

Effects of Seawater on UHPC: Macro and Microstructure Properties

3 Wing Lun Lam, Peiliang Shen[†], Yamei Cai, Yanjie Sun,
4 Yangyang Zhang, Chi Sun Poon^{*}

5 Department of Civil and Environmental Engineering, The Hong Kong Polytechnic
6 University, Hung Hom, Kowloon, Hong Kong

⁷ +Corresponding author. Email address: peiliang.shen@polyu.edu.hk (P. Shen), * cecspoon@polyu.edu.hk (C.S.Poon)

8 Abstract

9 Due to the shortage of fresh water, the use of seawater in concrete production could
10 alleviate the demand for the limited resource. To promote the use of seawater in ultra-
11 high-performance concrete (UHPC), the effects of seawater on the hardening process
12 and the corresponding relationship between the macroscopic performance and
13 hydration, pozzolanic reaction, and microstructure of hydration products were
14 investigated. Earlier setting times, higher early but lower later compressive strength and
15 higher shrinkage of UHPC were observed. The modified performance was not only
16 attributed to the presence of seawater accelerating the early hydration but also due to
17 the change of microstructure and C-S-H structure. Better early strength and exacerbated
18 shrinkage were associated with the slightly reduced porosity but refined pore structure,
19 while lower later-age compressive strength in the seawater group was related to coarser
20 microstructure and shorter mean chain length (MCL) and lower polymerisation of C-
21 S-H. In addition, the pozzolanic reactivity of silica fume was enhanced, which would
22 also contribute to the increased early compressive strength and exacerbated shrinkage
23 of UHPC. It should be noted that no Friedel's salt and brucite were observed in the
24 seawater UHPC. Moreover, although the incorporation of fly ash (PFA) was able to

25 compensate for the adverse effects of seawater on compressive strength and autogenous
26 shrinkage of UHPC, the exacerbated drying shrinkage was still a concern even when
27 fly ash was present.

28 **Keywords:** UHPC; Seawater; Microstructure; Pozzolanic reaction; Silica fume;
29 Shrinkage

30

31 **1. Introduction**

32 The consumption of concrete for infrastructure has been increasing in countries with
33 rapid development. The production of concrete has estimated to reach 30 billion tonnes
34 worldwide [1]. Natural resources such as freshwater for concrete production has also
35 been in a very high demand [2]. For instance, freshwater shortage and transportation
36 costs have been great concerns in construction of marine environment, remote areas,
37 and offshore islands. As an alternative to freshwater, the use of seawater in concrete
38 has attracted increasing attention to address the shortage and economic issues in
39 conventional concrete production [3-5].

40 To promote the use of seawater in concrete production, the effect of seawater on the
41 properties of concrete has been widely studied. Incorporating seawater in concrete
42 could increase the early hydration rate and cumulative heat compared to conventional
43 concrete [6, 7]. As a result, a denser microstructure at early age was usually observed
44 in seawater concrete due to the formation of more hydrates [8-10]. Compared to normal
45 strength concrete prepared with fresh water, a newly generated hydrate, Friedel's salt,
46 could be observed in seawater mixed concrete due to the reaction of C₃A and chloride
47 ion in seawater[6, 7, 11, 12].

48 The advantages and disadvantages of seawater on the performance of concrete have
49 also been identified. One of the advantages of incorporating seawater in concrete can

50 be demonstrated in the improvement of early age mechanical properties. The early
51 compressive strength up to 7 d can be improved, while the compressive strength at 28
52 d is comparable to conventional concrete[4]. However, the disadvantages can be
53 illustrated in fresh properties and durability. The incorporation of seawater shortened
54 setting time due to the accelerated hydration [10, 13]. Although seawater can adversely
55 affect fresh properties of concrete, the effect can be considered as minimal [4].
56 Moreover, seawater can also lead to increased drying shrinkage which can result in
57 cracking, and incorporating supplementary cementitious materials (SCMs) in seawater
58 concrete has been suggested to minimize drying shrinkage [10]. The risk of steel
59 corrosion due to the presence of chloride is also the main concern for the use of
60 seawater[14]. However, because of the proposed incorporation of fibre-reinforced
61 polymer (FRP) in seawater concrete, steel corrosion is no longer a concern [15, 16].
62 Based on the effect of seawater on concrete properties, seawater concrete could be a
63 feasible solution as an environmentally friendly material in construction to address the
64 shortage of natural resources for concrete production.

65 UHPC is an advanced cement-based material which was developed in 1990s[17]. The
66 characteristics of UHPC include using a low water to binder ratio, high cement content,
67 large amount of silica fume as well as no coarse aggregate, leading to differences in
68 performance and hydration from normal concrete. For instance, UHPC possesses
69 excellent mechanical (compressive strength > 120 MPa according to ATSM
70 C1856/C1856M[18]) and durability properties, denser microstructure [19, 20] and a
71 small amount of calcium hydroxide (CH) [21] in its matrix. Thus, compared to
72 conventional concrete, these unique features might lead to different effects when using
73 seawater as the mixing water in UHPC. Our recent study regarding the corrosion
74 behaviour of cement paste and UHPC paste mixed with seawater supported this

75 argument. The study showed that propagation of steel corrosion was observed in the
76 normal cement paste mixed with seawater, which was attributed to insufficient OH⁻
77 concentration in pore solution, which is the key factor that can produce a strong
78 passivation film to inhibit the corrosion process [22]. However, the corrosion behaviour
79 was different in seawater mixed UHPC. The corrosion of steel was only induced in
80 seawater mixed UHPC initially, but it was suppressed within the first few days,
81 resulting from the deficiency of water and oxygen [22]. These variations in corrosion
82 of steel reinforcement were attributed to the different effects of seawater on the
83 microstructure and hydrates on UHPC.

84 Moreover, SCMs, such as silica fume and pulverised fly ash (PFA), can further enhance
85 the applicability of UHPC by promoting sustainability and improving the properties of
86 UHPC. In UHPC, due to the characteristics of low water to binder ratio, most of the
87 cementitious material remains unhydrated and acts as an inert filler. Silica fume and
88 PFA, as a by-product, can therefore play an important to substitute the cementitious
89 material as the inert filler in order to lower carbon green footprint in UHPC production
90 [23]. Moreover, PFA can improve workability, reduce water absorption and minimize
91 shrinkage [23-25]. However, previous studies did not well investigate the effect of
92 seawater on the pozzolanic reaction of SCMs in UHPC [26].

93 In UHPC production, the lack of fresh water is undoubtedly also one of the challenges.
94 To promote the application of seawater in UHPC, Teng et.al [27] reported a slight
95 reduction in workability, density and modulus of elasticity of UHPC incorporating with
96 seawater, while the early compressive strength increased up to 7 days and decreased
97 afterwards. Dong et.al [28] studied the flexural behaviour of UHPC incorporating coral
98 aggregate and seawater and found that the ultimate bending capacity was improved.
99 Huang et.al [29] studied the mechanical performance and cracking behaviour of UHPC

100 mixed with seawater. Li et.al [30] studied the shrinkage behaviour of cement and silica
101 fume paste at water to binder ratio of 0.2 and showed a reduction in autogenous
102 shrinkage when mixing with seawater. These previous studies mainly focused on the
103 performance or engineering aspects of UHPC prepared with seawater. The
104 understanding of the effect of seawater on hydration, microstructure, and hydration
105 products of UHPC is still limited. The underlying mechanism controlling the evolution
106 of macroscopic properties of UHPC incorporating with seawater is also unknown.
107 Therefore, this study focused on evaluating the effect of seawater on the hydration,
108 macroscopic properties, and microstructure of UHPC, aiming to obtain the
109 microstructure and hydration products evolution of UHPC and understand the
110 hardening process. Correlation between the macroscopic properties, with the hydration,
111 microstructure of the hydration products of UHPC was revealed.

112 **2. Materials and experimental methods**

113 *2.1 Materials*

114 In this study, the binder of the UHPC was produced from ASTM type I ordinary
115 Portland cement (OPC, 52.5) and a commercially sourced silica fume (Elkem). ASTM
116 Class F fly ash (PFA) sourced from a local power company was also used as a SCM.
117 The chemical compositions of the cementitious materials determined by X-ray
118 Fluorescence Spectrometer (XRF) (Supermin 200, Rangaku Corporation, Japan) are
119 shown in Table 1. The particle size distributions of the materials determined by a laser
120 diffraction particle size 144 analyser (Malvern Mastersizer 3000E) are shown in Fig.
121 1(a). Two types of mixing water, tap water and an artificial seawater specified by
122 ASTM D1141-98 [31], were used. The compositions of the artificial seawater are
123 shown in Table 2. River sand with a size ranging from 0.15 to 2.36 mm was used as the
124 fine aggregate. A Polycarboxylate ether (PCE) superplasticizer (BASF) with a specific

125 gravity 1.05 was used. Copper coated straight steel fibre with a diameter of 0.22mm
126 and a length of 13mm was also incorporated in the UHPC mixtures.

