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9 theoretical model built upon an enhanced formulation of the deflection method,
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19  the midpoint section of the segment. This feature facilitates the exact representation of
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Introduction

Structural members with a longitudinal dimension much greater than their transverse
dimensions are commonly referred to as one-dimensional members. These members
can be categorized as straight members (e.g., beams and columns) or curvilinear
members (e.g., curved beams and arches), depending on the shape of their longitudinal
axis (i.e., centroidal axis). In structural analysis, one-dimensional members are
commonly characterized by their centroidal axis, which serves as an important

reference line for analyzing their behavior.

The deflection method is a widely used technique for analyzing one-dimensional
members (Chen and Atsuta, 2007). This method effectively determines the deformed
shape of the centroidal axis (i.e., deflection curve) of the member under prescribed
loading and boundary conditions. Its effectiveness and accuracy have been
demonstrated by successful implementations in straight members (e.g., Shen and Lu,
1983; Jiang and Teng, 2012a; Gao et al., 2021). In this method, the centroidal axis is
discretized into many short segments with critical points known as grid points, which
are typically located at the ends or midpoint of each segment. This discretization
process transforms the continuous deflection curve problem into a discrete initial value
problem where numerical procedures are used to solve for the unknown initial values,

which are usually the support reactions or displacements at one end of the member.

The deflection method is traditionally based on the small displacement theory, which
assumes that the deflection of the member is small compared to its length. This
assumption enables simplification of the exact expression for curvature, provided that

the centroidal axis of the member is initially straight or nearly so. In these cases, the
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curvature at any point on the deformed centroidal axis can be approximated as the
second-order derivative of the deflection at this point. This simplification allows the
deflection and slope at any grid point to be computed from known or assumed
information (curvature, slope and deflection) at the previous one or two grid points,
depending on the computation scheme employed. As a result, the deflection curve can
be generated through a successive process, which involves section analysis at each grid
point to determine the corresponding curvature required to proceed to the next grid
point. Once the complete deflection curve is generated, boundary conditions are
checked and necessary adjustments are repeatedly made to the initial guesses for the
unknowns until the updated deflection curve satisfies the prescribed boundary
conditions. Detailed descriptions of the conventional deflection method are available in

various sources (e.g., Shen and Lu, 1983; Jiang and Teng, 2012b).

The use of simplified curvature representation in the conventional deflection method
makes it appropriate for small-curvature problems, or more specifically, straight or
slightly crooked one-dimensional members experiencing small displacement. However,
its application becomes challenging when dealing with large-curvature problems,
where the accuracy of the simplified curvature expression diminishes. Large curvatures
in one-dimensional members can arise from geometry-related factors, such as the initial
curvatures in arches and curved beams, or from deformation-induced factors, where the
large curvatures are developed in initially straight members due to large displacement.

In some cases, it can be a combination of both factors.

To address the challenge posed by large-curvature problems, this paper proposes a

theoretical model based on an enhanced formulation of the deflection method. The
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enhanced formulation enables the model to offer a unified approach for handling both
small- and large-curvature problems in one-dimensional members. The central insight
of the enhanced formulation is that the deformed shape of each segment of the member
can be approximated by a circular arc whose curvature and length are related to the
internal axial force and bending moment acting on the segment’s midpoint section. This
assumption allows the deformed centroidal axis to be represented by a continuous curve
consisting of a sequence of circular arcs, rather than only discretely by the transverse
displacement of the grid points. Therefore, the requirement of exact curvature

representation is intrinsically satisfied in the model formulation.

The motivation behind developing the theoretical model largely stems from the authors’
curiosity in investigating the behavior of various forms of innovative arch structures
enabled by the use of fiber-reinforced polymer (FRP) composites. These structural
forms, which are referred to as FRP-enabled arches, are made possible or enhanced by
the use of FRP. In their recent review (Xia et al., 2023), the authors identified two sub-
categories of FRP-enabled arches: all-FRP arches and FRP-incorporating hybrid arches.
The former takes advantage of FRP’s lightweight feature, making them ideal for small-
or medium-scale applications where construction speed is a key consideration, such as
lightweight footbridges and roofs (Sobrino and Pulido, 2002; Caron et al., 2009;
Potyrala, 2011; Pyrzowski and Miskiewicz, 2017; Bell et al., 2020; Liu et al., 2021; Liu
et al., 2022). The latter is mainly intended for large-scale applications, such as long-
span arch bridges and tunnel linings, where FRP is used in combination with concrete
to address the issue of steel corrosion and to achieve excellent mechanical performance
(Caratelli et al., 2016; Tang et al., 2020; Lee and Shin, 2010; Dagher et al., 2012; Jiang,

2020; Dong et al., 2022). FRP-enabled arches well exemplify large-curvature problems.
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In particular, FRP bending-active arches provide a unique case where the large
curvatures are deformation-induced, as they utilize FRP’s outstanding elastic
deformation ability to derive the arch shape through active bending of initially straight
FRP profiles (Caron et al., 2009; Bessini et al., 2019; Habibi et al., 2022; Xie et al.,

2023a).

