

This material may be downloaded for personal use only. Any other use requires prior permission of the American Society of Civil Engineers. This material may be found at <https://ascelibrary.org/doi/10.1061/JSENDH.STENG-13490>.

1 **Experiments on Pultruded FRP Beam-to-column Joints: Failure 2 Mode Analysis and Stiffness Determination**

3 Sivaganesh SELVARAJ¹, Tak-Ming CHAN^{2*} and Ben YOUNG³

4 ¹Research Assistant Professor, Department of Civil and Environmental Engineering, The Hong
5 Kong Polytechnic University, Hong Kong, China. Email: sivaganesh.selvaraj@polyu.edu.hk

6 ²*Professor, Department of Civil and Environmental Engineering, The Hong Kong Polytechnic
7 University, Hong Kong, China. Email: tak-ming.chan@polyu.edu.hk (corresponding author)

8 ³Professor, Department of Civil and Environmental Engineering, The Hong Kong Polytechnic
9 University, Hong Kong, China. Email: ben.young@polyu.edu.hk

10

11 **Abstract**

12 The design of pultruded fiber-reinforced polymer (PFRP) structures can be considered to be
13 governed by the beam-to-column joints as they exhibit brittle behavior. This study investigates
14 the failure modes, stiffness contributions, and load transfer of the connection components in the
15 PFRP beam-to-column joint made from glass pultruded structural shapes. Ten full-scale joint tests
16 were carried out, including parameters such as three different end distances, cleat thicknesses, and
17 additional T-stiffeners. The conventional beam-to-column joints without additional stiffeners
18 failed in a brittle manner initiated by flange cleats followed by progressive stiffness reduction
19 leading to ultimate failure. The analysis using strain data confirmed that there is a need for an
20 additional load transfer component in the top flange to delay the brittle failure. The use of T-
21 stiffeners significantly increased the initial stiffness of the beam-to-column joint and delayed the
22 first failure. The overall rotational stiffness of the PFRP beam-to-column joint was determined
23 using the joint component method in the Eurocode. It is shown that the Eurocode method is
24 conservative for connection components with higher end distances. The appropriateness of the
25 stiffness prediction method in the Eurocode is demonstrated with a design example.

26 **Keywords:** FRP Structures; Pultruded composite forms; Beam-to-column joints; First failure
27 concept; Stiffness Determination;

28 **Introduction**

29 The structural fiber composite forms are called pultruded fiber-reinforced polymer (PFRP) profiles,
30 mostly they are made of lightweight E-glass or carbon fibers with a resin matrix (EXTREN 1989
31 and Fiberline 1995). Interest has been increasing to use of PFRPs in construction (Clarke 1991,
32 El-Badry 1996, Bank 2023) due to the high strength-to-weight ratio and durability against
33 corrosive environments. In contrast to this, the brittle failure modes of PFRPs are the main
34 drawback that needs to be addressed. Towards this objective, the beam-to-column joints for
35 frames constructed with PFRP I-section and tubular form profiles have been investigated largely
36 and they fail in a brittle manner thus governing the design of the entire PFRP structure. For design
37 purposes, beam-to-column joints in frames are assumed to exhibit either nominally pinned or fully
38 rigid behavior, but in reality, all joints behave between these two extreme assumptions. The joint's
39 characteristics can be described by its moment-rotation relationship or stiffness (BS EN 1993-1-
40 8:2005). Knowledge of the structural response and failure mode is necessary for the design of
41 PFRP structural joints as they behave complicatedly in a combination of failure modes. Full-
42 scaled physical testing is the method usually adopted to determine the characteristics of pultruded
43 frame joints and to observe the load transfer paths. A detailed review of research on pultruded
44 frame joints and members is available in the literature (ASCE 2011, Ellingwood 2003, Mottram
45 and Zheng 1996; 1999a; 199b, Gand et al. 2013; Nguyen et al. 2013, 2014 and 2015, Qureshi and
46 Mottram 2013;2014;2015, Martins et al. 2017;2021a; 2021b and 2022c).

47 The pioneering research on PFRP beam-to-column joints (Bank et al. 1990, 1994, Bank and
48 Mosallam 1992, Bass and Mottram 1994, Mottram and Zheng 1996, Smith et al. 1998) used steel-
49 like geometry and bolting connection configurations for simplicity and adaptability but

50 components are of glass fibers and concluded the following (i) failure is initiated by cracking at
51 the web-flange junction of the column sections and the column needs to be strengthened to avoid
52 it; (ii) premature cracking of the cleats connecting the beam and column due to the low fiber
53 content in the direction of loading (non-balanced fiber orientation arrangements). Later the cleats
54 were replaced by steel and stainless-steel ones (Bass and Mottram 1994, Mottram and Zheng 1996,
55 Zhang et al. 2018, Martins et al. 2017, Luo et al 2019, Turvey 2000, Turvey and Cooper 2004,
56 Qureshi and Mottram 2013; Martins et al. 2021a; Qureshi et al 2020; Martins et al. 2021d; Martins
57 et al. 2023), in which the following were observed; (i) premature failure of column's web-flange
58 junction, (ii) local buckling in beam flange; (iii) web and flange cleated joints failed in combination
59 of beam's top flange tensile rupture and shear-out failure in beam webs possibly due to inadequate
60 edge distance (e_2) and end (e_1) distance; (iv) web cleat only joints failed in shear-out of beam web
61 ends possibly due to small end distance (e_1); (v) flange cleat only joints failed in beam's top flange
62 tensile rupture; (vi) the increase in thickness of the steel cleats does not improve the structural
63 performance as the failure mode is always governed by PFRP profiles due to its less stiffness and
64 directionally varying material characteristics; (vii) it is possible to exploit steel yielding before the
65 failure of glass fiber reinforced polymer (GFRP) profiles by strengthening the column and beam
66 with steel components, however, so far this method demonstrated only for tubular sections by
67 placing the steel strengthening components inside the column and beam cross-sections. If a similar
68 strengthening method is used for open cross-sections like I-sections, there will be several
69 individual components and they require more bolted connections which will further complicate
70 the design process. More importantly, in most of the above literature, it was recommended to
71 reinforce the column near the vicinity of the joint to avoid premature web-flange junction failure.
72 Furthermore, manufacturing a complicated shape for uniform load transfer in a PFRP structural

73 joint is uneconomical and the construction is impractical with it. To improve the joint performance
74 and to delay premature failures, new types of connection components were developed (Bank et al.
75 1994, Mosallam et al. 1994, Smith et al. 1999, Singamsethi et al. 2005), and new connection
76 configurations were also proposed with adhesive bonding (Feng et al. 2022), however, the failure
77 pattern remains brittle. The researchers concluded that the adhesive bonding can improve the
78 strength and achieve the serviceability and stiffness requirements, however, the durability
79 performance of the adhesive connection needs to be investigated with respect to the material
80 characteristics of PFRP and established in the form of design guidelines.

81 Although research studies on PFRP beam-to-column joints can be found in the literature, the latest
82 comprehensive review work by Coelho and Mottram (2015) and Bank (2023), indicated that the
83 current design specifications (CNR 2008, ASCE 2010) for the PFRP structures are not appropriate
84 to be used by industries and steel alike joints will not be applicable for PFRP structures. Coelho
85 and Mottram (2015) also specified that there is a large research gap in the behavior of the PFRP
86 structural frames, despite the large number of innovations in recent years (Feng et al. 2022), there
87 is a need for new joints configuration to improve the load paths and delay the brittle failure of the
88 PFRP joints. Similarly, the objective of this present investigation is to increase the application of
89 PFRP structures in the corrosive environment and use with sea-sand seawater concrete (Teng et al.
90 2019) by improving the failure modes and delaying brittle failure. In addition, due to the nature
91 of the PFRP fibers, the bolts and nuts made up of fibers cannot be used in the connections where
92 shear force is influencing the connection stiffness (Abdelkerim 2019 and 2020; Lawler and Polak
93 2021). Therefore, this study focuses on the development of simple beam-to-column joints made
94 only from PFRP profiles with E-glass fiber except bolts are of stainless steel. The structural
95 behavior of beam-to-column joints is investigated and improved connection element

96 configurations are suggested for better load transfer and delay the first failure. Moreover, the
97 stiffness of the tested joints was determined using the joint component method used for steel joints
98 according to Eurocode (BS EN 1993-1-8:2005) to check its appropriateness, similar design method
99 was adopted by Martins et al. (2021b) for PFRP beam-column joints.

100 **Present Investigation**

101 The PFRP beam-to-column connection element configurations including end distance (e_1), bolt
102 diameters (d_b), bolt spacing (s), and geometric dimensions are designed according to the existing
103 literature (CNR 2008, ASCE 2010, EU 2016, CEN/TS 2020, FprCEN/TS 2022, Martins et al. 2021
104 and Selvaraj et al. 2023). This research explored the load path and first failure in PFRP beam-to-
105 column joints. The objective of this study endeavors to delay the first failure beyond the
106 serviceability limit load, analyze the load paths-transfer mechanism and determine the contribution
107 of the individual connecting components. The meaning of first failure is the deformation of the
108 connecting element exposing the fibers, followed by a decrease in the stiffness of the joint, and
109 leads to ultimate failure. Thus, the ultimate moment capacity and rotation of the joint are higher
110 than that of the first failure. The first failure in PFRP structures should not be considered as the
111 elastic limit for design calculation, but most of the time it is less than the elastic limit due to the
112 uncertain failure modes of the PFRP materials (Mottram and Zheng 1999a). Further, the
113 appropriateness of the Eurocode (BS EN 1993-1-8:2005) method of stiffness determination is
114 validated by comparing it with the initial stiffness from the experiments.

115 **Material Properties and Specimen Preparation**

116 The PFRP tubular column and I-section beam profiles used in the tests were made from glass fiber
117 products. The material properties and physical characterization of PFRP profiles are obtained from
118 tensile and burn-off tests, respectively. The samples for the tensile and burn-off tests were taken

119 from both flanges and webs of the beam and column. The tensile test samples are of rectangular
120 strip size of 250 mm long and 25 mm wide. The tensile test was conducted according to ASTM
121 D3039/D3039M (2014) and Selvaraj and Madhavan (2020), the material properties obtained from
122 the tensile tests were summarized in Fig. 1 and Table 1. The burn-off tests were carried out
123 according to ASTM D3171 (2015), and Selvaraj and Madhavan (2019). The average fiber weight
124 fraction ratios obtained from burn-off tests were 59.8%, and 56.86% for 4 mm and 9 mm thick
125 PFRP cleat profiles, respectively. The fiber fraction ratios of the PFRP beam (4 mm thick plate
126 profile) and column (5 mm thick plate profile) profiles are 50.56% and 52.73%, respectively.
127 These fiber weight fraction ratios are consistent with the minimum requirements of the standards
128 (CNR 2008, ASCE 2010, EU 2016, CEN/TS 2020, FprCEN/TS 2022). The fiber orientation
129 arrangements (architecture) of all three different thicknesses of PFRP plates (both the web and
130 flanges) are partially balanced symmetric as observed through burn-off tests; there are bi-
131 directional fiber layers on both the top and bottom of the PFRP plate and one bi-directional fiber
132 layer on the mid-thickness but thinner than the top and bottom layers; other fibers are
133 unidirectionally oriented in the longitudinal direction of the member as shown in Fig. 1a.
134 The column is of a square tubular profile 100 mm × 100 mm (outer-to-outer dimensions) with a
135 wall thickness of 5 mm and the beam is of I-section of size 100 mm deep, 80 mm flange width,
136 and thickness of 4 mm for both flange and web (Fig. 2a). The column is filled with C25 grade
137 concrete (25 MPa - characteristic compressive cube strength) as shown in Fig. 2b as a
138 strengthening measure to avoid web-flange junction failure. The concrete mix of 1:1:2 is used to
139 achieve the 25 MPa strength, meaning 554 kg of cement per cubic meter of concrete. It was
140 anticipated based on the literature that the connection components would fail first if the column is
141 strong, therefore, the concrete strength is arbitrarily chosen. The objective of this investigation is

142 to analyze the failure modes of the connection components, therefore the column and beam
 143 dimensions are consistent for all the test samples, while the size of the connecting components
 144 (flange and web cleats) and connection geometries (stiffened, unstiffened cleats and joints with T-
 145 stiffener) are varied as summarized in Table 2 and Figs. 2f-2o.

