, C. Ducati, G. Du, C. Mattevi, C. Cepek, M. Cantoro, S. Pisana,

727 A. Parvez, F. Cervantes-Sodi, A. C. Ferrari, R. Dunin-Borkowski, S. Lizzit, L. Petaccia, A.

728 Goldoni, J. Robertson, *Nano Letters* **2007**, 7, 602.

729 [50] L. Fan, P. F. Liu, X. Yan, L. Gu, Z. Z. Yang, H. G. Yang, S. Qiu, X. Yao, *Nature*

730 *Communications* **2016**, 7, 10667.

731 [51] A. T. Phan, M. K. Paek, Y. B. Kang, *Acta Materialia* **2014**, 79, 1.

732 [52] A. Rinaldi, N. Abdullah, M. Ali, A. Furche, S. B. Abd. Hamid, D. S. Su, R. Schlögl,

733 *Carbon* **2009**, 47, 3023.

734 [53] M. Pérez-Cabero, E. Romeo, C. Royo, A. Monzón, A. Guerrero-Ruiz, I. Rodríguez-

735 Ramos, *Journal of Catalysis* **2004**, 224, 197.

736 [54] N. Latorre, E. Romeo, J. I. Villacampa, F. Cazaña, C. Royo, A. Monzón, *Catalysis Today*

737 **2010**, 154, 217.

738 [55] N. Prieto-Taboada, O. Gómez-Laserna, I. Martínez-Arkarazo, M. Á. Olazabal, J. M.

739 Madariaga, *Analytical Chemistry* **2014**, 86, 10131.

740 [56] S. S. Potgieter-Vermaak, J. H. Potgieter, R. Van Grieken, *Cement and Concrete Research*

741 **2006**, 36, 656.

742 [57] T. Schmid, P. Dariz, *Journal of Raman Spectroscopy* **2015**, 46, 141.

743 [58] M. J. Bronikowski, *Carbon* **2006**, 44, 2822.

744 [59] I. Pane, W. Hansen, *Cement and Concrete Research* **2005**, 35, 1155.

745 [60] D. Venegoni, P. Serp, R. Feurer, Y. Kihn, C. Vahlas, P. Kalck, *Carbon* **2002**, 40, 1799.

746 [61] A. Magrez, J. W. Seo, C. Mikó, K. Hernádi, L. Forró, *Journal of Physical Chemistry B*

747 **2005**, 109, 10087.

748 [62] W. D. Zhang, Y. Wen, S. M. Liu, W. C. Tjiu, G. Q. Xu, L. M. Gan, *Carbon* **2002**, 40,

749 1981.

750 [63] B. Han, S. Ding, J. Wang, J. Ou, *Nano-Engineered Cementitious Composites*, Springer

751 Singapore, **2019**.

752 [64] J. M. Makar, G. W. Chan, *Journal of the American Ceramic Society* **2009**, 92, 1303.

753 [65] Z. Li, D. J. Corr, B. Han, S. P. Shah, *Cement and Concrete Composites* **2020**, 107,

754 103513.

755 [66] M. Tafesse, H. K. Kim, *Composites Part B: Engineering* **2019**, 169, 55.

756 [67] P. Stynoski, P. Mondal, C. Marsh, *Cement and Concrete Composites* **2015**, 55, 232.

757 [68] F. Moulin, M. Devel, S. Picaud, *Physical Review B* **2005**, 71, 165401.

758 [69] M. S. Konsta-Gdoutos, Z. S. Metaxa, S. P. Shah, *Cement and Concrete Research* **2010**,

759 40, 1052.

760 [70] V. S. Harutyunyan, E. S. Aboyan, P. J. M. Monteiro, V. P. Mkrtchyan, M. K. Balyan, A.

761 P. Aivazyan, *Journal of the American Ceramic Society* **2003**, 86, 2162.

762 [71] X. Cui, B. Han, Q. Zheng, X. Yu, S. Dong, L. Zhang, J. Ou, *Composites Part A: Applied*

763 *Science and Manufacturing* **2017**, *103*, 131.

764 [72] P. C. Hewlett, M. Liska, *Lea's chemistry of cement and concrete*, Elsevier, **2019**.

765 [73] R. K. Abu Al-Rub, A. I. Ashour, B. M. Tyson, *Construction and Building Materials*
766 **2012**, *35*, 647.

767 [74] S. Musso, J.-M. M. Tulliani, G. Ferro, A. Tagliaferro, *Composites Science and*
768 *Technology* **2009**, *69*, 1985.

769 [75] B. Han, L. Zhang, S. Zeng, S. Dong, X. Yu, R. Yang, J. Ou, *Composites Part A: Applied*
770 *Science and Manufacturing* **2017**, *95*, 100.

771 [76] M. Saafi, *Nanotechnology* **2009**, *20*, 395502.

772 [77] B. Han, L. Zhang, S. Sun, X. Yu, X. Dong, T. Wu, J. Ou, *Composites Part A: Applied*
773 *Science and Manufacturing* **2015**, *79*, 103.

774 [78] S. Sun, S. Ding, B. Han, S. Dong, X. Yu, D. Zhou, J. Ou, *Composites Part B: Engineering* **2017**, *129*, 221.