The subsequent sections of this paper are structured as follows. First, the formulation
of the theoretical model is presented. This is followed by its verification through
comparisons with analytical results of linear elastic arches, serving as an example of
large-curvature problems, and numerical results of slender FRP-confined reinforced
concrete (RC) columns, serving as an example of small-curvature problems. Next, the
verified model is applied to representative cases of FRP-enabled arches, including all-
FRP arches and FRP-incorporating hybrid arches, to illustrate large-curvature problems
involving both initially-born and deformation-induced curvatures. Comparisons with
test results from these cases demonstrate the model’s ability to accurately predict the

behavior of FRP-enabled arches.

Model Formulation

Discretization Process

Figure 1 illustrates an arch with an arbitrary shape defined by its centroidal axis y =
f(x). To discretize the centroidal axis, n + 1 grid points are used, transforming the
original curved axis into n straight segments S;, where i € [1,n]. The first grid point
represents the left support of the arch and serves as the origin of the coordinate system.
The last grid point represents the right support and has coordinates (x,+1, Yn+1)- The

two supports are usually at the same height, resulting in y,,; = 0. However, non-zero
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values are also permitted to account for cases where the supports are at different heights.
Intermediate grid points can be placed anywhere along the centroidal axis, following
two general rules: 1) set a grid point wherever a concentrated force or bending moment
is applied; and 2) increase the number of grid points in regions with a sharp change in
curvature or a sharp gradient of distributed load. The first rule facilitates model

formulation and the second enhances model accuracy. Each segment’s initial length Lgi
and orientation 981. relative to the x-axis can be easily computed from the grid points’
coordinates. Properties of a segment are denoted by symbols with a subscript §;, and
those of a grid point by symbols with a subscript i. Due to the adopted discretization
scheme, each intermediate grid point corresponds to two inclination angles 6;; and
0;r, whose initial values are respectively equal to Gsoi_l and 9:%. The difference
between the two, Af; = 65, — 65,__, is computed for later use. The initial values of 6;
and 6,,,; are respectively equal to 9501 and Gson, which are used to replace the

corresponding tangential angles of the original curved arch axis in the calculations.

Deflection Function

The defining feature that sets the model formulation apart from the conventional
deflection method is its incorporation of a deflection function. This feature enables the
model to provide a unified approach for handling small- and large-curvature problems.
The deflection function is derived based on the assumption that, for a small segment,
the variations in its internal axial force and bending moment are negligible so that they
can be approximated as constants. When the bending moment is constant, the curvature
is constant as well, meaning that the deformed segment must take on the shape of a
circular arc. Moreover, the axial force being constant means a uniform axial strain along

the length of the circular arc, so the change in length of the circular arc is a simple
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elongation or contraction of the initial segment length. Therefore, the task becomes
choosing a representative point on the segment axis and using the axial strain and
curvature induced by the internal axial force and bending moment at this point to
generate a circular arc that represents the deformed segment shape. To perform this task,
the segment midpoint is chosen as the representative point because it well characterizes
the average deformation of the segment. An iterative procedure is used to determine the

shape of the circular arc, as described below.

Suppose that during a given loading step, the calculation has reached segment S;
(Figure 2a), and the following properties at its left end (i.e., the i th grid point) have
been computed: the coordinates (x;, y;), the right inclination angle 6;,, and the
internal forces H;, V; and M;. In a general case, the segment is subjected to a variety
of external loads, including both concentrated and distributed loads. As per the first
discretization rule, the concentrated loads, Heyeiv1, Vexti+:1 and Meyeiyq, are
applied at the right end of the segment i (i.e., the i + 1 th grid point). According to
the second discretization rule, the four distrusted loads, qys;, qy,s;» Gss; and qgg;
can be simplified as uniform loads with a magnitude equal to their respective value at
segment midpoint. These distributed loads are oriented in the horizontal, vertical, arc
length and radial directions, respectively, representing different categories of loads,
such as pavement load, wind load, gravity, and uniform radial pressure. When acting
upon a circular segment, the internal forces caused by qys;, qys;» dss; and qggs, at
any point on the segment can be calculated by integration along the arc defined by the
i th grid point and the point of interest. The expressions for these internal forces are
summarized in Table 1, where [ denotes the central angle at the point of interest (see