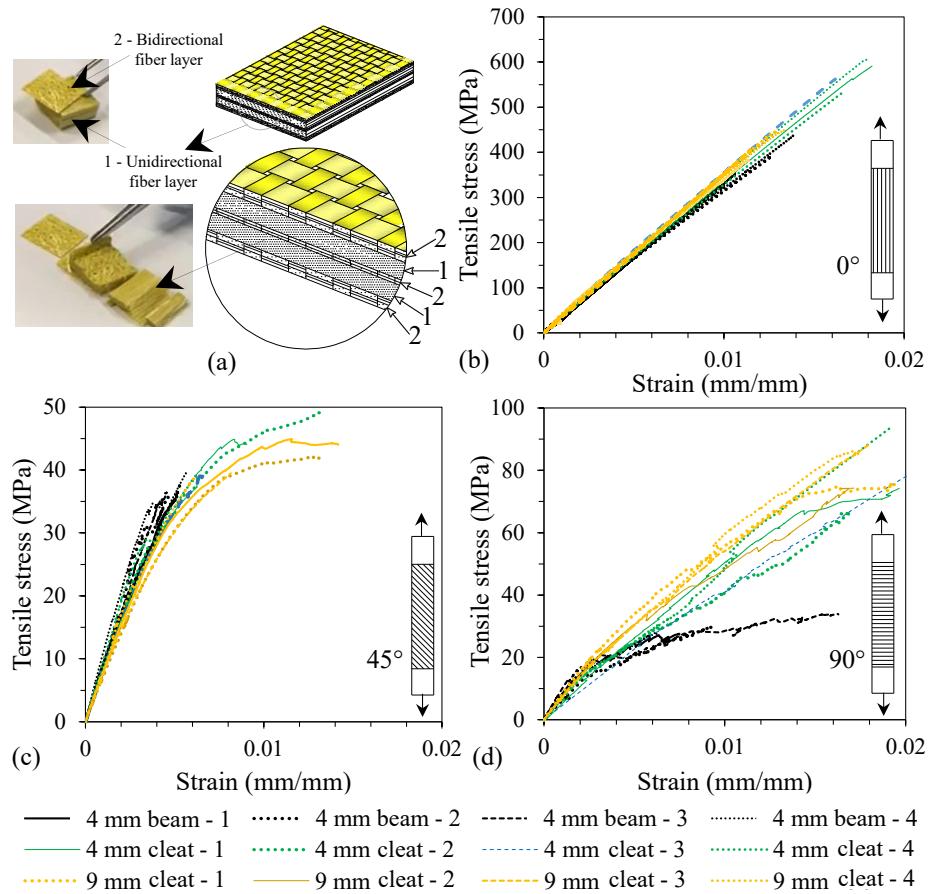
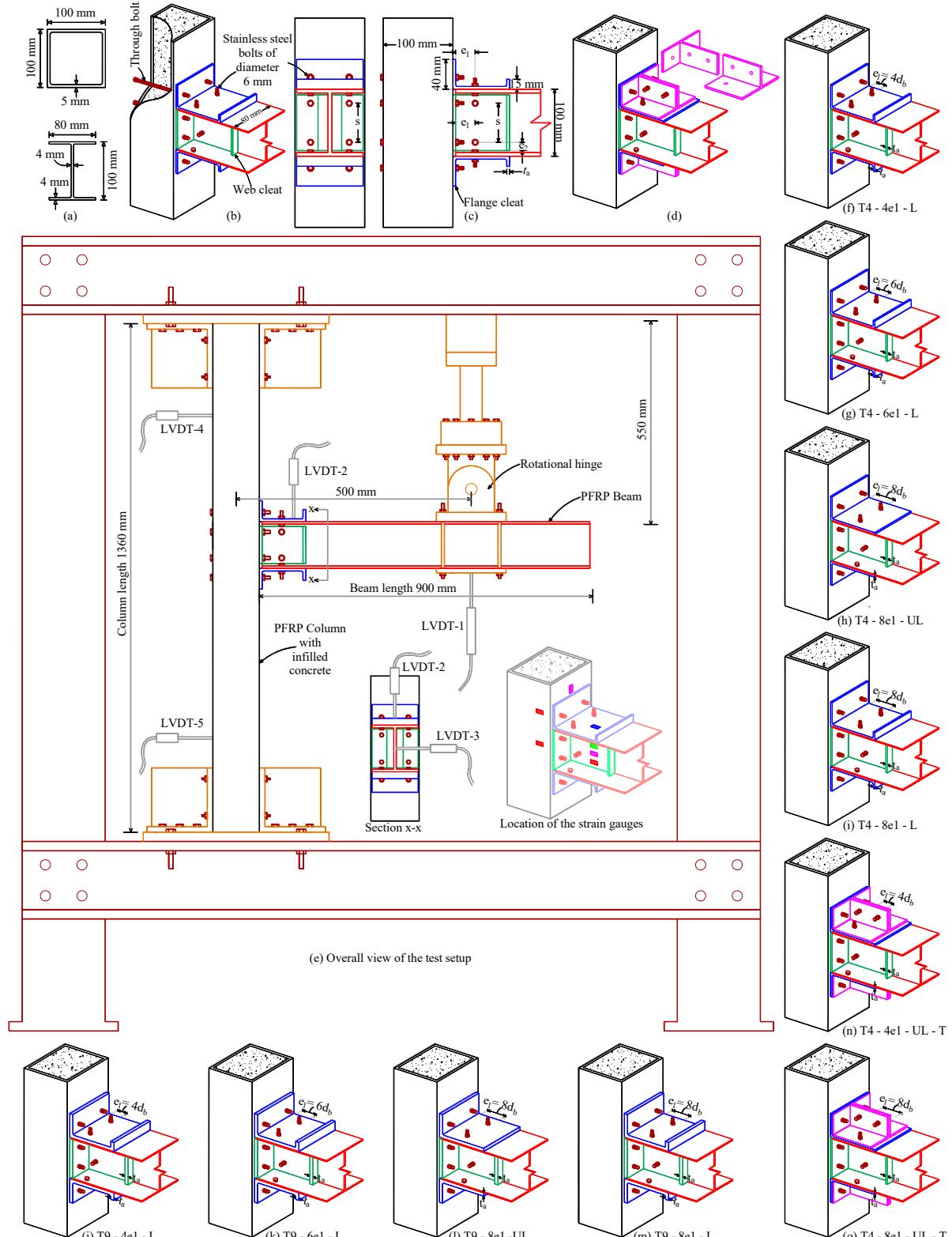


Table 1. Material properties of the PFRP structural shapes tested

Thickness of the PFRP	Sample number	Tensile Modulus (E) (MPa) ^a			Ultimate Strain (ε) % ^a			Ultimate Tensile Strength (f_t) (MPa) ^a		
		$E_{t,L}$ [0°]	$E_{t,D}$ [45°]	$E_{t,T}$ [90°]	0°	45°	90°	0°	45°	90°
4 mm (beam's flange and web) ^{1, b}	1	32782	7266	6879	1.82	0.74	1.44	590.9	36.1	49.8
	2	32053	6991	5719	1.66	0.81	1.19	532.6	35.9	50.7
	3	34639	7150	6884	1.62	0.57	1.49	562.8	34.3	55.0
	4	33870	8331	6031	1.79	0.54	1.05	605.8	35.5	51.3
Mean		33336	7435	6378	1.72	0.67	1.29	573.0	35.4	51.7
COV		0.03	0.08	0.09	0.06	0.20	0.16	0.06	0.02	0.04

4 mm (cleats) ²	1	33516	8507	7640	1.06	0.50	0.75	352.0	35.3	27.6
	2	31031	8650	5929	1.27	0.53	0.93	394.5	37.6	29.8
	3	32877	8626	8672	1.01	0.46	1.51	330.0	36.8	33.9
	4	31539	10113	6548	1.38	0.57	0.62	436.8	39.5	27.8
	Mean	32241	8974	7197	1.18	0.51	0.95	378.3	37.3	29.8
9 mm (cleats) ³	COV	0.04	0.08	0.17	0.15	0.09	0.41	0.12	0.05	0.10
	1	34705	7640	7646	1.29	1.15	2.46	445.0	44.9	83.0
	2	33535	6886	6780	1.13	1.28	1.71	382.2	42.1	82.8
	3	35293	7264	6625	1.15	0.82	1.80	404.1	39.5	88.4
	4	34141	8401	6855	1.34	0.62	1.71	448.4	39.3	86.1
153	Mean	34419	7548	6977	1.23	0.97	1.92	419.9	41.4	85.1
	COV	0.02	0.09	0.07	0.08	0.31	0.19	0.08	0.06	0.03

^aTest results E, ε , and f_t are summarized with respect to the corresponding angle of loading; ^baverage values of the beam's flange and web - the difference was insignificant as the thickness and fiber architecture were same in both flange and web; ¹ the results were calculated from the stress-strain plots with legends "4 mm beam - 1" to "4 mm beam - 4" in Figs. 1b -1d; ² the results were calculated from the stress-strain plots with legends "4 mm cleat - 1" to "4 mm cleat - 4" in Figs. 1b -1d; ³ the results were calculated from the stress-strain plots with legends "9 mm cleat - 1" to "9 mm cleat - 4" in Figs. 1b -1d.


159 Table 2: Dimension of the test samples and corresponding test results.

Specimen Nomenclature	Flange and web cleat thickness (mm)	e_1 (mm)	Stiffened or unstiffened cleats	Ultimate moment (kNm)	Initial Stiffness (kNm/rad)
T4 - 4e1 - L - Fig. 2f	4	$4d_b = 24$	Unstiffened	4.61	48.48
T4 - 6e1 - L - Fig. 2g	4	$6d_b = 36$	Unstiffened	5.45	51.52
T4 - 8e1 - UL - Fig. 2h	4	$8d_b = 48$	Unstiffened	5.08	47.88
T4 - 8e1 - L - Fig. 2i	4	$8d_b = 48$	Unstiffened	6.21	54.64
T9 - 4e1 - L - Fig. 2j	9	$4d_b = 32$	Unstiffened	4.80	56.62
T9 - 6e1 - L - Fig. 2k	9	$6d_b = 48$	Unstiffened	6.77	68.35
T9 - 8e1 - UL - Fig. 2l	9	$8d_b = 64$	Unstiffened	6.87	131.50
T9 - 8e1 - L - Fig. 2m	9	$8d_b = 64$	Unstiffened	7.24	139.92
T4 - 4e1 - UL - T - Fig. 2n	4	$4d_b = 24$	T-Stiffener	5.55	146.57
T4 - 8e1 - UL - T - Fig. 2o	4	$8d_b = 48$	T-Stiffener	6.43	161.93

160 Note: e_1 - end distance; d_b - diameter of the bolt; $e_2 \geq 2d_b$ for all the connections tested. The nomenclature 161 of the specimens are as follows - Thickness of the cleats - end distance (with respect to the diameter of the 162 bolts - d_b) - L for stiffened cleat and UL for unstiffened cleat - T for T-stiffeners on both the flanges, for 163 example, T4 - 4e1 - L means 4 mm thick flange and web cleats with $4d_b$ end distance and stiffened cleat; 164 and T4 - 4e1 - UL - T means 4 mm thick flange and web cleats with $4d_b$ end distance and unstiffened cleat 165 with T-stiffeners. Please refer to Table 1 for the material properties of the structural members used.

166
167 The length of the column and beam is 1360 mm and 900 mm, respectively as shown in Fig. 2e.

168 The beam is connected at a distance of 550 mm from the top of the column. Since the column is 169 of tubular sections, the bolts are connected through the column cross-section. It is also a 170 strengthening measure to use the through bolts to avoid web-flange junction failure. The 171 stainless-steel bolts with Young's modulus 194 GPa were used for all connections, and they were 172 pre-tightened on the column before casting the concrete as shown in Fig. 2b.

