

Valorization of Macro Fibers Recycled from Decommissioned Turbine Blades as Discrete Reinforcement in Concrete

Guang-Ti Xu¹, Ming-Jie Liu¹, Yu XIANG^{2*} and Bing FU^{1,3*}

1. School of Mechanics and Construction Engineering, Jinan University,
Guangzhou 510632, China

2. Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China

3. MOE Key Lab of Disaster Forecast and Control in Engineering, Jinan University, Guangzhou 510632, China

ABSTRACT

16 The extensive use of glass fiber-reinforced polymer (GFRP) composites has inevitably resulted in
 17 a large amount of FRP waste, posing a significant environmental threat. A recent study performed
 18 by the authors' group of the present study pioneered a new mechanical method of recycling GFRP
 19 wind turbine blades into macro fibers, in which the macro fibers characterized by a fixed-length
 20 have been produced using a manual process of low efficiency and high cost, making it impossible
 21 for use in a practical application. In the present study, a shredding machine has been therefore used
 22 to efficiently process waste GFRP wind turbine blades into macro fibers of hybrid lengths lesser
 23 than 100 millimeters for being incorporated into concrete. A series of tests were carried out to
 24 investigate the properties of the resulting concrete, and the test results of beam specimens were
 25 then analyzed using a twice inverse analysis approach. The results of compression tests and four-
 26 point bending tests showed that the incorporation of recycled macro fibers led to a slump loss of
 27 54%, a compressive strength reduction of 14.07%, a flexural strength improvement of 37.85% and
 28 a significant flexural toughness enhancement of 36.8 times at a fiber volume ratio of 2.5%, as
 29 compared to those of plain concrete. The direct-tensile strength and the corresponding tensile strain
 30 obtained by a twice inverse analysis approach were about 2.26 MPa and 134 $\mu\epsilon$, respectively, as
 31 predicted by the inverse analysis based on flexural load-deflection curves. The macro fibers
 32 processed using a shredding machine are feasible for enhancing the performance of the resulting
 33 concrete, and can be economic-efficiently used for industrial scale applications.

35 **Keywords:** Fiber-reinforced concrete (FRC); Fiber-reinforced polymer (FRP); Recycled; Macro
36 fibers; concrete.

* Corresponding Author:

Dr. Yu XIANG, Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China. Email: cee.yu.xiang@polyu.edu.hk.

Prof. Bing FU, School of Mechanics and Construction Engineering, Jinan University, Guangzhou 510632, China.
Email: fubing@jnu.edu.cn.

1 1. INTRODUCTION

2 Climate change is the most pressing issue facing the Blue Planet today (Passarelli et al. 2021).
3 Climate change refers to complex shifts in the climate system, including global warming, sea level
4 rise, water scarcity, flooding and other extreme weather events (IPCC 2021). The main driver of
5 these changes is heat-trapping greenhouse gases (GHGs) released from human activities, e.g.,
6 industry, transport and building (IPCC 2021; Pierrehumbert 2019). To tackle the planetary crisis,
7 193 countries have joined the Paris Agreement (United Nations 2015) and are working together to
8 limit the temperature increase to 1.5°C above pre-industrial levels, which requires global
9 greenhouse gas emissions [often transferred to carbon dioxide equivalents (CO₂e) and referred to
10 as carbon emissions] to reach net-zero before 2050.

11

12 In light of the goal of achieving net-zero emissions by 2050, many parties to the Paris Agreement
13 have established their road maps. For instance, the United States recently released its long-term
14 strategy to reach this goal (U.S. Department of State and U.S. Executive Office of the President
15 2021), which relies on five key transformations: (1) decarbonize electricity; (2) electrify end uses
16 and switch to other clean fuels; (3) cut energy waste; (4) reduce methane and other non-CO₂
17 emissions; and (5) scale up CO₂ removal. Pathways for all sectors of the economy are suggested
18 in the Long-Term Strategy of the United States (U.S. Department of State and U.S. Executive
19 Office of the President 2021), e.g., decarbonizing electricity for the electricity sector and scaling
20 up material efficiency for the industrial sector. Decarbonizing electricity refers to the use of
21 renewable generation, e.g., solar and wind, to replace coal-fired generation, whereas scale-up of
22 material efficiency incorporates structural changes in manufacturing that include product recycling
23 and reuse, material substitution, and demand reduction (U.S. Department of State and U.S.
24 Executive Office of the President 2021). Similar energy transmission strategies are also adopted
25 by other parties to the Paris Agreement, e.g., the United Kingdom (U.K. Department for Business,
26 Energy & Industrial Strategy 2021) and Hong Kong Special Administration Region of China
27 (Hong Kong Special Administrative Region 2021). Under these policy-driven actions, 93.6 GW
28 of new wind power capacity was added worldwide in 2021, bringing the cumulative installed wind
29 capacity to 837 GW with a yearly growth of 12.4%. Half of this capacity addition was
30 commissioned in China (47.6 GW); the United States ranked the second most important
31 contributor with a record of 12.7 GW (GWEW 2022). Based on the current growth rate, Global
32 Wind Energy Council (GWEW) expected that 557 GW of new capacity will be added worldwide
33 from 2022 to 2026, equaling more than 110 GW of new installations each year (GWEW 2022).
34 However, to meeting the net-zero 2050 goal (Bouckaert et al. 2021), the annual new installations
35 needs to quadruple to nearly 390 GW during 2022 to 2030 (IEA 2021). As a result, an enormous
36 expansion of on- and off-shore wind turbines is expected to happen in the coming few years.

37

38 Fiber-reinforced polymer (FRP) composites are lightweight, high-strength, fatigue-resistant
39 materials (Hollaway 2010), which enable wind turbines with larger blades and thus higher
40 efficiency to be built. Therefore, a modern wind turbine is composed of four components: a
41 foundation made from concrete; a tower made from steel or concrete; a nacelle made mainly from
42 steel and copper; and three blades made from 93% of FRPs (Liu and Barlow 2017). The fast-
43 growing wind power capacity, in conjunction with the “political correctness” of utilizing FRPs to
44 substitute steel and aluminum to improve material efficiency (U.S. Department of State and U.S.
45 Executive Office of the President 2021) will inevitably boost the market of FRPs from 2022 to
46 2030. Considering an estimated blade material consumption of 12 to 15 tonnes per MW of wind

1 power capacity (Jensen and Skelton 2018) and an estimated lifespan of 20 years of wind turbines
2 (Nagle et al. 2020), it is foreseeable that, from 2042 to 2050, there are annually 4.4 to 5.4 million
3 tonnes of FRPs must be disposed of. However, because of the non-biodegradable nature of FRPs,
4 these decommissioned wind turbines will certainly pose immense pressure on the global
5 environment (Asokan et al. 2009).

6

7 Nowadays, FRP waste is normally processed via landfilling, incineration and recycling. Among
8 them, landfilling is a simple and economical method, but it faces higher tax rate and tighter
9 environmental policy. For instance, the amount of waste for landfilling has been reduced by
10 European Commission, whereas, in Germany, landfilling is prohibited (Jacob 2011). Incineration
11 is a thermal treatment method used to reduce the volume of waste requiring final disposal, which
12 allows energy recovery from the waste (Pickering 2006). However, the high toxic emissions
13 associated with FRP incineration usually leads to high cost and environmental challenges (Correia
14 et al. 2011). The above two methods pose great challenges to land resources and atmospheric
15 resources, creating a huge obstacle to the material efficiency strategy (U.S. Department of State
16 and U.S. Executive Office of the President 2021). By contrast, recycling is a more environmental-
17 friendly and sustainable way of dealing with FRP waste.

18

19 Recycling of FRP waste includes thermal, mechanical and chemical techniques (Pickering 2006;
20 Yang et al. 2012; Job 2013; Oliveux et al. 2015; Scaffaro et al. 2021; Colombo et al. 2022;
21 Goncalves et al. 2022). Regarding thermal techniques, their applications have reached an industrial
22 scale, e.g., pyrolysis, a technic to decompose FRP waste at various temperatures (300 to 900°C)
23 in the absence of oxygen for recycling fibers, has been implemented by several companies [ELG
24 Carbon Fiber Ltd. (ELGCF) in the UK; Adherent Technologies Inc. (ATI) in the US] for recycling
25 waste CFRP. However, thermal technics have been proven to weaken glass fibers when pyrolyzed
26 at high temperatures. Similar problems also exist in the chemical recycling of FRP waste, and the
27 cost of chemical recycling is too expensive in relative to glass fibers themselves. Mechanical
28 recycling technics, including shredding, grinding, screening, etc., are more economically attractive
29 as compared to thermal and chemical technics. The waste after being treated by mechanical
30 recycling technics is generally used as fillers, aggregates, or reinforcements of construction
31 materials (Yazdanbakhsh et al. 2014; Ribeiro et al. 2015). For instance, pulverized Glass-FRP
32 (GFRP) waste powder was used as a filler for concrete (Tittarelli et al. 2010; Asokan 2009; Correia
33 2011), but resulted in a reduction of more than 50% in the compressive strength of concrete. Short
34 cylindrical GFRP particles were used to substitute coarse aggregate in concrete (Shahria Alam et
35 al. 2013; Yazdanbakhsh et al. 2016), however, the recycled GFRP aggregate was found detrimental
36 to the mechanical properties of concrete. Singh et al. (2022) examined the suitability of using
37 mechanically shredded GFRP and Carbon-FPR (CFRP) wastes to produce pervious concrete. The
38 results of the lifecycle assessment indicate that a pervious concrete pavement containing recycled
39 GFRP and CFRP wastes has a slightly higher environmental impact than a control pavement.