Table 1).
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Consider the left half of the circular arc. In the first iterative step, the axial force and

bending moment at the segment midpoint, N. 1 and M. 1, are assumed to be equal to
l+E l+5

N; and M;, respectively, where N; is the resultant of H; and V; in the direction of
0; r. In this paper, the subscript i + % is used to denote properties associated with the

midpoint of segment S;. Section analysis is then performed using the layer method
based on the plane section assumption (Jiang and Teng, 2012b). The aim is to find the
corresponding strain gradient, defined by the curvature of the neutral axis at the

midpoint ¢, 1 and the axial strain of the centroidal axis at the midpoint ¢, 1 (Figure
2 2
2b). To fulfill this aim, Newton’s method is used to iteratively adjust the values of ¢, 1
2
and ¢, 1 until N, 1 and M, 1 are balanced (El-Metwally and Chen, 1989).
2 2 2

Obviously, the distance between the centroidal axis and the neutral axis d., =

g..1/¢. 1, so the radius of the circular arc can be expressed as:
l+5 L+E

RSi =ps; T den = 1/¢i+% +€i+%/¢i+% = (1 + gi+%)/¢i+% (D

where pg, is the radius of curvature of the neutral axis. Eq. 1 is used to determine the

radius of the circular arc. The length of the left half of the circular arc is determined by:

Ls; Lgi
T— (1+€i+%)7 (2)
With Rg, and Lg, known, the left half of the arc can be generated with the additional

condition that the tangential angle at its left end is 8, ,.. The right end of this arc defines

8
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a new midpoint whose coordinates are (Figure 2c¢):

X1 =% +Ax, 1 =X + R, " (sin(6;,) — sin(6;, — Bs,/2))

l+5 >
3)
Vit = Vit A}’H% =y; + Rg, - (cos(8;r — Bs,/2) — cos(8;))

Ls,
where fg,/2 is the corresponding central angle and = %/ Rg;. The tangential angle at

the midpoint is:
6,2 = 01y = Boy/2 @

Now the values of N. 1 and M. 1 can be updated:
l+z l+E

NH% = Hi% . cos(9i+%) + Vi% . sin(9i+%) (5a)
Mi+% =M; +H;- Ayi+% +V;- AxH% + AMi+%,qx+AMi+%,qy + AMi+%,qs + AMi+%,qR
(5b)

where
Hi+% = H; + AHi+%,qx+AHi+%,qs + AHi+%.qR (6a)
Vi+§ =V, + AVL‘+%,qy +AVL‘+%,q5 + AVi+§,qR (6b)

In Egs 5 and 6, the contributions from the distributed loads (i.e., the internal force items

with A) can be calculated using the expressions provided in Table 1 by setting =
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The procedure then proceeds to the next iterative step using the updated N, 1 and
2

M and it continues until the distance between the current midpoint and its

.01
2
l+2

predecessor obtained in the preceding iterative step is less than 10_6L2i. Once the left

half of the arc is determined, the right half can be easily generated by extending the left

half around its center by an angle of fs,/2 (Figure 2¢). The coordinates of the i + 1 th

grid point can now be determined:

Xit1 = x; + Ax; = x; + R, - (sin(6;,) — sin (6;, — Bs))

(7
Yitr = ¥i + Ay; = y;i + Rs, - (cos(6; — Bs,) — cos(6;,))

and the left and right inclination angles at the i + 1 th grid point are:
Oiv10 = 0ir — ﬁsi (8a)
Oiv1r = 01110 — 8049 (8b)

Finally, the internal forces at the i + 1 th grid point are obtained:

Hiyy = Hi + AH;y19,FAH g, + AHp1 g5 + Hext i1 (%a)
Vier = VitAVipa,q, 7A8Vii1 g, + AVitagp + Vextist (9b)

Mi+1 = Mi + Hi b Ayl + Vi . Axi + AMi+1,qx+AMi+1,Qy + AMi+1,q5 + AMi+1,qR +

Mext,i+1 (9(:)

where the contributions from the distributed loads can be determined from the

10
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expressions provided in Table 1 by setting f = fs,.

Solution Procedure

The calculations described in the preceding sub-section can be applied sequentially,
starting from S; and progressing through each intermediate segment until reaching S,,.
To initiate the solution procedure, the unknown initial values at the first grid point must
be assumed and used in the calculations for S;. These unknowns correspond to the
reaction forces or displacements of the left support, such as H;, V;, M; and 6,
depending on the type of support. By making appropriate initial guesses for these
unknowns, the calculations can proceed from segment to segment, generating the
complete deflection curve. Once the deflection curve is obtained, the boundary
conditions at the last grid point need to be examined to ensure their satisfaction. These
boundary conditions, which also depend on the type of support, involve the reaction
forces and displacements of the right support. Table 2 provides a summary of the
unknown initial values and boundary conditions specific to hinged and fixed supports,
which are the two most commonly used support types in practice. Each type
corresponds to three initial values and three boundary conditions. The numerical
examples of this study also encompassed other support types, including rotational

springs and vertical sliding hinges. Their properties are also summarized in Table 2.