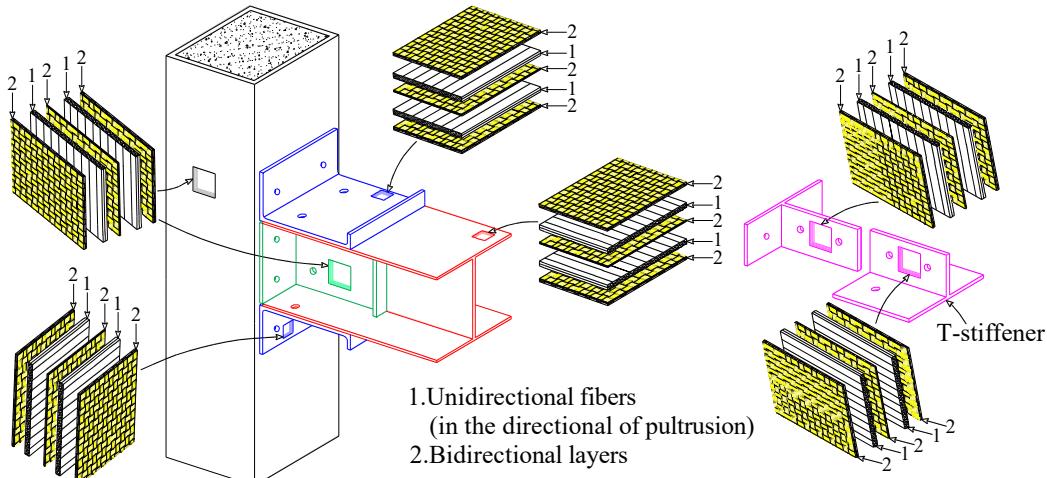
173

174

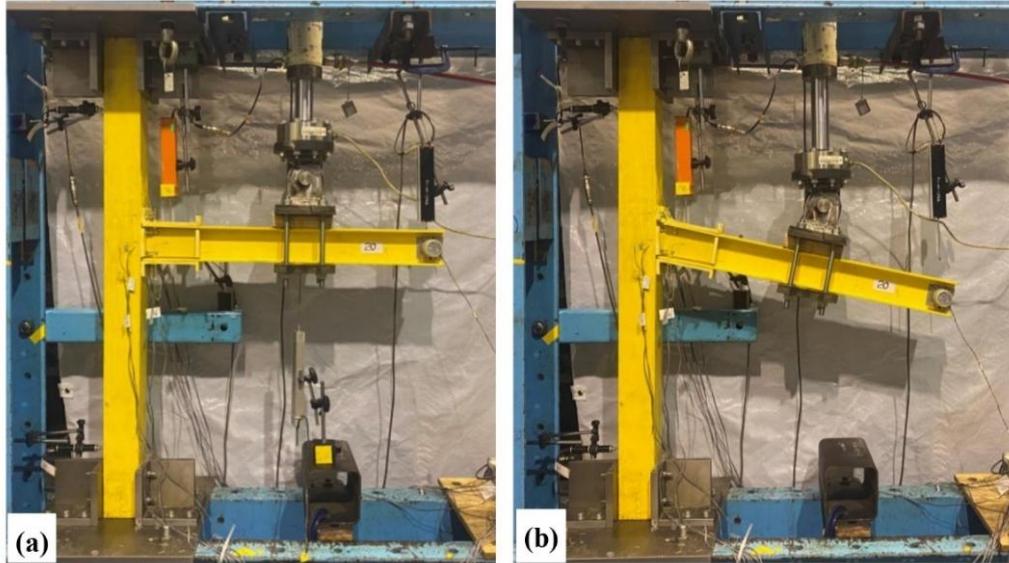
175

176

177


Fig. 2. PFRP Beam-to-column joint specimens and testing arrangements: (a) Dimensions of the column (Square tubular section) and beam (I-Section); (b-c) Design dimensions and connection arrangements; (d) Connection with T-Stiffener; (e) Test set-up for beam-to-column joint; (f-o) View of the specimens with varying parameters

178 All the bolts used for the beam-to-column joints were 6 mm in diameter as per CEN/TS (2020),
179 which suggests that the diameter of the bolts should be equal or 1.5 times the thickness (t_a) of the
180 PFRP plate that is connected ($t_a \leq d_b \leq 1.5t_a$). The two-bolted and one-row connection was
181 employed at each connecting component as shown in Fig. 2c and 2d. The beam and column are
182 connected using flange and web cleats which were cut from unequal angle sections, therefore the
183 direction of fibers in the web and flange cleats are perpendicular to the longitudinal fibers of the
184 beam as shown in Fig. 3. The T-shape stiffener is introduced with both top and bottom flange
185 cleats for verifying the increase in stiffness and moment capacity of the beam-to-column joint (Fig.
186 2d, 2n and 2o). The T-stiffeners are cut from the PFRP I-section profile by removing one flange,
187 therefore, the fiber architecture remains consistent with other components of the joint. The details
188 of connection dimensions for each tested specimen are summarised in Table 2.


189 **Test Setup**

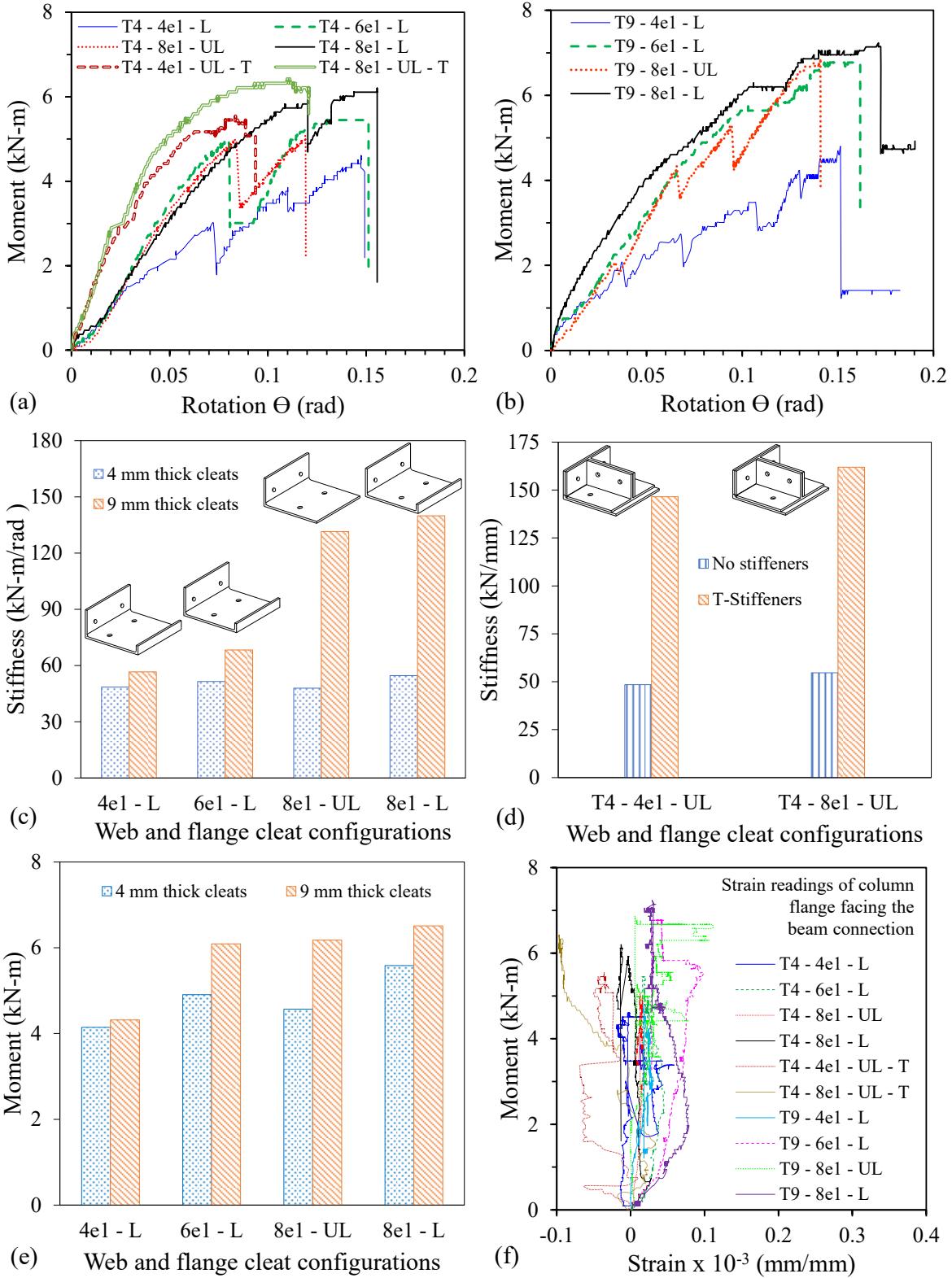
190 The beam-to-column tests were performed in a steel loading frame. The concrete-infilled PFRP
191 column ends were connected firmly to the frame. The column was fixed at both ends to resist the
192 rotations due to the loading on the beam, therefore the load transfer ability of the connecting
193 components can be analyzed. The loading was applied using a hydraulic jack with a capacity of
194 250 kN. A rotational hinge was used at the loading point to keep the load perpendicular to the
195 beam alignment. The loading was applied by a monotonic deflection, the load cell reaction was
196 obtained as a load. The deflection was applied on the beam at a distance of 500 mm from the
197 center line of the column. The rate of loading is such that the ultimate failure of the PFRP joint
198 occurred within 20 minutes of loading. A total of five linear variable displacement transducers
199 (LVDTs) were positioned to measure the displacement profile of the beam-to-column joint as
200 shown in Fig. 2e. The strain gauges were instrumented on the beam, column, and connecting cleats

201 to measure the strain corresponding to the applied load (Figs. 2e). The inclinometer was positioned
202 at the end of the beam to measure the rotation. The data from loadcell, LDVTs, strain gauges, and
203 inclinometer were gathered by a data logger. The actual photos of the test arrangement before
204 loading and after failure are shown in Fig. 4.

205
206 Fig. 3. Alignment of connection components fiber orientations in the beam-to-column joint

207
208 Fig. 4. Actual photo of the beam-to-column joint test arrangements: (a) Photo before the test; (b)
209 Photo of the tested sample

210 Results and Discussion


211 General observation

212 In general, all the tested beam-to-column joint configurations exhibited brittle failure due to cleats
213 corner cracking and rupture of the stiffener, however, the increase in initial stiffness and moment
214 capacity was observed with an increase in the thickness of the cleats and end distance (e_1). The
215 ultimate moment capacity and initial stiffness of the joints are summarized in Table 2 and Figs. 5-
216 9. Overall, it was observed that the top flange clip failed first followed by the failure of the web
217 cleats in all the tested samples, and the use of T-stiffeners delayed the first failure to some extent.
218 The strain readings from the connection components (Figs. 2e, 6a, and 7a) are used for a detailed
219 understanding of the failure mode, contribution, and load transfer between the connection
220 components. As the PFRP beam-to-column joint's structural response varied depending on the
221 different components, the joint behavior is analyzed with respect to individual parameters in the
222 following sections.