127 Table 1 Chemical compositions of the cementitious materials (%)

Compositions	SiO ₂	CaO	Fe ₂ O ₃	MgO	SO ₃	Al ₂ O ₃	K ₂ O	Na ₂ O	P ₂ O ₅
OPC	19.1	65.2	2.96	0.754	4.27	6.06	0.684	0	0.138
Silica fume	95.7	0.729	0.0733	0.714	0.274	0.446	1.74	0	0.087
PFA	37.0	14.0	10.9	5.50	2.61	22.9	1.37	3.75	0.528

128 OPC: Ordinary Portland Cement; PFA: fly ash; GGBS: ground granulated blast-furnace slag

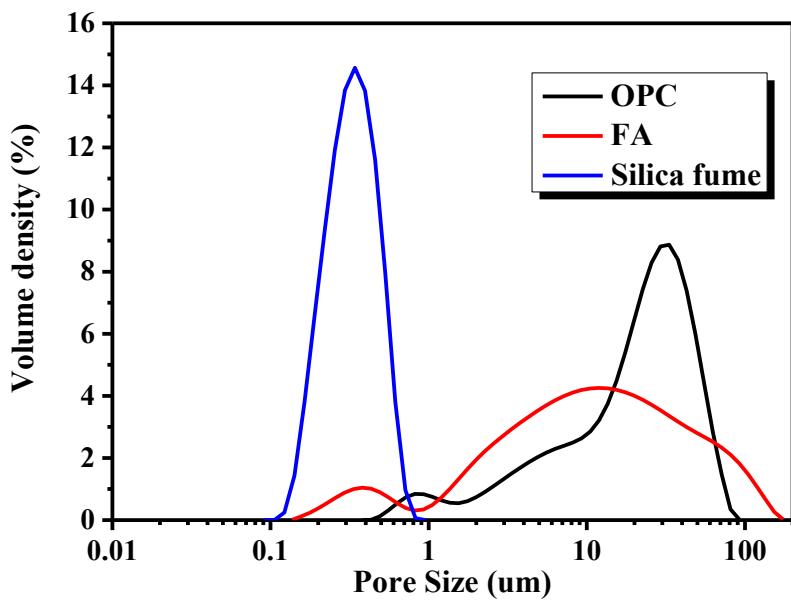
129 Table 2 Compositions of the artificial seawater

Compositions	NaCl	MgCl ₂	Na ₂ SO ₄	CaCl ₂	KCl	NaHCO ₃	KBr
Concentration(g/L)	24.5	5.20	4.09	1.16	0.695	0.201	0.101

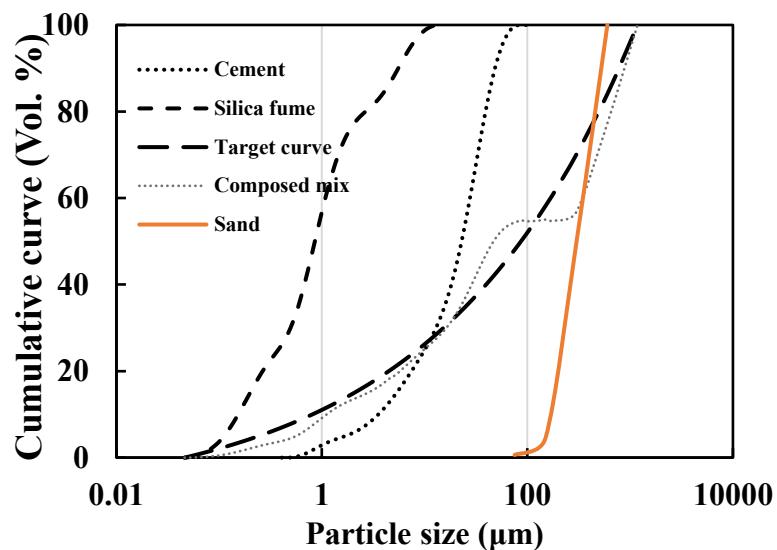
130 *2.2 Methodology*

131 *2.2.1 Specimen preparation*

132 The mixture proportion of UHPC (Table 3) was obtained based on the modified
133 Andreasen and Andersen model to optimize the packing of the binder and river sand
134 [32]. In the modified Andreasen and Andersen model, the volume proportion of cement,
135 silica fume and PFA can be optimized by using the Least Squares Method with a
136 partition coefficient to minimize the target grading curve and the mix. A partition
137 coefficient of 0.23 was used in this study. Two types of mixture, called the control
138 group (CON) and fly ash group (FA), were prepared using the simulated seawater and
139 tap water as mixing water. The cumulative volume of cement, silica fume, PFA and
140 river sand, and the optimal grading curves of the design mixture is shown in Fig. 1.


141 In this study, paste, concrete and fibre reinforced UHPC specimens were prepared for
142 different tests. To prepare the paste specimens, the binders, such as cement, silica fume
143 and PFA, were prepared according to Table 3 (without sand and steel fibre) and dry

144 mixed at low speed for three minutes by using a pan mixer. Water and superplasticizer
 145 were then added into the mixer and mixed with the binders for 2 minutes at low speed
 146 and subsequently 3 minutes at high speed. After that, 1- minute low-speed mixing was
 147 applied to remove the bubble produced from high-speed mixing. For the concrete
 148 specimens, river sand was added into the fresh mixed paste and mixed in the mixer for
 149 2 minutes at high speed, followed by 1 minute at low-speed mixing. It should be noted
 150 that 2% steel fibre by volume was added in the specimens for compressive strength,
 151 autogenous and drying shrinkage tests. For the fibre reinforced UHPC specimens, 2%
 152 steel fibre by volume was also added together with river sand before the 2-minute high-
 153 speed mixing and 1-minute low-speed mixing. After the mixing process, the paste,
 154 concrete or fibre reinforced specimens were respectively vibrated on a vibration table
 155 for 1 minute to remove entrapped air.


156 Table 3 Mixture proportions of the UHPC mixtures

Compositions (kg/m ³)	FC	SC	FF	SF
Cement	902	902	820	820
Silica fume	246	246	246	246
PFA	0	0	82	82
River Sand	920	920	920	920
Tap water	156.13	---	156.13	---
Seawater	---	156.13	---	156.13
PCE Superplasticizer	34.44	34.44	34.44	34.44
Steel fibre (2% in volume)	156	156	156	156

157 FC: CON group mixed with fresh water; SC: CON group mixed with seawater; FF: FA group mixed with fresh
 158 water; SF: FA group mixed with seawater

(a)

(b)

159 Fig. 1 (a) Particle size distributions of cementitious material and (b) cumulative curve and the optimal grading curve
160 design

161 *2.2.2 Compressive Strength*

162 The fibre reinforced specimens with the size of 40 mm × 40 mm × 160 mm were cast
163 in steel moulds to determine the compressive strength of UHPC. The specimens were

164 sealed with plastic wraps immediately after casting and demolded at 24h. The
165 specimens were then cured in tap water at 25 ± 1 °C until the testing ages. The
166 compressive strength was obtained from three specimens at 1, 7 and 28 days
167 respectively with the loading rate of 0.9 kN/s.

168 *2.2.3 Slump flow & setting time*

169 The procedure used for slump flow followed BS EN1015-3 [33]. The test was
170 conducted for the concrete specimens immediately after the mixing process.
171 Penetration resistance test was also performed on concrete specimens based on ASTM
172 C403 - 08 to obtain the setting time [34]. A penetration resistance apparatus with an
173 appropriate needle size selected based on the degree of setting was used to measure the
174 penetration resistance produced from the 25mm penetration of the corresponding
175 needle. To prepare the specimen, each specimen was cast in a cylindric container with
176 a diameter and depth of 150 mm and sealed with plastic wraps immediately after casting.
177 The specimens were then stored in an environmental chamber at $23^{\circ}\text{C} \pm 2$ °C prior to
178 the testing. The initial test was performed at 2 hr after casting, and the subsequent tests
179 were conducted at $\frac{1}{2}$ hr intervals. It should be noted that the time intervals were adjusted
180 to obtain sufficient results (at least 6 penetrations). The initial setting and final setting
181 of the concrete specimens were determined at the time when the penetration value
182 reached 2.5MPa and 27.6MPa respectively in the plot of penetration resistant – elapsed
183 time curve[34].

184 *2.2.4 Autogenous shrinkage & drying shrinkage*

185 The autogenous shrinkage of the fibre reinforced specimens was determined according
186 to ASTM C1698-19 [35]. The duration of the test was 7 days and the frequency of data
187 collection for the UHPC autogenous shrinkage strain was once in each hour in the first
188 day, and twice a day for the rest of the time.

189 The test procedure of drying shrinkage of the fibre reinforced specimens was based on
190 a modified British Standard (BS ISO-Part 8, 2009) [36]. The specimens were cast in
191 steel moulds with the size of 25 mm × 25 mm × 285 mm and sealed with plastic wraps
192 for 24h. The specimens were then demolded and cured in water for 48 h. After curing,
193 the specimens were transferred to and cured in environmental chamber at 25°C ± 2 °C
194 with a relative humidity of 50% ± 4%. The drying shrinkage strain was tested at 4, 7,
195 14, 28 and 56 d.

196 *2.2.5 Heat of hydration*

197 The heat flow and cumulative heat of the paste (without aggregate and fibre) of UHPC
198 specimens were obtained using an I-Cal 4000 isothermal calorimeter. Approximately
199 50g UHPC pastes prepared according to Table 3 were prepared and placed in plastic
200 containers. After 15 minutes of hand mixing the specimens were placed into the
201 calorimeter for the heat flow measurement.

202 *2.2.6 Pore Structure*

203 To obtain the pore structure with the size between 2nm to 200nm, the nitrogen
204 adsorption and desorption isotherms of the UHPC were determined by Tristar 3020,
205 Micromeritics. The samples were fractured into small pieces with the size of less than
206 1mm from the paste specimen. The hydration of samples was stopped at age 1 and 28
207 d by soaking in ethanol, followed by being dried for 48h in a vacuum oven at 45°C.