It is expedient to present first the solution procedure for the simplest case, where the
arch is subjected to a single load. In this scenario, the arch can experience failure either
due to material limitations (i.e., material failure) or instability (i.e., stability failure),
with the likelihood depending largely on its slenderness. Regardless of the failure type,

the arch’s final deformation state is associated with material failure. Even when stability

11
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failure occurs first in the case of slender arches, post-buckling deformation can continue
to develop as the load magnitude decreases until it reaches a point where material

failure is triggered.

Therefore, the solution procedure adopts an incremental approach using the
displacement-control technique. This technique is chosen over the load-control
technique because it provides a unified approach to address both stability failure and
material failure possibilities. In each incremental step, an increasing displacement value
is applied at a selected grid point. The choice of the grid point may vary between
incremental steps to ensure that the displacement at the chosen point continues to
increase. The goal is to determine the correct load magnitude that induces the prescribed
displacement at each step. In this approach, the load magnitude becomes an additional
unknown, while the prescribed displacement serves as an additional boundary condition

that must be satisfied by the computed deflection curve at the chosen grid point.

The initial step size, denoted as Af, can be assigned any reasonable small value (e.g.,
1/50 ofthe ultimate displacement). Initially, the boundary conditions are generally not
satisfied by the guessed unknowns. However, the discrepancies between the calculated
values and their target values can be used to guide an iterative process that converges
toward the correct values of the unknowns. Newton’s method is used to implement this
iterative process. The process continues until the errors fall within acceptable tolerances,
indicating that the solution for the current incremental step has been found. The
procedure then proceeds to the next incremental step and continues until material failure

occurs.

12
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Material failure is identified through section analysis performed at the midpoint section
of each segment. When the calculated axial strain value at any point on the critical
section exceeds the material’s strain capacity, it indicates that material failure has
occurred. In response, the solution procedure is reverted to the previous incremental
step and then resumes with a reduced increment of Af /2. When material failure is
detected again the step size is further halved. This process continues until the step size

is eventually reduced to Af/2°, marking the conclusion of the solution procedure.

When the arch is subjected to multiple loads, a loading regime needs to be prescribed
to specify the ratios between the load magnitudes. One commonly used regime is
proportional loading, where the ratios remain consistent throughout the entire loading
process. By prescribing these ratios, the number of additional unknowns associated
with the applied loads remains at one. Consequently, the load magnitudes can be
determined by solving for the equal number of unknowns and boundary conditions. The
remaining steps of the solution procedure follow the same approach as described for

the single-load case.

Handling of Intermediate Hinge Joints

Fixed, two-hinged and three-hinged arches are the three basic arch types. So far, the
solution procedure has addressed the first two types. However, to apply the procedure
to three-hinged arches, a slight modification is required in the model formulation to
account for the behavior of the intermediate hinge joint. Consider Figure 2¢ and assume
a hinge joint is located at the segment’s right end (i + 1 th grid point). In this case, Eq.
8 no longer holds, as it is only applicable to rigid connections. Due to the presence of

the rotation-free hinge joint, the correlation between the two inclination angles at the

13
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[ + 1 th grid point is lost. Consequently, the right inclination angle, 6;,, becomes an
additional unknown. Simultaneously, a new boundary condition, M;,; = 0, is imposed.
Therefore, the new unknown 6;, can be solved with the other unknowns altogether

from the updated boundary conditions using Newton’s method.

Handling of Semi-Rigid Connections

Hinged and rigid connections represent idealized connection conditions. In practice, the
actual connection condition often lies between these two extremes and requires
modeling as semi-rigid connections. One common approach is to model them as
rotational springs. Rotational springs can be used to represent both supports and
intermediate joints. In either case, the bending moment acting on the spring induces an
additional rotation w; = M;/k;, where k; is the stiffness of the spring. The initial
values and boundary conditions associated with rotational spring supports are
summarized in Table 2, capturing the influence of w;. Similarly, when an intermediate
joint is modeled as a rotational spring, Eq. 8 needs to be modified to incorporate an

additional term for w;:

Oiv1r = 0iy — Bs; — 8041 + w; (10)

