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Abstract 6 

Motivated by a curiosity to explore the behavior of innovative arch structures enabled 7 

by the use of fiber-reinforced polymer (FRP) composites, this paper proposes a 8 

theoretical model built upon an enhanced formulation of the deflection method, 9 

broadening its scope to large-curvature problems. Traditionally, the deflection method 10 

approximates curvature as the second-order derivative of deflection, a simplification 11 

valid only for small curvatures. This limitation poses a challenge when applying the 12 

deflection method to problems involving large curvatures, a characteristic inherent in 13 

FRP-enabled arches where significant curvatures arise either initially or due to 14 

deformation. The enhanced formulation at the core of the proposed model addresses 15 

this challenge by incorporating a circular deflection function. This function posits that 16 

each deformed segment of the structural member can be represented by a circular arc, 17 

with its curvature and length related to the internal axial force and bending moment at 18 

the midpoint section of the segment. This feature facilitates the exact representation of 19 

curvature, offering the proposed model a unified approach capable of addressing both 20 

small- and large-curvature problems. The paper details the formulation and verification 21 

of the theoretical model, with an emphasis on its application to representative cases of 22 

FRP-enabled arches. 23 
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Introduction 35 

Structural members with a longitudinal dimension much greater than their transverse 36 

dimensions are commonly referred to as one-dimensional members. These members 37 

can be categorized as straight members (e.g., beams and columns) or curvilinear 38 

members (e.g., curved beams and arches), depending on the shape of their longitudinal 39 

axis (i.e., centroidal axis). In structural analysis, one-dimensional members are 40 

commonly characterized by their centroidal axis, which serves as an important 41 

reference line for analyzing their behavior. 42 

 43 

The deflection method is a widely used technique for analyzing one-dimensional 44 

members (Chen and Atsuta, 2007). This method effectively determines the deformed 45 

shape of the centroidal axis (i.e., deflection curve) of the member under prescribed 46 

loading and boundary conditions. Its effectiveness and accuracy have been 47 

demonstrated by successful implementations in straight members (e.g., Shen and Lu, 48 

1983; Jiang and Teng, 2012a; Gao et al., 2021). In this method, the centroidal axis is 49 

discretized into many short segments with critical points known as grid points, which 50 

are typically located at the ends or midpoint of each segment. This discretization 51 

process transforms the continuous deflection curve problem into a discrete initial value 52 

problem where numerical procedures are used to solve for the unknown initial values, 53 

which are usually the support reactions or displacements at one end of the member. 54 

 55 

The deflection method is traditionally based on the small displacement theory, which 56 

assumes that the deflection of the member is small compared to its length. This 57 

assumption enables simplification of the exact expression for curvature, provided that 58 

the centroidal axis of the member is initially straight or nearly so. In these cases, the 59 
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curvature at any point on the deformed centroidal axis can be approximated as the 60 

second-order derivative of the deflection at this point. This simplification allows the 61 

deflection and slope at any grid point to be computed from known or assumed 62 

information (curvature, slope and deflection) at the previous one or two grid points, 63 

depending on the computation scheme employed. As a result, the deflection curve can 64 

be generated through a successive process, which involves section analysis at each grid 65 

point to determine the corresponding curvature required to proceed to the next grid 66 

point. Once the complete deflection curve is generated, boundary conditions are 67 

checked and necessary adjustments are repeatedly made to the initial guesses for the 68 

unknowns until the updated deflection curve satisfies the prescribed boundary 69 

conditions. Detailed descriptions of the conventional deflection method are available in 70 

various sources (e.g., Shen and Lu, 1983; Jiang and Teng, 2012b). 71 

 72 

The use of simplified curvature representation in the conventional deflection method 73 

makes it appropriate for small-curvature problems, or more specifically, straight or 74 

slightly crooked one-dimensional members experiencing small displacement. However, 75 

its application becomes challenging when dealing with large-curvature problems, 76 

where the accuracy of the simplified curvature expression diminishes. Large curvatures 77 

in one-dimensional members can arise from geometry-related factors, such as the initial 78 

curvatures in arches and curved beams, or from deformation-induced factors, where the 79 

large curvatures are developed in initially straight members due to large displacement. 80 

In some cases, it can be a combination of both factors. 81 

 82 

To address the challenge posed by large-curvature problems, this paper proposes a 83 

theoretical model based on an enhanced formulation of the deflection method. The 84 
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enhanced formulation enables the model to offer a unified approach for handling both 85 

small- and large-curvature problems in one-dimensional members. The central insight 86 

of the enhanced formulation is that the deformed shape of each segment of the member 87 

can be approximated by a circular arc whose curvature and length are related to the 88 

internal axial force and bending moment acting on the segment’s midpoint section. This 89 

assumption allows the deformed centroidal axis to be represented by a continuous curve 90 

consisting of a sequence of circular arcs, rather than only discretely by the transverse 91 

displacement of the grid points. Therefore, the requirement of exact curvature 92 

representation is intrinsically satisfied in the model formulation. 93 

 94 

The motivation behind developing the theoretical model largely stems from the authors’ 95 

curiosity in investigating the behavior of various forms of innovative arch structures 96 

enabled by the use of fiber-reinforced polymer (FRP) composites. These structural 97 

forms, which are referred to as FRP-enabled arches, are made possible or enhanced by 98 

the use of FRP. In their recent review (Xia et al., 2023), the authors identified two sub-99 

categories of FRP-enabled arches: all-FRP arches and FRP-incorporating hybrid arches. 100 

The former takes advantage of FRP’s lightweight feature, making them ideal for small- 101 

or medium-scale applications where construction speed is a key consideration, such as 102 

lightweight footbridges and roofs (Sobrino and Pulido, 2002; Caron et al., 2009; 103 

Potyrala, 2011; Pyrzowski and Miśkiewicz, 2017; Bell et al., 2020; Liu et al., 2021; Liu 104 

et al., 2022). The latter is mainly intended for large-scale applications, such as long-105 

span arch bridges and tunnel linings, where FRP is used in combination with concrete 106 

to address the issue of steel corrosion and to achieve excellent mechanical performance 107 

(Caratelli et al., 2016; Tang et al., 2020; Lee and Shin, 2010; Dagher et al., 2012; Jiang, 108 

2020; Dong et al., 2022). FRP-enabled arches well exemplify large-curvature problems. 109 
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In particular, FRP bending-active arches provide a unique case where the large 110 

curvatures are deformation-induced, as they utilize FRP’s outstanding elastic 111 

deformation ability to derive the arch shape through active bending of initially straight 112 

FRP profiles (Caron et al., 2009; Bessini et al., 2019; Habibi et al., 2022; Xie et al., 113 

2023a).  114 

 115 

The subsequent sections of this paper are structured as follows. First, the formulation 116 

of the theoretical model is presented. This is followed by its verification through 117 

comparisons with analytical results of linear elastic arches, serving as an example of 118 

large-curvature problems, and numerical results of slender FRP-confined reinforced 119 

concrete (RC) columns, serving as an example of small-curvature problems. Next, the 120 

verified model is applied to representative cases of FRP-enabled arches, including all-121 

FRP arches and FRP-incorporating hybrid arches, to illustrate large-curvature problems 122 

involving both initially-born and deformation-induced curvatures. Comparisons with 123 

test results from these cases demonstrate the model’s ability to accurately predict the 124 

behavior of FRP-enabled arches.  125 

 126 

Model Formulation 127 

Discretization Process 128 

Figure 1 illustrates an arch with an arbitrary shape defined by its centroidal axis 𝑦𝑦 =129 

𝑓𝑓(𝑥𝑥). To discretize the centroidal axis, 𝑛𝑛 + 1 grid points are used, transforming the 130 

original curved axis into 𝑛𝑛 straight segments 𝑆𝑆𝑖𝑖, where 𝑖𝑖 ∈ [1,𝑛𝑛]. The first grid point 131 

represents the left support of the arch and serves as the origin of the coordinate system. 132 