40

41 The research on fiber-reinforced concrete (FRC) has demonstrated that dispersed metallic and non-
42 metallic fibers help enhance the mechanical properties of concrete, especially tensile strength,
43 tensile ductility, and resistance to crack opening and propagation (Brandt 2008). In recent years,
44 as motivated by minimizing the environmental impact of the concrete industry, various types of
45 fibers recycled from industrial wastes are added to concrete, e.g., steel fibers recovered from tires
46 (Caggiano et al., 2017; Zhong et al. 2020), plastic fibers recycled from synthetic polymers (Merli

1 et al. 2020), plant-based fibers recycled from agricultural and forest wastes (Wang et al. 2022; 2 Ferreira et al. 2021). From the point of view of cutting carbon emissions, re-utilizing industrial 3 wastes as an input of concrete extend the value of resources, which essentially contributes to the 4 material efficiency strategy (U.S. Department of State and U.S. Executive Office of the President 5 2021). Caggiano et al. (2017) produced hybrid fibers reinforced concrete with recycled and 6 industrial steel fibers (referred to as RSF and ISF, respectively). When used individually, as the 7 average aspect ratio of RSF (around 110) was larger than that of ISF (around 60), the post-crack 8 toughness of the concrete reinforced with the two fibers is almost comparable. When used together, 9 the replacement of ISF with RSF will not substantially decay the post-cracking behavior of 10 concrete, especially at a high replacement ratio. Zhong et al. (2020) produced concrete reinforced 11 with recycled tire steel fibers (referred to as RTSF) of 0.5% to 0.9% by volume of concrete and 12 virgin polypropylene fibers (referred to as PPF) of 0.1% to 0.5% by volume of concrete. Their test 13 results show that the hybrid use of RTSF and PPF compensates for the workability loss caused by 14 RTSF, and RTSF and PPF work synergistically together in enhancing the flexural toughness and 15 crack resistance of concrete. Chen et al. (2021) developed a new sustainable fiber-reinforced 16 rubberized cementitious composite (referred to as FRRC) using materials recycled from tires, 17 including crumb rubber (CR) replacing 5% to 15% of the volume of fine aggregates, recycled tire 18 steel fibers (RTSF) of 0.5% to 1.5% by volume of concrete, and recycled tire polymer fibers (RTPF) 19 of 0.5% to 1.0% by volume of concrete. The FRRC has 41.6% lower drying shrinkage and 174% 20 higher flexural strength than its cementitious composite matrix. More importantly, the FRRC has 21 13.3% to 68.2% lower production cost, embodied carbon, and embodied energy than its 22 counterpart with industrial fibers, which suggests essential economic and environmental benefits. 23 Regarding concrete reinforced with natural fibers derived from agricultural and forest wastes or 24 industrial by-products, Wang et al. (2022) comprehensively reviewed the research from 2000 to 25 2021 on coir fibers and coir fiber reinforced cement-based composite materials. This review 26 suggests that the coir fiber is an ideal substitution for other fibers (e.g., steel fiber, glass fiber, and 27 carbon fiber) to produce FRCs, because of its low carbon footprint and large elongation in tension; 28 However, some other plant-based fibers such as flax, sisal, hemp, and jute fibers are competitive 29 than coir fibers with respect to the tensile strength and tensile modulus. In this context, Ferreira et 30 al. (2021) studied the influence of environmental and internal relative humidity on the pullout 31 behavior and tensile property of three types of natural fibers (i.e., curaua, jute, and sisal fibers). 32 Their results show that the strengths of the fibers studied enhance at low levels of relative humidity, 33 but drastically decrease at higher levels. Interestingly, Kilmartin-Lynch et al. (2021) explored the 34 feasibility of using polypropylene fibers recycled from COVID-19 single-use face masks to 35 improve the mechanical properties of concrete, and suggested that face masks are beneficial to the 36 strength and overall quality of concrete especially when doses lower than 0.2% by volume of 37 concrete. The above research has demonstrated the feasibility of FRCs with recycled fibers to 38 enhance the sustainability of the concrete industry.

39
40 Attempts are also made on FRCs with micro fibers recycled from FRP waste. For instance, García 41 et al. (2014) produced concrete with GFRP micro fibers recycled from four sources: streamlined 42 fairings on trains, electrical panelboards, hulls for pleasure boats, and pultruded GFRP profiles. 43 Their results show that the micro fibers significantly enhance both the compressive and flexural 44 strengths of concrete even at a low fiber volume ratio. Baturkin et al. (2021) compared the 45 influence of three forms of recycled FRP materials from decommissioned wind turbine blades, i.e., 46 power, aggregate and micro fibers, on concrete performance, and suggested that recycling FRP

1 waste into micro fibers is more beneficial to the mechanical properties than power and aggregate.
2 Akbar and Liew (2020) investigated the influence of recycled carbon fibers (rCF) on the
3 mechanical properties and environmental impacts of cement-based composites. Remarkable
4 conclusions are made that the addition of 1% of rCF by volume of concrete leads to enhancements
5 of 57%, 188% and 325% in elastic modulus, splitting tensile strength, and fracture toughness of
6 concrete; resulting in 13.69% lower carbon emissions than plain cement paste; and saves 222%
7 energy consumption and 70% economic cost than the counterpart with virgin carbon fibers. GFRP
8 cylindrical needles with a diameter of 6 mm and a length of 100 mm cut from rebars, and GFRP
9 prismatic needles with dimensions of 6 mm × 6 mm × 100 mm cut from decommissioned turbine
10 blades were incorporated into concrete by Yazdanbakhsh et al. (2017, 2018) to partially replace
11 the coarse aggregate in concrete. Their results showed that the flexural strength and toughness of
12 concrete improved dramatically by using recycled GFRP needles. Zhou et al. (2021) used recycled
13 GFRP fiber clusters and fibers as fibrous fillers in cement mortar, which resulted in enhanced
14 mechanical properties and reduced shrinkage.

15

16 In a recent study, the authors of the present study proposed a mechanical method of recycling
17 GFRP wind turbine blades into macro fibers, and demonstrated a concept of macro fiber-reinforced
18 concrete (referred to as MFRC) (Fu et al. 2021). The results showed that the average splitting
19 tensile strength and flexural strength of MFRC with a fiber volume ratio of 1.5% increased by 52%
20 and 30%, respectively, as compared to those of plain concrete. However, the macro fibers used by
21 Fu et al. (2021) were produced by cutting rough wind blade segments one-by-one into macro fibers
22 with a fixed-length, e.g., 89.7 mm on average, therefore, the process of production is rather time-
23 consuming and labor-intensive. As motivated by reducing production costs, the present study
24 introduced a shredding machine to produce macro fibers with hybrid lengths of shorter than 100
25 mm. In comparison with the previous study (Fu et al. 2021), the macro fibers of hybrid lengths
26 used herein will greatly reduce the manual work and energy consumption associated with cutting
27 operations, and may also affect the mechanical properties due to the complexity of fiber geometry.
28 To demonstrate the effect of changing macro fibers from a fixed-length to hybrid-lengths on the
29 fresh and hardened properties of concrete, a series tests and a twice inverse analysis (Zhang et al.
30 2016) were performed.

31

32 2. EXPERIMENTAL PROGRAM

33 2.1 Recycling Waste Turbine Blades into Macro Fibers

34 The macro fibers used in the present study came from decommissioned turbine blades, as shown
35 in Figure 1. The blades were cut up in the factory, and then screened for waste over 30 mm in
36 length tentatively, which is referred to as the original GFRP waste here. A four-layer square-mesh
37 sieve with the mesh sizes of 16 mm, 9.5 mm, 2.35 mm and 0 mm from top to bottom was used for
38 sorting original GFRP waste. By artificially shaking the sieves, the waste retained on the top first
39 and second layers was the target macro fibers, whereas the waste retained on the bottom sieve was
40 the flakes and powder to be excluded. The operation process is detailed in Figure 2, after which
41 about 30% by weight of the total waste was selected and re-used in concrete.

42

43 The above manual process, although perhaps the most efficient and least energy-consuming
44 method of recycling macro fibers in the laboratory, may cause difficulties in (1) accurate
45 determination of the physical parameters, e.g., length, width and thickness, of hybrid fibers; (2)
46 thorough elimination of harmful ingredients that are mixed with fibers. When extending to

1 industry, available machines can help reduce labor work and time as well as address the
2 difficulties mentioned before with only slight energy consumption and carbon emissions. It is
3 believed that the recycling method of the present study should be more competitive than other
4 waste treatment methods, e.g., incineration or landfilling, with respect to economy and
5 environmental impact. It should be noted that the retained waste powder and fine fibers can be
6 re-utilized in concrete, which has been reported by many studies (Asokan 2010; Tittarelli 2013;
7 Meira Castro et al. 2014) suggesting GFRP turbine blades are almost 100% recyclable.

8

9 **2.2 Fiber Properties**

10 The recycled macro fibers present highly variable lengths and widths, as shown in Figure 3. As
11 such, geometric characterization was performed on a sample of 500 grams in weight. It should be
12 noted the sample here was collected by weight rather than quantity [e.g., Fu et al. (2021) and
13 Baturkin et al. (2021)], as the macro fibers used in the present study was characterized by hybrid
14 lengths which is somewhat like concrete aggregate. The length, width and thickness of each fiber
15 in the sample pool was measured with a digital caliper. The aspect ratio of each fiber was calculated
16 by a ratio of length-to-width, following the definition of Fu et al. (2021).

17

18 Figure 4 shows the statistical characteristics of fiber dimensions. It is seen that the lengths were in
19 the range of 27.9 mm to 81.6 mm with a mean value of 47.2 mm; the widths were in the range of
20 1.66 mm to 8.03 mm with a mean value of 3.64 mm; the thicknesses were in the range of 0.37 mm
21 to 2.41 mm with a mean value of 0.97 mm; the aspect ratios were in the range of 4.02 to 32.5 with
22 a mean value of 14.4. As expected, the dimensions of the recycled macro fibers used in the present
23 study are rather dispersed as compared to those with almost fixed dimensions (Fu et al. 2021).

24

25 The tensile strength and tensile modulus of elasticity of the recycled macro fibers were 554.5 MPa,
26 and 37.7 GPa, respectively, as determined following ASTM D3039/D3039M-08 (ASTM 2014).
27 The average density of the fibers was 1820 kg/m³ as per ASTM D792-20 (ASTM 2020).