In fact, hinges and rigid connections can be seen as idealized rotational springs with
zero and infinite stiffness magnitudes, respectively. In practice, these idealized spring
conditions can be represented by assigning extremely low or extremely high stiffness
values. However, hinged and rigid connections are directly represented in the proposed

theoretical model instead of modeling them as rotational springs.
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The accuracy of the theoretical model is affected by several factors. These include the
number of segments used to divide the member, the number of cross-sectional layers
adopted in section analysis, and the tolerances set as convergence criteria. In this paper,
all numerical examples employed 32 segments and 107° as the convergence tolerance.
The number of cross-sectional layers varied around 200, depending on the cross-
sectional configuration. A convergence study showed that further refinement of these

factors will not yield any significant effect on the numerical results.

Verification

Comparisons with Analytical Results of Linear Elastic Arches

The theoretical model was verified using the analytical solution derived by Pi and
Bradford for linear elastic arches (Pi and Bradford, 2009). Their solution represents a
significant advancement over classical elastic arch theories (e.g., Timoshenko and Gere,
1963), as it accounts for the effect of pre-buckling deformations on the displacement
and geometric stiffness of the arch. This consideration is particularly important for
shallow arches, where pre-buckling deformations significantly influence the arch’s

buckling behavior (Pi and Trahair, 1998).

The solution of Pi and Bradford (2009) is concerned with the specific loading scenario
of elastic circular arches subjected to a uniform radial pressure (Figure 3a). In classical
arch theories, this loading scenario results in a compression line coinciding with the
arch’s centroidal axis. This implies a pure concentric compression stress state of the
arch, neglecting the axial deformation caused by the axial compression force. As a result,
the predicted buckling mode according to classical arch theories is bifurcation buckling

(Timoshenko and Gere, 1963). However, when the effect of axial deformation is

15



378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

considered, the compression line deviates from the centroidal axis as the applied radial
pressure increases, introducing bending moments to the arch. This deviation can lead
to the arch buckling in either a symmetric snap-through mode or an anti-symmetric
bifurcation mode (Pi and Bradford, 2009), as illustrated in Figs. 3b and 3c, respectively.
The dominant buckling mode depends on factors such as arch slenderness, shallowness,

and level of end restraint.

In the study of Pi and Bradford (2009), the supports of the arch were represented by
two elastic rotational springs of equal stiffness, providing symmetrical restraint to the
arch. The level of end restraint was indicated by the dimensionless flexibility of the
rotational springs a, which was defined as the ratio of the flexural rigidity per arch
length to the stiffness of the rotational springs. This parameter can be assigned any

value between zero and infinity to represent different levels of end restraint.

Figure 4 presents a comparison between the load—deflection curves at arch crown, as
predicted by the theoretical model and the analytical solution of Pi and Bradford (2009).
These curves trace the variation of the normalized applied pressure qgR/Ng, as the
normalized vertical displacement of the arch crown v,/f increases, where R and f
are respectively the radius and rise of the arch, v, is the vertical displacement of the
arch crown, and Ny, is the second mode flexural buckling load of a pin-ended column
with equal rotational end restraints and having the same length as the arch (Pi and
Bradford, 2009). Two representative sets of arches were considered, one with a =0.1
and the other with a =1.5, to represent a relatively high and a relatively low level of
end restraint, respectively. Each set covered four cases, each corresponding to a specific

value of a geometrical parameter A introduced by Pi and Bradford (2009). This
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parameter reflects both the slenderness and shallowness of the arch and has a significant

influence on its buckling behavior.

The A value used for Figure 4a is a boundary value predicted by the analytical solution.
Under this specific 4, the postbuckling descending branch of the load—deflection curve
for the arch with a =1.5 reduces to a single point. That is, it demarcates the boundary
between stability and instability for ¢ =1.5: any A greater than this boundary value
leads to the occurrence of stability failure, while any lesser A eliminates the possibility
of stability failure and is thus associated with a monotonically increasing load—
deflection curve. Similarly, the A value used for Figure 4b is the counterpart boundary
value for a =0.1. Under this A, due to the lower level of end restraint, the arch with
a =1.5 fails by instability in the symmetrical snap-through mode and exhibits a
postbuckling descending branch on its load—deflection curve. The A value used for
Figure 4c is such that the anti-symmetric bifurcation mode is triggered for the arch with
a =1.5, although the dominant buckling mode remains the snap-through mode. The
portion corresponding to the anti-symmetric deformation phase is defined by the two
solid symbols on the load—deflection curve. In Figure 4d, A is further increased to such
a value that bifurcation buckling becomes the dominant buckling mode for the arch
with a =1.5. It should be noted that a perturbation is needed for the theoretical model
to excite the anti-symmetric buckling mode. This perturbation was introduced as a small

bending moment with a magnitude of 1073Ny,f applied at the arch crown.