The last grid point represents the right support and has coordinates (𝑥𝑥𝑛𝑛+1, 𝑦𝑦𝑛𝑛+1). The 133 

two supports are usually at the same height, resulting in 𝑦𝑦𝑛𝑛+1 = 0. However, non-zero 134 
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values are also permitted to account for cases where the supports are at different heights. 135 

Intermediate grid points can be placed anywhere along the centroidal axis, following 136 

two general rules: 1) set a grid point wherever a concentrated force or bending moment 137 

is applied; and 2) increase the number of grid points in regions with a sharp change in 138 

curvature or a sharp gradient of distributed load. The first rule facilitates model 139 

formulation and the second enhances model accuracy. Each segment’s initial length 𝐿𝐿𝑆𝑆𝑖𝑖
0  140 

and orientation 𝜃𝜃𝑆𝑆𝑖𝑖
0  relative to the x-axis can be easily computed from the grid points’ 141 

coordinates. Properties of a segment are denoted by symbols with a subscript 𝑆𝑆𝑖𝑖, and 142 

those of a grid point by symbols with a subscript 𝑖𝑖. Due to the adopted discretization 143 

scheme, each intermediate grid point corresponds to two inclination angles 𝜃𝜃𝑖𝑖,𝑙𝑙 and 144 

𝜃𝜃𝑖𝑖,𝑟𝑟 , whose initial values are respectively equal to 𝜃𝜃𝑆𝑆𝑖𝑖−1
0   and 𝜃𝜃𝑆𝑆𝑖𝑖

0  . The difference 145 

between the two, ∆𝜃𝜃𝑖𝑖 = 𝜃𝜃𝑆𝑆𝑖𝑖
0 − 𝜃𝜃𝑆𝑆𝑖𝑖−1

0 , is computed for later use. The initial values of 𝜃𝜃1 146 

and 𝜃𝜃𝑛𝑛+1  are respectively equal to 𝜃𝜃𝑆𝑆1
0   and 𝜃𝜃𝑆𝑆𝑛𝑛

0  , which are used to replace the 147 

corresponding tangential angles of the original curved arch axis in the calculations. 148 

 149 

Deflection Function 150 

The defining feature that sets the model formulation apart from the conventional 151 

deflection method is its incorporation of a deflection function. This feature enables the 152 

model to provide a unified approach for handling small- and large-curvature problems. 153 

The deflection function is derived based on the assumption that, for a small segment, 154 

the variations in its internal axial force and bending moment are negligible so that they 155 

can be approximated as constants. When the bending moment is constant, the curvature 156 

is constant as well, meaning that the deformed segment must take on the shape of a 157 

circular arc. Moreover, the axial force being constant means a uniform axial strain along 158 

the length of the circular arc, so the change in length of the circular arc is a simple 159 
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elongation or contraction of the initial segment length. Therefore, the task becomes 160 

choosing a representative point on the segment axis and using the axial strain and 161 

curvature induced by the internal axial force and bending moment at this point to 162 

generate a circular arc that represents the deformed segment shape. To perform this task, 163 

the segment midpoint is chosen as the representative point because it well characterizes 164 

the average deformation of the segment. An iterative procedure is used to determine the 165 

shape of the circular arc, as described below. 166 

 167 

Suppose that during a given loading step, the calculation has reached segment 𝑆𝑆𝑖𝑖 168 

(Figure 2a), and the following properties at its left end (i.e., the 𝑖𝑖 th grid point) have 169 

been computed: the coordinates (𝑥𝑥𝑖𝑖 , 𝑦𝑦𝑖𝑖 ), the right inclination angle 𝜃𝜃𝑖𝑖,𝑟𝑟 , and the 170 

internal forces 𝐻𝐻𝑖𝑖, 𝑉𝑉𝑖𝑖 and 𝑀𝑀𝑖𝑖. In a general case, the segment is subjected to a variety 171 

of external loads, including both concentrated and distributed loads. As per the first 172 

discretization rule, the concentrated loads, 𝐻𝐻𝑒𝑒𝑒𝑒𝑒𝑒,𝑖𝑖+1 , 𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒,𝑖𝑖+1  and 𝑀𝑀𝑒𝑒𝑒𝑒𝑒𝑒,𝑖𝑖+1 , are 173 

applied at the right end of the segment 𝑖𝑖 (i.e., the 𝑖𝑖 + 1 th grid point). According to 174 

the second discretization rule, the four distrusted loads, 𝑞𝑞𝑥𝑥,𝑆𝑆𝑖𝑖, 𝑞𝑞𝑦𝑦,𝑆𝑆𝑖𝑖, 𝑞𝑞𝑠𝑠,𝑆𝑆𝑖𝑖 and 𝑞𝑞𝑅𝑅,𝑆𝑆𝑖𝑖 , 175 

can be simplified as uniform loads with a magnitude equal to their respective value at 176 

segment midpoint. These distributed loads are oriented in the horizontal, vertical, arc 177 

length and radial directions, respectively, representing different categories of loads, 178 

such as pavement load, wind load, gravity, and uniform radial pressure. When acting 179 

upon a circular segment, the internal forces caused by 𝑞𝑞𝑥𝑥,𝑆𝑆𝑖𝑖 , 𝑞𝑞𝑦𝑦,𝑆𝑆𝑖𝑖, 𝑞𝑞𝑠𝑠,𝑆𝑆𝑖𝑖  and 𝑞𝑞𝑅𝑅,𝑆𝑆𝑖𝑖  at 180 

any point on the segment can be calculated by integration along the arc defined by the 181 

𝑖𝑖 th grid point and the point of interest. The expressions for these internal forces are 182 

summarized in Table 1, where 𝛽𝛽 denotes the central angle at the point of interest (see 183 

Table 1). 184 



8 
 

 185 

Consider the left half of the circular arc. In the first iterative step, the axial force and 186 

bending moment at the segment midpoint, 𝑁𝑁𝑖𝑖+12
 and 𝑀𝑀𝑖𝑖+12

, are assumed to be equal to 187 

𝑁𝑁𝑖𝑖 and 𝑀𝑀𝑖𝑖, respectively, where 𝑁𝑁𝑖𝑖 is the resultant of 𝐻𝐻𝑖𝑖 and 𝑉𝑉𝑖𝑖 in the direction of 188 

𝜃𝜃𝑖𝑖,𝑟𝑟. In this paper, the subscript 𝑖𝑖 + 1
2
 is used to denote properties associated with the 189 

midpoint of segment 𝑆𝑆𝑖𝑖. Section analysis is then performed using the layer method 190 

based on the plane section assumption (Jiang and Teng, 2012b). The aim is to find the 191 

corresponding strain gradient, defined by the curvature of the neutral axis at the 192 

midpoint 𝜙𝜙𝑖𝑖+12
 and the axial strain of the centroidal axis at the midpoint 𝜀𝜀𝑖𝑖+12

 (Figure 193 

2b). To fulfill this aim, Newton’s method is used to iteratively adjust the values of 𝜙𝜙𝑖𝑖+12
 194 

and 𝜀𝜀𝑖𝑖+12
  until 𝑁𝑁𝑖𝑖+12

  and 𝑀𝑀𝑖𝑖+12
  are balanced (El-Metwally and Chen, 1989). 195 

Obviously, the distance between the centroidal axis and the neutral axis 𝑑𝑑𝑐𝑐𝑐𝑐 =196 

𝜀𝜀𝑖𝑖+12
𝜙𝜙𝑖𝑖+12
� , so the radius of the circular arc can be expressed as: 197 

 198 

𝑅𝑅𝑆𝑆𝑖𝑖 = 𝜌𝜌𝑆𝑆𝑖𝑖 + 𝑑𝑑𝑐𝑐𝑐𝑐 = 1 𝜙𝜙𝑖𝑖+12
+𝜀𝜀𝑖𝑖+12

𝜙𝜙𝑖𝑖+12
= �1 + 𝜀𝜀𝑖𝑖+12

� 𝜙𝜙𝑖𝑖+12
���        (1) 199 

 200 

where 𝜌𝜌𝑆𝑆𝑖𝑖 is the radius of curvature of the neutral axis. Eq. 1 is used to determine the 201 

radius of the circular arc. The length of the left half of the circular arc is determined by: 202 