208 *2.2.7 Characterization of the evolution of hydration products*

209 The hydration of the samples was stopped at ages 1, 7 and 28 d by soaking in ethanol.
210 The paste samples were then prepared as dry powder with size less than 45 µm and
211 analysed by X-ray diffraction (XRD) with Cu-K α radiation where $\lambda = 1.54 \text{ \AA}$ operated
212 at conditions of 45kV and 200mA. The measurement was recorded with a range of 5-

213 $80^\circ 2\theta$ with a step size of 0.02° . The XRD spectra were analysed by MDI Jade 6.5
214 software.

215 *2.2.8 Nuclear Magnetic Resonance spectroscopy (NMR)*

216 The mean chain length (MCL) and polymerization degree (PD) of C-S-H and the
217 hydration degree (HD) of the 28 d specimens were studied to explain the result of
218 compressive strength, via the scanning of ^{29}Si nuclei by a JEOL ECZ 500 MHZ solid-
219 state NMR spectrometer with a 7-mm CP/MAS probe. Approximately 1g powdered
220 paste samples were prepared according to the TGA procedures and were analysed for
221 the NMR test. The solid state ^{29}Si NMR spectra of the nuclei were obtained under the
222 conditions of 4kHz spinning rate, 98.4MHz resonance frequency and 20s relaxation
223 delay. The spectra were deconvoluted and analysed according to Q^n classification [37]
224 (where Q refers to silica tetrahedra (SiO_4) and n refers to different types of silica
225 tetrahedra) to obtain mean chain length (MCL) and polymerization degree (PD) . The
226 following are the equations of MCL and PD.

$$\text{MCL} = 2 \times (Q^1 + Q^2) / Q^1 \quad (1)$$

$$\text{PD} = Q^2 / Q^1 \quad (2)$$

227 *2.2.9 Pozzolanic reactivity of silica fume*

228 The 7-d pozzolanic reactivity of silica fume in seawater was studied by isothermal
229 calorimetry (I-Cal 4000 isothermal calorimeter) and thermogravimetric analysis (TG;
230 Rigaku Thermo Plus EVO2). The samples were prepared based on the modified
231 procedures of the previous study [38]. Since seawater can react with potassium
232 hydroxide solution and form precipitate during the preparation, silica fume was only
233 blended with reagent grade CH in a mass ratio of 1:3. A portion of the blend without
234 mixing water was reserved for TG analysis to determine the CH content in the
235 unhydrated blend. The rest were mixed with tap water or seawater at a liquid to solid

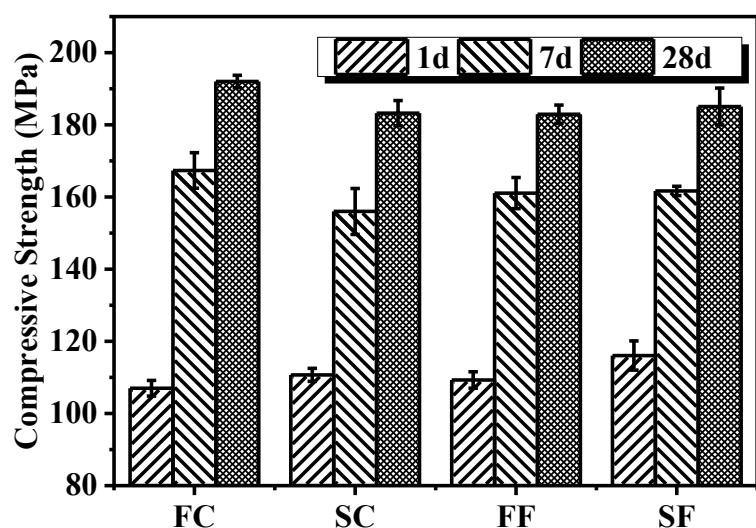
ratio of 0.63. PCE was also added at a PCE to silica fume ratio of 0.14. The mass ratio of silica fume, water and PCE was determined based on the mix proportions of Table 3. After mixing, the samples were cured in a sealed plastic container and stored in an environmental chamber at a temperature $25^{\circ}\text{C} \pm 1^{\circ}\text{C}$ for 7 d. The samples were then soaked in isopropanol for 3 days to stop the pozzolanic reaction, followed by vacuum drying at 40°C for 6 hr. 10 mg of the samples were ground into powder and heated from 30°C to 1000°C at a rate of $10^{\circ}\text{C}/\text{min}$ in N_2 environment using a Rigaku Thermo Plus EVO2. For isothermal calorimetry, tap water and seawater blends were prepared to measure the heat flow measurements for 7 d.

3. Results

3.1 Evolution of fresh properties of UHPC containing seawater

Regarding the fresh properties, setting time and slump of seawater and tap water group were shown in Table 4. In CON, the initial and final setting time in the seawater group were approximately 50% shorter than the tap water group. The initial and final setting time were also reduced in FA group but with less extent of 25%. The shortened setting time was attributed to the accelerated hydration [7]. Similarly, the initial and final setting times of the seawater concrete were also shortened due to the presence of seawater shown in Table 4. Regarding the slump flow, although the slump flow of the seawater mixed specimens was about 10 mm higher than that of tap water mixed specimens, the result was comparable. Furthermore, for FA group, the higher slump flow was observed compared to CON group. The observation was related to spherical shape of PFA acting as a lubricant between the binder particles [39]

Table 4 Fresh properties of UHPC and cement paste

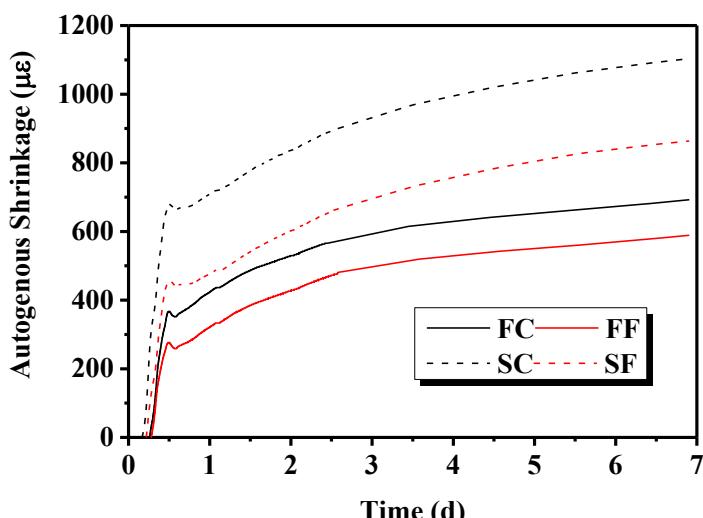

FC	SC	FF	SF
----	----	----	----

Initial Setting(min)	315	205	330	280
Final Setting(min)	375	240	400	315
Slump(mm)	210	220	220	230

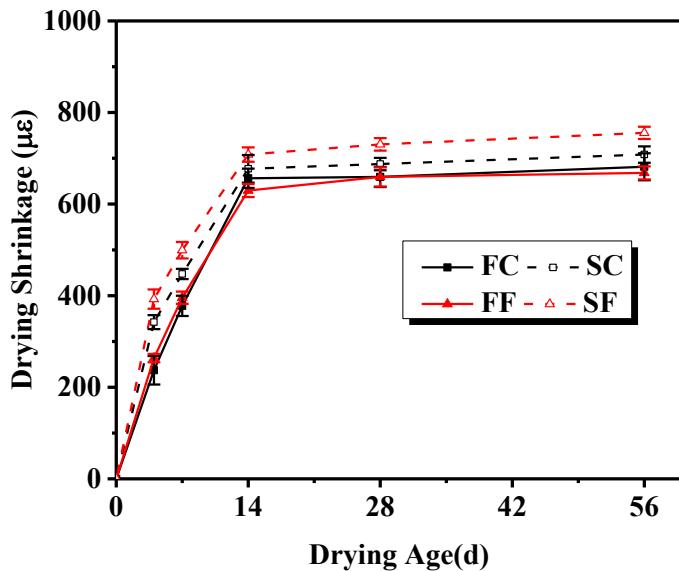
259 TW: tap water; SW: seawater

260 *3.2 Mechanical properties of UHPC incorporated with seawater*

261 Fig. 2 shows the compressive strength results. In the CON group, the compressive
 262 strength of the specimens prepared with seawater was higher than that of the samples
 263 mixed with tap water at 1 d and the difference was approximately 5 MPa. However,
 264 UHPC mixed with tap water attained a higher compressive strength after 7 d. It was
 265 approximately 10 MPa higher than the samples prepared with seawater at 28 d. The
 266 trend of strength development was consistent with previous studies [4, 27]. For the FA
 267 groups, the seawater sample had a slightly higher compressive strength at 1 d. However,
 268 at 7 d and 28 d, seawater showed limited influences on the compressive strength as
 269 similar compressive strength was observed.