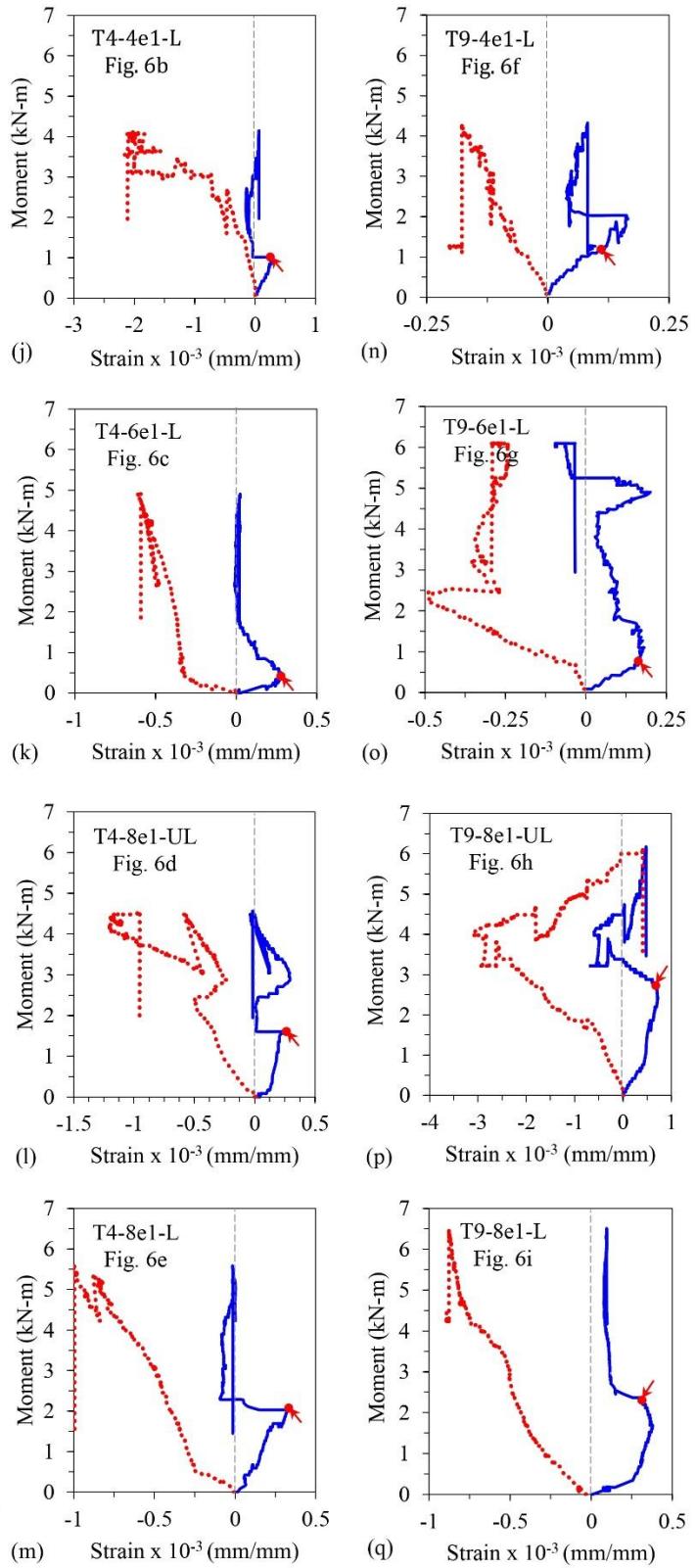
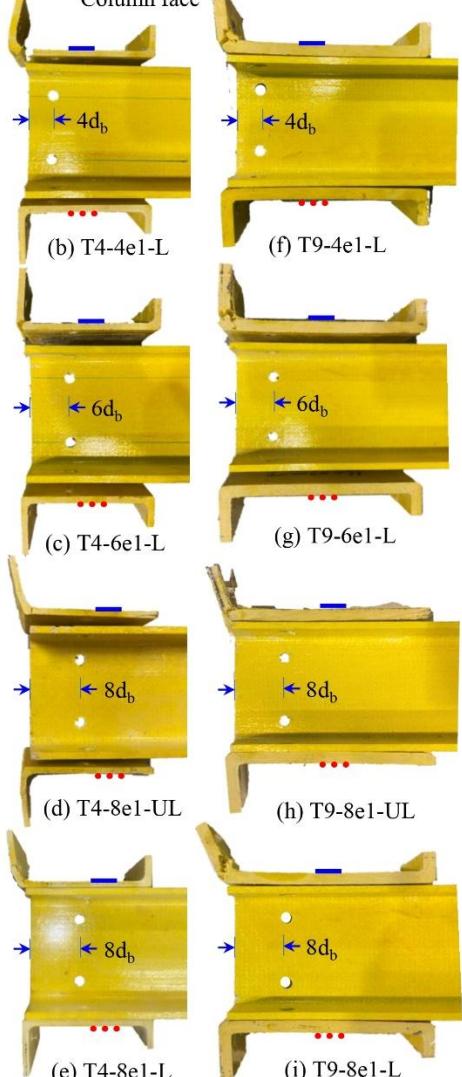
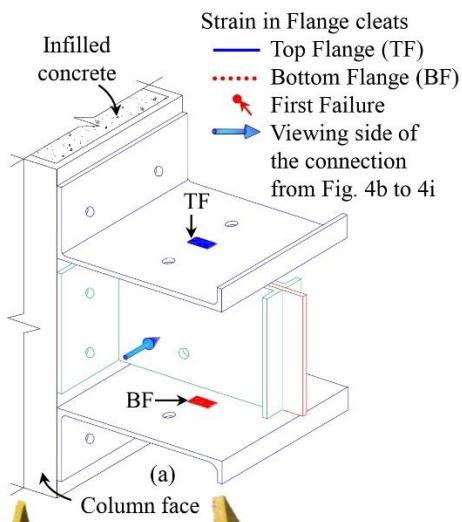
223 **Effect of end distance (e_1)**

224 The end distance (e_1) is one of the important parameters that govern the failure mode of the PFRP
225 joints, the design codes (CNR 2008, ASCE 2010, EU 2016) suggest that the minimum end distance
226 (e_1) of $4d_b$ should be sufficient, but the latest research (Martins et al. 2021 and Selvaraj et al. 2023)
227 reported that the minimum end distance should be equal to $8d_b$ for attaining the progressive bearing
228 failure. Therefore, to determine the suitable end distance (e_1) for a full-scale joint design
229 application, the end distance is varied from $4d_b$ (minimum limit specified in the codes) to $8d_b$
230 (minimum limit specified by latest research). In addition, the new design parameter proposed by
231 Selvaraj et al. (2023), covering plate slenderness and end distance $(w/t) / (e_1/d_b) \geq 1.5$ is also
232 followed. Overall, three different end distances (e_1) are varied to check their influence ($4d_b$, $6d_b$,
233 and $8d_b$) (Table 2). The variance in the end distances is configured in all the connecting
234 components like flange cleat, web cleat, and beam for consistency and alignment (Figs. 2c, 2f-2o).

235 The influence of end distance is significant in the structural response of the beam-to-column joints,
236 as the moment capacity (in kNm) and initial stiffness (in kNm / rad) are significantly increased
237 with an increase in end distance (e_1) as can be observed in Fig. 5a (results of 4 mm cleats), 5b
238 (results of 9 mm cleats), 5c (stiffness comparison), 5e (moment comparison) and Table 2.
239 Compared to the smaller end distance of $4d_b$, the specimens with longer end distances withstand
240 18.3% and 34.7% higher moment capacity for $6d_b$ and $8d_b$ end distances, respectively, in 4 mm
241 thick cleats (compare T4 - 4e1 - L with T4 - 6e1 - L and T4 - 8e1 - L in Fig. 5e and Table 2),
242 whereas in 9 mm thick cleats, the moment increment is 41.2% and 50.9% for $6d_b$ and $8d_b$ end
243 distances, respectively compared to $4d_b$ end distance (compare T9 - 4e1 - L with T9 - 6e1 - L and
244 T9 - 8e1 - L in Fig. 5e and Table 2). This should be attributed to the fact that the connection closer
245 to the column face [with smaller end distance ($e_1 = 4d_b$) T4 - 4e1 - L] distributes the load within a
246 smaller area ($4d_b$ x thickness of flange cleat) which resulted in higher stress and led to cracking
247 along the entire width of the top flange cleat at the fillet radius location. Whereas in the flange
248 cleats with longer end distance [$(e_1 = 8d_b)$ T4 - 8e1 - L], the cracking is delayed due to less
249 concentric stress of a corresponding load. However, the cracking of the top flange cleat is the first
250 failure in all the tested samples as marked in Figs. 6j-6q (see strain readings of the flange cleats).
251 It should be noted that there was no visible deformation in the vicinity of the bolt holes (no bearing
252 deformation) in the beams with respect to the change in end distance (e_1) [as shown in Figs. 6b-6i
253 (bolt holes connecting web cleats) and Figs. 7c-7i (bolt holes connecting flange cleats)], this may
254 be due to the connecting components failing well within the elastic limit (first top flange cleat
255 failure).

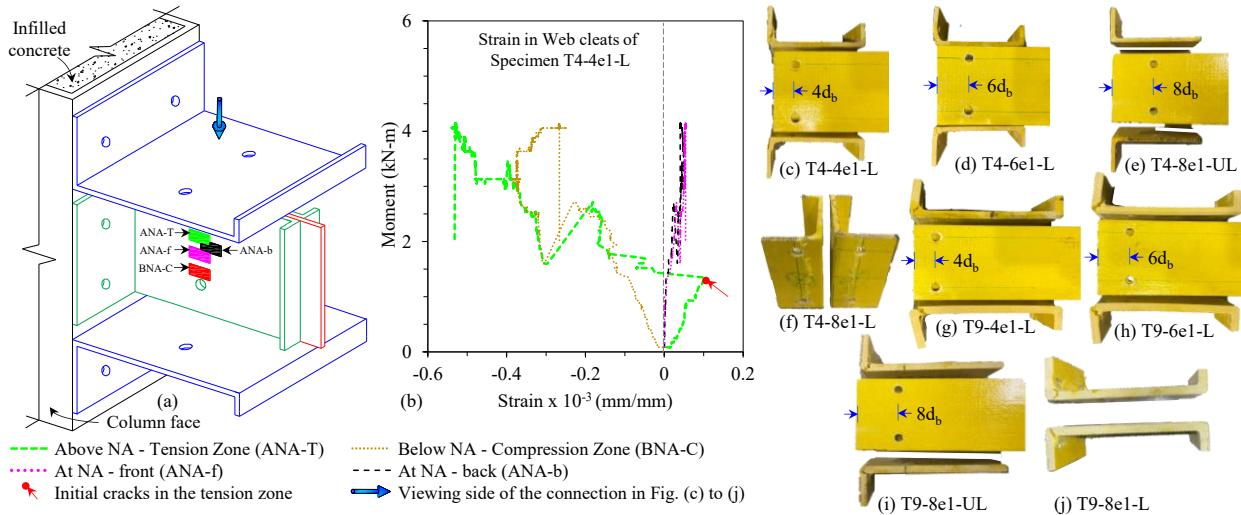
256
257 Fig. 5. Test results of PFRP beam-to-column joints: (a) Moment-rotation plot for 4 mm thick
258 cleats and connections with T-Stiffeners; (b) Moment-rotation plot for 9 mm thick cleats; (c-e)
259 Variation in stiffness and ultimate moment with respect to the different geometry parameters of
260 the connection components; (f) Strain readings of column flange facing the beam connection.

261 The influence of end distance (e_1) was not observed in the initial stiffness (within 40% of the
262 loading) of the 4 mm thick flange and web cleat specimens due to less area for load transfer and
263 the stiffness of the connections (T4 series) with varying end distances are between 47.9 kNmm/rad
264 to 54.6 kNmm/rad as shown in Fig. 5c and Table 2. Whereas, in the case of specimens with 9 mm
265 thick flange and web cleats, the initial stiffness for the end distance of $8d_b$ increased by 147.1%
266 and 104.7% compared to $4d_b$ and $6d_b$ end distances, respectively as shown in Fig. 5c and Table 2.
267 This increase in initial stiffness only found in the $8d_b$ end distance in 9 mm thick connection
268 components may be attributed to the combined influence of a higher area of loading and more free
269 length to elongate (longer end distance \times cleat thickness) and the presence of thick bidirectional
270 layers of fibers in the 9 mm thick flange and web cleats. It should also be noted that the influence
271 of e_1 was observed only in 9 mm thick cleated connections and not in 4 mm thick cleated
272 connections, this should be due to the fact that the higher area of loading in 9 mm cleats with
273 longer free length ($6d_b$ and $8d_b$) to elongate taken more load prior to first crack. Though the
274 bidirectional layer in 9 mm cleats provides resistance against rotation at the initial stage (stiffness),
275 the improvement in moment capacity is insignificant (4.1 to 35.3%) compared to 4 mm cleats as
276 shown in Fig. 5e (compare 4 mm thick cleat specimens and corresponding 9 mm thick cleat
277 specimens). Based on the above observations, it is clear that the increase in cleat thickness with
278 adequate end distance (e_1) would improve the behavior of the PFRP beam-to-column joints.