 203 

𝐿𝐿𝑆𝑆𝑖𝑖
2

= �1 + 𝜀𝜀𝑖𝑖+12
�
𝐿𝐿𝑆𝑆𝑖𝑖
0

2
                           (2) 204 

 205 

With 𝑅𝑅𝑆𝑆𝑖𝑖  and 𝐿𝐿𝑆𝑆𝑖𝑖 known, the left half of the arc can be generated with the additional 206 

condition that the tangential angle at its left end is 𝜃𝜃𝑖𝑖,𝑟𝑟. The right end of this arc defines 207 



9 
 

a new midpoint whose coordinates are (Figure 2c): 208 

 209 

�
𝑥𝑥𝑖𝑖+12

= 𝑥𝑥𝑖𝑖 + ∆𝑥𝑥𝑖𝑖+12
= 𝑥𝑥𝑖𝑖 + 𝑅𝑅𝑆𝑆𝑖𝑖 ∙ (sin�𝜃𝜃𝑖𝑖,𝑟𝑟� − sin(𝜃𝜃𝑖𝑖,𝑟𝑟 − 𝛽𝛽𝑆𝑆𝑖𝑖/2))

𝑦𝑦𝑖𝑖+12
= 𝑦𝑦𝑖𝑖 + ∆𝑦𝑦𝑖𝑖+12

= 𝑦𝑦𝑖𝑖 + 𝑅𝑅𝑆𝑆𝑖𝑖 ∙ (cos(𝜃𝜃𝑖𝑖,𝑟𝑟 − 𝛽𝛽𝑆𝑆𝑖𝑖/2) − cos(𝜃𝜃𝑖𝑖,𝑟𝑟))
       (3) 210 

 211 

where 𝛽𝛽𝑆𝑆𝑖𝑖/2 is the corresponding central angle and =
𝐿𝐿𝑆𝑆𝑖𝑖
2

𝑅𝑅𝑆𝑆𝑖𝑖� . The tangential angle at 212 

the midpoint is: 213 

 214 

𝜃𝜃𝑖𝑖+12
= 𝜃𝜃𝑖𝑖,𝑟𝑟 − 𝛽𝛽𝑆𝑆𝑖𝑖/2                          (4) 215 

 216 

Now the values of 𝑁𝑁𝑖𝑖+12
 and 𝑀𝑀𝑖𝑖+12

 can be updated: 217 

 218 

𝑁𝑁𝑖𝑖+12
= 𝐻𝐻𝑖𝑖+12

∙ cos(𝜃𝜃𝑖𝑖+12
) + 𝑉𝑉𝑖𝑖+12

∙ sin(𝜃𝜃𝑖𝑖+12
)             (5a) 219 

𝑀𝑀𝑖𝑖+12
= 𝑀𝑀𝑖𝑖 + 𝐻𝐻𝑖𝑖 ∙ ∆𝑦𝑦𝑖𝑖+12

+ 𝑉𝑉𝑖𝑖 ∙ ∆𝑥𝑥𝑖𝑖+12
+ ∆𝑀𝑀𝑖𝑖+12,𝑞𝑞𝑥𝑥

+∆𝑀𝑀𝑖𝑖+12,𝑞𝑞𝑦𝑦
+ ∆𝑀𝑀𝑖𝑖+12,𝑞𝑞𝑠𝑠

+ ∆𝑀𝑀𝑖𝑖+12,𝑞𝑞𝑅𝑅
   220 

(5b) 221 

 222 

where 223 

 224 

𝐻𝐻𝑖𝑖+12
= 𝐻𝐻𝑖𝑖 + ∆𝐻𝐻𝑖𝑖+12,𝑞𝑞𝑥𝑥

+∆𝐻𝐻𝑖𝑖+12,𝑞𝑞𝑠𝑠
+ ∆𝐻𝐻𝑖𝑖+12,𝑞𝑞𝑅𝑅

              (6a) 225 

𝑉𝑉𝑖𝑖+12
= 𝑉𝑉𝑖𝑖 + ∆𝑉𝑉𝑖𝑖+12,𝑞𝑞𝑦𝑦

+∆𝑉𝑉𝑖𝑖+12,𝑞𝑞𝑠𝑠
+ ∆𝑉𝑉𝑖𝑖+12,𝑞𝑞𝑅𝑅

               (6b) 226 

 227 

In Eqs 5 and 6, the contributions from the distributed loads (i.e., the internal force items 228 

with ∆) can be calculated using the expressions provided in Table 1 by setting 𝛽𝛽 =229 
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𝛽𝛽𝑆𝑆𝑖𝑖/2. 230 

 231 

The procedure then proceeds to the next iterative step using the updated 𝑁𝑁𝑖𝑖+12
  and 232 

𝑀𝑀𝑖𝑖+12
 , and it continues until the distance between the current midpoint and its 233 

predecessor obtained in the preceding iterative step is less than 10−6𝐿𝐿𝑆𝑆𝑖𝑖
0 . Once the left 234 

half of the arc is determined, the right half can be easily generated by extending the left 235 

half around its center by an angle of 𝛽𝛽𝑆𝑆𝑖𝑖/2 (Figure 2c). The coordinates of the 𝑖𝑖 + 1 th 236 

grid point can now be determined: 237 

 238 

𝑥𝑥𝑖𝑖+1 = 𝑥𝑥𝑖𝑖 + ∆𝑥𝑥𝑖𝑖 = 𝑥𝑥𝑖𝑖 + 𝑅𝑅𝑆𝑆𝑖𝑖 ∙ (sin�𝜃𝜃𝑖𝑖,𝑟𝑟� − sin (𝜃𝜃𝑖𝑖,𝑟𝑟 − 𝛽𝛽𝑆𝑆𝑖𝑖))
𝑦𝑦𝑖𝑖+1 = 𝑦𝑦𝑖𝑖 + ∆𝑦𝑦𝑖𝑖 = 𝑦𝑦𝑖𝑖 + 𝑅𝑅𝑆𝑆𝑖𝑖 ∙ (cos�𝜃𝜃𝑖𝑖,𝑟𝑟 − 𝛽𝛽𝑆𝑆𝑖𝑖� − cos(𝜃𝜃𝑖𝑖,𝑟𝑟))

         (7) 239 

 240 

and the left and right inclination angles at the 𝑖𝑖 + 1 th grid point are: 241 

 242 

𝜃𝜃𝑖𝑖+1,𝑙𝑙 = 𝜃𝜃𝑖𝑖,𝑟𝑟 − 𝛽𝛽𝑆𝑆𝑖𝑖                             (8a) 243 

𝜃𝜃𝑖𝑖+1,𝑟𝑟 = 𝜃𝜃𝑖𝑖+1,𝑙𝑙 − ∆𝜃𝜃𝑖𝑖+1                           (8b) 244 

 245 

Finally, the internal forces at the 𝑖𝑖 + 1 th grid point are obtained: 246 

 247 

𝐻𝐻𝑖𝑖+1 = 𝐻𝐻𝑖𝑖 + ∆𝐻𝐻𝑖𝑖+1,𝑞𝑞𝑥𝑥+∆𝐻𝐻𝑖𝑖+1,𝑞𝑞𝑠𝑠 + ∆𝐻𝐻𝑖𝑖+1,𝑞𝑞𝑅𝑅 + 𝐻𝐻𝑒𝑒𝑒𝑒𝑒𝑒,𝑖𝑖+1          (9a) 248 

𝑉𝑉𝑖𝑖+1 = 𝑉𝑉𝑖𝑖+∆𝑉𝑉𝑖𝑖+1,𝑞𝑞𝑦𝑦+∆𝑉𝑉𝑖𝑖+1,𝑞𝑞𝑠𝑠 + ∆𝑉𝑉𝑖𝑖+1,𝑞𝑞𝑅𝑅 + 𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒,𝑖𝑖+1           (9b) 249 