28

29 **2.3 Mix Design**

30 The effect of doses of the recycled macro fibers on concrete performance was highlighted in the
31 present study. Therefore, the dose of macro fibers expressed as a fraction of concrete volume
32 (referred to as fiber volume fraction) was the only variable. Four groups of concrete with four fiber
33 volume fractions were designed and tested, i.e., Groups CC, MFRC-0.5, MFRC-1.5 and MFRC-
34 2.5 for fiber volume fractions of 0%, 0.5%, 1.5% and 2.5%, respectively. The group name CC
35 indicates the control concrete (plain concrete without fiber reinforcement); each name of the other
36 three groups consists of a term MFRC which is short for macro fiber reinforced concrete, and a
37 decimal indicating the fiber volume fraction in percentage.

38

39 Table 1 shows the mix proportions for all groups. The mixes all had the same proportions of cement,
40 water, fine aggregate, coarse aggregate and superplasticizer which were the control group; the
41 main difference between the mixes was the fiber volume fraction. The control group (i.e., the
42 concrete matrix of all MFRCs) was designed with a compressive strength of 40 MPa and a slump
43 of 185 mm. The binder material was a P.O. 42.5 ordinary Portland cement (OPC) without the
44 addition of any supplemental cementitious material. Local tap water in Guangzhou, China, was
45 used as the mixing water. The fine aggregate was natural river sand with a maximum particle size
46 of 5 mm and a fineness modulus of 2.45. The coarse aggregate was granite gravel with the particle

1 size ranging from 5 mm to 20 mm. A polycarboxylate superplasticizer with a water reducing
2 efficiency of 20% was added 0.25% by weight of cement to compensate for the workability loss
3 caused by the incorporation of macro fibers.

4

5 **2.4 Specimen Preparation**

6 Four batches of concrete corresponding to the four groups of the present study were cast following
7 a procedure developed by Fu et al. (2021). First, cement, fine aggregate and coarse aggregate were
8 mixed for 1 minute; Second, superplasticizer and water were added slowly and kept mixing for 2
9 minutes; Third, the macro fibers were added in a similar way and kept mixing until it is evenly
10 distributed in the concrete; Fourth, casting. The specimens were demolded at 24 hours after
11 concrete casting, immediately sealed with plastic films, and stored in the ambient environment for
12 28 days. Spraying water was performed every day to maintain a high humidity during concrete
13 curing.

14

15 **2.5 Test Methods**

16 The workability of each group was evaluated by testing the slump of fresh concrete in accordance
17 with ASTM C143 (ASTM 2020). The slump value was averaged from three readings and
18 approximated to the nearest 5 mm.

19

20 The compressive strength of each group was determined by three concrete cylinders with a
21 diameter of 150 mm and a height of 300 mm following ASTM C39 (ASTM 2021). The modulus
22 of elasticity and Poisson's ratio were determined by the same cylinders following ASTM C469
23 (ASTM 2014).

24

25 The flexural performance of each group was evaluated by four-point bending tests on three short
26 beams with dimensions of 150 mm × 150 mm × 550 mm. The beam tests were carried out using
27 an electro-hydraulic servo test machine following ASTM C1609 (ASTM 2012). As detailed in
28 Figure 5, a rubber sheet was placed between the actuator and the specimen to distribute the
29 compressive load; a pair of LVDTs were mounted on a precisely machined test jig which was
30 clamped to the specimen, to measure the net mid-span deflection; the supports ensured in-plane
31 and out-plane rotation of the beam, as well as the sliding along the longitudinal direction. The
32 bending tests were performed with a loading rate of 0.05 mm/min and terminated when the net
33 deflection reached 3.5 mm. Afterward, the whole load-displacement curve of each specimen, the
34 peak load (P_p), the deflection at peak load (δ_p), the residual loads, P_{600} and P_{150} , at net deflections
35 of $L/600$ (i.e., 450 mm/600 = 0.75 mm) and $L/150$ (i.e., 450 mm/150 = 3 mm), respectively, were
36 recorded. The peak strength (f_p), the residual strengths, f_{600} and f_{150} , were calculated according to
37 the following equation (ASTM 2019):

38

$$39 \quad f = \frac{PL}{bd^2} \quad (1)$$

40

41 where P is the load; L is the beam span; b and d are the width and depth of the beam. Toughness
42 (T_{150}) is defined as the area under the load-displacement curve with deflection from 0 to $L/150$.

43

44 **3. RESULTS AND DISCUSSION**

45 **3.1 Workability of Fresh Concrete**

1 The average slumps of Groups CC, MFRC-0.5, MFRC-1.5 and MFRC-2.5 were 190 mm, 153 mm,
2 122 mm and 87 mm, respectively. It is shown that the workability of concrete decreased with
3 increasing fiber volume ratio. Although with the help of superplasticizer, all groups achieved a
4 slump of larger than 80 mm which meets the requirement of field applications (Patel et al. 2019;
5 Nematollahi et al. 2014), the negative effect of macro fibers on the workability is rather obvious
6 as indicated by a 54% of slump loss resulted from the adding of 2.5% of macro fibers. The same
7 phenomenon was observed in other researches (Paktiawal et al. 2021; Teja Prathipati et al. 2021).
8 As the proportion of fibers increases, the surface area of the fibers that needed to be covered by
9 the water film also increased, thereby reducing the free water in the concrete. Moreover, the
10 morphology of the fiber used in this study was irregular due to the randomness of the shredding.
11 This resulted in an increase in the surface area of the fiber, meaning that the reduction effect is
12 more pronounced compared to morphologically intact fibers. It should be noted that during
13 concrete casting, no segregation of fibers was observed, suggesting that the recycled macro fibers
14 have a relatively good bond to fresh concrete due to its rough surface that naturally formed during
15 mechanical crashing and cutting.

16

17 **3.2 Compressive Behavior**

18 Figure 6 shows the failure patterns of all groups. It is seen that the specimens in the control group
19 (see Figure 6a) and those with a fiber volume ratio being as low as 0.5% (see Figure 6b) showed
20 a conical or conical-shear type of fracture, which were both typical failure patterns for concrete
21 without or just with a slight reinforcement per ASTM C39/C39M (ASTM 2021). The only
22 exception was the middle specimen in Figure 6b showing a shear type fractural pattern, which may
23 be understood by the scatter of fiber distribution at a low volume ratio, e.g., 0.5%. By contrast, the
24 specimens with higher fiber volume ratios (see Figure 6c and 6d) retained their integrity with much
25 less concrete spalling but more cracks, which was different from those specified in ASTM
26 C39/C39M (ASTM 2021). Spalling appeared at the top region of Specimen MFRC-1.5-1 (Left of
27 Figure 5c) while at the bottom part for Specimen MFRC-1.5-3 (Middle of Figure 5c). Such a
28 phenomenon might be attributed to the fact that macro fibers are more difficult than micro fibers
29 to be evenly distributed in a cylinder specimen to provide sufficient reinforcement to all regions.
30 The added macro fibers changed the failure pattern of concrete as the fibers bridged concrete
31 cracks and impeded crack propagation, thereby leading to a more ductile failure pattern (Wang et
32 al. 2019; Khan et al. 2020).

33

34 Figure 7 shows the compressive stress-strain curves of all groups. The ascending branch of the
35 curves shows to be close to each other, implying that the added macro fibers had not been
36 mobilized at this stage. After the compressive stress of concrete reaches about 80% the peak stress,
37 the cracks in concrete became more significant. At this stage, the macro fibers incorporated in
38 concrete become mobilized, and constrain the development of the cracks. The descending branch
39 of the stress-strain curve therefore became more gradual with an enhanced toughness due to the
40 increase of fiber volume ratio. Such observations confirm a ductile failure process of concrete with
41 macro fibers. Another major effect resulting from the incorporation of the macro fibers is the slight
42 decrease in the peak value of the curves as illustrated in details in the following paragraph.

43

44 Table 2 shows the key results of compression tests. It is seen that the adding of macro fibers of
45 0.5%, 1.5% and 2.5% by volume decreased the peak compressive stress (i.e., compressive strength)
46 by 3.95%, 6.81% and 14.07%, respectively, as compared to the control group. Besides, the

1 concrete reinforced with macro fibers showed a Poisson's ratio in the range of 0.14 to 0.15, which
2 is 16.7% higher than 0.12, i.e., a typical value of the conventional concrete. With respect to the
3 modulus of elasticity, 0.5% of macro fibers resulted in an improvement of 12.4% than that of the
4 control group, however, on the contrary, further increase of fiber volume ratio led to decreases in
5 the modulus of elasticity.

6

7 The above test results indicate that the incorporation of macro fibers negatively affects the
8 compressive strength of concrete, but enhances the toughness under compression. Similar
9 observations were also made on concrete reinforced with short fibers (Dehghan et al. 2017) and
10 macro fibers (Fu et al. 2021). The detrimental effect of macro fibers on compressive strength could
11 be understood that the rough but loose surface of a macro fiber that formed during mechanical
12 recycling results in a weak bond to concrete matrix, and the mechanism will be highlighted when
13 harmful ingredients that cannot be eliminated in manual sieving are mixed with fibers (Yao et al.
14 2003; Ranjbar et al. 2020). In addition, the positive effect of macro fibers on toughness and
15 Poisson's ratio could be explained by the bridging of macro fibers to cracks in concrete, which
16 leads to larger axial deformation and dilation under compression.

17

18 3.3 Flexural Behavior

19 Figure 8 shows the failure patterns of all groups after flexural tests. The specimens in the control
20 groups crushed suddenly after the initiation of micro cracks, whereas the specimens reinforced
21 with macro fibers continued to sustain flexural loading in company with crack propagation for a
22 long period. The distinct failure pattern of the latter is attributed to the bridging effect of macro
23 fibers on concrete cracking, which contributes to the residual capacity to resist flexural loading
24 after crack initiation. The concrete crack propagates intersecting a number of macro fibers
25 distributed in concrete, and the further development of the crack has been therefore mitigated by
26 these bridging macro fibers.