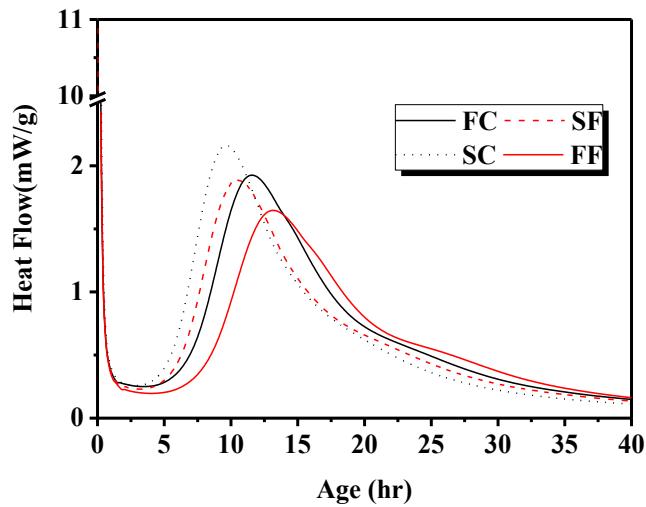
270


271 Fig. 2 Compressive strength of UHPC at 1, 7 and 28d

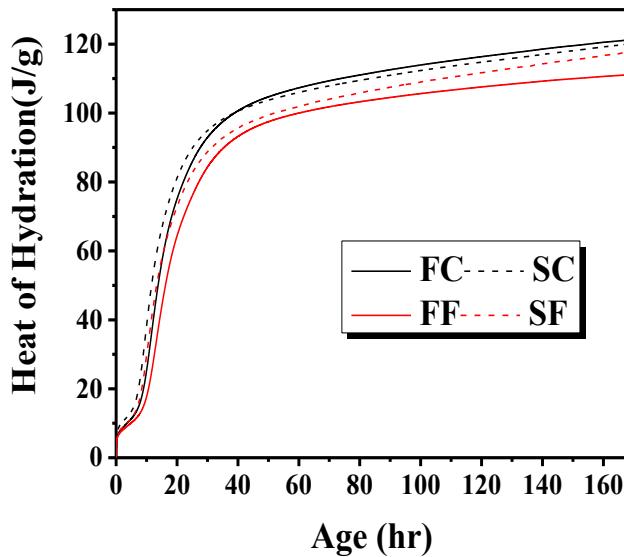
272 3.3 Volume stability of UHPC prepared with seawater

273 The autogenous shrinkage test results are shown in Fig. 3. In CON group, 7 d-
274 autogenous shrinkage the samples mixed of seawater reached approximately $1,100 \times 10^{-6}$, which was 500×10^{-6} higher than the sample that mixed with tap water. The result
275 was contradicted to previous study[30]. When the PFA was incorporated in UHPC, the
276 autogenous shrinkage of both groups showed a decrease. The autogenous shrinkage
277 was reduced by 27% and 23% in the seawater mixed and tap water mixed samples
278 respectively, which was attributed to the replacement of cement by PFA [40, 41].
279 Indeed, the autogenous shrinkage of the seawater mixed sample, even with the
280 incorporation of PFA, was higher than tap water mixed samples.
281
282 Fig. 4 illustrates the drying shrinkage of the UHPC samples. Similar to that of the
283 autogenous shrinkage test, the UHPC prepared with seawater induced higher shrinkage
284 compared with the tap water group.

285
286 Fig. 3 Effect of seawater on autogenous shrinkage of UHPC



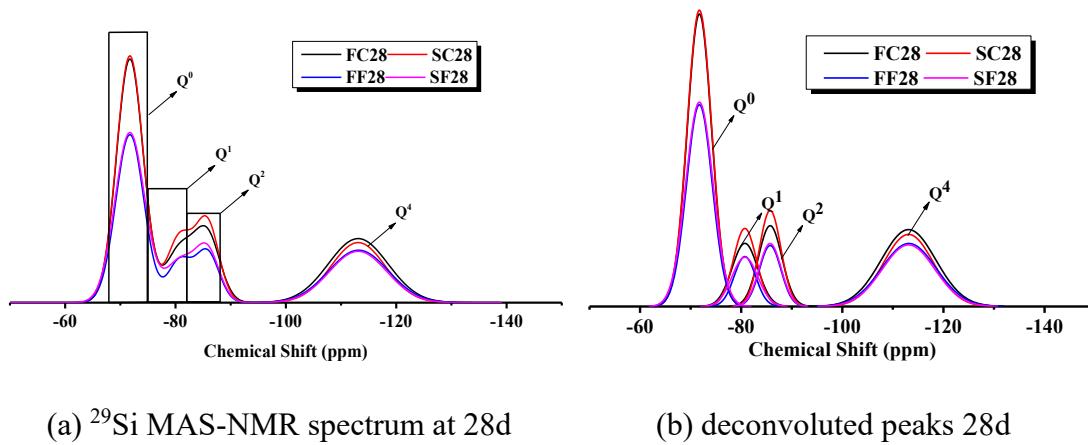
287


288 Fig. 4 Effect of seawater on drying Shrinkage of UHPC

289 *3.4 Hydration and hydration products of UHPC prepared with seawater*

290 Fig. 5(a) illustrates the heat flow curves of UHPC mixed with seawater and tap water
 291 up to 40 h. The dormant period was approximately 2.5 h shorter in the seawater group
 292 compared with the tap water group. The peaks in the seawater group also occurred 2 h
 293 earlier and were approximately 0.2mW/g higher than that in the tap water group.
 294 Regarding the cumulative heat curves shown in Fig. 5(b), the amount of cumulative
 295 heat of the seawater group also was evidently higher than the tap water group up to 40h.
 296 The result showed seawater promote the hydration of UHPC paste which was attributed
 297 to the presence of seawater ions, including Cl^- , Ca^{2+} , Mg^{2+} , Na^+ and SO_4^{2-} accelerating
 298 the hydration of C_3A and C_3S [42, 43].