𝑀𝑀𝑖𝑖+1 = 𝑀𝑀𝑖𝑖 + 𝐻𝐻𝑖𝑖 ∙ ∆𝑦𝑦𝑖𝑖 + 𝑉𝑉𝑖𝑖 ∙ ∆𝑥𝑥𝑖𝑖 + ∆𝑀𝑀𝑖𝑖+1,𝑞𝑞𝑥𝑥+∆𝑀𝑀𝑖𝑖+1,𝑞𝑞𝑦𝑦 + ∆𝑀𝑀𝑖𝑖+1,𝑞𝑞𝑠𝑠 + ∆𝑀𝑀𝑖𝑖+1,𝑞𝑞𝑅𝑅 +250 

𝑀𝑀𝑒𝑒𝑒𝑒𝑒𝑒,𝑖𝑖+1 (9c) 251 

where the contributions from the distributed loads can be determined from the 252 
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expressions provided in Table 1 by setting 𝛽𝛽 = 𝛽𝛽𝑆𝑆𝑖𝑖 . 253 

 254 

Solution Procedure 255 

The calculations described in the preceding sub-section can be applied sequentially, 256 

starting from 𝑆𝑆1 and progressing through each intermediate segment until reaching 𝑆𝑆𝑛𝑛. 257 

To initiate the solution procedure, the unknown initial values at the first grid point must 258 

be assumed and used in the calculations for 𝑆𝑆1. These unknowns correspond to the 259 

reaction forces or displacements of the left support, such as 𝐻𝐻1 , 𝑉𝑉1 , 𝑀𝑀1  and 𝜃𝜃1 , 260 

depending on the type of support. By making appropriate initial guesses for these 261 

unknowns, the calculations can proceed from segment to segment, generating the 262 

complete deflection curve. Once the deflection curve is obtained, the boundary 263 

conditions at the last grid point need to be examined to ensure their satisfaction. These 264 

boundary conditions, which also depend on the type of support, involve the reaction 265 

forces and displacements of the right support. Table 2 provides a summary of the 266 

unknown initial values and boundary conditions specific to hinged and fixed supports, 267 

which are the two most commonly used support types in practice. Each type 268 

corresponds to three initial values and three boundary conditions. The numerical 269 

examples of this study also encompassed other support types, including rotational 270 

springs and vertical sliding hinges. Their properties are also summarized in Table 2. 271 

 272 

It is expedient to present first the solution procedure for the simplest case, where the 273 

arch is subjected to a single load. In this scenario, the arch can experience failure either 274 

due to material limitations (i.e., material failure) or instability (i.e., stability failure), 275 

with the likelihood depending largely on its slenderness. Regardless of the failure type, 276 

the arch’s final deformation state is associated with material failure. Even when stability 277 
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failure occurs first in the case of slender arches, post-buckling deformation can continue 278 

to develop as the load magnitude decreases until it reaches a point where material 279 

failure is triggered. 280 

 281 

Therefore, the solution procedure adopts an incremental approach using the 282 

displacement-control technique. This technique is chosen over the load-control 283 

technique because it provides a unified approach to address both stability failure and 284 

material failure possibilities. In each incremental step, an increasing displacement value 285 

is applied at a selected grid point. The choice of the grid point may vary between 286 

incremental steps to ensure that the displacement at the chosen point continues to 287 

increase. The goal is to determine the correct load magnitude that induces the prescribed 288 

displacement at each step. In this approach, the load magnitude becomes an additional 289 

unknown, while the prescribed displacement serves as an additional boundary condition 290 

that must be satisfied by the computed deflection curve at the chosen grid point. 291 

 292 

The initial step size, denoted as ∆𝑓𝑓, can be assigned any reasonable small value (e.g., 293 

1/50 of the ultimate displacement). Initially, the boundary conditions are generally not 294 

satisfied by the guessed unknowns. However, the discrepancies between the calculated 295 

values and their target values can be used to guide an iterative process that converges 296 

toward the correct values of the unknowns. Newton’s method is used to implement this 297 

iterative process. The process continues until the errors fall within acceptable tolerances, 298 

indicating that the solution for the current incremental step has been found. The 299 

procedure then proceeds to the next incremental step and continues until material failure 300 

occurs. 301 

 302 



13 
 

Material failure is identified through section analysis performed at the midpoint section 303 

of each segment. When the calculated axial strain value at any point on the critical 304 

section exceeds the material’s strain capacity, it indicates that material failure has 305 

occurred. In response, the solution procedure is reverted to the previous incremental 306 

step and then resumes with a reduced increment of ∆𝑓𝑓/2. When material failure is 307 

detected again the step size is further halved. This process continues until the step size 308 

is eventually reduced to ∆𝑓𝑓/26, marking the conclusion of the solution procedure. 309 

 310 

When the arch is subjected to multiple loads, a loading regime needs to be prescribed 311 

to specify the ratios between the load magnitudes. One commonly used regime is 312 

proportional loading, where the ratios remain consistent throughout the entire loading 313 

process. By prescribing these ratios, the number of additional unknowns associated 314 

with the applied loads remains at one. Consequently, the load magnitudes can be 315 

determined by solving for the equal number of unknowns and boundary conditions. The 316 

remaining steps of the solution procedure follow the same approach as described for 317 

the single-load case. 318 

 319 

Handling of Intermediate Hinge Joints 320 

Fixed, two-hinged and three-hinged arches are the three basic arch types. So far, the 321 

solution procedure has addressed the first two types. However, to apply the procedure 322 

to three-hinged arches, a slight modification is required in the model formulation to 323 

account for the behavior of the intermediate hinge joint. Consider Figure 2c and assume 324 

a hinge joint is located at the segment’s right end (𝑖𝑖 + 1 th grid point). In this case, Eq. 325 

8 no longer holds, as it is only applicable to rigid connections. Due to the presence of 326 

the rotation-free hinge joint, the correlation between the two inclination angles at the 327 
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 𝑖𝑖 + 1 th grid point is lost. Consequently, the right inclination angle, 𝜃𝜃𝑖𝑖,𝑟𝑟, becomes an 328 

additional unknown. Simultaneously, a new boundary condition, 𝑀𝑀𝑖𝑖+1 = 0, is imposed. 329 

Therefore, the new unknown 𝜃𝜃𝑖𝑖,𝑟𝑟 can be solved with the other unknowns altogether 330 

from the updated boundary conditions using Newton’s method. 331 

 332 

Handling of Semi-Rigid Connections 333 

Hinged and rigid connections represent idealized connection conditions. In practice, the 334 

actual connection condition often lies between these two extremes and requires 335 

modeling as semi-rigid connections. One common approach is to model them as 336 

rotational springs. Rotational springs can be used to represent both supports and 337 

intermediate joints. In either case, the bending moment acting on the spring induces an 338 

additional rotation 𝜔𝜔𝑖𝑖 = 𝑀𝑀𝑖𝑖 𝑘𝑘𝑖𝑖⁄  , where 𝑘𝑘𝑖𝑖  is the stiffness of the spring. The initial 339 

values and boundary conditions associated with rotational spring supports are 340 

summarized in Table 2, capturing the influence of 𝜔𝜔𝑖𝑖. Similarly, when an intermediate 341 

joint is modeled as a rotational spring, Eq. 8 needs to be modified to incorporate an 342 

additional term for 𝜔𝜔𝑖𝑖: 343 

 344 

𝜃𝜃𝑖𝑖+1,𝑟𝑟 = 𝜃𝜃𝑖𝑖,𝑟𝑟 − 𝛽𝛽𝑆𝑆𝑖𝑖 − ∆𝜃𝜃𝑖𝑖+1 + 𝜔𝜔𝑖𝑖                     (10) 345 

 346 

In fact, hinges and rigid connections can be seen as idealized rotational springs with 347 

zero and infinite stiffness magnitudes, respectively. In practice, these idealized spring 348 

conditions can be represented by assigning extremely low or extremely high stiffness 349 

values. However, hinged and rigid connections are directly represented in the proposed 350 

theoretical model instead of modeling them as rotational springs. 351 

 352 
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The accuracy of the theoretical model is affected by several factors. These include the 353 

number of segments used to divide the member, the number of cross-sectional layers 354 

adopted in section analysis, and the tolerances set as convergence criteria. In this paper, 355 

all numerical examples employed 32 segments and 10−6 as the convergence tolerance. 356 