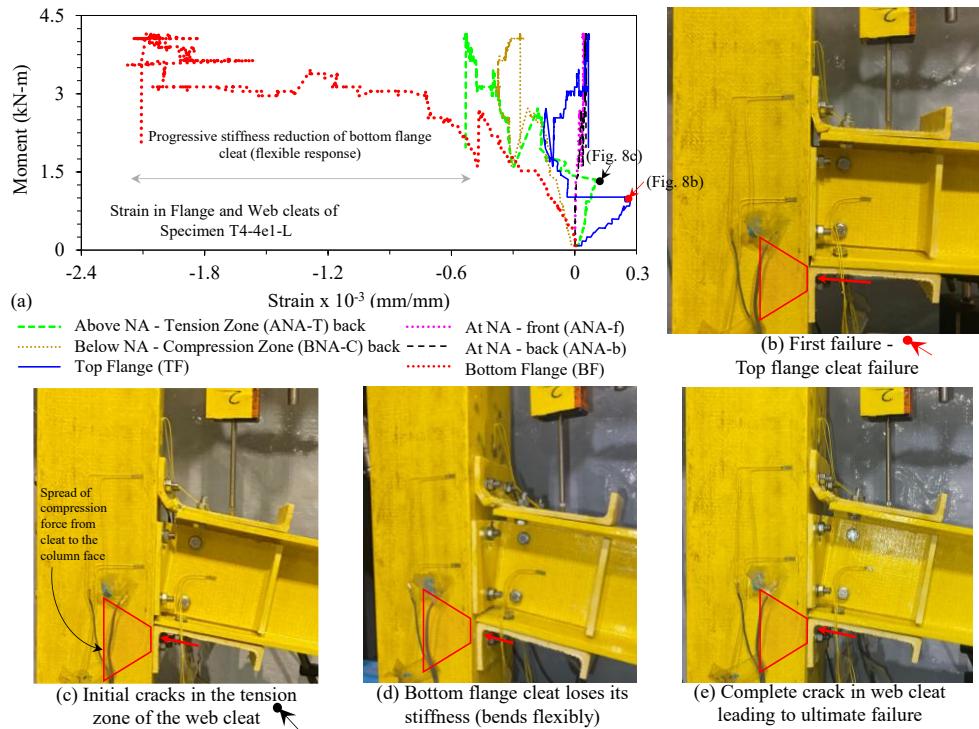



279 **Failure of flange and web cleats**

280 As mentioned previously, the flange and web cleats were cut from the PFRP unequal angle profiles,
281 therefore the longitudinal fibers of the cleats were aligned perpendicular to the beam's longitudinal
282 fibers as shown in Fig. 3. However, it should be noted that all the PFRP profiles used in this study
283 are of partially balanced symmetric (three layers of bidirectional layers with longitudinal fibers)

284 as shown in Fig. 1a. This perpendicular alignment of the cleat's longitudinal fibers significantly
285 influenced the overall failure mode of the beam-to-column joints owing to the nature of the PFRP'
286 structural behavior. In general, the PFRP profiles have less resistance in the lateral or through-
287 thickness direction compared to the longitudinal direction (Mottram and Zheng 1999a; 1999b and
288 Selvaraj et al. 2023). In comparison, both the flange and web cleats failed prematurely at the fillet
289 corner radius irrespective of the thickness, nevertheless, the increase in moment capacity and initial
290 stiffness of the joint is observed as shown in the moment versus displacement plots in Figs. 5a (4
291 mm thick cleats) and 5b (9 mm thick cleats). The initial stiffness of the beam-to-column joint
292 increased by 156.1% and 174.6% in specimens with an end distance of $8d_b$ in 9 mm thick cleats
293 compared to the corresponding 4 mm thick cleats as shown in Fig. 5c, but for specimens with an
294 end distance of $4d_b$ and $6d_b$, the stiffness increment is insignificant (16.8-32.7% only). In addition,
295 the increment in moment capacity is also not significant, to be precise, the flange and web cleat
296 thicknesses more than doubled from 4 mm to 9 mm [compare 4 mm thick cleats and corresponding
297 9 mm thick cleats in Figs. 5c (stiffness comparison) and Fig. 5e (moment comparison)] but the
298 improvement in moment capacity is only about 4.1 to 35.3% as shown in Table 2. In structural
299 design when the cross-sectional area of the member is doubled the stiffness and loading capacity
300 should also be doubled or proportionally increased, however in the present study due to the natural
301 behavior of PFRP profiles the moment and stiffness did not improve proportionally for all the
302 specimens. The significant increase of stiffness in 9 mm thick cleats compared to corresponding 4
303 mm thick cleats with an end distance of $8d_b$ indicates that the end distance (e_1) also plays a role in
304 stiffness improvement.


305 The top flange cleat which was in the tension zone of the joint configuration failed first due to
306 cracking at the fillet corner radius in all the tested samples, as shown in Figs. 6b-6i, and Fig. 8b.

307 It is important to note that the failure of the top flange cleat occurred at the small deflection (Figs.
308 6j to 6q - see the top flange strain values), leading to progressive stiffness reduction in the joint
309 (Figs. 5a and 5b), however, the overall joint was still within the elastic limit (the strain values
310 corresponding to the first failure in the top flange is less than the elastic strain), or in other words
311 the first failure occurred well within the elastic strain limit. The bottom flange cleat which was in
312 the compression zone of the joint did not fail or crack till the end, it avoided the sudden/brittle
313 failure, or in other words delayed the overall failure of the joint, as observed from the linear
314 compression strain reading in Figs. 6j-6q (see the bottom flange strain values). This should be
315 attributed to the fact that the bottom flange cleats were in a compression zone and its deformation
316 was well controlled by the column face to which it was connected as indicated in Fig. 6a.
317 Theoretically, the overall joint stiffness is significantly influenced by the effectiveness of the
318 column flange to which the cleats are connected (Martins et al. 2021b). If the column rotates with
319 respect to the beam's rotation, then the stiffness will decrease drastically. In the present
320 investigation, the column was infilled with concrete, and the bolts connecting the flange and web
321 cleats were through the entire column width (Fig. 2b), therefore there was no failure at the fillet
322 radius of the columns (web-flange junctions) and there was no rotation or displacement at the
323 column ends, as a result, the column stiffness was high and it provides adequate stability against
324 the compressive force from the bottom flange cleat as shown in Figs. 8b-8e. The comparison of
325 strain readings of the column flange facing the beam connection (Fig. 5f) and other stain readings
326 (Figs. 6j-6q, Fig. 7b, and Fig. 8a), shows that the column was well within the elastic range yet the
327 failure was completely influenced by the premature failure of the connecting components. The
328 web cleats failed in cracking due to the rotation of the beam (pulling force on the top portion), and
329 notably, the crack in the web cleat was initiated only after the top flange failure.



330
331
332
333

Fig. 6. Failure mode of the flange cleats and corresponding strain readings: (a) Location of the strain gauges in flange cleats; (b-i) Failure mode of flange cleats and deformation in beam's web portion bolt holes; (j-q) Top and bottom flange cleat strain readings

334
335 Fig. 7. Failure mode of the web cleats and corresponding strain reading (sample reading specimen
336 T4-4e1-L only): (a) Location of the strain gauges in web; (b) Web cleat strain readings; (c-j)
337 Failure mode of web cleats and deformation in beam's flange portion bolt holes;

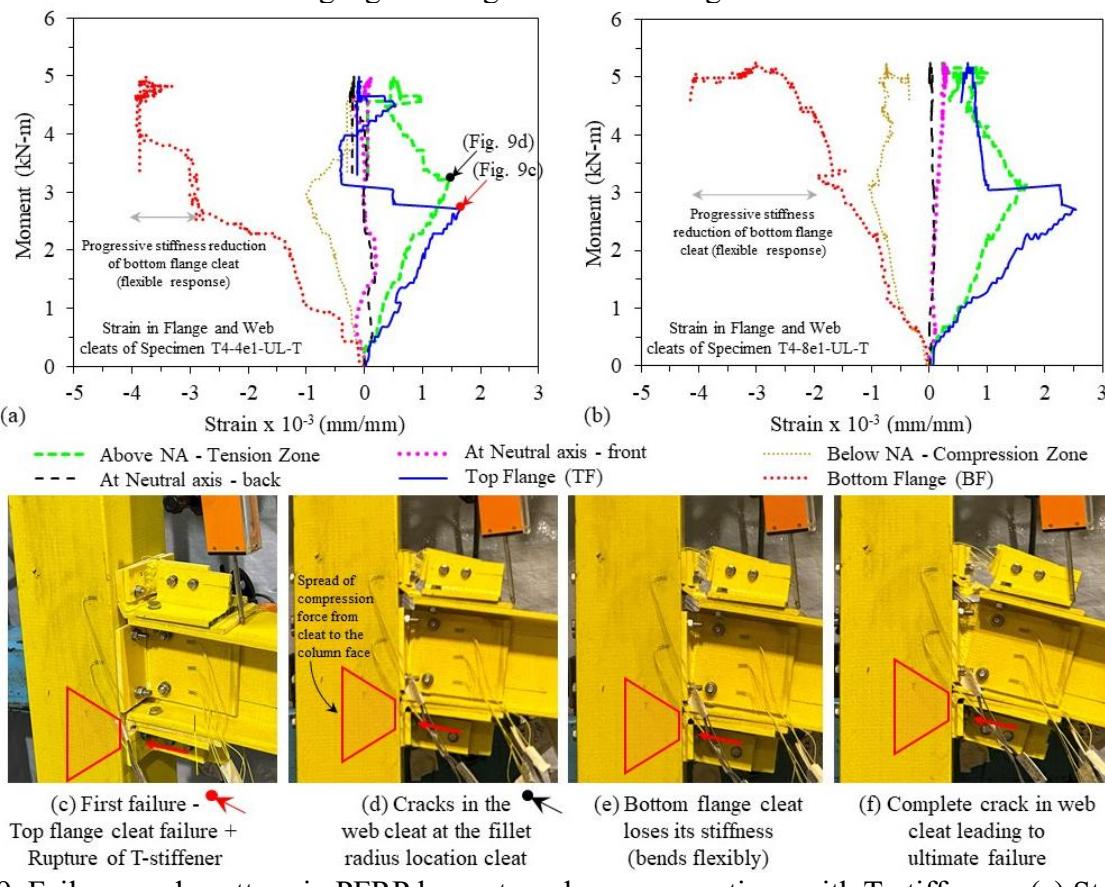
338
339 Fig. 8. Failure mode pattern in PFRP beam-to-column connections without T-stiffeners: (a) Strain
340 341 modes

342 This can be observed from the moment vs. strain plot in Fig. 8a, first the top flange strain readings
343 suddenly changed to zero due to cracking (red arrow in Fig. 8a and corresponding first failure
344 mode Fig. 8b), later, the strain reading of the web cleat [curve with the legend "Above NA -
345

346 Tension Zone (back)" in Fig. 8a] also exhibited sudden change from gradual increase due to
347 cracking (corresponding failure mode is shown in Fig. 8c). After the occurrence of first crack in
348 web cleat, the strain readings were not accurate and shown random pattern due to the drop-in
349 stiffness, thus strain reading after crack can be ignored. The failure pattern of the beam-to-column
350 joint configuration investigated in the present study is, (i) first top flange cleat failure; (ii) followed
351 by initial cracks in the web cleat and (iii) bending of the bottom flange cleat (flexible response -
352 bending without resistance), finally (iv) complete crack in web cleat at the fillet radius location
353 leading to ultimate failure. The above-mentioned failure mode pattern is depicted in Figs. 8b to
354 8e, the same pattern can be observed at the moment vs. displacement plots (Figs. 5a and 5b)
355 through the following stages: (i) linear elastic until the first failure; (ii) progressive stiffness
356 reduction after the first failure; (iii) further significant stiffness reduction after web cleat crack;
357 and (iv) sudden load drop due to complete crack in web cleat. A slight variation to the above
358 moment vs. displacement plot pattern was observed in some specimens with 4 mm thick cleats (T4
359 - 4e1 - L, T4 - 6e1 - L, and T4 - 8e1 - UL) in Fig. 5a, this should be attributed to the combined
360 effect of inadequate cleat thickness, small end distance and/or unstiffened cleats. The overall
361 observation indicated that the first failure is well within the service load limit (see Table 3) [which
362 is 40% of the ultimate moment in general (Uy et al. 2017)], therefore it is necessary to delay the
363 first failure by adding more load transfer connection components. Moreover, based on the above
364 observations pertaining to the failure modes in PFRP beam-to-column joint, the following specific
365 conclusion can be made (i) the increase in thickness of the connecting components (flange and
366 web cleats) does not improve the connection behavior proportionally, (ii) the thicker PFRP profiles
367 like 9 mm cleat angles should have adequate end distance (e_1) and more bidirectional layers to

368 avoid sudden cracking; (iii) more load transfer connecting element is required for delaying the
369 brittle failure (improve the initial stiffness).