27

28 Figure 10 shows the flexural load-deflection curves of all groups, in which Figure 10(a) gives the
29 complete curves with deflection up to 3.5 mm, and Figure 10(b) gives the initial portions with
30 deflection up to 1.0 mm. Similar to the flexural load-deflection behaviors of the concrete reinforced
31 by various amounts of macro fibers with a fixed-length, Group MFRC-0.5 that incorporated a
32 slight amount of macro fibers showed a typical deflection softening curve (Naaman 2003), and
33 Groups MFRC-1.5 and MFRC-2.5 showed a typical deflection hardening curve (Naaman 2003),
34 as depicted in Figure 11. For the former, as its fiber volume ratio was low, the majority of macro
35 fibers broke or pulled-out once the load reached the peak value, therefore the load gradually
36 decreased with the increasing deflection after the peak point that represented the first cracking.
37 However, for the latter two groups, after the first cracking of concrete matrix, the cross-sectional
38 tensile stress redistributed and transferred to the macro fibers across cracks. As their fiber volume
39 ratios were relatively high, the macro fibers can help the beam resist a higher flexural loading, thus
40 led to a continuous increase in the load with increasing deflection and also caused a change of
41 flexural stiffness. Besides, it is interesting to note that deflection hardening branch was prolonged
42 with increasing fiber volume ratio, but the stiffness of this branch was seen not dependent on the
43 amount of macro fibers.

44

45 The key results of flexural tests are given in Table 3. The flexural strength increased from 3.91
46 MPa of the control group to 4.08 MPa (4.34% of improvement), 4.43 MPa (13.30% of

1 improvement) and 5.39 MPa (37.85% of improvement), respectively, for the groups with fiber
2 volume ratios of 0.5%, 1.5% and 2.5%. More obviously, the flexural toughness for the groups
3 with fiber volume ratios of 0.5%, 1.5% and 2.5% improved by 15.5, 22.7, and 36.8 times as
4 compared to the control group. The improved flexural toughness was caused by the increased
5 residual strength of concrete at the post-peak deflection softening branch of the flexural load-
6 deflection curve, e.g., the residual strength at a deflection of $L/600$ (f_{600}) increased from zero of
7 the control group to 1.63 MPa, 1.96 MPa and 3.84 MPa, for the groups with fiber volume ratios of
8 0.5%, 1.5% and 2.5%, respectively. The test results show that, similar to the findings on macro
9 fibers with fixed lengths (Fu et al. 2021), the incorporation of macro fibers with hybrid lengths can
10 also improve the flexural strength and toughness of concrete beams. Moreover, the improvement
11 become more obvious with increasing fiber volume ratio.

12

13 **3.4 Inverse Analysis Based on the Results of Four-Point Bending**

14 The tensile stress-strain (σ - ε) behavior of concrete that required by structural analysis is normally
15 based on direct-tensile test results. However, to the best of the authors' acknowledgement, there is
16 currently no standardized method for direct-tensile tests on fiber-reinforced concrete, especially
17 for the concrete reinforced by macro fibers. The difficulties may include: (1) reasonable
18 determination of the specimen's dimensions considering the length and alignment of fibers; (2)
19 prevention of eccentric stressing; and (3) minimization of the effect of clamping on the tensile test
20 results (Barragán et al. 2003; Hassan et al. 2012; Tran et al. 2014; Wille et al. 2014). To eliminate
21 the complexity associated with direct-tensile tests, the present study utilized a twice inverse
22 analysis method (TIAM) to predict the uniaxial tensile stress-strain behavior of concrete with the
23 load-deflection curves given by four-point bending tests.

24

25 There currently has many TIAMs aiming at determination of the constitutive laws of concrete, e.g.,
26 the TIAM utilized in Ferreira et al., (2016) is to predict the bond-slip law of jute fibers embedded
27 in a cementitious matrix; by contrast, the TIAM developed by López (2014) is to predict the
28 uniaxial tensile stress-strain law of ultra-high-performance fiber-reinforced concrete (UHPFRC).
29 The latter is adopted in the present study to predict the uniaxial tensile stress-strain behavior of the
30 concrete reinforced with recycled macro fibers. The TIAM of López (2014) is based on two
31 transformations: first, δ to ϕ transformation, which transforms the mid-span deflection (δ) of a
32 beam to the bending curvature (ϕ) of the mid-span cross-section of the beam in accordance with
33 Timoshenko beam theory; and second, M - ϕ to σ - ε transformation, which transforms the bending
34 moment-curvature (M - ϕ) behavior of the mid-span cross-section of the beam to the uniaxial tensile
35 stress-strain (σ - ε) behavior of concrete. It should be noted that the tensile stress-strain (σ - ε)
36 behavior predicted by TIAM is slightly different from that given by real direct-tensile tests (Zhang
37 et al. 2016). However, due to the aforementioned difficulties of direct-tensile tests, it is hard to say
38 which is right or wrong. At least the logic and mathematics of TIAM are strict and consistent with
39 the principles of structural analysis, therefore it is used by the authors in the present study.

40

41 The TIAM was implemented in a MATLAB program. The specimens in the control group were
42 excluded from the inverse analysis, as their flexural load-deflection curves lack of post-peak
43 portions. Besides, 150 to 200 points on the flexural load-deflection curve of each specimen were
44 selected to perform the inverse analysis to improve the accuracy of analysis.

45

1 The predicted direct-tensile stress-strain curves are given in Figure 12. It should be noted that the
2 curves in Figure 12 are smoothed for ease of comparison. It is not supervising that the curves
3 generally reflect the effect of macro fibers on the tensile behavior of concrete, i.e., enhances the
4 tensile strength and toughness of concrete. The direct-tensile strengths and strain predicted by the
5 inverse analysis are collected in Table 4. It is seen that the tensile strength increases from 2.05 to
6 2.26 MPa, with the corresponding tensile strain increases from 77.3 to 134.0 $\mu\epsilon$, as the fiber
7 volume ratio increases from 0.5% to 2.5%. The predictions suggest that the tensile strength and
8 toughness increase with increasing fiber volume ratio.
9

10 **4. APPLICATION POTENTIAL**

11 The macro fibers have dimensions and mechanical properties similar to those of steel fibers, and
12 thus play similar roles in constraining crack propagation and enhancing the tensile properties of
13 concrete. Therefore, the macro fibers recycled from waste FRP composites could be able to replace
14 the pricey steel fibers incorporated into concrete for a number of field applications (e.g., highway
15 lining, tunnel lining, and runway).
16

17 **5. CONCLUSIONS**

18 The present study has been focused on concrete incorporating macro fibers with hybrid lengths
19 recycled from waste GFRP wind turbine blades (MFRC). Experiments and an inverse analysis
20 were carried out to characterize the effect of fiber volume ratio on the mechanical properties of
21 concrete. The following conclusions can be drawn based on the results and discussion:
22

- 23 1. The incorporation of recycled macro fibers with hybrid lengths resulted in a larger surface
24 area around which the formation of water film requires more free water, thus decreasing
25 the slump from 190 mm to 87 mm as the fiber volume ratio increased from 0 to 2.5%.
- 26 2. The combination of the two mechanisms introduced by the incorporation of macro fibers
27 resulted in less concrete spalling at specimen failure, and a more gradual descending branch
28 of the stress-strain curves, but a reduction in the compressive strength up to 14.1% at a
29 fiber volume ratio of 2.5%.
- 30 3. The incorporated macro fibers effectively constrained the development of concrete cracks,
31 thus enhancing both the flexural strength and toughness of MFRC, which at the fiber
32 volume ratio of 2.5% are respectively 37.9% and 36.8 times higher than those of the control
33 concrete without macro fibers.
- 34 4. A twice inverse analysis was performed to efficiently convert the direct-tensile stress-strain
35 curve of MFRC from the load-deflection results of beam specimens, confirming the
36 beneficial effect of macro fibers on the tensile behavior of concrete. The tensile strength of
37 MFRC predicted using TIAM increased from 2.05 MPa to 2.26 MPa, when the fiber
38 volume ration increased from 0.5% to 2.5%.
- 39 43 Based on the experimental observations, it is believed that the macro fibers with hybrid lengths
40 made from decommissioned turbine blades can significantly enhance the flexural properties,
41 tensile properties and toughness of concrete, but it has a negative effect on compression behavior.
42 Compared with the macro fibers with a fixed-length, the production process of the fibers with
43

1 hybrid lengths is less time-consuming and labor-intensive, and is more suitable for
2 industrialization. This study provides a feasible and economical path for the recovery of GFRP
3 waste.

4

5 **CREDIT AUTHORSHIP CONTRIBUTION STATEMENT**

6 **Guang-Ti Xu**: Methodology, Investigation, Formal analysis, Visualization, Writing - original
7 draft. **Ming-Jie Liu**: Methodology, Investigation. **Yu Xiang**: Methodology, Visualization, Writing
8 - review & editing. **Bing Fu**: Conceptualization, Methodology, Supervision, Visualization,
9 Writing - review & editing, Project administration, Funding acquisition.

10

11 **DECLARATION OF COMPETING INTEREST**

12 The authors declare that they have no known competing financial interests or personal
13 relationships that could have appeared to influence the work reported in this paper.

14

15 **ACKNOWLEDGEMENTS**

16 The authors gratefully acknowledge the financial support provided by the National Natural Science
17 Foundation of China (Project Nos: 52178212 and 51978176), the Hong Kong Research Grants
18 Council (Project No: T22-502/18-R) and National Innovation and Entrepreneurship Training
19 Program for Undergraduate (Project No: 202110559051).

20

21 **REFERENCES**

22 ASTM. (2014). *Standard test method for tensile properties of polymer matrix composite materials*.
23 D3039/D3029M-08, West Conshohocken, PA: ASTM.