The number of cross-sectional layers varied around 200, depending on the cross-357 

sectional configuration. A convergence study showed that further refinement of these 358 

factors will not yield any significant effect on the numerical results. 359 

 360 

Verification 361 

Comparisons with Analytical Results of Linear Elastic Arches 362 

The theoretical model was verified using the analytical solution derived by Pi and 363 

Bradford for linear elastic arches (Pi and Bradford, 2009). Their solution represents a 364 

significant advancement over classical elastic arch theories (e.g., Timoshenko and Gere, 365 

1963), as it accounts for the effect of pre-buckling deformations on the displacement 366 

and geometric stiffness of the arch. This consideration is particularly important for 367 

shallow arches, where pre-buckling deformations significantly influence the arch’s 368 

buckling behavior (Pi and Trahair, 1998). 369 

 370 

The solution of Pi and Bradford (2009) is concerned with the specific loading scenario 371 

of elastic circular arches subjected to a uniform radial pressure (Figure 3a). In classical 372 

arch theories, this loading scenario results in a compression line coinciding with the 373 

arch’s centroidal axis. This implies a pure concentric compression stress state of the 374 

arch, neglecting the axial deformation caused by the axial compression force. As a result, 375 

the predicted buckling mode according to classical arch theories is bifurcation buckling 376 

(Timoshenko and Gere, 1963). However, when the effect of axial deformation is 377 
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considered, the compression line deviates from the centroidal axis as the applied radial 378 

pressure increases, introducing bending moments to the arch. This deviation can lead 379 

to the arch buckling in either a symmetric snap-through mode or an anti-symmetric 380 

bifurcation mode (Pi and Bradford, 2009), as illustrated in Figs. 3b and 3c, respectively. 381 

The dominant buckling mode depends on factors such as arch slenderness, shallowness, 382 

and level of end restraint. 383 

 384 

In the study of Pi and Bradford (2009), the supports of the arch were represented by 385 

two elastic rotational springs of equal stiffness, providing symmetrical restraint to the 386 

arch. The level of end restraint was indicated by the dimensionless flexibility of the 387 

rotational springs 𝛼𝛼, which was defined as the ratio of the flexural rigidity per arch 388 

length to the stiffness of the rotational springs. This parameter can be assigned any 389 

value between zero and infinity to represent different levels of end restraint. 390 

 391 

Figure 4 presents a comparison between the load–deflection curves at arch crown, as 392 

predicted by the theoretical model and the analytical solution of Pi and Bradford (2009). 393 

These curves trace the variation of the normalized applied pressure 𝑞𝑞𝑅𝑅𝑅𝑅 𝑁𝑁𝐸𝐸2⁄  as the 394 

normalized vertical displacement of the arch crown 𝑣𝑣0 𝑓𝑓⁄  increases, where 𝑅𝑅 and 𝑓𝑓 395 

are respectively the radius and rise of the arch, 𝑣𝑣0 is the vertical displacement of the 396 

arch crown, and 𝑁𝑁𝐸𝐸2 is the second mode flexural buckling load of a pin-ended column 397 

with equal rotational end restraints and having the same length as the arch (Pi and 398 

Bradford, 2009). Two representative sets of arches were considered, one with 𝛼𝛼 =0.1 399 

and the other with 𝛼𝛼 =1.5, to represent a relatively high and a relatively low level of 400 

end restraint, respectively. Each set covered four cases, each corresponding to a specific 401 

value of a geometrical parameter 𝜆𝜆  introduced by Pi and Bradford (2009). This 402 
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parameter reflects both the slenderness and shallowness of the arch and has a significant 403 

influence on its buckling behavior. 404 

 405 

The 𝜆𝜆 value used for Figure 4a is a boundary value predicted by the analytical solution. 406 

Under this specific 𝜆𝜆, the postbuckling descending branch of the load–deflection curve 407 

for the arch with 𝛼𝛼 =1.5 reduces to a single point. That is, it demarcates the boundary 408 

between stability and instability for 𝛼𝛼 =1.5: any 𝜆𝜆 greater than this boundary value 409 

leads to the occurrence of stability failure, while any lesser 𝜆𝜆 eliminates the possibility 410 

of stability failure and is thus associated with a monotonically increasing load–411 

deflection curve. Similarly, the 𝜆𝜆 value used for Figure 4b is the counterpart boundary 412 

value for 𝛼𝛼 =0.1. Under this 𝜆𝜆, due to the lower level of end restraint, the arch with 413 

𝛼𝛼 = 1.5 fails by instability in the symmetrical snap-through mode and exhibits a 414 

postbuckling descending branch on its load–deflection curve. The 𝜆𝜆 value used for 415 

Figure 4c is such that the anti-symmetric bifurcation mode is triggered for the arch with 416 

𝛼𝛼 =1.5, although the dominant buckling mode remains the snap-through mode. The 417 

portion corresponding to the anti-symmetric deformation phase is defined by the two 418 

solid symbols on the load–deflection curve. In Figure 4d, 𝜆𝜆 is further increased to such 419 

a value that bifurcation buckling becomes the dominant buckling mode for the arch 420 

with 𝛼𝛼 =1.5. It should be noted that a perturbation is needed for the theoretical model 421 

to excite the anti-symmetric buckling mode. This perturbation was introduced as a small 422 

bending moment with a magnitude of 10−3𝑁𝑁𝐸𝐸2𝑓𝑓 applied at the arch crown. 423 

 424 

Evidently, the predictions by the theoretical model match those by the analytical 425 

solution very well, except for the case shown in Figure 4a with 𝛼𝛼 = 0.1. The 426 

discrepancy observed for this particular case is believed to arise from an inadvertent 427 



18 
 

mistake made by Pi and Bradford (2009) in using the value of 𝑁𝑁𝐸𝐸2 when normalizing 428 

the applied pressure for this case. Pi and Bradford (2009) claimed that for convenience 429 

a fixed value of 𝑁𝑁𝐸𝐸2 , which was determined from the condition 𝛼𝛼 = 1.5, was 430 

consistently used for all cases considered in Figure 4, despite the fact that 𝑁𝑁𝐸𝐸2 varies 431 

with 𝛼𝛼. However, it appears that this rule was not followed by Pi and Bradford (2009) 432 

when preparing the plot for this particular case, where it is believed that the value of 433 

𝑁𝑁𝐸𝐸2 was actually determined from the condition 𝛼𝛼 =0.1. When this 𝑁𝑁𝐸𝐸2 value is used, 434 

the predicted normalized load–deflection curve for this case becomes the additional 435 

dashed curve shown in Figure 4a, removing the previously observed discrepancy. 436 

 437 

Comparisons with Numerical Result of Slender FRP-Confined RC Columns 438 

The theoretical model’s capability to address small-curvature problems is demonstrated 439 

through comparisons with the numerical results of a column model previously 440 

developed by the second author (Jiang and Teng, 2012b). This column model is based 441 

on the conventional deflection method and has been verified in Jiang and Teng (2012b), 442 

where its accuracy for slender RC columns and FRP-confined RC columns is also 443 

shown. 444 

 445 

The numerical verification is based on referencing four slender FRP-confined circular 446 

RC columns tested by Tao et al. (2004), using the properties of these columns as inputs 447 

for both models. These columns, measuring 150 mm in diameter and 1260 mm in height, 448 

were reinforced with four 12 mm longitudinal steel bars and enveloped in a 449 

circumferential carbon FRP (CFRP) wrap with a nominal thickness of 0.34 mm. The 450 

concrete cover to the longitudinal steel reinforcement was 21 mm. All columns were 451 

pin-ended and subjected to equal load eccentricities at the two ends. The four columns 452 
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were labeled C1-1R, C1-2R, C1-3R, and C1-4R, respectively, distinguished by their 453 

nominal load eccentricities (0 mm, 50 mm, 100 mm, and 150 mm). The material 454 

properties are as follows. The unconfined concrete strength was 48.2 MPa and the yield 455 

strength of the longitudinal steel reinforcement was 388.7 MPa. The CFRP wrap had 456 

an elastic modulus of 255 GPa and a hoop rupture strain of 1.32%. More details of these 457 

tests can be found elsewhere (Jiang and Teng, 2012b; Tao et al., 2004). 458 

 459 

The load–deflection responses of the four columns were simulated using both the 460 

theoretical model and the column model of Jiang and Teng (2012b), with both models 461 

incorporating the same stress–strain models. Teng et al.’s (2009) design-oriented model, 462 

which is a refined version of Lam and Teng’s (2003) model, was employed to 463 

characterize the compressive stress–strain behavior of FRP-confined concrete, while 464 

the tensile strength of concrete was ignored. The longitudinal steel reinforcement was 465 

assumed to possess an elastic-perfectly plastic stress–strain curve.  466 

 467 

Figure 5 illustrates a comparison between the load–deflection curves at column mid-468 

height, as predicted by the two models. Following the approach of Jiang and Teng 469 