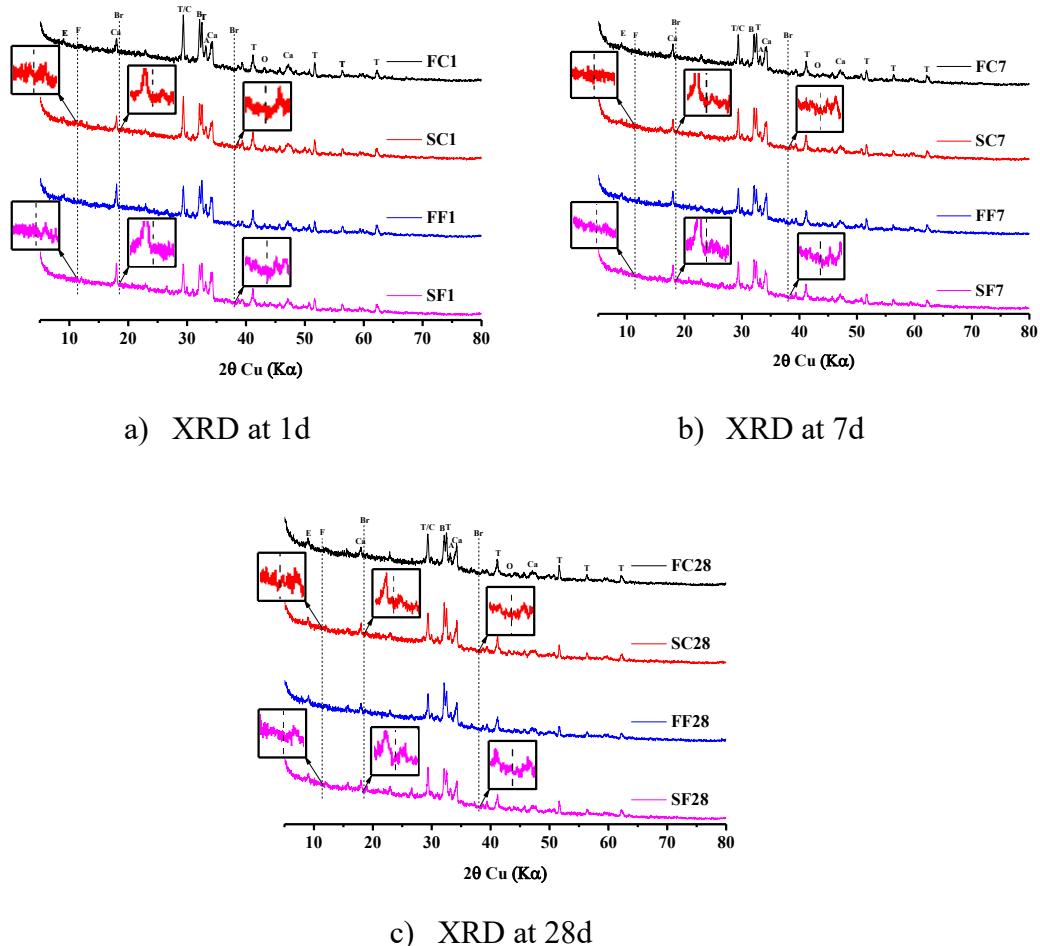
(a) Heat Flow



(b) Cumulative Heat

299 Fig. 5 (a)Heat Flow and (b) Cumulative heat of UHPC mixed with tap water and seawater

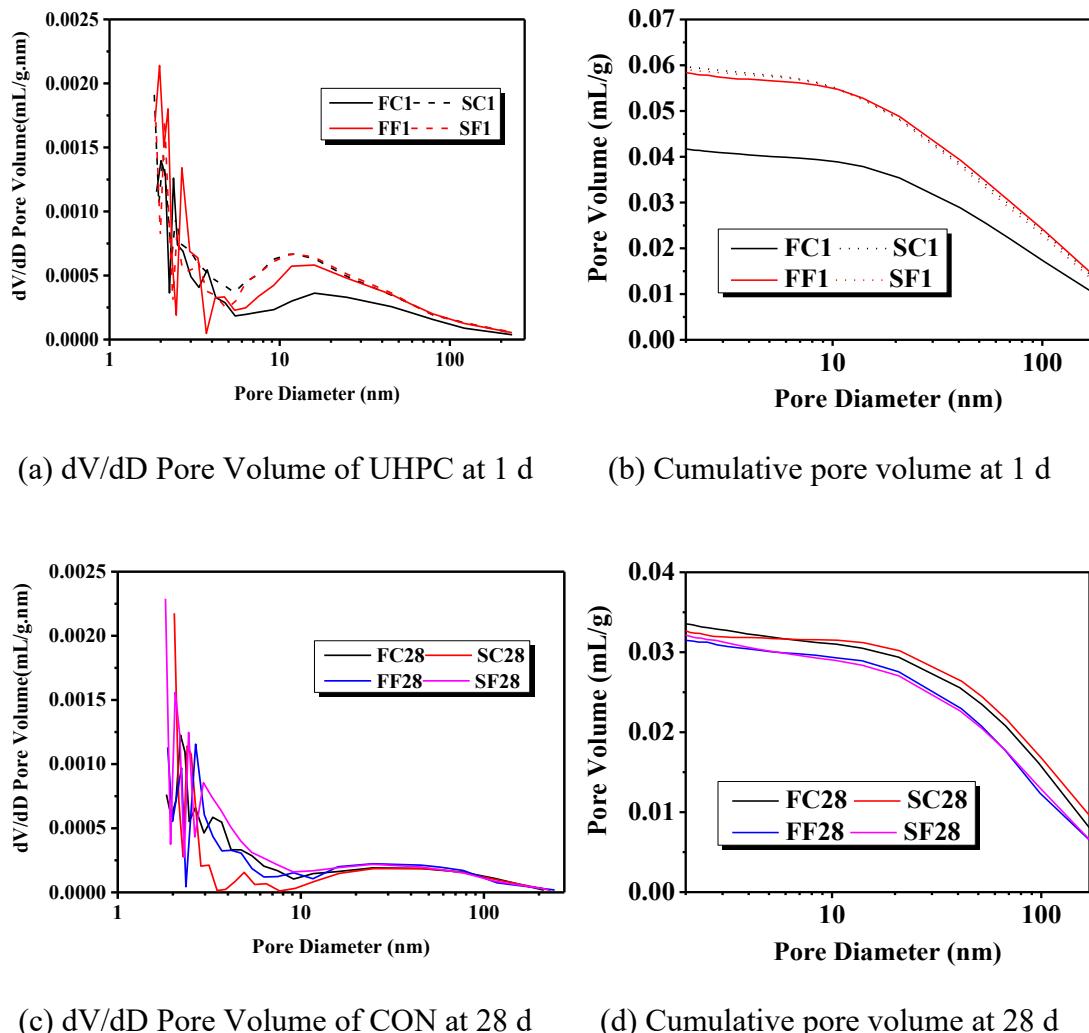
300 To understand the modification of C-S-H structure due to the presence of seawater, ^{29}Si
 301 MAS-NMR was conducted. Fig. 6 shows the ^{29}Si MAS-NMR spectra and the
 302 deconvoluted peaks of UHPC mixed with tap water and seawater at 28d. Four silica
 303 tetrahedra (SiO_4) peaks were observed in all groups at all ages. The peaks of Q^0 (-
 304 72ppm), Q^1 (-81 ppm), Q^2 (-86ppm) and Q^4 refer to SiO_4 in cement, bridging SiO_4 in C-


305 S-H, the end-chain SiO_4 in C-S-H and SiO_4 in PFA and silica fume respectively [44].
 306 Table 5 shows the ^{29}Si MAS NMR spectrum analysis of the UHPC mixed with tap
 307 water and seawater at 28 d. The MCL and PD in seawater group at 28d were both lower
 308 than tap water group.

309 Fig. 6 ^{29}Si MAS-NMR spectra and deconvoluted peaks of UHPC mixed with tap water and seawater at 1d and 28d
 310 Table 5 ^{29}Si MAS NMR spectrum analysis of UHPC mixed with tap water and seawater at 28 d

	$\text{Q}^n/\%$				MCL	PD
	Q^0	Q^1	Q^2	Q^4		
FC28	47.62	10.31	14.18	27.89	4.75	1.38
SC28	49.40	12.12	14.01	24.47	4.31	1.16
FF28	47.11	9.73	11.89	31.27	4.44	1.22
SF28	48.51	11.10	12.10	28.30	4.18	1.09

311 The results of XRD are shown in Fig. 7. It was surprising to note that no significant
 312 difference was observed in the crystalline hydration products of UHPC samples. The
 313 formation of Friedel's salt and brucite were expected in the seawater mixed specimens
 314 since several studies on seawater concrete detected the Friedel's salt through XRD or
 315 TG analysis [45, 46]

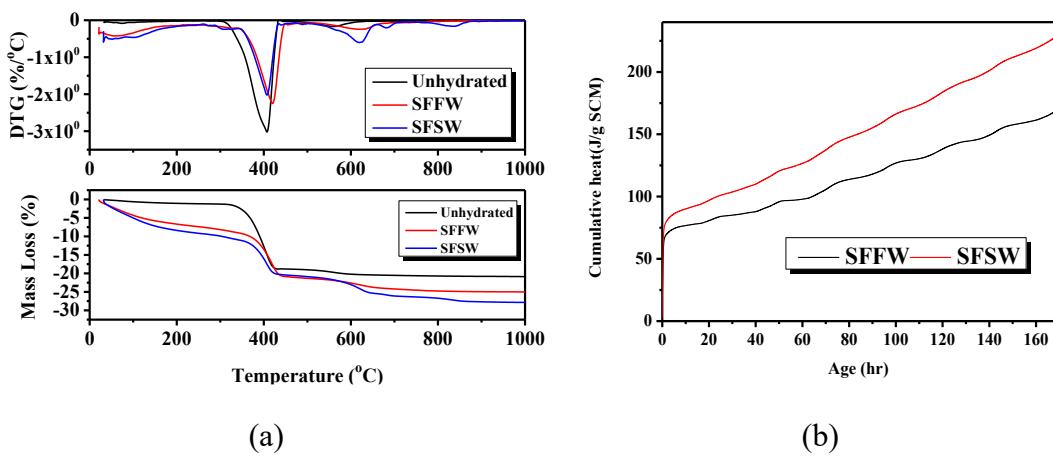


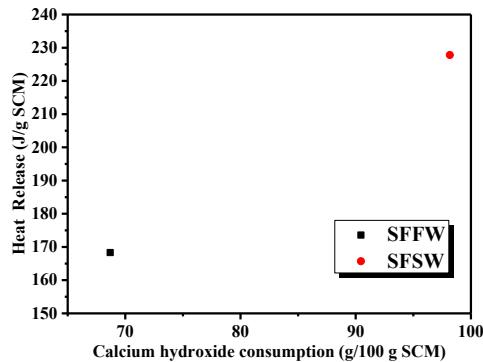
316 Fig. 7 XRD spectrum of UHPC mixed with tap water and seawater at 1, 7& 28d (E = Ettringite; F = Friedel's salt;
 317 Ca = Ca(OH)_2 ; Br = Mg(OH)_2 ; T = C_3S ; C = Calcite; B = C_2S ; A = C_3A ; O = Al_2O_3)

318 *3.5 Pore structure evolution of UHPC prepared with seawater*

319 The pore structures determined by BET are shown in Fig. 8. The total pore volume of
 320 the seawater and tap water samples at 1 d were comparable. However, in the samples
 321 prepared without PFA, the volumes of pores larger than 50nm and less than 50nm in
 322 SC and FC was 0.0250mL/g and 0.0256 mL/g, and 0.0249 mL/g and 0.0246 mL/g
 323 respectively. Therefore, seawater indeed promoted the formation of a denser
 324 microstructure of UHPC at 1 d as SC had more finer pores than FC. According to the
 325 pore structure at 28 d, seawater did not refine the pore structure as in 1 d. 0.0244 mL/g
 326 and 0.0234 mL/g of pore volume larger than 50nm and 0.008 mL/g and 0.0102 mL/g

327 pore volume less than 50nm were observed in SC and FC at 28 d respectively. SC
 328 therefore had a coarser microstructure than FC at 28 d. The result showed seawater
 329 refined the pore structure at the early age but coarsened the pore structure at the later
 330 age. However, the results in the samples prepared with PFA was in the contrary. SF had
 331 less coarser pores and a denser microstructure, and therefore a higher compressive
 332 strength than FF.




333 Fig. 8 dV/dD Pore Volume and cumulative pore volume of UHPC mixed with seawater and tap water

334 *3.6 Pozzolanic reactivity of silica fume*

335 Fig. 9(a) shows the TG and DTG curves of silica fume and CH blends mixed with tap
 336 water and seawater and cured for 7d. In DTG, several mass loss peaks can be observed

337 in UHPC. The first peak occurred around 100 to 200 °C was due to the mass loss of free
 338 water and physically water bound on hydrates such as C-S-H [44, 47]. The peak around
 339 450 °C was attributed to dehydroxylation of $\text{Ca}(\text{OH})_2$ [48]. The blend mixed with
 340 seawater had evidently a higher peak intensity of C-S-H than the corresponding sample
 341 mixed with tap water. The CH peak in the seawater mixed samples was also higher than
 342 that in the tap water mixed sample. Fig. 9(b) compares the cumulative heat evolved
 343 from the blends. The seawater sample had a higher cumulative heat during the whole
 344 testing period. The cumulative heat evolved is plotted against the amount of CH
 345 consumed by the silica fume in Fig. 9(c). After 7 d, the cumulative amounts of heat
 346 released by the seawater sample and tap water sample were 227.8 J/g SCM and 168.3
 347 J/g SCM respectively. The seawater sample released 26% more heat than the tap water
 348 sample. The seawater mixed sample also recorded approximately 30% higher CH
 349 consumption than the tap water mixed sample after 7d of curing. The higher amount of
 350 C-S-H formation, CH consumption, and cumulative heat evolved provided strong
 351 evidence that seawater enhanced the pozzolanic reaction of silica fume in UHPC[38].
 352 The enhanced pozzolanic reactivity of silica fume could be attributed to the high
 353 solubility of CH in seawater[49], leading to more dissolved ions for pozzolanic reaction.