775 [79] C. Camacho-Ballesta, E. Zornoza, P. Garcés, *Advances in Cement Research* **2016**, *28*,
776 274.

777 [80] P. A. Danoglidis, M. S. Konsta-Gdoutos, E. E. Gdoutos, S. P. Shah, *Construction and*
778 *Building Materials* **2016**, *120*, 265.

779 [81] A. O. Monteiro, P. B. Cachim, P. M. F. J. Costa, *Cement and Concrete Composites* **2017**,
780 *81*, 59.

781 [82] L. Zhang, Q. Zheng, X. Dong, X. Yu, Y. Wang, B. Han, *Construction and Building*
782 *Materials* **2020**, *256*, 119452.

783 [83] B. Han, Y. Wang, S. Ding, X. Yu, L. Zhang, Z. Li, J. Ou, *Journal of Intelligent Material*
784 *Systems and Structures* **2017**, *28*, 699.

785 [84] S. Dong, B. Han, J. Ou, Z. Li, L. Han, X. Yu, *Cement and Concrete Composites* **2016**, *72*,
786 48.

787 [85] B. Han, K. Zhang, X. Yu, E. Kwon, J. P. Ou, *Cement and Concrete Composites* **2012**, *34*,
788 794.

789 [86] X. Li, M. Li, *Cement and Concrete Research* **2019**, *123*, 105714.

790 [87] H. K. Kim, I. S. Park, H. K. Lee, *Composite Structures* **2014**, *116*, 713.

791 [88] Y. Song, Y. Du, X. Zhang, B. Sun, *Applied Sciences* **2019**, *9*, 4165.

792 [89] Z. Zeng, J. Wang, S. Shen, P. Li, A. A. Shuaibu, W. Wang, *Construction and Building*
793 *Materials* **2019**, *210*, 639.

794 [90] X. Lei, B. Zhang, *Journal of Transportation Engineering* **2011**, *137*, 227.

795

796

797

798

799

800

801

802

803

804

805

806

807

808
809
810

Biographies and photos

<p>Siqi Ding</p>	<p>Siqi DING obtained his PhD degree from the Hong Kong Polytechnic University in 2021. He is now a postdoctoral fellow at School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, China. His main research interests include smart materials and structures, structural health monitoring and nanotechnology in building material.</p>
<p>Yu Xiang</p>	<p>Yu XIANG is currently a research fellow in the Department of Civil and Environmental Engineering at the Hong Kong Polytechnic University. He received his BEng and Ph.D. degrees in civil engineering from Hunan University. His research centers around the structural application of advanced engineering materials, with focuses on high-performance and durable structures enabled by fiber-reinforced polymer (FRP) and ultra-high-performance concrete (UHPC).</p>
<p>Yi-Qing Ni</p>	<p>Yi-Qing NI, male, obtained his Bachelor and Master degrees from Zhejiang University, and PhD degree from The Hong Kong Polytechnic University. He is a chair professor at Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, and the director of the National Engineering Research Center on Rail Transit Electrification and Automation (Hong Kong Branch), Hong Kong. His research areas cover structural health monitoring, structural dynamics and control, smart materials and structures, sensors and actuators, monitoring and control in rail engineering.</p>
<p>Vijay Kumar Thakur</p>	<p>Vijay Kumar Thakur is Professor and Head of the Biorefining and Advanced Materials Research Centre at SRUC, Edinburgh, U.K. He also holds an Adjunct Professor position in Jiangsu University and is a Visiting Professor at Shiv Nadar University, UPES and Visitor at Cranfield University, U.K. His research activities span the disciplines of Biorefining, Chemistry, Manufacturing, Materials Science, Nanotechnology, and Sustainable and Advanced Materials. He has published over 300 SCI journal articles, 2 patents, 50 books, and 40 book chapters.</p>

<p>Xinyue Wang</p>	<p>Xinyue WANG obtained his PhD degree from Dalian University of Technology in 2021. He is now a postdoctoral fellow at School of Civil Engineering, Dalian University of Technology, China. His main research interests include nano-engineered cementitious composites and interfaces in concrete materials and structures.</p>
<p>Baoguo Han</p>	<p>Baoguo HAN received his PhD in the field of smart materials and structures from the Harbin Institute of Technology, China, in 2005. He is currently a professor of civil engineering in the Dalian University of Technology, China. He was invited to the University of Minnesota and has worked as a visiting research scholar there for 3 years. His main research interests include smart/multifunctional concrete, nano/fiber engineered concrete, structural health monitoring, and traffic detection.</p>
<p>Jinping Ou</p>	<p>Jinping OU received his Ph.D. degree from the Harbin Institute of Technology, China, in 1987. He is a professor at both Harbin Institute of Technology and Dalian University of Technology, China. His main research interests include structural damage, reliability and health monitoring, structural vibration and control, smart materials and structures. He has been an academician of Chinese Academy of Engineering since 2003, and was the president of the Chinese Society for Vibration Engineering, the vice-president of the Architectural Society of China, as well as the vice-president and fellow of the International Society for Structural Health Monitoring of Intelligent Infrastructure.</p>