(2012b), all cases were modeled with an additional eccentricity of 7.5 mm added to the 470 

nominal load eccentricity. The two sets of theoretical curves exhibit excellent 471 

agreement, demonstrating the capability of the theoretical model in addressing small-472 

curvature problems. 473 

 474 

Application to FRP-enabled Arches 475 

FRP Bending-Active Arches 476 

Bending-active arches are a unique category of arch structures. They derive their curved 477 
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shape from elastic bending of initially straight members (Lienhard et al., 2013; Xie et 478 

al., 2023b; Xie et al., 2024). FRP bending-active arches are suitable for use as rapidly 479 

assembled crossing bridges and supporting frames for temporary structures (Xia et al., 480 

2023; Caron et al., 2009; Bessini et al., 2019; Habibi et al., 2022). 481 

 482 

The tests conducted by Xie et al. (2023a) were employed as an example of all-FRP 483 

arches to validate the theoretical model. In their tests, the arch specimens were bent 484 

from straight CFRP strips with a cross section of 48.5 mm by 1.40 mm. During the 485 

bending process, the supports of the specimen allowed free rotation in the plane of the 486 

arch axis. Once the arch specimen was bent into place, the supports were transitioned 487 

to a clamped condition before receiving a concentrated load vertically applied at the 488 

arch crown. A total of 16 arch configurations were tested, with the main variables being 489 

the strip length and the span ratio (the ratio of arch span to strip length). The strip length 490 

was either 1.6 m or 2.0 m, each covering four span ratios (0.6, 0.7, 0.8 and 0.9). The 491 

CFRP had a flexural modulus of 127.5 GPa and a density of 1620 kg/m3. 492 

 493 

Figure 6 displays a comparison between the experimental and predicted load–deflection 494 

curves at arch crown for all specimens. Each predicted curve was terminated when its 495 

predicted load aligned with the load at the final point of the corresponding experimental 496 

curve. As only the symmetrical snap-through buckling mode was observed in the tests, 497 

the modeling work simplified the arch specimen by considering only half of its original 498 

configuration. As a result, the support condition at the arch crown was modeled as a 499 

vertical sliding hinge (see Table 2). Additionally, the influence of gravity was 500 

considered, as it proved significant due to the large flexibility of the arch specimens. 501 

As illustrated in Figure 6, the predicted load–deflection curves closely align with their 502 
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experimental counterparts. 503 

 504 

For illustrative purposes, Figure 7 provides a further comparison between the 505 

experimental and predicted deformed shapes of Specimen L16SR60. This specimen 506 

had a length of 1.6 m and a span ratio of 0.6. The comparisons were made at three 507 

representative states (State I, State II and State III), which correspond to the initial point, 508 

peak point and valley point of the load–deflection curve, respectively. Evidently, the 509 

theoretical model successfully reproduces the deformed shapes, demonstrating its 510 

accuracy in capturing the behavior of the arch specimens. 511 

 512 

Concrete-filled FRP Tubular (CFFT) Arches 513 

CFFT arches are a promising form of FRP-incorporating hybrid arch, offering a 514 

combination of strength, ductility and durability. This desirable behavior is attributed 515 

to the confinement, reinforcement and protection provided to the concrete core by the 516 

FRP tube. The theoretical model is further validated using two series of tests on CFFT 517 

arches conducted by the same research group (Dagher et al., 2012; Majeed et al., 2021). 518 

Both test series focused on circular arches with a circular cross-section, subjecting them 519 

to a concentrated load vertically applied at the arch crown. The geometrical and material 520 

properties of the CFFT arches in both test series are summarized in Table 3. 521 

 522 

The first test series (Dagher et al., 2012) involved four nominally identical CFFT arches 523 

(A1, A2, A3 and A4) subjected to monotonic loading. These arch specimens were cast 524 

into RC footings at both ends, with the footings being pin-supported on the laboratory 525 

floor. For each arch specimen, the FRP tube comprised an inner layer of glass fibers 526 

and two outer layers of carbon fibers. By using different fiber orientations for the inner 527 
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and outer layers, the resulting FRP tube exhibited significant stiffness in both the 528 

longitudinal and hoop directions. In the theoretical model, each RC footing was 529 

simplified as a rigid link, and the FRP tube’s behavior was assumed to be linear elastic 530 

in both the longitudinal and hoop directions. The interaction between the tube’s 531 

behaviors in these two directions was neglected in the analysis. 532 

 533 

In the absence of test data, the elastic modulus and tensile strength of concrete were 534 

determined based on its compressive strength in accordance with the ACI standard (ACI 535 

318-19, 2019). For consistency, Teng et al.’s (2009) model was again employed to 536 

describe the stress–strain behavior of FRP-confined concrete in compression. It should 537 

be noted that Teng et al.’s (2009) model requires the input of the FRP rupture strain. 538 

This value was assumed to be 2% as it was not reported in the original literature (Dagher 539 

et al., 2012). Varying the rupture strain in the range of 1~3% showed a negligible 540 

influence on the model predictions because the failure of the arch specimens was not 541 

due to the rupture of the FRP tube in the hoop direction. The stress–strain curve of 542 

concrete in tension was assumed to be linear before cracking. The tension-stiffening 543 

effect was accounted for using the model proposed by Collins and Mitchell (1997). This 544 

model is a modification of Vecchio and Collins’s (1986) tension-stiffening model and 545 

has demonstrated a good predictive capability concerning moment-curvature 546 

relationships for CFFT flexural members in previous studies (Bannon et al., 2009; Fam, 547 

2000). Full composite action was assumed between the FRP tube and the concrete core. 548 

Additionally, only half of the arch specimen was considered due to symmetry. 549 

 550 

Figure 8a compares the experimental and predicted load–deflection curves at arch 551 

crown. Notably, Specimens A1 and A2 exhibited a less stiff initial response than 552 
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Specimens A3 and A4. Dagher et al. (2012) attributed this difference to accidental 553 

damage prior to testing and initial imperfections. Therefore, the load–deflection curves 554 

of Specimens A3 and A4 are considered to better represent the true behavior of the arch 555 

specimens. These two curves are closely matched by the predicted curve. Dagher et al. 556 

(2012) reported that the failure of all arch specimens was due to longitudinal rupture of 557 

the FRP tube in the tension face, directly below the point of load application. Hence, 558 

the predicted curve terminates when the FRP tube reaches its longitudinal rupture strain. 559 