(c)

354 Fig. 9 a) TG and DTG curve of CH and silica fume mixed with tap water and seawater at 7d; b) CH consumption by
 355 silica fume mixed with tap water and seawater at 7d; c) cumulative heat against calcium hydroxide consumption for
 356 silica fume mixed with tap water and seawater (note: Unhydrated: silica fume mixed with CH without mixing water;
 357 SFFW: silica fume mixed with tap water; SFSW: silica fume mixed with seawater)

358 **4. Discussion**

359 *4.1 Effect of seawater on fresh properties*

360 The initial and final setting time were shortened due to the presence of seawater. The
 361 role of seawater in shortening setting was related to the accelerated hydration.
 362 Particularly, the process of dissolution of cement particles and nucleation of hydrates
 363 was accelerated in Fig. 5(a). The ions of seawater accelerated the process of dissolution
 364 of cement particles [6, 7] and nucleation process [50], eventually leading to shortened
 365 initial and final setting times. While incorporating PFA in UHPC, prolonged initial and
 366 final setting times were observed in FA group since the retardation of hydration was
 367 reported due to the presence of PFA[51].

368 *4.2 Effect of seawater on hardening process*

369 An increase in early compressive strength was observed which was certainly related to
 370 hydration and microstructure. However, since a high amount of SCMs was incorporated
 371 into the UHPC, the pozzolanic reaction could also affect the compressive strength.

372 *1) Improved early hydration degree*

373 Firstly, the improved early strength can be explained in the aspect of hydration. Since
374 seawater accelerated the hydration, the higher degree of hydration and more C-S-H
375 formation were observed in the seawater mixed samples [7, 52], resulting higher
376 compressive strength.

377 *2) Refinement of pore structure at early age*

378 Secondly, regarding the pore structure, although the total porosity was similar, the
379 accelerated hydration due to seawater promoted a denser microstructure of UHPC
380 resulting in higher early compressive strength. Particularly, the pores larger than 50nm
381 was associated with compressive strength [53, 54]. According to Fig. 8, in the samples
382 prepared without PFA, although the total pore volume of the seawater and tap water
383 samples at 1 d were comparable, the seawater group had fewer pores larger than 50nm.
384 While in the samples prepared with PFA, a lesser volume of pores greater than 50nm
385 were also observed in the seawater mixed sample and the total porosity of the seawater
386 mixed sample was evidently lower than the tap water mixed sample. As a result, a
387 denser microstructure was observed in the seawater samples prepared with or without
388 PFA and contributed to the higher compressive strength.

389 *3) Enhanced pozzolanic reaction of silica fume*

390 Thirdly, the improved early strength might also be associated with the increased
391 pozzolanicity of silica fume due to the presence of seawater. More C-S-H was formed
392 by the pozzolanic reaction of silica fume in the seawater samples. The improved early
393 strength might also be associated with the accelerated hydration of cement by seawater.
394 Increased formation of $\text{Ca}(\text{OH})_2$ was reported due to the accelerated hydration by
395 seawater [49]. The increased CH concentration could facilitate the pozzolanic reaction
396 of silica fume and therefore a better early compressive strength was observed.

397 In addition, at the later age, the compressive strength was reduced when seawater was
398 used as the mixing water. The reduced performance was due to different hardening
399 process as discussed below.

400 *1) Coarsened pore structure at later age*

401 According to the pore structure at 28 d, although FC and SC had a similar total porosity,
402 a higher volume of coarser pores was observed in SC. However, the results for the
403 sample prepared with PFA were contrary. SF had less coarser pores and a denser
404 microstructure, and therefore a higher compressive strength than FF. The result showed
405 seawater might refine the pore structure of UHPC prepared with the incorporation of
406 PFA.

407 *2) Reduced polymerization of C-S-H at later age*

408 In addition, the modification of C-S-H structure due to seawater was associated with
409 the reduced later compressive strength in SC. The decrease of mean chain length (MCL)
410 and polymerisation degree (PD) of C-S-H was observed in a previous study due to the
411 presence of seawater ions, such as Na^+ and Mg^{2+} [45, 55]. These ions could inhibit the
412 polymerisation of C-S-H by the substitution of the Ca^{2+} in the interlayer of the C-S-H
413 structure, especially for low Ca/Si C-S-H [45]. C-S-H formed by fly ash or silica fume
414 have typically lower Ca/Si ratios and therefore could be sensitive to the inhibition of
415 C-S-H polymerisation. The effect of MCL and PD on compressive strength had been
416 reported [56].

417 In summary, the mechanical performance of seawater UHPC was not only influenced
418 by effect of accelerated hydration, but also the modification of the pore structure and
419 C-S-H structure. Although seawater promoted the increased hydration degree of UHPC,
420 which was confirmed to contribute to the increased mechanical properties initially, the

421 adverse effect of coarsened pore structure and shortened MCL of C-S-H outweighed
422 the positive effect of accelerated hydration.

423 *4.3 Effect of seawater on volume stability*

424 The presence of seawater resulted in higher shrinkage of UHPC, particularly the
425 autogenous shrinkage, causing higher drying shrinkage at the later age. The autogenous
426 shrinkage was highly related to the reaction of the binders with water and the pore
427 structure, which were modified by the presence of seawater [7]. The effect of modified
428 reactions and pore structure on volume stability of UHPC is discussed as follows.

429 *1) Accelerated hydration and pozzolanic reaction*

430 The increased shrinkage was associated with accelerated hydration in the early age due
431 to the use of seawater[57]. The accelerated hydration resulted in a higher degree of
432 hydration and a higher consumption of free water, which therefore lower the relative
433 humidity in the fine pore structure. This could lead to a higher self-desiccation and
434 therefore a higher autogenous shrinkage was observed [9, 30]. Apart from hydration,
435 the pozzolanic reaction of silica fume was also increased because of seawater. The
436 increased pozzolanic reaction could also lead to larger consumption of free water [58]
437 and therefore the autogenous shrinkage could be further increased.

438 *2) Refined pore structure at early age*

439 The higher autogenous shrinkage was also associated with the pore size distribution
440 modified by seawater. According to the pore size distribution in Fig. 8, more pores in
441 the size range of less than 50nm were observed in the seawater mixed sample at 1 d and
442 this was also associated with autogenous shrinkage[53, 54, 59]. This size range of pores
443 mainly contributed to shrinkage as capillary pressure was higher with the smaller pore
444 [60].

445 Shrinkage was an important issue in UHPC that led to durability concerns [61, 62],
446 while the exacerbation of shrinkage due to seawater might not favour the use of UHPC
447 with seawater. The conventional measures to reduce the shrinkage was by incorporating
448 PFA and this measure might no longer be effective as well in mixes prepared with
449 seawater.

450 *4.4 Comparison with normal strength concrete*

451 Compared to normal concrete, UHPC was characterized by an ultra-low water to binder
452 ratio, high content of superfine powders and no coarse aggregate, leading to a dense
453 microstructure and ultra-high performance in terms of mechanical and durability. These
454 different characteristics would affect the role of seawater on the performance and
455 microstructure and hydration products in concrete. The main differences are
456 summarized as follows:

457 *1) Shortened difference of initial and final setting time*

458 For fresh properties, based on previous published literature shown in Table 6, although
459 the setting time of normal concrete was also shortened, the effect of seawater on setting
460 time of UHPC was more significant than that in normal concrete. The shortening of
461 setting time of UHPC was 20% higher. The reason for the observation was possibly
462 related to the incorporation of silica fume in UHPC since seawater also enhanced the
463 pozzolanic reaction of silica fume in UHPC.

464
465 Table 6 Difference of setting time between UHPC and conventional concrete

	Initial set(min)	Final set(min)
FC	315	375
SC	205	240
Difference (%)	53.6%	56.3%

TW mixed normal concrete [13]	150	397
SW mixed normal concrete [13]	114	310
Difference (%)	31.5%	28.1%

466 TW: tap water; SW: seawater

467 *2) Similar compressive strength development but unchanged porosity*

468 The effect of seawater on the compressive strength of UHPC and normal strength
 469 concrete was similar. Seawater would accelerate the hydration and promote the early
 470 strength development of both UHPC and normal strength concrete at 1 d but then the
 471 strength development would be reduced afterwards [10]. However, regarding porosity,
 472 this study did not observe significant difference in the seawater UHPC, but the porosity
 473 in seawater normal concrete was reduced[10].

474 *3) Increased drying shrinkage and autogenous shrinkage*

475 When comparing the drying shrinkage of the seawater mixed UHPC and normal
 476 strength concrete, the results showed the increased drying shrinkage was also observed
 477 in the seawater mixed normal strength concrete and this was attributed to the more fine
 478 pores in the microstructure[4, 10, 57, 63].