24 ASTM. (2014). *Standard Test Method for Static Modulus of Elasticity and Poisson's Ratio of
Concrete in Compression*. ASTM C469/C469M-14, West Conshohocken, PA: ASTM.

25 ASTM. (2021). *Standard Test Method for Compressive Strength of Cylindrical Concrete
Specimens*. ASTM C39/C39M-21, West Conshohocken, PA: ASTM.

26 ASTM. (2020). *Standard Test Method for Slump of Hydraulic-Cement Concrete*. ASTM
C143/C143M-15a, West Conshohocken, PA: ASTM.

27 ASTM. (2019). *Standard Test Method for Flexural Performance of Fiber-Reinforced Concrete
(Using Beam with Third-Point Loading)*. ASTM C1609/C1609M-19, West Conshohocken,
PA: ASTM.

28 ASTM. (2020). *Standard Test Methods for Density and Specific Gravity (Relative Density) of
Plastics by Displacement*. ASTM D792-20, West Conshohocken, PA: ASTM.

29 Akbar, A., & Liew, K. M. (2020). Assessing recycling potential of carbon fiber reinforced plastic
waste in production of eco-efficient cement-based materials. *Journal of Cleaner
Production*, 274.

30 Asokan, P., Osmani, M. & Price, A. D. F. (2009). Assessing the recycling potential of glass fibre
reinforced plastic waste in concrete and cement composites. *Journal of Cleaner
Production*, 17, 821-829.

31 Asokan, P., Osmani, M. & Price, A. D. F. (2010). Improvement of the mechanical properties of
glass fiber reinforced plastic waste powder filled concrete. *Construction and Building
Materials*, 24, 448-460.

32 Barragán, B. E., Gettu, R., Martín, M. A. & Zerbino, R. L. (2003). Uniaxial tension test for steel
fibre reinforced concrete—a parametric study. *Cement and Concrete Composites*, 25,
767-777.

1 Baturkin, D., Hisseine, O. A., Masmoudi, R., Tagnit-Hamou, A. & Massicotte, L. (2021).
2 Valorization of recycled FRP materials from wind turbine blades in concrete. *Resources, Conservation and Recycling*, 174.

4 Bouckaert, S., Fernandez Pales, A., McGlade, C., Remme, U., Wanner, B., Varro, L., D'Ambrosio,
5 D., & Spencer, T. (2021). *Net Zero by 2050: A Roadmap for the Global Energy Sector*.
6 International Energy Agency, Paris, France, 1-224.

7 Brandt, A. M. (2008). Fibre reinforced cement-based (FRC) composites after over 40 years of
8 development in building and civil engineering. *Composite Structures*, 86(1-3), 3-9.

9 Caggiano, A., Folino, P., Lima, C., Martinelli, E., & Pepe, M. (2017). On the mechanical response
10 of hybrid fiber reinforced concrete with recycled and industrial steel fibers. *Construction and Building Materials*, 147, 286-295.

12 Chen, M., Zhong, H., Chen, L., Zhang, Y., & Zhang, M. (2021). Engineering properties and
13 sustainability assessment of recycled fibre reinforced rubberised cementitious composite.
14 *Journal of Cleaner Production*, 278.

15 Colombo, B., Gaiardelli, P., Dotti, S. & Caretto, F. (2022). Recycling technologies for fibre-
16 reinforced plastic composite materials: A bibliometric analysis using a systematic
17 approach. *Journal of Composite Materials*, 00219983221109877.

18 Correia, J. R., Almeida, N. M. & Figueira, J. R. (2011). Recycling of FRP composites: reusing
19 fine GFRP waste in concrete mixtures. *Journal of Cleaner Production*, 19, 1745-1753.

20 Dehghan, A., Peterson, K. & Shvarzman, A. (2017). Recycled glass fiber reinforced polymer
21 additions to Portland cement concrete. *Construction and Building Materials*, 146, 238-250.

22 Ferreira, S. R., Martinelli, E., Pepe, M., De Andrade Silva, F., & Toledo Filho, R. D. (2016).
23 Inverse identification of the bond behavior for jute fibers in cementitious matrix.
24 *Composites Part B: Engineering*, 95, 440-452.

25 Ferreira, S. R., Mendes de Andrade, R. G., Koenders, E., de Andrade Silva, F., de Moraes Rego
26 Fairbairn, E., & Toledo Filho, R. D. (2021). Pull-out behavior and tensile response of
27 natural fibers under different relative humidity levels. *Construction and Building Materials*, 308.

29 Fu, B., Liu, K. C., Chen, J. F. & Teng, J. G. (2021). Concrete reinforced with macro fibres recycled
30 from waste GFRP. *Construction and Building Materials*, 310, 125063.

31 García, D., Vegas, I. & Cacho, I. (2014). Mechanical recycling of GFRP waste as short-fiber
32 reinforcements in microconcrete. *Construction and Building Materials*, 64, 293-300.

33 Goncalves, R. M., Martinho, A. & Oliveira, J. P. (2022). Recycling of Reinforced Glass Fibers
34 Waste: Current Status. *Materials (Basel)*, 15.

35 GWEC. (2022). *Global Wind Report 2022*, Global Wind Energy Council, Brussels, Belgium, 1-
36 154.

37 Hassan, A. M. T., Jones, S. W. & Mahmud, G. H. (2012). Experimental test methods to determine
38 the uniaxial tensile and compressive behaviour of ultra high performance fibre reinforced
39 concrete (UHPFRC). *Construction and Building Materials*, 37, 874-882.

40 Hollaway, L. C. (2010). A review of the present and future utilisation of FRP composites in the
41 civil infrastructure with reference to their important in-service properties. *Construction and Building Materials*, 24, 2419-2445.

43 Hong Kong Special Administrative Region. (2021). *Hong Kong's Climate Action Plan 2050*.

44 IEA. (2021). *Wind Power*. International Energy Agency, Paris, France.

45 IPCC. (2021). Summary for Policymakers. In: Climate Change 2021: The Physical Science Basis.
46 Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental

1 Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan,
2 S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy,
3 J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)].
4 Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, In
5 press, doi:10.1017/9781009157896.

6 Jacob, A. (2011). Composites can be recycled. *Reinforced Plastics*, 55, 45-46.

7 Jensen, J. P., & Skelton, K. (2018). Wind turbine blade recycling: Experiences, challenges and
8 possibilities in a circular economy. *Renewable and Sustainable Energy Reviews*, 97, 165-
9 176.

10 Job, S. (2013). Recycling glass fibre reinforced composites – history and progress. *Reinforced
11 Plastics*, 57, 19-23.

12 Khan, M., Cao, M. & Ali, M. (2020). Cracking behaviour and constitutive modelling of hybrid
13 fiber reinforced concrete. *Journal of Building Engineering*, 30, 101272.

14 Kilmartin-Lynch, S., Saberian, M., Li, J., Roychand, R., & Zhang, G. (2021). Preliminary
15 evaluation of the feasibility of using polypropylene fibres from COVID-19 single-use face
16 masks to improve the mechanical properties of concrete. *Journal of Cleaner Production*,
17 296, 126460.

18 Liu, P., & Barlow, C. Y. (2017). Wind turbine blade waste in 2050. *Waste Management*, 62, 229-
19 240.

20 López, J. Á., Serna, P., Navarro-Gregori, J. & Camacho, E. (2014). An inverse analysis method
21 based on deflection to curvature transformation to determine the tensile properties of
22 UHPFRC. *Materials and Structures*, 48, 3703-3718.

23 Meira Castro, A. C., Carvalho, J. P., Ribeiro, M. C. S., Meixedo, J. P., Silva, F. J. G., Fiúza, A. &
24 Dinis, M. L. (2014). An integrated recycling approach for GFRP pultrusion wastes:
25 recycling and reuse assessment into new composite materials using Fuzzy Boolean Nets.
26 *Journal of Cleaner Production*, 66, 420-430.

27 Merli, R., Preziosi, M., Acampora, A., Lucchetti, M. C., & Petrucci, E. (2020). Recycled fibers in
28 reinforced concrete: A systematic literature review. *Journal of Cleaner Production*, 248.

29 Naaman, A. E. (2003). Engineered Steel Fibers with Optimal Properties for Reinforcement of
30 Cement Composites. *Journal of Advanced Concrete Technology*, 1 (3): 241-252.

31 Nagle, A. J., Delaney, E. L., Bank, L. C., & Leahy, P. G. (2020). A Comparative Life Cycle
32 Assessment between landfilling and Co-Processing of waste from decommissioned Irish
33 wind turbine blades. *Journal of Cleaner Production*, 277.

34 Nematollahi, B. & Sanjayan, J. (2014). Properties of Fresh and Hardened Glass Fiber Reinforced
35 Fly Ash Based Geopolymer Concrete. *Key engineering materials*, 594-595.

36 Oliveux, G., Dandy, L. O. & Leeke, G. A. (2015). Current status of recycling of fibre reinforced
37 polymers: Review of technologies, reuse and resulting properties. *Progress in Materials
38 Science*, 72, 61-99.

39 Paktiawal, A. & Alam, M. (2021). Alkali-resistant glass fiber high strength concrete and its
40 durability parameters. *Materials Today: Proceedings*, 47, 4758-4766.

41 Passarelli, D., Denton, F., & Day, A. (2021). Beyond Opportunism: The UN Development
42 System's Response to the Triple Planetary Crisis. United Nations University, New York,
43 the United States, 1-21.

44 Patel, K., Gupta, R., Garg, M., Wang, B. & Dave, U. (2019). Development of FRC Materials with
45 Recycled Glass Fibers Recovered from Industrial GFRP-Acrylic Waste. *Advances in
46 Materials Science and Engineering*, 2019, 1-15.

1 Pickering, S. J. (2006). Recycling technologies for thermoset composite materials—current status.
2 *Composites Part A: Applied Science and Manufacturing*, 37, 1206-1215.