 560 

The second test series (Majeed et al., 2021) exclusively focused on a fixed CFFT arch 561 

with a more slender configuration. The FRP tube used in this test consisted of two layers 562 

of glass fibers, with each layer having a distinct fiber angle. The failure mode observed 563 

in this specimen was consistent with the one observed in the first test series. The 564 

modeling procedure for this specimen was similar to that used for the first test series, 565 

except for a variation in the support condition. As illustrated in Figure 8b, the theoretical 566 

model accurately predicts the load–deflection response of this specimen. 567 

 568 

Conclusions 569 

This paper has been concerned with the formulation, verification and application of a 570 

theoretical model for one-dimensional members. Originally developed to address the 571 

challenges posed by large-curvature problems encountered in FRP-enabled arches, the 572 

model’s versatility enables its application to the broader range of general one-573 

dimensional members. The work presented in this paper allows the following 574 

conclusions to be drawn: 575 

 576 

1) The theoretical model is built upon an enhanced formulation of the deflection 577 
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method. Its defining feature is the incorporation of a circular deflection function, 578 

which posits that each segment of the deformed centroidal axis can be represented 579 

by a circular arc whose curvature and length are related to the internal axial force 580 

and bending moment acting on the segment’s midpoint section. This feature 581 

facilitates the exact representation of curvature, distinguishing the proposed model 582 

from the conventional deflection method, where the simplified representation of 583 

curvature as the second-order derivative of deflection is valid only for small 584 

curvatures. Therefore, the proposed model represents a significant improvement 585 

over the conventional deflection method in that it offers a unified approach to 586 

address both small- and large-curvature problems.  587 

 588 

2) Model verification was carried out through comparisons with both analytical and 589 

numerical results from the literature. The analytical verification focused on a large-590 

curvature problem of linear elastic arches, while the numerical verification 591 

employed a small-curvature problem of slender FRP-confined RC columns, 592 

incorporating material non-linearity. The verification results demonstrated the 593 

correct implementation of the theoretical model and its equal capability in handling 594 

small- and large-curvature problems. 595 

 596 

3) The performance of the theoretical model was evaluated against representative test 597 

results from FRP-enable arches, comprising two sub-categories: all-FRP arches 598 

exemplified by FRP-bending active arches and FRP-incorporating hybrid arches 599 

exemplified by CFFT arches. In the case of FRP-bending active arches, the large 600 

curvatures were induced by deformation, whereas in CFFT arches, the large 601 

curvatures were inherent in their initial configuration. The theoretical model 602 
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demonstrated excellent accuracy in predicting the behavior of arches in both sub-603 

categories, regardless of the source of the large curvatures. 604 

 605 

Acknowledgments 606 

The PolyU-ZJU Joint PhD Program is gratefully acknowledged for enabling the first 607 

author’s PhD journey under the joint supervision of the second and third authors. 608 

 609 

Declaration of Conflicting Interests 610 

The authors declare that there is no conflict of interest. 611 

 612 

Funding 613 

The authors are grateful for the financial support provided by the National Natural 614 

Science Foundation of China (Project No.: 51778569) and the Hong Kong Research 615 

Grants Council (Project No.: T22-502/18-R).  616 

 617 

References 618 

ACI 318-19. (2019) Building Code Requirements for Structural Concrete. Farmington 619 
Hills, Michigan: American Concrete Institute (ACI), USA. 620 

Bannon DJ, Dagher HJ and Lopez-Anido RA. (2009) Behavior of inflatable rigidified 621 
composite arch bridges. Composites & Polycon: 15-17. 622 

Bell M, Fick D, Ament R, et al. (2020) The use of fiber-reinforced polymers in wildlife 623 
crossing infrastructure. Sustainability 12(4): 1557. 624 

Bessini J, Lazaro C, Casanova J, et al. (2019) Efficiency-based design of bending-active 625 
tied arches. Engineering Structures 200: 109681. 626 

Caratelli A, Meda A, Rinaldi Z, et al. (2016) Precast tunnel segments with GFRP 627 
reinforcement. Tunnelling and Underground Space Technology 60: 10-20. 628 

Caron JF, Julich S and Baverel O. (2009) Selfstressed bowstring footbridge in FRP. 629 



26 
 

Composite Structures 89(3): 489-496. 630 

Chen WF and Atsuta T. (2007) Theory of Beam-columns: J. Ross Publishing. 631 

Collins MP and Mitchell D. (1997) Prestressed Concrete Structures, Toronto and 632 
Montreal, Canada: Response Publications. 633 

Dagher HJ, Bannon DJ, Davids WG, et al. (2012) Bending behavior of concrete-filled 634 
tubular FRP arches for bridge structures. Construction and Building Materials 635 
37: 432-439. 636 

Dong ZQ, Liu ZQ, Wu G, et al. (2022) Study on mechanical properties of seawater sea-637 
sand coral aggregate concrete-filled BFRP tubular arches. Advances in 638 
Structural Engineering 25(9): 1851-1865. 639 

El-Metwally SE and Chen WF. (1989) Load-deformation relations for reinforced 640 
concrete sections. Structural Journal 86(2): 163-167. 641 

Fam AZ. (2000) Concrete-filled Fibre-reinforced Polymer Tubes for Axial and Flexural 642 
Structural Members. Manitoba, Canada: The University of Manitoba. 643 

Gao K, Xie H, Li Z, et al. (2021) Study on eccentric behavior and serviceability 644 
performance of slender rectangular concrete columns reinforced with GFRP 645 
bars. Composite Structures 263: 113680. 646 

Habibi T, Rhode Barbarigos L and Keller T. (2022) Fiber-polymer composites for 647 
permanent large-scale bending-active elastica beams. Composite Structures 294: 648 
115809. 649 

Jiang S. (2020) Hybrid FRP-concrete-steel Double-skin Tubular Truss Bridge: Design, 650 
Construction and Testing. Queensland, Australia: The University of Queensland. 651 

Jiang T and Teng JG. (2012a) Slenderness limit for short FRP-confined circular RC 652 
columns. Journal of Composites for Construction 16(6): 650-661. 653 

Jiang T and Teng JG. (2012b) Theoretical model for slender FRP-confined circular RC 654 
columns. Construction and Building Materials 32: 66-76. 655 

Lam L and Teng JG. (2003) Design-oriented stress–strain model for FRP-confined 656 
concrete. Construction and Building Materials 17(6-7): 471-489. 657 

Lee GP and Shin HS. (2010) A numerical study on feasibility of the circled fiber 658 
reinforced polymer (FRP) panel for a tunnel lining structure. Journal of Korean 659 
Tunnelling and Underground Space Association 12(6): 451-461. 660 

Lienhard J, Alpermann H, Gengnagel C, et al. (2013) Active bending, a review on 661 



27 
 

structures where bending is used as a self-formation process. International 662 
Journal of Space Structures 28(3-4): 187-196. 663 

Liu SY, Zhang ZY, Xue X, et al. (2022) Deformation properties of arched glass fiber 664 
reinforced plastics structure under static load: Considering the soil cover and 665 
rise-span ratio. Advances in Structural Engineering 25(6): 1254-1267. 666 

Liu T, Feng P, Wu Y, et al. (2021) Developing an innovative curved-pultruded large-667 
scale GFRP arch beam. Composite Structures 256: 113111. 668 

Majeed HS, Davids WG and Walton HJ. (2021) Efficient second-order nonlinear finite-669 
element simulation of concrete-filled FRP tubular arches. Structures 34: 3738-670 
3749. 671 

Pi YL and Bradford M. (2009) Non-linear in-plane postbuckling of arches with 672 
rotational end restraints under uniform radial loading. International Journal of 673 
Non-Linear Mechanics 44(9): 975-989. 674 

Pi YL and Trahair NS. (1998) Non-linear buckling and postbuckling of elastic arches. 675 
Engineering Structures 20(7): 571-579. 676 

Potyrala PB. (2011) Use of Fibre Reinforced Polymeromposites in Bridge Construction. 677 
State of the Art in Hybrid and All-composite Structures. Catalonia, Spain: 678 
Polytechnic University of Catalonia. 679 

Pyrzowski Ł and Miśkiewicz M. (2017) Modern GFRP composite footbridges. In Proc., 680 
“Environmental Engineering” 10th International Conference. Vilnius 681 
Gediminas Technical University, Ottawa, Canada, 1-8. 682 

Shen ZY and Lu LW. (1983) Analysis of initially crooked, end restrained steel columns. 683 
Journal of Constructional Steel Research 3(1): 10-18. 684 

Sobrino JA and Pulido MDG. (2002) Towards advanced composite material footbridges. 685 
Structural Engineering International 12(2): 84-86. 686 

Tang ZX, Zhou YZ, Feng J, et al. (2020) Blast responses and damage evaluation of 687 
concrete protective arches reinforced with BFRP bars. Composite Structures 688 
254: 112864. 689 