479 However, the result of autogenous shrinkage in normal concrete was different to UHPC.
 480 A study showed a decrease in autogenous shrinkage in an OPC paste prepared with a
 481 0.45 of water to cement ratio and attributed to the thermal expansion due to the
 482 accelerated hydration and the restraint by rapid formation of ettringite [6].

483 The incorporation of PFA was partially useful for controlling the volumetric change of
 484 concrete. The PFA reduced the autogenous shrinkage regardless of the type of mixing
 485 water used [57]. However, the drying shrinkage reducing effect by using PFA was less
 486 effective according to this study. This might suggest seawater concrete could be a
 487 concern in terms of shrinkage.

488 4) *Absence of Friedel's salt in UHPC*

489 It is also noted that Friedel's salt was not observed in UHPC at all ages according to
490 Fig. 7, while it could be observed in normal strength concrete. Lollini et al. [64]
491 attributed this observation to the poor reaction of the alumina phases in cement to form
492 Friedel's salt at a low w/b. The absence of Friedel's salt in this study might also be
493 related to the presence of a large amount of silica fume [65]. Li et.al [30] also suggested
494 the dissolution of C₃S and C₃A enhanced the reaction of silica fume and cement
495 resulting in enhanced formation of C-S-H for physical binding of chloride. The free
496 chloride available for the formation of Friedel's salt would be reduced. However, the
497 effect of Friedel's salts on UHPC performance and normal concrete is still unknown.

498 **5. Conclusion**

499 The effect of seawater on the macroscopic performance was investigated and analysed
500 based on the results of hydration, microstructure and hydration products of UHPC. The
501 conclusion of this study is summarized as follows:

- 502 1. Seawater affected the fresh properties of UHPC. Shortened setting times were
503 observed which was associated with the accelerated hydration by seawater.
504 However, a similar workability in terms of slump flow was observed when using
505 seawater as the mixing water when compared to tap water.
- 506 2. Seawater also modified the strength development. The early compressive
507 strength was improved but the later strength was slightly reduced. The improved
508 strength was related to accelerated hydration and finer pore structure. The
509 reduced later strength was attributed to coarser pore structure and shorter MCL
510 and lower PD of the C-S-H.
- 511 3. Seawater increased both the autogenous and drying shrinkage of UHPC. The
512 increased autogenous and drying shrinkage were related to the accelerated

513 hydration and increased volume of pores lesser than 50 nm in UHPC prepared
514 with seawater.

515 4. The pozzolanic reaction of silica fume was enhanced by the use of seawater.

516 Higher CH consumption and more C-S-H formation were observed in the
517 seawater samples. The increased reactivity contributed to the higher early
518 compressive strength and higher shrinkage of UHPC.

519 5. The early compressive strength of the seawater UHPC incorporated with PFA
520 was higher while the later strength was comparable to the tap water group.

521 Incorporation of fly ash reduced the shrinkage, but the shrinkage value was still
522 higher than the tap water mixed samples.

523 **Acknowledgement**

524 The study was supported by a grant from the Theme Based Research Scheme of the
525 Research Grants Council of Hong Kong (Project No. T22-502/18-R). The authors also
526 gratefully acknowledge the support of the University Research Facility on Chemical
527 and Environmental Analysis (UCEA) of PolyU.

528

529 **Reference**

530 [1] P.J. Monteiro, S.A. Miller, A. Horvath, Towards sustainable concrete, *Nat. Mater.*
531 16(7) (2017) 698-699.

532 [2] A. Ahmed, S. Guo, Z. Zhang, C. Shi, D. Zhu, A review on durability of fiber
533 reinforced polymer (FRP) bars reinforced seawater sea sand concrete, *Constr. Build.*
534 *Mater.* 256 (2020) 119484.

535 [3] T. Dhondy, Remennikov, Alex, & Shiekh, M Neaz, Benefits of using sea sand and
536 seawater in concrete: A comprehensive review, *Aust. J. Struct. Eng.* 20(4) (2019) 280-
537 289.

538 [4] J. Xiao, C. Qiang, A. Nanni, K. Zhang, Use of sea-sand and seawater in concrete
539 construction: Current status and future opportunities, *Constr. Build. Mater.* 155 (2017)
540 1101-1111.

541 [5] B.H. Menghuan Guo, Feng Xing, Xiaoqing Zhou, Meng Sun, Lili Sui, Yingwu
542 Zhou,, Characterization of the mechanical properties of eco-friendly concrete made
543 with untreated sea sand and seawater based on statistical analysis, *Constr. Build. Mater.*
544 234 (2020) 117339.

545 [6] J. Wang, E. Liu, L. Li, Multiscale investigations on hydration mechanisms in
546 seawater OPC paste, *Constr. Build. Mater.* 191 (2018) 891-903.

547 [7] P. Li, W. Li, T. Yu, F. Qu, V.W. Tam, Investigation on early-age hydration,
548 mechanical properties and microstructure of seawater sea sand cement mortar, *Constr.*
549 *Build. Mater.* 249 (2020) 118776.

550 [8] K. Katano, N. Takeda, Y. Ishizeki, K. Iriya, Properties and application of concrete
551 made with sea water and un-washed sea sand, *Third international conference on*
552 *sustainable construction materials and technologies*, 2013.

553 [9] Z. Shi, Z. Shui, Q. Li, H. Geng, Combined effect of metakaolin and sea water on
554 performance and microstructures of concrete, *Constr. Build. Mater.* 74 (2015) 57-64.

555 [10] A. Younis, U. Ebead, P. Suraneni, A. Nanni, Fresh and hardened properties of
556 seawater-mixed concrete, *Constr. Build. Mater.* 190 (2018) 276-286.

557 [11] F.M. Wegian, Effect of seawater for mixing and curing on structural concrete, *IES*
558 *J. Part A Civ. Struct. Eng.* 3(4) (2010) 235-243.

559 [12] T.J. Qing Xu, Zhengxian Yang, Yilong Ye,, Preliminary investigation of artificial
560 reef concrete with sulphoaluminate cement, marine sand and sea water,, *Constr. Build.*
561 *Mater.* 211 (2019) 837-846.

562 [13] H.Y. Ghorab, M. Hilal, A. Antar, Effect of mixing and curing waters on the
563 behaviour of cement pastes and concrete Part 2: Properties of cement paste and concrete,
564 *Cem. Concr. Res.* 20(1) (1990) 69-72.

565 [14] T.U. Mohammed, H. Hamada, T. Yamaji, Performance of seawater-mixed
566 concrete in the tidal environment, *Cem. Concr. Res.* 34(4) (2004) 593-601.

567 [15] J. Teng, T. Jiang, L. Lam, Y. Luo, Refinement of a design-oriented stress-strain
568 model for FRP-confined concrete, *J. Compos. Constr.* 13(4) (2009) 269-278.

569 [16] A. Zhou, R. Qin, C.L. Chow, D. Lau, Structural performance of FRP confined
570 seawater concrete columns under chloride environment, *Compos. Struct.* 216 (2019)
571 12-19.

572 [17] P. Richard, M.H. Cheyrezy, Reactive powder concretes with high ductility and
573 200-800 MPa compressive strength, *ACI Mater J.* 144 (1994) 507-518.

574 [18] ATSM standard C1856/C1856M - 17, Standard Practice for Fabricating and
575 Testing Specimens of Ultra-High Performance Concret, ASTM International,
576 West Conshohocken, PA,, 2018.

577 [19] T. Li, X. Liu, Y. Zhang, H. Yang, Z. Zhi, L. Liu, W. Ma, S.P. Shah, W. Li,
578 Preparation of sea water sea sand high performance concrete (SHPC) and serving
579 performance study in marine environment, *Constr. Build. Mater.* 254 (2020) 119114.

580 [20] S. Pyo, S.Y. Abate, H.-K. Kim, Abrasion resistance of ultra high performance
581 concrete incorporating coarser aggregate, *Constr. Build. Mater.* 165 (2018) 11-16.

582 [21] B. Hasanzadeh, F. Liu, Z. Sun, Monitoring hydration of UHPC and conventional
583 paste by quantitative analysis on Raman patterns, *Constr. Build. Mater.* 114 (2016) 208-
584 214.

585 [22] H. Zheng, J. Lu, P. Shen, L. Sun, C.S. Poon, W. Li, Corrosion behavior of carbon
586 steel in chloride-contaminated ultra-high-performance cement pastes, *Cem. Concr.*
587 *Compos.* 128 (2022) 104443.

588 [23] T. Ahmed, M. Elchalakani, A. Karrech, M. Dong, M. Mohamed Ali, H. Yang,
589 ECO-UHPC with High-Volume Class-F Fly Ash: New Insight into Mechanical and
590 Durability Properties, *J. Mater. Civ. Eng.* 33(7) (2021) 04021174.

591 [24] R. Yu, P. Spiesz, H. Brouwers, Development of an eco-friendly Ultra-High
592 Performance Concrete (UHPC) with efficient cement and mineral admixtures uses,
593 *Cem. Concr. Compos.* 55 (2015) 383-394.

594 [25] J. Liu, C. Shi, Z. Wu, Hardening, microstructure, and shrinkage development of
595 UHPC: A review, *J. Asian Concr. Fed.* 5(2) (2019) 1-19.