370 **Contribution of Connection Components**

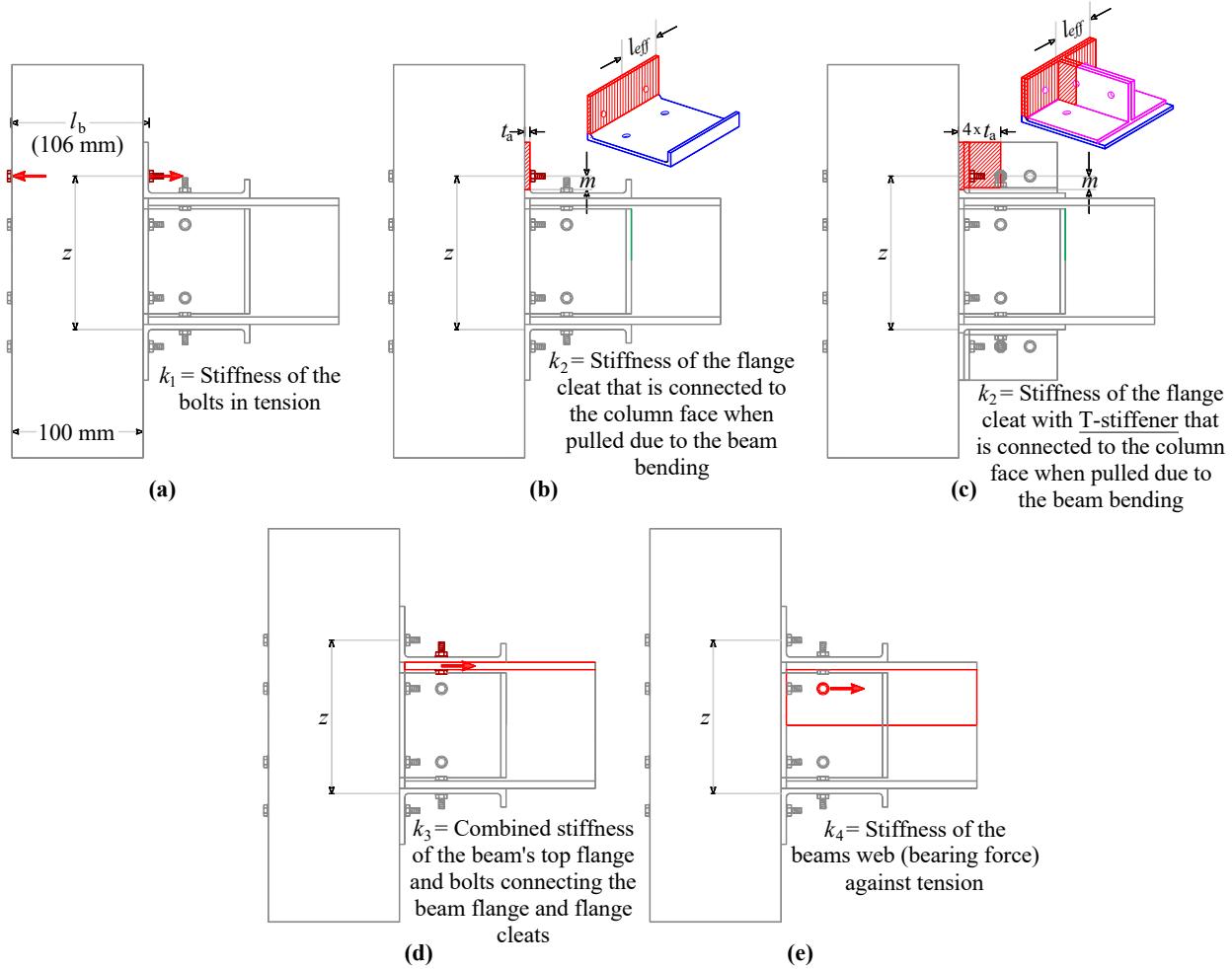

371 Before understanding the need for additional load transfer connecting elements, it is necessary to
372 comprehend the contribution of each connection component including, top flange cleats, web
373 cleats, and bottom flange cleats in the unstiffened connection configurations. However, it is
374 complicated to determine the contribution of each connection component at each stage of loading
375 due to the complex failure modes of PFRP profiles, nevertheless naturally if one component fails
376 then the other components share the load until overall failure, based on this approach, the strain
377 readings can be used to determine the stage at which each component failed and how others
378 contribute to the load transfer (Table 3). At the initial stage of the loading, all the connection
379 components take the load sharing, therefore the moment versus deflection plot exhibits a linear
380 elastic pattern. The first failure occurred in the range of 10% to 30% and 39% of the ultimate
381 moment (which is within the serviceability limits) in specimens with 4 mm and 9 mm thick cleats,
382 respectively, as shown in Figs. 5a-5b, and Figs. 6j-6q, Fig. 7b and Fig. 8a, (see strain readings of
383 flange cleats) and Table 3. After that, the stiffness of the overall joint started reducing
384 progressively, and the initial cracks in the tension zone of the web cleat occurred at an average of
385 46% of the ultimate moment which is an average of 15% higher moment than the first failure (top
386 flange failure). Once the web cleat began to crack, the stiffness of the joint dropped drastically,
387 and then the joint resisted the load with the help of the stiffness provided by the bottom flange
388 cleat, which also became flexible as the crack propagated in the web cleat due to rotation. Finally,
389 the web cleats fully cracked at an average of 75% to 82% of the moment capacity. The above

390 interpretation indicates that the first failure caused the subsequent failure modes, therefore an
 391 additional connection component is required to delay the first failure.

392 Table 3: Contribution of the connection components.

Specimen Nomenclature	Initial Stiffness (kNm/rad)	Ultimate moment (kNm)	Moment at First failure (kNm) *	Moment at initial crack in web cleat (kNm) *	Moment at full crack in web cleat (kNm) *
T4 - 4e1 - L	48.48	4.61	1.00	1.30	2.70
T4 - 6e1 - L	51.52	5.45	0.50	2.00	4.50
T4 - 8e1 - UL	47.88	5.08	1.50	2.50	4.50
T4 - 8e1 - L	54.64	6.21	2.00	3.10	5.20
T9 - 4e1 - L	56.62	4.80	1.10	1.28	2.45
T9 - 6e1 - L	68.35	6.77	0.75	2.43	5.10
T9 - 8e1 - UL	131.50	6.87	2.65	3.20	4.75
T9 - 8e1 - L	139.92	7.24	2.30	3.45	5.60
T4 - 4e1 - UL - T	146.57	5.55	2.75	3.20	4.65
T4 - 8e1 - UL - T	161.93	6.43	2.90	3.15	4.90

393 Note: * The moment values at the particular failure modes are observed based on the strain
 394 gauge readings as shown in Figs. 6-9.


395
 396 Fig. 9. Failure mode pattern in PFRP beam-to-column connections with T-stiffeners: (a) Strain in
 397 the flange and web cleats of specimen T4 - 4e1 - UL - T; (b) Strain in the flange and web cleats
 398 of specimen T4 - 8e1 - UL - T; (c-f) Initial to ultimate subsequent failure modes

399 A T-shape stiffener was added in both the top and bottom flange, one T-stiffener was connected
400 from the column face side, and another T-stiffener was connected from the beams flange side, and
401 both of them joined at the convergence point using two bolts as shown in Fig. 2d. Addition of T-
402 stiffeners is a simple method to increase the load share of the flanges, and they take part in both
403 top and bottom flange load share simultaneously, therefore, the initial stiffness increases
404 significantly. The T-stiffeners are 4 mm thick and they are added to 4 mm thick flange cleat
405 connections, T4-4e1-UL-T (Fig. 2n) and T4-8e1-UL-T (Fig. 2o). In the top flange, the T stiffeners
406 are under tension due to the pulling force of the beam to the column, simultaneously, at the bottom
407 flange the T-stiffeners provide stiffness against the bending (T-stiffeners transfers compression
408 force from one leg of the bottom flange cleat to the other leg that is connected to the column face).
409 Owing to this load transfer pattern, the stiffness of the joint was increased significantly as shown
410 in Fig. 5a and Fig. 5d. More importantly, the first failure was delayed up to 2.75 kNm moment in
411 T4-4e1-UL-T specimen (see in Fig. 9a and Table 3) which is 175% more than the occurrence of
412 first failure in similar specimen without stiffener T4-4e1-L (see in Fig. 8a and 6j). Similarly, in
413 specimen T4-8e1-UL-T the first failure occurred at a moment value of 2.9 kNm (Table 3) which
414 is 93.3% higher than the corresponding specimen (T4-8e1-UL) without stiffeners where the first
415 failure occurred at 1.5 kNm moment (Fig. 6l). But once the top flange T-stiffener failed together
416 with top flange cleat cracking (Fig. 9c), the joint loses its stiffness and the progressive stiffness
417 reduction began. This indicates that the provision of an additional load transfer component in the
418 form of a T-stiffener can improve the stiffness significantly and delay the first failure. This delayed
419 failure can help in achieving the serviceability limit before the first failure which is an important
420 design specification for PFRP structures design (Mottram 1994, Mottram 1996, Mottram and
421 Zheng 1996 and 1999a). It should be noted that the moment capacity did not increase significantly

422 after adding the T-stiffeners (Fig. 5a). However, a significant improvement in stiffness was
423 achieved and the first failure was delayed beyond 45% of the ultimate moment (which is higher
424 than the service load) by adding a T-stiffener to the 4 mm thick cleats, perhaps if the T-stiffeners
425 were added to 9 mm thick cleats, the moment capacity could have been improved. Moreover, the
426 thickness of the T-stiffener can also be increased based on the need. It is important to note that
427 due to the manufacturing procedure, the fibers in the T-stiffeners are perpendicular to the tensile
428 force as shown in Fig. 3, therefore the T-stiffeners failed in rupture (Figs. 9d-9f), this failure mode
429 can also be improved by increasing the number of bidirectional fiber layers in the PFRP fiber
430 architecture (use of more balanced symmetric architecture than partially balanced symmetric).
431 Further, adhesive bonding can also be introduced for the connection between connecting
432 components and members to delay the first failure mode, however, the long-term durability
433 performance should be assessed experimentally.

434 **Determinization of Stiffness of the PFRP beam-to-column joint**

435 The establishment of design standards is an essential task for promoting any structural materials.
436 PFRP is one of the structural materials that has a variety of material specifications including their
437 anisotropy, inhomogeneity and various industries have different norms, therefore, it is essential to
438 develop internationally acceptable design standards (Bank et al. 2023; Coelho and Mottram 2015).
439 The present study suggests the design method to determine the initial stiffness of the PFRP beam-
440 to-column joint after checking the appropriateness of the joint component method from Eurocode
441 (BS EN 1993-1-8:2005). This design method was used by Martins et al. (2021b) for flange-cleated
442 beam-to-column connections, however, in the present study the Eurocode method is modified
443 according to the connection configuration, load transfer, and failure modes.