3 Pierrehumbert, R. (2019). There is no Plan B for dealing with the climate crisis. *Bulletin of the
4 Atomic Scientists*, 75(5), 215-221.

5 Ranjbar, N., Talebian, S., Mehrali, M., Kuenzel, C., Cornelis Metselaar, H. S. & Jumaat, M. Z.
6 (2016). Mechanisms of interfacial bond in steel and polypropylene fiber reinforced
7 geopolymer composites. *Composites Science and Technology*, 122, 73-81.

8 Ranjbar, N. & Zhang, M. (2020). Fiber-reinforced geopolymer composites: A review. *Cement and
9 Concrete Composites*, 107, 103498.

10 Ribeiro, M. C. S., Meira-Castro, A. C., Silva, F. G., Santos, J., Meixedo, J. P., Fiúza, A., Dinis, M.
11 L. & Alvim, M. R. (2015). Re-use assessment of thermoset composite wastes as aggregate
12 and filler replacement for concrete-polymer composite materials: A case study regarding
13 GFRP pultrusion wastes. *Resources, Conservation and Recycling*, 104, 417-426.

14 Scaffaro, R., Di Bartolo, A. & Dintcheva, N. T. (2021). Matrix and Filler Recycling of Carbon and
15 Glass Fiber-Reinforced Polymer Composites: A Review. *Polymers (Basel)*, 13.

16 Shahria Alam, M., Slater, E. & Muntasir Billah, A. (2013). Green concrete made with RCA and
17 FRP scrap aggregate: fresh and hardened properties. *Journal of materials in civil
18 engineering*, 25, 1783-1794.

19 Singh, A., Charak, A., Biligiri, K. P., & Pandurangan, V. (2022). Glass and carbon fiber reinforced
20 polymer composite wastes in pervious concrete: Material characterization and lifecycle
21 assessment. *Resources, Conservation and Recycling*, 182.

22 Tittarelli, F. & Moriconi, G. (2010). Use of GRP industrial by-products in cement based
23 composites. *Cement and Concrete Composites*, 32, 219-225.

24 Tittarelli, F. (2013). Effect of low dosages of waste GRP dust on fresh and hardened properties of
25 mortars: Part 2. *Construction and Building Materials*, 47, 1539-1543.

26 Tran, T. K., Kim, D. J. & Choi, E. (2014). Behavior of double-edge-notched specimens made of
27 high performance fiber reinforced cementitious composites subject to direct tensile loading
28 with high strain rates. *Cement and Concrete Research*, 63, 54-66.

29 U.K. Department for Business, Energy & Industrial Strategy. (2021). *Net Zero Strategy: Build
30 Back Greener*. London, the United Kingdom, 1-368.

31 United Nations. (2015). *Paris Agreement*. Paris, France, 1-25.

32 U.S. Department of State and U.S. Executive Office of the President. (2021). *The Long-Term
33 Strategy of the United States: Pathways to Net-Zero Greenhouse Gas Emissions by 2050*.
34 Washington, D.C., the United States, 1-61.

35 Wang, B., Yan, L. B., & Kasal, B. (2022). A review of coir fibre and coir fibre reinforced cement-
36 based composite materials (2000–2021). *Journal of Cleaner Production*, 338.

37 Wang, D., Ju, Y., Shen, H. & Xu, L. (2019). Mechanical properties of high performance concrete
38 reinforced with basalt fiber and polypropylene fiber. *Construction and Building Materials*,
39 197, 464-473.

40 Wille, K., El-Tawil, S. & Naaman, A. E. (2014). Properties of strain hardening ultra high
41 performance fiber reinforced concrete (UHP-FRC) under direct tensile loading. *Cement
42 and Concrete Composites*, 48, 53-66.

43 Witten, E. (2020). The market for glass fibre reinforced plastics (GRP) in 2020. *Market
44 Developments, Trends, Outlooks and Challenges*. Federation of Reinforced Plastics.

1 Yang, Y., Boom, R., Irion, B., van Heerden, D.-J., Kuiper, P. & de Wit, H. (2012). Recycling of
2 composite materials. *Chemical Engineering and Processing: Process Intensification*, 51,
3 53-68.

4 Yao, W., Li, J. & Wu, K. (2003). Mechanical properties of hybrid fiber-reinforced concrete at low
5 fiber volume fraction. *Cement and concrete research*, 33, 27-30.

6 Yazdanbakhsh, A. & Bank, L. (2014). A Critical Review of Research on Reuse of Mechanically
7 Recycled FRP Production and End-of-Life Waste for Construction. *Polymers*, 6, 1810-
8 1826.

9 Yazdanbakhsh, A., C. Bank, L. & Chen, C. (2016). Use of recycled FRP reinforcing bar in concrete
10 as coarse aggregate and its impact on the mechanical properties of concrete. *Construction
and Building Materials*, 121, 278-284.

12 Yazdanbakhsh, A., Bank, L. C., Chen, C., and Tian, Y. (2017). FRP-needles as discrete
13 reinforcement in concrete. *Journal of Materials in Civil Engineering*, 29 (10): 04017175.

14 Yazdanbakhsh, A., Bank, L. C., Rieder, K.-A., Tian, Y. & Chen, C. (2018). Concrete with discrete
15 slender elements from mechanically recycled wind turbine blades. *Resources,
Conservation and Recycling*, 128, 11-21.

17 Zhang, Z., Shao, X., Zhu, P. & Li, W. (2016). Twice inverse analysis method based on four-point
18 bending test results for UHPC tensile behavior characterization. *China Civil Engineering
Journal*, 49, 77-86. (in Chinese)

20 Zhong, H., & Zhang, M. (2020). Experimental study on engineering properties of concrete
21 reinforced with hybrid recycled tyre steel and polypropylene fibres. *Journal of Cleaner
Production*, 259.

23 Zhou, B., Zhang, M., Wang, L. & Ma, G. (2021). Experimental study on mechanical property and
24 microstructure of cement mortar reinforced with elaborately recycled GFRP fiber. *Cement
and Concrete Composites*, 117, 103908.

25

1 **Tables**

2

3

Table 1. Concrete mix proportions (Unit: kg/m³).

4

Group	Cement	Water	Sand	Granite Gravel	Superplasticizer	Macro Fiber
CC	395	189.6	727	1137	0.98	0
MFRC-0.5	395	189.6	727	1137	0.98	9.1
MFRC-1.5	395	189.6	727	1137	0.98	27.3
MFRC-2.5	395	189.6	727	1137	0.98	45.5

5

6

7

Table 2. Key results of compression tests.

8

Specimen	f_c (MPa)	ε_{co} (%)	E (GPa)	ν
CC-1	33.91	0.261	19.47	0.13
CC-2	33.80	0.239	20.05	0.11
CC-3	33.81	0.253	17.47	0.11
Mean	33.84	0.251	18.99	0.12
Standard deviation	0.06	0.01	1.35	0.01
MFRC0.5-1	32.34	0.238	21.17	0.14
MFRC0.5-2	32.98	0.256	21.81	0.12
MFRC0.5-3	32.33	0.233	21.08	0.17
Mean	32.55	0.246	21.35	0.14
Standard deviation	0.37	0.01	0.40	0.03
MFRC1.5-1	31.04	0.268	19.03	0.13
MFRC1.5-2	31.82	0.278	22.01	0.17
MFRC1.5-3	31.87	0.306	18.67	0.12
Mean	31.58	0.284	19.90	0.14
Standard deviation	0.46	0.02	1.83	0.03
MFRC2.5-1	29.28	0.237	18.12	0.16
MFRC2.5-2	28.76	0.229	19.16	0.16
MFRC2.5-3	29.33	0.253	18.74	0.14
Mean	29.12	0.239	18.67	0.15
Standard deviation	0.31	0.01	0.52	0.01

9 Note: f_c is peak compressive stress; ε_o is the strain at peak compressive stress; E is modulus of
10 elasticity; ν is Poisson's ratio.

11

12

Table 3. Key results of flexural tests.

No.	P_p (kN)	f_p (MPa)	δ_p (mm)	P_{600} (kN)	P_{150} (kN)	f_{600} (MPa)	f_{150} (MPa)	T_{150} (J)
CC-1	25.98	4.23	0.073	0.0	0.0	0.0	0.0	1.97
CC-2	22.83	3.72	0.082	0.0	0.0	0.0	0.0	1.29
CC-3	23.21	3.78	0.078	0.0	0.0	0.0	0.0	1.30
Mean	24.01	3.91	0.078	0.0	0.0	0.0	0.0	1.52
Standard deviation	1.72	0.28	0.005	0.0	0.0	0.0	0.0	0.39
MFRC0.5-1	23.69	3.86	0.062	9.34	3.15	1.52	0.51	23.38
MFRC0.5-2	26.22	4.27	0.098	10.31	2.77	1.68	0.45	25.19
MFRC0.5-3	25.31	4.12	0.089	10.35	3.52	1.69	0.57	26.16
Mean	25.07	4.08	0.083	10.00	3.15	1.63	0.51	24.91
Standard deviation	1.28	0.21	0.019	0.57	0.38	0.10	0.06	1.41
MFRC1.5-1	25.61	4.17	0.127	13.76	7.24	2.24	1.18	40.10
MFRC1.5-2	26.55	4.33	0.209	12.04	4.12	1.96	0.67	32.18
MFRC1.5-3	29.32	4.78	0.157	10.39	6.88	1.69	0.81	35.61
Mean	27.16	4.43	0.164	12.06	6.08	1.96	0.89	35.96
Standard deviation	1.93	0.32	0.041	1.69	1.71	0.28	0.26	3.97
MFRC2.5-1	35.99	5.87	0.248	26.13	8.77	4.26	1.41	60.72
MFRC2.5-2	31.16	5.08	0.329	23.09	10.46	3.76	1.70	57.87
MFRC2.5-3	32.09	5.23	0.285	24.52	8.66	3.51	1.41	53.67
Mean	33.08	5.39	0.287	24.58	9.30	3.84	1.51	57.42
Standard deviation	2.56	0.42	0.041	1.52	1.01	0.38	0.17	3.55

Table 4. Key results of inverse analyses.