Evidently, the predictions by the theoretical model match those by the analytical
solution very well, except for the case shown in Figure 4a with a =0.1. The

discrepancy observed for this particular case is believed to arise from an inadvertent
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mistake made by Pi and Bradford (2009) in using the value of Nz, when normalizing
the applied pressure for this case. Pi and Bradford (2009) claimed that for convenience
a fixed value of Ng,, which was determined from the condition a =1.5, was
consistently used for all cases considered in Figure 4, despite the fact that N, varies
with a. However, it appears that this rule was not followed by Pi and Bradford (2009)
when preparing the plot for this particular case, where it is believed that the value of
Ng, was actually determined from the condition @ =0.1. When this Ny, valueis used,
the predicted normalized load—deflection curve for this case becomes the additional

dashed curve shown in Figure 4a, removing the previously observed discrepancy.

Comparisons with Numerical Result of Slender FRP-Confined RC Columns

The theoretical model’s capability to address small-curvature problems is demonstrated
through comparisons with the numerical results of a column model previously
developed by the second author (Jiang and Teng, 2012b). This column model is based
on the conventional deflection method and has been verified in Jiang and Teng (2012b),
where its accuracy for slender RC columns and FRP-confined RC columns is also

shown.

The numerical verification is based on referencing four slender FRP-confined circular
RC columns tested by Tao et al. (2004), using the properties of these columns as inputs
for both models. These columns, measuring 150 mm in diameter and 1260 mm in height,
were reinforced with four 12 mm longitudinal steel bars and enveloped in a
circumferential carbon FRP (CFRP) wrap with a nominal thickness of 0.34 mm. The
concrete cover to the longitudinal steel reinforcement was 21 mm. All columns were

pin-ended and subjected to equal load eccentricities at the two ends. The four columns
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were labeled C1-1R, C1-2R, C1-3R, and C1-4R, respectively, distinguished by their
nominal load eccentricities (0 mm, 50 mm, 100 mm, and 150 mm). The material
properties are as follows. The unconfined concrete strength was 48.2 MPa and the yield
strength of the longitudinal steel reinforcement was 388.7 MPa. The CFRP wrap had
an elastic modulus of 255 GPa and a hoop rupture strain of 1.32%. More details of these

tests can be found elsewhere (Jiang and Teng, 2012b; Tao et al., 2004).

The load—deflection responses of the four columns were simulated using both the
theoretical model and the column model of Jiang and Teng (2012b), with both models
incorporating the same stress—strain models. Teng et al.’s (2009) design-oriented model,
which is a refined version of Lam and Teng’s (2003) model, was employed to
characterize the compressive stress—strain behavior of FRP-confined concrete, while
the tensile strength of concrete was ignored. The longitudinal steel reinforcement was

assumed to possess an elastic-perfectly plastic stress—strain curve.

Figure 5 illustrates a comparison between the load—deflection curves at column mid-
height, as predicted by the two models. Following the approach of Jiang and Teng
(2012b), all cases were modeled with an additional eccentricity of 7.5 mm added to the
nominal load eccentricity. The two sets of theoretical curves exhibit excellent
agreement, demonstrating the capability of the theoretical model in addressing small-

curvature problems.

Application to FRP-enabled Arches
FRP Bending-Active Arches

Bending-active arches are a unique category of arch structures. They derive their curved
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shape from elastic bending of initially straight members (Lienhard et al., 2013; Xie et
al., 2023b; Xie et al., 2024). FRP bending-active arches are suitable for use as rapidly
assembled crossing bridges and supporting frames for temporary structures (Xia et al.,

2023; Caron et al., 2009; Bessini et al., 2019; Habibi et al., 2022).

The tests conducted by Xie et al. (2023a) were employed as an example of all-FRP
arches to validate the theoretical model. In their tests, the arch specimens were bent
from straight CFRP strips with a cross section of 48.5 mm by 1.40 mm. During the
bending process, the supports of the specimen allowed free rotation in the plane of the
arch axis. Once the arch specimen was bent into place, the supports were transitioned
to a clamped condition before receiving a concentrated load vertically applied at the
arch crown. A total of 16 arch configurations were tested, with the main variables being
the strip length and the span ratio (the ratio of arch span to strip length). The strip length
was either 1.6 m or 2.0 m, each covering four span ratios (0.6, 0.7, 0.8 and 0.9). The

CFRP had a flexural modulus of 127.5 GPa and a density of 1620 kg/m?.