Tao Z, Teng JG, Han LH, et al. (2004) Experimental behaviour of FRP-confined slender 690 
RC columns under eccentric loading. In Proc., Proceedings, Second 691 
International Conference on Advanced Polymer Composites for Structural 692 
Applications in Construction. University of Surrey, Guildford, UK, 203-212. 693 

Teng JG, Jiang T, Lam L, et al. (2009) Refinement of a design-oriented stress–strain 694 
model for FRP-confined concrete. Journal of Composites for Construction 695 



28 
 

13(4): 269-278. 696 

Timoshenko SP and Gere JM. (1963) Theory of Elastic Stability, New York, USA: 697 
McGraw-Hill International Book Company. 698 

Vecchio FJ and Collins MP. (1986) The modified compression-field theory for 699 
reinforced concrete elements subjected to shear. ACI Journal 83(2): 219-231. 700 

Xia ZY, Jiang T and Yu T. (2023) Innovating arch structures with fiber-reinforced 701 
polymer composites: A review. Advances in Structural Engineering 26(13): 702 
2341-2358. 703 

Xie EL, Jiang T, Xia ZY, et al. (2023a) Postbuckling behavior of FRP bending-active 704 
arches subjected to a central point load. Journal of Composites for Construction 705 
27(5): 04023039. 706 

Xie EL, Song YX, Zhang PF, et al. (2024) FRP bending-active gridshells: Numerical 707 
simulation and model test. Structures 61: 106064. 708 

Xie P, Lam L and Jiang T. (2023b) Compressive behavior of GFRP tubes filled with 709 
self-compacting concrete. Journal of Composites for Construction 27(1): 710 
04022103. 711 

  712 



29 
 

Table 1. Internal forces caused by distributed loads. 713 

Diagram Load 
type Horizontal force Vertical force Bending moment 

  

𝑞𝑞𝑥𝑥,𝑆𝑆𝑖𝑖  
𝑞𝑞𝑥𝑥,𝑆𝑆𝑖𝑖𝑅𝑅𝑆𝑆𝑖𝑖(cos (𝜃𝜃𝑖𝑖,𝑟𝑟 − 𝛽𝛽) −

cos (𝜃𝜃𝑖𝑖,𝑟𝑟))  0 1
2
𝑞𝑞𝑥𝑥,𝑆𝑆𝑖𝑖𝑅𝑅𝑆𝑆𝑖𝑖

2 ((cos(𝜃𝜃𝑖𝑖,𝑟𝑟 − 𝛽𝛽) − cos (𝜃𝜃𝑖𝑖,𝑟𝑟))2  

𝑞𝑞𝑦𝑦,𝑆𝑆𝑖𝑖 0 
𝑞𝑞𝑦𝑦,𝑆𝑆𝑖𝑖𝑅𝑅𝑆𝑆𝑖𝑖(sin (𝜃𝜃𝑖𝑖,𝑟𝑟 − 𝛽𝛽) −

sin (𝜃𝜃𝑖𝑖,𝑟𝑟))  
1
2
𝑞𝑞𝑦𝑦,𝑆𝑆𝑖𝑖𝑅𝑅𝑆𝑆𝑖𝑖

2 (sin(𝜃𝜃𝑖𝑖,𝑟𝑟) − sin (𝜃𝜃𝑖𝑖,𝑟𝑟 − 𝛽𝛽))2  

𝑞𝑞𝑠𝑠,𝑆𝑆𝑖𝑖  0 −𝑞𝑞𝑠𝑠,𝑆𝑆𝑖𝑖𝛽𝛽𝑅𝑅𝑆𝑆𝑖𝑖 𝑞𝑞𝑠𝑠,𝑆𝑆𝑖𝑖𝑅𝑅𝑆𝑆𝑖𝑖
2 (cos (𝜃𝜃𝑖𝑖,𝑟𝑟 − 𝛽𝛽) − cos (𝜃𝜃𝑖𝑖,𝑟𝑟) − 𝛽𝛽sin (𝜃𝜃𝑖𝑖,𝑟𝑟 − 𝛽𝛽))  

𝑞𝑞𝑅𝑅,𝑆𝑆𝑖𝑖  
𝑞𝑞𝑅𝑅,𝑆𝑆𝑖𝑖𝑅𝑅𝑆𝑆𝑖𝑖(cos (𝜃𝜃𝑖𝑖,𝑟𝑟 − 𝛽𝛽) −

cos (𝜃𝜃𝑖𝑖,𝑟𝑟))  
𝑞𝑞𝑅𝑅,𝑆𝑆𝑖𝑖𝑅𝑅𝑆𝑆𝑖𝑖(sin (𝜃𝜃𝑖𝑖,𝑟𝑟 − 𝛽𝛽) −

sin (𝜃𝜃𝑖𝑖,𝑟𝑟))  
𝑞𝑞𝑅𝑅,𝑆𝑆𝑖𝑖𝑅𝑅𝑆𝑆𝑖𝑖

2 (1 − sin�𝜃𝜃𝑖𝑖,𝑟𝑟�sin (𝜃𝜃𝑖𝑖,𝑟𝑟 − 𝛽𝛽) −
cos(𝜃𝜃𝑖𝑖,𝑟𝑟) cos (𝜃𝜃𝑖𝑖,𝑟𝑟 − 𝛽𝛽))  

 714 
Table 2. Unknown initial values and boundary conditions of typical types of supports. 715 

Support type Horizontal  
load  

Vertical  
load  

Bending  
moment  

Horizontal  
displacement  

Vertical  
displacement  Rotation  

Fixed Unknown Unknown Unknown 0 0 0 

Hinged Unknown Unknown 0 0 0 Unknown 

Rotational spring Unknown Unknown Unknown 0 0 moment/spring stiffness 

Vertical sliding hinge Unknown 0 Unknown 0 Unknown 0 

 716 
Table 3. Geometrical and material properties of CFFT arches. 717 

Test 
series 

Arch 
span  
(m) 

Arch 
rise  
 (m) 

Arch 
radius 

(m) 

 Boundary 
condition 

Section 
diameter 

(mm) 

Concrete 
strength  
(MPa) 

FRP tube  
wall thickness  

(mm) 

FRP in longitudinal direction FRP in hoop direction 

 Elastic 
modulus (GPa) 

Rupture  
Strain (%) 

Elastic 
modulus (GPa) 

Rupture 
Strain (%) 

1st 6.71 2.10 3.96  Hinged 300 27 2.5 42.7 1.70 14.3 - 

2nd 6.1 1.22 3.28  Fixed 110 25 2 13.8 2.27a 19.4 1.93a 

Note: a These rupture strain values were determined based on the longitudinal and hoop FRP strengths reported in Majeed et al. (2021), assuming the tested coupons were linear elastic. 718 
 719 
 720 
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 721 

Figure 1. Schematic of the theoretical model. 722 

 723 

 

(a) 
 

  

 

(b) (c) 
Figure 2. Illustration of the deflection function: (a) Applied loads; (b) Midpoint 724 

determination; (c) Deformed segment shape. 725 

 726 
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(a) 

 

 

(b) (c) 
Figure 3. Illustration of a circular arch subjected to a uniform radial pressure: (a) 727 

Arch configuration and loading condition; (b) Symmetric snap-through buckling 728 

mode; (c) Anti-symmetric bifurcation buckling mode. 729 

 730 

  

(a) (b) 

  

(c) (d) 
Figure 4. Results of analytical verification: (a) 𝜆𝜆=4.35924; (b) 𝜆𝜆=7.1431; (c) 𝜆𝜆=8.5; 731 

(d) 𝜆𝜆=16. 732 
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 734 

Figure 5. Results of numerical verification. 735 

 736 

  

(a) (b) 
Figure 6. Comparisons with load–deflection curves of FRP bending-active arches: (a) 737 

L16 specimens; (b) L20 specimens. 738 

 739 

 740 

Figure 7. Comparisons with deflected shapes of Specimen L16SR60. 741 
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(a) (b) 
Figure 8. Comparisons with load–deflection curves of CFFT arches: (a) hinge-743 

supported; (b) fixed. 744 
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