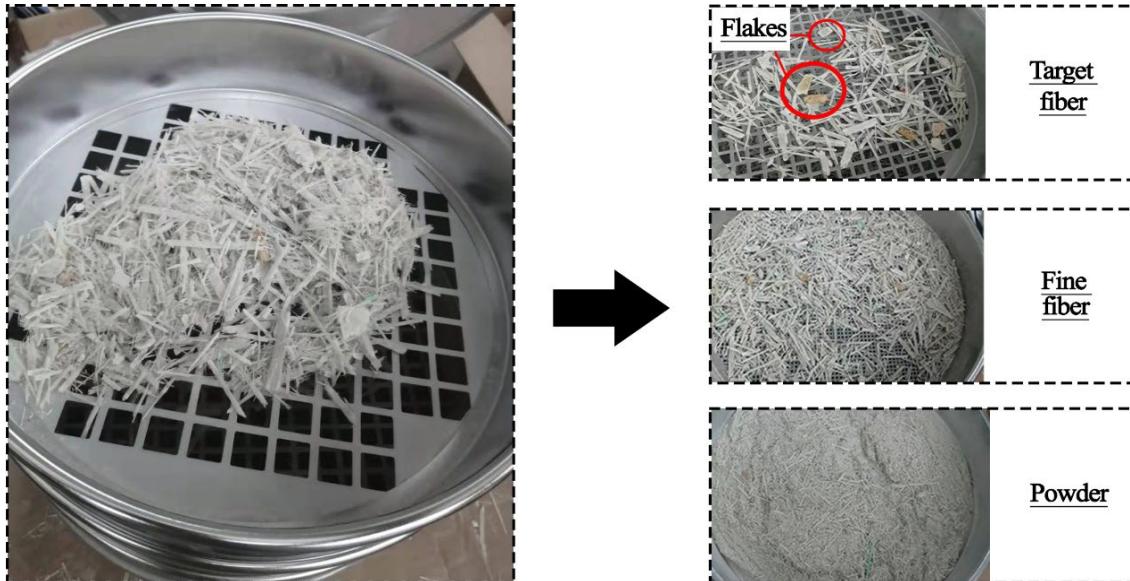
No.	Tensile strength f_t (MPa)	Tensile strain ε_t ($\mu\epsilon$)
MFRC0.5-1	2.05	58.3
MFRC0.5-2	2.05	76.3
MFRC0.5-3	2.04	97.2
Mean	2.05	77.3
Standard deviation	0.01	19.5
MFRC1.5-1	2.12	136.9
MFRC1.5-2	2.33	83.1
MFRC1.5-3	2.17	108.1
Mean	2.21	109.4
Standard deviation	0.11	29.9
MFRC2.5-1	2.37	117.0
MFRC2.5-2	2.24	188.3
MFRC2.5-3	2.17	96.6
Mean	2.26	134.0
Standard deviation	0.10	48.15

1 Figures

2

3

4


5

6

7

8

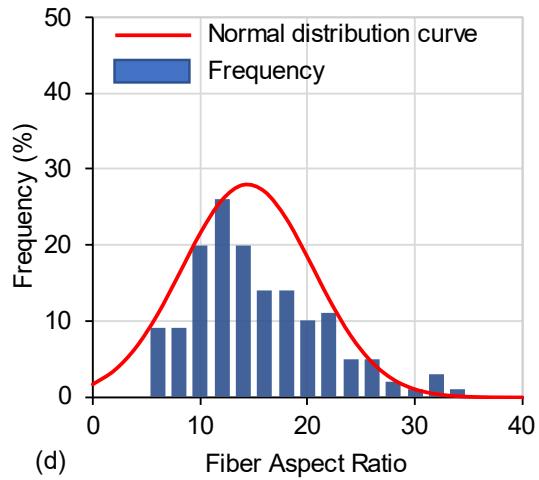
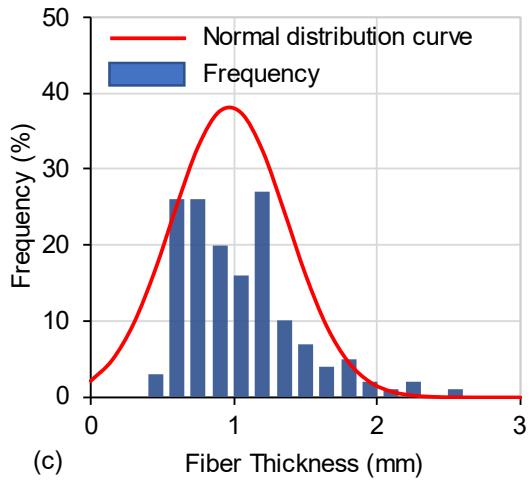
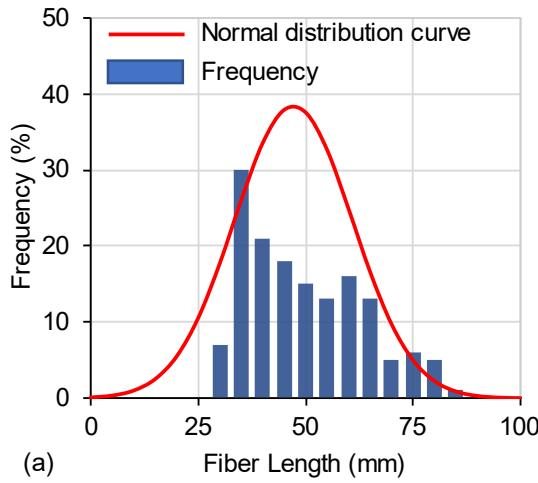
Figure 1. Decommissioned wind turbine blades.

9

10

11

Figure 2. Process of selecting macro fibers.

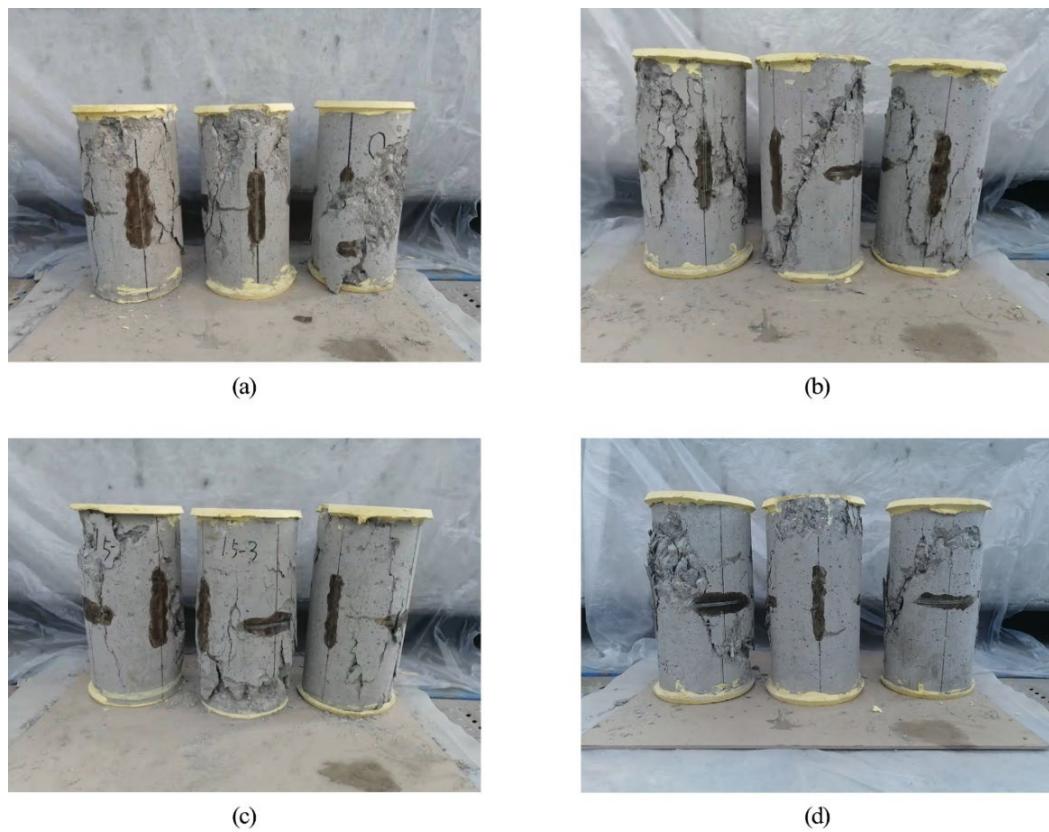




12 (a) GFRP waste

13 (b) Selected macro fibers

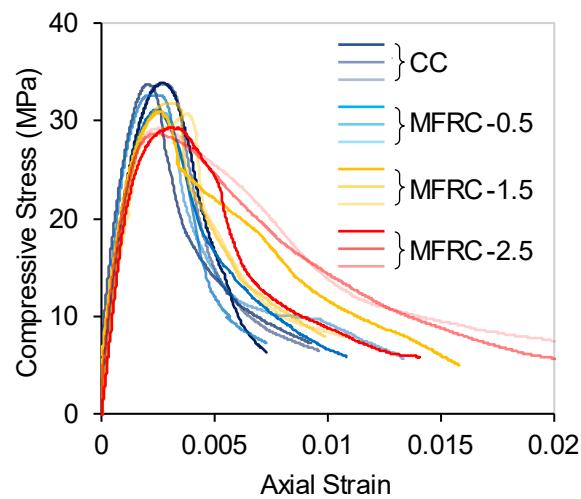
14 **Figure 3.** A comparison of (a) the original GFRP waste; and (b) the selected macro fibers.

15


16

17 **Figure 4.** Statistical characteristics of recycled macro fiber dimensions: (a) length; (b) width; (c)
18 thickness; and (d) aspect ratio.