444
445 Fig. 10. Stiffness components of the joint component method of initial stiffness determination from
446 Eurocode: (a) k_1 - Stiffness of each row of top rods in tension; (b) k_2 - Stiffness of the top flange
447 cleat (without T-stiffener) in bending; (c) k_2 - Stiffness of the top flange cleat (with T-stiffener) in
448 bending; (d) k_3 - Stiffness of the beam's top bolts in shear; (e) k_4 - Beam's web portion in tension

449
450
451 The Eurocode classified the joint stiffness into twenty different components (Section 6 and Table
452 6.1 of BS EN 1993-1-8:2005), out of which the following components were selected for concrete-
453 filled columns connected with beam using flange and web cleats (appropriate ones for the present
454 study), namely: (i) stiffness of each row of top rods in tension (bolts connecting the column and
455 top flange cleat - Fig. 10a) as per Eq. (1), denoted as k_1 ; (ii) stiffness of the top flange cleat in
456 bending as per Eq. (2) (Figs. 10b and 10c), denoted as k_2 ; (iii) stiffness of the beam's top bolts in
457 shear in Eq. (3), denoted as k_3 (bolts connecting the top flange cleat and top flange of the beam -

458 Fig. 10d); (iv) beam's web portion in tension (pulling force at the web cleat bolt connection
 459 location) as per Eq. (5) (Fig. 10e), denoted as k_4 . As the above stiffness components k_1 to k_4 are
 460 acting simultaneously (stiffness in series), the total rotational stiffness (k_j) of the joint was
 461 calculated using the equivalent stiffness expression Eq. 6. It should be noted that the contributions
 462 of the column web and flange stiffness were not incorporated in the present study as the column
 463 was filled with concrete and has not deformed until failure as shown in Fig. 5f. In addition, the
 464 contribution of the bottom flange cleat was also not considered as it starts acting against the
 465 rotation of the beam only after the initial loading or after the failure of the top flange cleat, and
 466 theoretically the beam's axis of rotation lies at the bottom flange cleat for the cantilever beam
 467 tested in the present study, thus the web cleat also failed in pulling (tension) of the top portion
 468 (crack begins at the top of the web cleat and propagates to the bottom).

469 ***Stiffness of each row of top rods in tension (k_1)***

470
$$k_1 = \frac{1.6 A_s E_s}{L_b} \quad (\text{Eq. 1})$$

471 The stiffness of the bolts connecting the column and top flange cleat is determined using the simple
 472 mechanics expression for calculating the stiffness of the bar in tension, Eq. (1) simulates the same.
 473 In Eq. (1), A_s is the cross-section area of the bolts in a single row, E_s is the Young's modulus of
 474 the bolt (stainless steel), and L_b is the elongation length (length between two ends of the bolts plus
 475 the two washers length subtracting thickness of the bolts). Fig. 10a illustrates the force direction
 476 of this stiffness and each parameter.

477 ***Stiffness of the top flange cleat in bending (k_2)***

478
$$k_2 = \frac{0.9 l_{eff} t_a^3 E_{t,T}}{m^3} \quad (\text{Eq. 2})$$

479 The stiffness of the flange cleat leg that is connected to the column face when pulled by the other
 480 leg due to the beam bending and this stiffness is associated with the bolts in tension (k_1). Where

481 the l_{eff} is the effective length of the flange cleat, t_a of the thickness of the flange cleat, $E_{t,T}$ is the
 482 tensile modulus of the GFRP flange cleat in a transverse direction (in the direction of the beam),
 483 and m is the flat distance of the flange cleat connected to the column face (bending lever arm -
 484 flange length of the connecting leg) as depicted in Fig. 10b according to Eurocode. As the
 485 Eurocode's joint component method does not have a separate stiffness calculation procedure for
 486 the newly introduced T-stiffener connection configuration, the influence of T-stiffener to the top
 487 flange cleat against bending is incorporated by increasing the thickness of the flange cleat by four
 488 times the actual thickness, that is $t_a = 16$ mm instead 4 mm flange cleats in specimens T4-4e1-UL-
 489 T and T4-8e1-UL-T (Fig. 10c).

490 ***Stiffness of the beam's top bolts in shear (k_3)***

491

$$k_3 = \frac{1}{\frac{1}{k_b} - \frac{1}{k_{plate}}} \quad (\text{Eq. 3})$$

492 This is the combined stiffness of the top flange plate in the PFRP beam and bolts connecting the
 493 beam flange and flange cleats, when the beam is bending the resistance is provided by the
 494 connecting bolts together with the flange cleat bending as shown in Fig. 10d. Where k_b = stiffness
 495 of the bolted connection obtained from the double lap connection test, for the present study the
 496 stiffness of the 6 mm bolt and 4 mm thick plate is obtained from the authors previous double lap
 497 single bolt connection testing work (Selvaraj et al. 2023).

498

$$k_{plate} = \frac{E_{t,Lf} A_{flange}}{l_{ff}} \quad (\text{Eq. 4})$$

499 where $E_{t,Lf}$ is the tensile modulus of the beam flange in the longitudinal direction, A_{flange} is the
 500 effective area for the single bolt, l_{ff} is the free length of the beam flange (unrestrained length) can
 501 be calculated as the distance from the end of top flange cleat to the loading point divided by 2.

502 ***Beam's web portion in tension (k_4)***

503
$$k_4 = \frac{E_{t,Lw} A_{web}}{l_{fw}} \quad (\text{Eq. 5})$$

504 The Eurocode suggests that when the beam webs are connected to columns by web cleats, the top
 505 portion of the beam's web will have a bearing stiffness (Fig. 10e), therefore this can be determined
 506 using a very similar approach in Eq. 4, nevertheless, the parameters are taken according to the web.
 507 Where $E_{t,Lw}$ is the tensile modulus of the web of the beam in the longitudinal direction, A_{web} is the
 508 effective area for a single bolt in the web (only the top portion of the web in tension during the
 509 initial loading), l_{fw} is the free length of the beam's flange (unrestrained length) can be calculated
 510 as the distance from the end of web cleat to the loading point divided by 2 (will be equal to l_{ff}).

511
 512 Table 4: Validation of the joint component method of initial stiffness determination from Eurocode

Specimen Nomenclature	k_{E-j} (kNm/rad)	k_1 (kN/m)	k_2 (kN/m)	k_3 (kN/m)	k_4 (kN/m)	k_j (kNm/rad)	k_{E-j}/k_j
T4 - 4e1 - L - Fig. 2f	48.48	166113.8	4182.2	3687.1	42670.1	39.3	1.23
T4 - 6e1 - L - Fig. 2g	51.52	166113.8	4182.2	3687.1	42670.1	39.3	1.31
T4 - 8e1 - UL - Fig. 2h	47.88	166113.8	4182.2	3687.1	42670.1	39.3	1.22
T4 - 8e1 - L - Fig. 2i	54.64	166113.8	4182.2	3687.1	42670.1	39.3	1.39
T9 - 4e1 - L - Fig. 2j	56.62	166113.8	147053.2	3572.7	42670.1	105.0	0.54
T9 - 6e1 - L - Fig. 2k	68.35	166113.8	147053.2	3572.7	42670.1	105.0	0.65
T9 - 8e1 - UL - Fig. 2l	131.50	166113.8	147053.2	3572.7	42670.1	105.0	1.25
T9 - 8e1 - L - Fig. 2m	139.92	166113.8	147053.2	3572.7	42670.1	105.0	1.33
T4 - 4e1 - UL - T - Fig. 2n	146.57	166113.8	267660.0	3534.4	42670.1	118.7	1.23
T4 - 8e1 - UL - T - Fig. 2o	161.93	166113.8	267660.0	3534.4	42670.1	118.7	1.36

513 Note: Refer to Fig. 10 and the design example in supplementary material for the procedure for the joint
 514 component method of initial stiffness determination according to Eurocode.
 515

516 ***Overall rotational stiffness of the joint (k_j)***

517
$$k_j = \frac{z^2}{\frac{1}{k_1} + \frac{1}{k_2} + \frac{1}{2k_3} + \frac{1}{k_4}} \quad (\text{Eq. 6})$$

518 Where k_j is the overall stiffness of the beam-to-column joint, z is the moment lever arm as depicted
 519 in Fig. 10, k_1 , k_2 , k_3 , and k_4 are from Eqs. (1-5). It should be noted that the stiffness of the beam's
 520 top bolts in shear (k_3) is multiplied by two as there are two bolts k_3 used for connecting the flange
 521 cleat and column.

522 **Validation of the joint component method of initial stiffness determination from Eurocode**
523 Despite the fact that the joint component method of stiffness prediction in Section 6 and Table 6.1
524 of BS EN 1993-1-8:2005 is developed for steel “Structural joints connecting H or I sections”, the
525 comparison between predicted rotational stiffness of the joint (k_j) and stiffness obtained from
526 experiments (k_{E-j}) for PFRP joints shows relatively good agreement (Table 4). However, it should
527 be noted that the predicted rotational stiffness (k_j) of the joints is conservative ($k_{E-j} > k_j$) for the 8
528 specimens by an average of 23% but significantly unconservative for 2 specimens by an average
529 of 45%. This may be attributed to the fact that the failure mode and resistance of the connection
530 components are significantly influenced by the end spacing (e_1), but the stiffness design
531 expressions (Eqs. 1-6) do not consider the end spacing as one of the parameters. In addition, it
532 should also be noted that except for the stiffness of the flange cleat in bending (k_2 varying with
533 respect to the thickness of the top flange cleat), all the other stiffness components k_1 , k_3 , and k_4 are
534 the same for all the specimens as the parameters incorporated are same such as $E_{t,Lw}$, A_{web} , l_{fw} , l_{ff} ,
535 A_{flange} , $E_{t,Lf}$, A_s , E_s and L_b . The predicted values of k_j may be even accurate if the other parameters
536 such as e_1 , e_2 , and minimum fiber architecture limitations are included in the design. With the
537 current results, it can be concluded that the Eurocode method of stiffness prediction is conservative
538 for the PFRP beam-to-column connections with an end distance equal to $8d_b$. The stiffness
539 prediction of the tested beam-to-column joint specimen T9-8e₁-L is demonstrated in the form of a
540 design example in supplementary material for ease of understanding of the reader and design
541 engineers.

542 **Conclusions**

543 An experimental investigation was carried out on the glass PFRP beam-to-column joints with
544 varying design parameters. The initial joint stiffness, ultimate moment, first failure, and failure

545 mode patterns were analyzed based on design parameters such as end distance, cleat thicknesses,
546 and additional T-stiffeners. The structural response of the connection component indicated that
547 the following: (i) the increase in thickness of the connecting components (flange and web cleats)
548 does not improve the connection behavior proportionally; (ii) the thicker PFRP profiles like 9 mm
549 cleat angles should have adequate end distance (e_1) and more bidirectional layers to avoid sudden
550 cracking; (iii) more load transfer connecting element is required for delaying the brittle failure
551 (improve the initial stiffness), (iv) the fiber architecture of the PFRP plates significantly influence
552 the overall response of the joint. The additional T-stiffeners with the top and bottom flanges
553 significantly increased the stiffness of the joint and improved the failure modes. Particularly, the
554 introduction of the T-stiffeners delayed the first failure beyond the serviceability limits which is a
555 safety factor in the design of PFRP structures. In the present study, the initial stiffness of the PFRP
556 beam-to-column joint was determined using the “joint component” method from Eurocode which
557 is modified according to the PFRP connection configuration, load transfer, and failure modes. The
558 predicted rotational stiffness (k_j) of the joints is conservative ($k_{E-j} > k_j$) for the 8 specimens by an
559 average of 23%, but significantly unconservative for 2 specimens by an average of 45%. This is
560 due to the fact that the failure mode and resistance of the connection components are significantly
561 influenced by the end spacing (e_1), but the stiffness design expressions do not consider the end
562 spacing as one of the parameters. The predicted values of k_j may be even accurate if the other
563 parameters such as e_1 , e_2 , and minimum fiber architecture limitations are included in the design.
564 With the present results, it can be concluded that the Eurocode method of stiffness prediction is
565 conservative for the PFRP beam-to-column connections with an end distance equal to $8d_b$. A
566 design example is included for ease of understanding and application. The conclusion drawn from

567 this research is applicable to the beam-to-column joints that are made from PFRP profile with
568 similar fiber weight fraction ratio and architecture.

569
570 **Data Availability Statement**
571 Some or all data, models, or codes that support the findings of this study are available from the
572 corresponding author upon reasonable request

573 **Acknowledgments**
574 The research work presented in this paper was supported by the Research Grants Council of the
575 Hong Kong Special Administrative Region, China - Theme-based Research Scheme (Project No.
576 T22-502/18-R).