596 [26] U. Ebead, D. Lau, F. Lollini, A. Nanni, P. Suraneni, T. Yu, A review of recent
597 advances in the science and technology of seawater-mixed concrete, *Cem. Concr. Res.*
598 152 (2022) 106666.

599 [27] J.-G. Teng, Y. Xiang, T. Yu, Z. Fang, Development and mechanical behaviour of
600 ultra-high-performance seawater sea-sand concrete, *Adv. Struct. Eng.* 22(14) (2019)
601 3100-3120.

602 [28] Z. Dong, G. Wu, H. Zhu, X.-L. Zhao, Y. Wei, H. Qian, Flexural behavior of
603 seawater sea-sand coral concrete–UHPC composite beams reinforced with BFRP bars,
604 Constr. Build. Mater. 265 (2020) 120279.

605 [29] B.-T. Huang, Y.-T. Wang, J.-Q. Wu, J. Yu, J.-G. Dai, C.K. Leung, Effect of fiber
606 content on mechanical performance and cracking characteristics of ultra-high-
607 performance seawater sea-sand concrete (UHP-SSC), Adv. Struct. Eng. (2020)
608 1369433220972452.

609 [30] H. Li, N. Farzadnia, C. Shi, The role of seawater in interaction of slag and silica
610 fume with cement in low water-to-binder ratio pastes at the early age of hydration,
611 Constr. Build. Mater. 185 (2018) 508-518.

612 [31] ATSM standard D1141-98, Standard Practice for the Preparation of Substitute
613 Ocean Water, ASTM International, West Conshohocken, PA,, 2013.

614 [32] R. Yu, P. Spiesz, H. Brouwers, Mix design and properties assessment of ultra-high
615 performance fibre reinforced concrete (UHPFRC), Cem. Concr. Res. 56 (2014) 29-39.

616 [33] BS EN1015-3, Methods of test for mortar for masonry. Determination of
617 consistence of fresh mortar (by flow table) The British Standards Institution, UK, 1999.

618 [34] B.E. 196-3, Methods of testing cement. Determination of setting times and
619 soundness, The British Standards Institution, UK, 2016.

620 [35] ATSM standard C1698-19, Standard Test Method for Autogenous Strain of
621 Cement Paste and Mortar, ASTM International, West Conshohocken, PA,, 2019.

622 [36] BS ISO 1920-8, Testing of concrete. Determination of the drying shrinkage of
623 concrete for samples prepared in the field or in the laboratory, 2009.

624 [37] I. Klur, B. Pollet, J. Virlet, A. Nonat, CSH structure evolution with calcium content
625 by multinuclear NMR, in: P. Colombet, A.-R. Grimmer, H. Zanni, P. Sozzani (Eds.)
626 Nuclear magnetic resonance spectroscopy of cement-based materials, Springer, Berlin,
627 1998, pp. 119-141.

628 [38] P. Suraneni, J. Weiss, Examining the pozzolanicity of supplementary cementitious
629 materials using isothermal calorimetry and thermogravimetric analysis, Cem. Concr.
630 Compos. 83 (2017) 273-278.

631 [39] S.H. Lee, H.J. Kim, E. Sakai, M. Daimon, Effect of particle size distribution of fly
632 ash–cement system on the fluidity of cement pastes, Cem. Concr. Res. 33(5) (2003)
633 763-768.

634 [40] Y. Li, J. Bao, Y. Guo, The relationship between autogenous shrinkage and pore
635 structure of cement paste with mineral admixtures, Constr. Build. Mater. 24(10) (2010)
636 1855-1860.

637 [41] A.M. Soliman, Early-age shrinkage of ultra high-performance concrete: mitigation
638 and compensating mechanisms, Graduate Program in Civil and Environmental
639 Engineering, The University of Western Ontario, 2011.

640 [42] N. Thomas, Corrosion problems in reinforced concrete: why accelerators of
641 cement hydration usually promote corrosion of steel, *J. Mater. Sci.* 22(9) (1987) 3328-
642 3334.

643 [43] C. Wilding, A. Walter, D. Double, A classification of inorganic and organic
644 admixtures by conduction calorimetry, *Cem. Concr. Res.* 14(2) (1984) 185-194.

645 [44] K. Scrivener, R. Snellings, B. Lothenbach, A practical guide to microstructural
646 analysis of cementitious materials, Taylor & Francis Group, Boca Raton, Florida, 2018.

647 [45] Y. Sun, Y. Zhang, Y. Cai, W.L. Lam, J.-X. Lu, P. Shen, C.S. Poon, Mechanisms
648 on Accelerating Hydration of Alite Mixed with Inorganic Salts in Seawater and
649 Characteristics of Hydration Products, *ACS Sustain. Chem. Eng.* 9(31) (2021) 10479-
650 10490.

651 [46] J. Wang, J. Xie, Y. Wang, Y. Liu, Y. Ding, Rheological properties, compressive
652 strength, hydration products and microstructure of seawater-mixed cement pastes, *Cem.*
653 *Concr. Compos.* 114 (2020) 103770.

654 [47] D.L. Kong, J.G. Sanjayan, Effect of elevated temperatures on geopolymers paste,
655 mortar and concrete, *Cem. Concr. Res.* 40(2) (2010) 334-339.

656 [48] Z. Wu, K.H. Khayat, C. Shi, B.F. Tutikian, Q. Chen, Mechanisms underlying the
657 strength enhancement of UHPC modified with nano-SiO₂ and nano-CaCO₃, *Cem.*
658 *Concr. Compos.* 119 (2021) 103992.

659 [49] S.A. Yaseen, G.A. Yiseen, C.S. Poon, Z. Li, Influence of seawater on the
660 morphological evolution and the microchemistry of hydration products of tricalcium
661 silicates (C3S), *ACS Sustain. Chem. Eng.* 8(42) (2020) 15875-15887.

662 [50] W. Li, Z. Jiang, M. Lu, W. Long, F. Xing, J. Liu, Effects of Seawater, NaCl, and
663 Na₂SO₄ Solution Mixing on Hydration Process of Cement Paste, *J. Mater. Civ. Eng.*
664 33(5) (2021) 04021057.

665 [51] T. Nochaiya, W. Wongkeo, A. Chaipanich, Utilization of fly ash with silica fume
666 and properties of Portland cement–fly ash–silica fume concrete, *Fuel* 89(3) (2010) 768-
667 774.

668 [52] J.-X. Lu, P. Shen, Y. Zhang, H. Zheng, Y. Sun, C.S. Poon, Early-age and
669 microstructural properties of glass powder blended cement paste: Improvement by
670 seawater, *Cem. Concr. Compos.* 122 (2021) 104165.

671 [53] P.K. Mehta, P.J. Monteiro, Concrete: microstructure, properties, and materials, 3rd
672 ed., McGraw-Hill2006.

673 [54] L. Zhang, X. Qian, C. Yu, M. Fang, K. Qian, J. Lai, Influence of evaporation rate
674 on pore size distribution, water loss, and early-age drying shrinkage of cement paste
675 after the initial setting, *Constr. Build. Mater.* 226 (2019) 299-306.

676 [55] B. Lothenbach, A. Nonat, Calcium silicate hydrates: Solid and liquid phase
677 composition, *Cem. Concr. Res.* 78 (2015) 57-70.

678 [56] W. Kunther, S. Ferreiro, J. Skibsted, Influence of the Ca/Si ratio on the
679 compressive strength of cementitious calcium–silicate–hydrate binders, *J. Mater. Chem.*
680 *A* 5(33) (2017) 17401-17412.

681 [57] M. Khatibmasjedi, S. Ramanthan, P. Suraneni, A. Nanni, Shrinkage behavior of
682 cementitious mortars mixed with seawater, *Adv. Civ. Eng. Mater.* 8(2) (2019) 64-78.

683 [58] L. Wu, N. Farzadnia, C. Shi, Z. Zhang, H. Wang, Autogenous shrinkage of high
684 performance concrete: A review, *Constr. Build. Mater.* 149 (2017) 62-75.

685 [59] Y. Li, J. Li, Capillary tension theory for prediction of early autogenous shrinkage
686 of self-consolidating concrete, *Constr. Build. Mater.* 53(28) (2014) 511-516.

687 [60] R.A. Cook, K.C. Hover, Mercury porosimetry of cement-based materials and
688 associated correction factors, *Constr. Build. Mater.* 7(4) (1993) 231-240.

689 [61] L. Teng, M. Valipour, K.H. Khayat, Design and performance of low shrinkage
690 UHPC for thin bonded bridge deck overlay, *Cem. Concr. Compos.* 118 (2021) 103953.

691 [62] T. Xie, C. Fang, M.M. Ali, P. Visintin, Characterizations of autogenous and drying
692 shrinkage of ultra-high performance concrete (UHPC): An experimental study, *Cem.*
693 *Concr. Compos.* 91 (2018) 156-173.

694 [63] S.A. Mangi, A. Makhija, M.S. Raza, S.H. Khahro, A.A. Jhatial, A Comprehensive
695 Review on Effects of Seawater on Engineering Properties of Concrete, *Silicon* (2020)
696 1-8.

697 [64] F. Lollini, E. Redaelli, L. Bertolini, Investigation on the effect of supplementary
698 cementitious materials on the critical chloride threshold of steel in concrete, *Mater.*
699 *Struct.* 49(10) (2016) 4147-4165.

700 [65] C. Page, Ø. Vennesland, Pore solution composition and chloride binding capacity
701 of silica-fume cement pastes, *Mater. Struct.* 16(1) (1983) 19-25.

702