Figure 6 displays a comparison between the experimental and predicted load—deflection
curves at arch crown for all specimens. Each predicted curve was terminated when its
predicted load aligned with the load at the final point of the corresponding experimental
curve. As only the symmetrical snap-through buckling mode was observed in the tests,
the modeling work simplified the arch specimen by considering only half of its original
configuration. As a result, the support condition at the arch crown was modeled as a
vertical sliding hinge (see Table 2). Additionally, the influence of gravity was
considered, as it proved significant due to the large flexibility of the arch specimens.

As illustrated in Figure 6, the predicted load—deflection curves closely align with their
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experimental counterparts.

For illustrative purposes, Figure 7 provides a further comparison between the
experimental and predicted deformed shapes of Specimen L16SR60. This specimen
had a length of 1.6 m and a span ratio of 0.6. The comparisons were made at three
representative states (State I, State I and State I1I), which correspond to the initial point,
peak point and valley point of the load—deflection curve, respectively. Evidently, the
theoretical model successfully reproduces the deformed shapes, demonstrating its

accuracy in capturing the behavior of the arch specimens.

Concrete-filled FRP Tubular (CFFT) Arches

CFFT arches are a promising form of FRP-incorporating hybrid arch, offering a
combination of strength, ductility and durability. This desirable behavior is attributed
to the confinement, reinforcement and protection provided to the concrete core by the
FRP tube. The theoretical model is further validated using two series of tests on CFFT
arches conducted by the same research group (Dagher et al., 2012; Majeed et al., 2021).
Both test series focused on circular arches with a circular cross-section, subjecting them
to a concentrated load vertically applied at the arch crown. The geometrical and material

properties of the CFFT arches in both test series are summarized in Table 3.

The first test series (Dagher et al., 2012) involved four nominally identical CFFT arches
(A1, A2, A3 and A4) subjected to monotonic loading. These arch specimens were cast
into RC footings at both ends, with the footings being pin-supported on the laboratory
floor. For each arch specimen, the FRP tube comprised an inner layer of glass fibers

and two outer layers of carbon fibers. By using different fiber orientations for the inner
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and outer layers, the resulting FRP tube exhibited significant stiffness in both the
longitudinal and hoop directions. In the theoretical model, each RC footing was
simplified as a rigid link, and the FRP tube’s behavior was assumed to be linear elastic
in both the longitudinal and hoop directions. The interaction between the tube’s

behaviors in these two directions was neglected in the analysis.

In the absence of test data, the elastic modulus and tensile strength of concrete were
determined based on its compressive strength in accordance with the ACI standard (ACI
318-19, 2019). For consistency, Teng et al.’s (2009) model was again employed to
describe the stress—strain behavior of FRP-confined concrete in compression. It should
be noted that Teng et al.’s (2009) model requires the input of the FRP rupture strain.
This value was assumed to be 2% as it was not reported in the original literature (Dagher
et al.,, 2012). Varying the rupture strain in the range of 1~3% showed a negligible
influence on the model predictions because the failure of the arch specimens was not
due to the rupture of the FRP tube in the hoop direction. The stress—strain curve of
concrete in tension was assumed to be linear before cracking. The tension-stiffening
effect was accounted for using the model proposed by Collins and Mitchell (1997). This
model is a modification of Vecchio and Collins’s (1986) tension-stiffening model and
has demonstrated a good predictive capability concerning moment-curvature
relationships for CFFT flexural members in previous studies (Bannon et al., 2009; Fam,
2000). Full composite action was assumed between the FRP tube and the concrete core.

Additionally, only half of the arch specimen was considered due to symmetry.

Figure 8a compares the experimental and predicted load—deflection curves at arch

crown. Notably, Specimens Al and A2 exhibited a less stiff initial response than
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Specimens A3 and A4. Dagher et al. (2012) attributed this difference to accidental
damage prior to testing and initial imperfections. Therefore, the load—deflection curves
of Specimens A3 and A4 are considered to better represent the true behavior of the arch
specimens. These two curves are closely matched by the predicted curve. Dagher et al.
(2012) reported that the failure of all arch specimens was due to longitudinal rupture of
the FRP tube in the tension face, directly below the point of load application. Hence,

the predicted curve terminates when the FRP tube reaches its longitudinal rupture strain.

The second test series (Majeed et al., 2021) exclusively focused on a fixed CFFT arch
with a more slender configuration. The FRP tube used in this test consisted of two layers
of glass fibers, with each layer having a distinct fiber angle. The failure mode observed
in this specimen was consistent with the one observed in the first test series. The
modeling procedure for this specimen was similar to that used for the first test series,
except for a variation in the support condition. As illustrated in Figure 8b, the theoretical

model accurately predicts the load—deflection response of this specimen.