577
578 **References**

579 Abdelkerim, D.S., Wang, X., Ibrahim, H.A. and Wu, Z., 2019. Static and fatigue behavior of
580 pultruded FRP multi-bolted joints with basalt FRP and hybrid steel-FRP bolts. Compos. Struct.,
581 220, pp.324-337.

582 Abdelkerim, D.S., Wang, X., Ibrahim, H.A. and Wu, Z., 2020. Effect of connection techniques on
583 the static and fatigue performance of pultruded basalt FRP multibolted joints. J. Compos. Constr.,
584 24(5), p.04020046.

585 American Society of Civil Engineers (ASCE), (2010). Pre-standard for load & resistance factor
586 design (LRFD) of pultruded fiber reinforced polymer (FRP) structures (Final). 2010.

587 American Society of Civil Engineers (ASCE), (2011). Design for FRP Composite Connections,
588 ASCE Manuals and Reports on Engineering Practice MOP#102, ISBN: 978-0-7844-0612-0, 2011.

589 ASTM. Standard test method for tensile properties of polymer matrix composite materials. ASTM
590 D3039/D3039M. West Conshohocken, PA: ASTM, 2014.

591 ASTM. Standard test methods for constituent content of composite materials. ASTM D3171. West
592 Conshohocken, PA: ASTM, 2015.

593 Bank, L.C., Mosallam, A.S. and Gonsior, H.E., 1990. Beam-to-column connections for pultruded
594 FRP structures. In Serviceability and Durability of Construction Materials (pp. 804-813).

595 Bank, L.C. and Mosallam, A.S., 1992. Creep and failure of a full-size fiber-reinforced plastic
596 pultruded frame. Compos. Eng., 2(3), pp.213-227.

597 Bank, L.C., Mosallam, A.S. and McCoy, G.T., 1994. Design and performance of connections for
598 pultruded frame structures. Journal of reinforced plastics and composites, 13(3), pp.199-212.

599 Bank, L.C., (2023). Reflections on 50 Years of Pultruded Fiber-Reinforced Polymer Materials in
600 Structural Engineering. J. Compos. Constr., 27(5), p.02523001.

601 Bass, A.J. and Mottram, J.T., 1994. Behaviour of connections in frames of fibre-reinforced-
602 polymer section. Struct. Eng., 72(17), pp.280-284.

603 CEN, Eurocode 3 (BS EN 1993-1-8:2005): Design of Steel Structures - Part 1–8: Design of Joints,
604 EN 1993-1-8, Brussels, 2005

605 CEN/TS 19101. Design of Fibre-polymer composite structures, Technical committee, European
606 Commission, 2020.

607 Clarke, J. L., ed. Structural design of polymeric composites- EUROCOMP design code and
608 handbook. E & FN Spon, London, 1991.

609 CNR. Guide for the design and construction of structures made of FRP pultruded elements, CNR
610 - Advisory Committee on Technical Recommendations for Construction and National Research
611 Council of Italy, CNR-DT 205/2007, Rome,2008.

612 Coelho, A.M.G. and Mottram, J.T., “A review of the behaviour and analysis of bolted connections
613 and joints in pultruded fibre reinforced polymers”, Materials & Design, 74, pp.86-107, 2015.

614 El-Badry, M. M., ed. Proc., 2nd Int. Conf. on Advanced Compos. Mat. in Bridges and Struct.,
615 Canadian Society for Civil Engineering, Montreal, 1996.

616 Ellingwood, B.R., “Toward load and resistance factor design for fiber-reinforced polymer
617 composite structures”. J. Struct. Eng., 129(4), pp.449-458, 2003.

618 European Union (EU). Prospect for new guidance in the design of FRP. EUR 27666. Publications
619 Office of the European Union; Ispra (Italy), JRC99714, 2016.

620 EXTREN. Fiberglass structural shapes design manual. Strongwell, Bristol, Va, 1989.

621 Feng, P., Li, Z., Wang, J. and Liu, T., “Novel joint for pultruded FRP beams and concrete-filled
622 FRP columns: Conceptual and experimental investigations”, Compos. Struct., 287, p.115339,
623 2022.

624 Fiberline design manual for structural profiles in composite materials. Fiberline Composites A/S,
625 Kolding, Denmark, 1995.

626 FprCEN/TS 19101. Design of Fibre-Polymer Composite Structures. European Committee for
627 Standardization, CEN/TC 250, 2022.

628 Gand, A.K., Chan, T.M. and Mottram, J.T., 2013. Civil and structural engineering applications,
629 recent trends, research and developments on pultruded fiber reinforced polymer closed sections: a
630 review. Frontiers of Structural and Civil Engineering, 7, pp.227-244.

631 Lawler, N. and Polak, M.A., 2011. Development of FRP shear bolts for punching shear retrofit of
632 reinforced concrete slabs. J. Compos. Constr., 15(4), pp.591-601.

633 Luo, F.J., Huang, Y., He, X., Qi, Y. and Bai, Y., 2019. Development of latticed structures with
634 bolted steel sleeve and plate connection and hollow section GFRP members. Thin-Walled
635 Structures, 137, pp.106-116.

636 Martins, D., Proença, Correia, Gonilha, Arruda, M, Silvestre, N. 2017. Development of a novel
637 beam-to-column connection system for pultruded GFRP tubular profiles. Compos. Struct., 171,
638 pp.263-276.

639 Martins, D., Gonilha, J., Correia, J.R. and Silvestre, N., 2021a. Exterior beam-to-column bolted
640 connections between GFRP I-shaped pultruded profiles using stainless steel cleats. Part 1:
641 Experimental study. Thin-Walled Struct, 163, p.107719.

642 Martins, D., Gonilha, J., Correia, J.R. and Silvestre, N., 2021b "Exterior beam-to-column bolted
643 connections between GFRP I-shaped pultruded profiles using stainless steel cleats, Part 2:
644 Prediction of initial stiffness and strength", *Thin-Walled Struct.*, 164, p.107762.

645 Martins, D., Gonilha, J., Correia, J.R. and Silvestre, N., "Monotonic and cyclic behaviour of cuff
646 beam-to-column connection system for tubular pultruded GFRP profiles," *Eng. Struct.*, 247,
647 p.113165, 2021c.

648 Martins, D., Gonilha, J., Correia, J.R. and Silvestre, N., 2021d. Monotonic and cyclic behaviour
649 of a stainless steel cuff system for beam-to-column connections between pultruded I-section GFRP
650 profiles. *Engineering Structures*, 249, p.113294.

651 Martins, D., Gonilha, J., Correia, J.R., Silvestre, N., Guerreiro, L. and Branco, F., 2023. Monotonic
652 and cyclic sway behaviour of 2-dimensional frames made of pultruded GFRP I-section profiles.
653 *Structures* (Vol. 55, pp. 2461-2477).

654 Mosallam, A.S., Abdelhamid, M.K. and Conway, J.H., 1994. Performance of pultruded FRP
655 connections under static and dynamic loads. *Journal of Reinforced Plastics and Composites*, 13(5),
656 pp.386-407.

657 Mottram, J.T. and Zheng, Y., 1999a "Further tests on beam-to-column connections for pultruded
658 frames: web-cleated". *J. Compos. Constr.*, 3(1), pp.3-11.

659 Mottram, J.T. and Zheng, Y., 1999b "Further tests of beam-to-column connections for pultruded
660 frames: flange-cleated". *J. Compos. Constr.*, 3(3), pp.108-116.

661 Mottram, J.T. and Zheng, Y., 1996. "State-of-the-art review on the design of beam-to-column
662 connections for pultruded frames". *Compos. Struct.*, 35(4), pp.387-401.

663 Mottram, J. T. (1994). "Connection tests for pultruded frames." *Civ. Engrg. Group, Res. Rep.*
664 CE47, Dept. of Engrg., University of Warwick, Coventry, UK.

665 Mottram, J. T. (1996). "Nominally pinned connections for pultruded frames." *Structural design*
666 of polymer composites-EUROCOMP design code and handbook, J. L. Clarke, ed., E & FN Spon,
667 London, 703–718.

668 Nguyen, T.T., Chan, T.M. and Mottram, J.T., 2013. Influence of boundary conditions and
669 geometric imperfections on lateral-torsional buckling resistance of a pultruded FRP I-beam by
670 FEA. *Compos. Struct.*, 100, p.233-242.

671 Nguyen, T.T., Chan, T.M. and Mottram, J.T., 2014. Lateral-torsional buckling resistance by testing
672 for pultruded FRP beams under different loading and displacement boundary conditions. *Compos.*
673 Part B: Eng., 60, p.306-318.

674 Nguyen, T.T., Chan, T.M. and Mottram, J.T., 2015. Lateral-Torsional Buckling design for
675 pultruded FRP beams. *Compos. Struct.*, 133, p.782-793.

676 Qureshi, J. and Mottram, J.T., 2013. Behaviour of pultruded beam-to-column joints using steel
677 web cleats. *Thin-Walled Struct.*, 73, pp.48-56.

678 Qureshi, J. and Mottram, J.T., "Response of beam-to-column web cleated joints for FRP pultruded
679 members", *J. Compos. Constr.*, 18(2), p.04013039, 2014.

680 Qureshi, J. and Mottram, J.T., "Moment-rotation response of nominally pinned beam-to-column
681 joints for frames of pultruded fibre reinforced polymer". *Constr Build Mater*, 77, pp.396-403, 2015.

682 Qureshi, J., Nadir, Y. and John, S.K., 2020. Bolted and bonded FRP beam-column joints with
683 semi-rigid end conditions. *Compos. Struct.*, 247, p.112500.

684 Selvaraj, S., Chan, T.M. and Young, B., "Influence of geometry on failure modes of PFRP single
685 bolted connections, *Eng. Struct.*, 274, p.115078, 2023.

686 Selvaraj, S. and Madhavan, M., (2019) "Strengthening of laterally restrained steel beams subjected
687 to flexural loading using low-modulus CFRP", *J. Perform. Constr. Facil.*, 33(3), p.04019032.

688 Selvaraj, S. and Madhavan, M., (2020) "Design of steel beams strengthened with low-modulus
689 CFRP laminates", *J. Compos. Constr.*, 24(1), p.04019052.

690 Singamsethi, S.K., LaFave, J.M. and Hjelmstad, K.D., 2005. Fabrication and testing of cuff
691 connections for GFRP box sections. *J. Compos. Constr.*, 9(6), pp.536-544.

692 Smith, S.J. Parsons, I.D., Hjelmstad, K.D. An experimental study of the behavior of connections
693 for pultruded GFRP I-beams and rectangular tubes, *Compos. Struct.* 42 (1998) 281–290.

694 Smith, S.J., Parsons, I.D. and Hjelmstad, K.D., 1999. Experimental comparisons of connections
695 for GFRP pultruded frames. *J. Compos. Constr.*, 3(1), pp.20-26.

696 Teng, J.G., Xiang, Y., Yu, T. and Fang, Z., 2019. Development and mechanical behaviour of ultra-
697 high-performance seawater sea-sand concrete. *Adv. Struct. Eng.*, 22(14), pp.3100-3120.

698 Turvey, G.J., 2000. Moment–rotation tests on bolted end connections in pultruded GRP beams–
699 tests with stainless steel cleats and an assessment of their performance relative to GRP cleats.

700 Turvey, G.J. and Cooper, C., 2004. Review of tests on bolted joints between pultruded GRP
701 profiles. *Pro. Institution of Civil Engineers-Structures and Buildings*, 157(3), pp.211-233.

702 Uy, B., Patel, V., Li, D. and Aslani, F., 2017, February. Behaviour and design of connections for
703 demountable steel and composite structures. *Structures* (Vol. 9, pp. 1-12). Elsevier.

704 Xiao, X., Xie, L., Wang, Y., Dai, N. and Yin, X., 2022. Monotonic loading performance of GFRP
705 beam-column joints connected with slotted-hole bolts. *Plos one*, 17(7), p.e0272136.

706 Zhang, Z.J., Bai, Y. and Xiao, X., 2018. Bonded sleeve connections for joining tubular glass fiber-
707 reinforced polymer beams and columns: experimental and numerical studies. *J. Compos. Constr.*,
708 22(4), p.04018019.