Conclusions

This paper has been concerned with the formulation, verification and application of a
theoretical model for one-dimensional members. Originally developed to address the
challenges posed by large-curvature problems encountered in FRP-enabled arches, the
model’s versatility enables its application to the broader range of general one-
dimensional members. The work presented in this paper allows the following

conclusions to be drawn:

1) The theoretical model is built upon an enhanced formulation of the deflection
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2)

3)

method. Its defining feature is the incorporation of a circular deflection function,
which posits that each segment of the deformed centroidal axis can be represented
by a circular arc whose curvature and length are related to the internal axial force
and bending moment acting on the segment’s midpoint section. This feature
facilitates the exact representation of curvature, distinguishing the proposed model
from the conventional deflection method, where the simplified representation of
curvature as the second-order derivative of deflection is valid only for small
curvatures. Therefore, the proposed model represents a significant improvement
over the conventional deflection method in that it offers a unified approach to

address both small- and large-curvature problems.

Model verification was carried out through comparisons with both analytical and
numerical results from the literature. The analytical verification focused on a large-
curvature problem of linear elastic arches, while the numerical verification
employed a small-curvature problem of slender FRP-confined RC columns,
incorporating material non-linearity. The verification results demonstrated the
correct implementation of the theoretical model and its equal capability in handling

small- and large-curvature problems.

The performance of the theoretical model was evaluated against representative test
results from FRP-enable arches, comprising two sub-categories: all-FRP arches
exemplified by FRP-bending active arches and FRP-incorporating hybrid arches
exemplified by CFFT arches. In the case of FRP-bending active arches, the large
curvatures were induced by deformation, whereas in CFFT arches, the large

curvatures were inherent in their initial configuration. The theoretical model
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demonstrated excellent accuracy in predicting the behavior of arches in both sub-

categories, regardless of the source of the large curvatures.
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Table 1. Internal forces caused by distributed loads.

Diagram I;;I);g Horizontal force Vertical force Bending moment
q , iR i(COS (9, _ﬁ)_ 1
Ax,s; SIS coS (Hi':;) 0 qu,SiR_sgi((Cos(gi,r - B) — cos (Gi,r))z
/Point ('mmerest q ,SiRSi(Sin (9‘ - ﬁ) - 1 2 /. .
‘ Q{L_r___ qy'Si 0 Y Sin (91,:)7.) qu,SiRSi (Sln(ei,r) — Sin (91',7' - ﬁ))z
) ﬂ/ qs,s; 0 _qs,SiﬂRSi QS,SiR.Sgi (COS (Hi,r - :8) — COS (Qi,r) - BSin (ei,r - ﬁ))
R : : :
’ 0? rs. qr,s;Rs;(cos (0; — B) — qr.s;Rs,(sin (6; — B) — QR,SiRSZ‘i(l - sm(@i’r)sm Oir —B) —
~ o cos (6;r)) sin (6;)) cos(6;r) cos (6;r — B))
Table 2. Unknown initial values and boundary conditions of typical types of supports.
Support tvpe Horizontal  Vertical Bending Horizontal Vertical Rotation
pp yp load load moment displacement displacement
Fixed Unknown  Unknown Unknown 0 0 0
Hinged Unknown  Unknown 0 0 0 Unknown
Rotational spring Unknown  Unknown Unknown 0 0 moment/spring stiffness
Vertical sliding hinge Unknown 0 Unknown 0 Unknown 0
Table 3. Geometrical and material properties of CFFT arches.
Arch Arch Arch Section Concrete FRP tube FRP in longitudinal direction FRP in hoop direction
Test . . Boundary . . . .
series SPAN  Trise radius condition diameter strength wall thickness Elastic Rupture Elastic Rupture
(m) (m) (m) (mm) (MPa) (mm) modulus (GPa)  Strain (%) modulus (GPa) Strain (%)
Ist 671 210 3.96 Hinged 300 27 2.5 1.70 14.3 -
2nd 6.1 122 328 Fixed 110 25 2 2.27° 19.4 1.93%

Note: ? These rupture strain values were determined based on the longitudinal and hoop FRP strengths reported in Majeed et al. (2021), assuming the tested coupons were linear elastic.
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727 Figure 3. Illustration of a circular arch subjected to a uniform radial pressure: (a)

728 Arch configuration and loading condition; (b) Symmetric snap-through buckling
729 mode; (c) Anti-symmetric bifurcation buckling mode.
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Figure 6. Comparisons with load—deflection curves of FRP bending-active arches: (a)
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L16 specimens; (b) L20 specimens.
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Figure 7. Comparisons with deflected shapes of Specimen L16SR60.
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