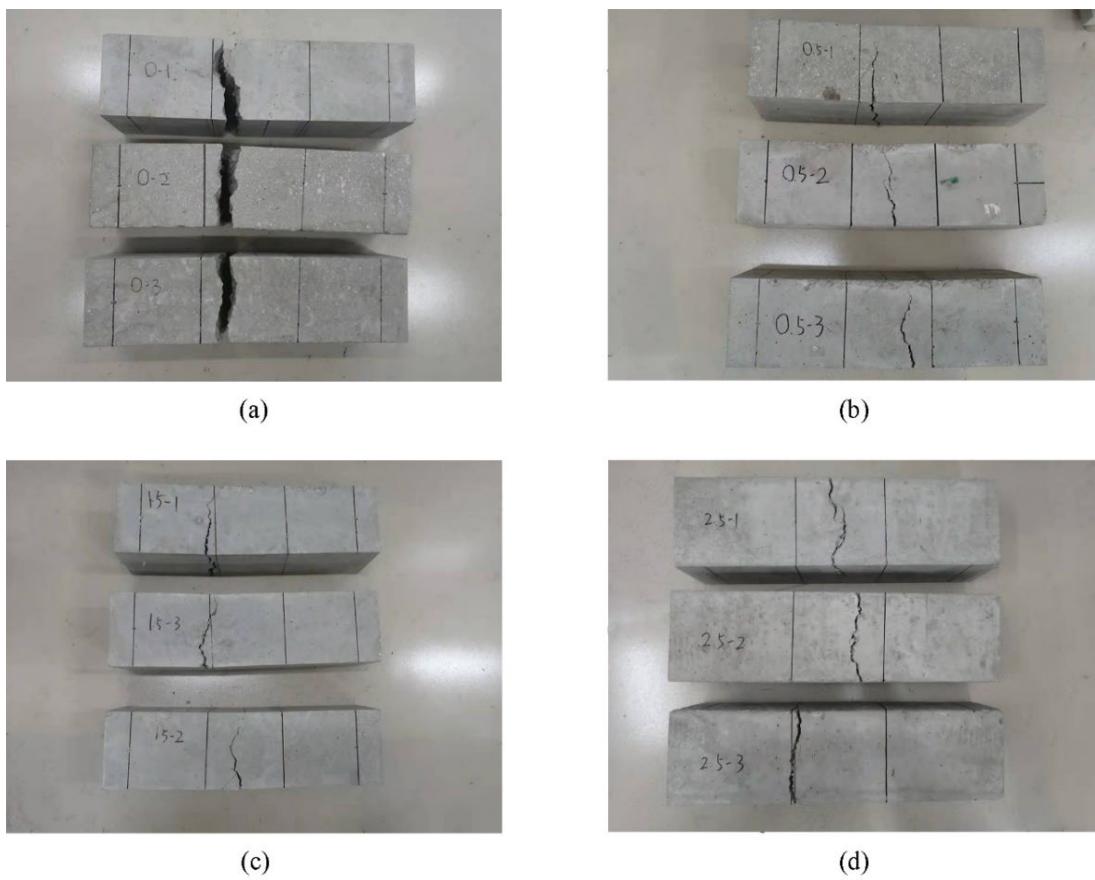
19
20
21
22
23


Figure 5. Setup of flexural tests.

24
25
26
27
28
29

Figure 6. Failure patterns of Groups: (a) CC; (b) MFRC-0.5; (c) MFRC-1.5; and (d)MFRC-2.5
after compression tests.

30

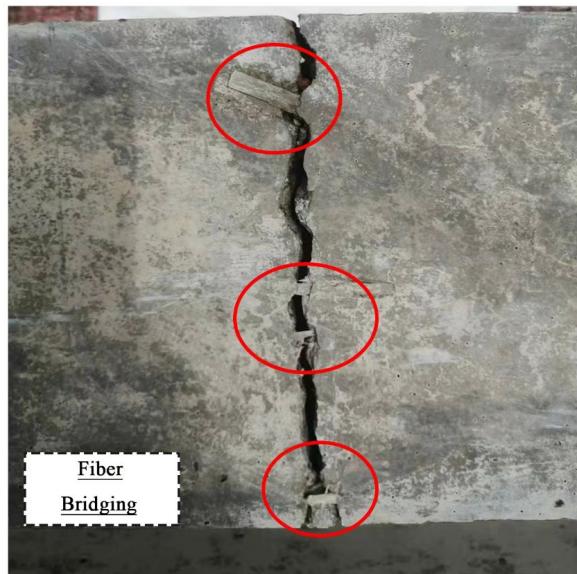

31

32

33

34

Figure 7. Compressive stress-strain curves of all groups.


35

36

37

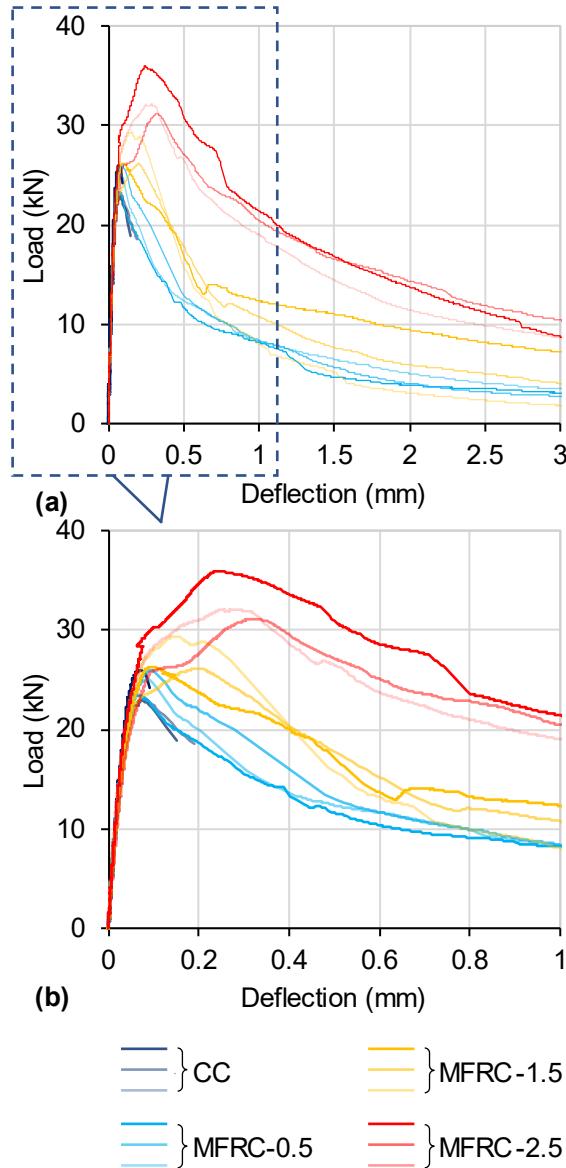

38

Figure 8. Failure patterns of Groups: (a) CC; (b) MFRC-0.5; (c) MFRC-1.5; and (d) MFRC-2.5 after flexural tests.

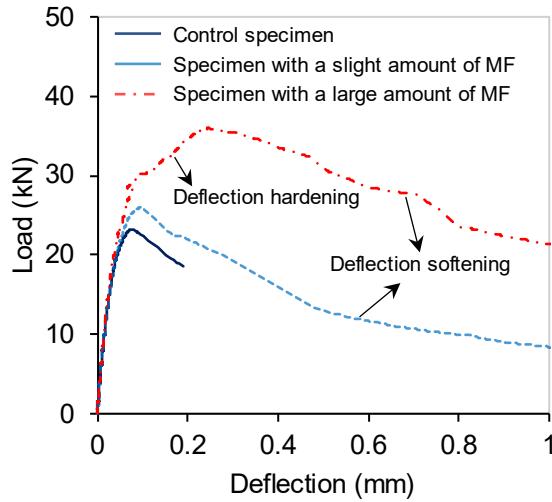
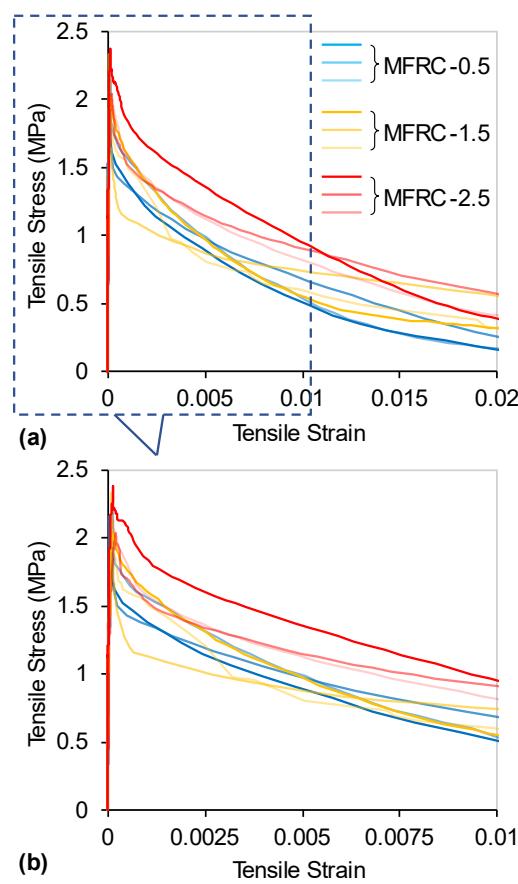

39
40
41

Figure 9. Fiber bridging at the bottom of concrete beams.



42
43
44
45
46

Figure 10. Flexural load-deflection curves for all groups: (a) the complete portions with deflection up to 3.5 mm; and (b) the initial portions with deflection up to 1.0 mm.

47
48
49 **Figure 11.** Three typical patterns of the flexural load-deflection curve.
50
51

52
53
54 **Figure 12.** Tensile stress-strain curves obtained by inverse analyses: (a) the complete portions
55 with deflection up to 3.5 mm; and (b) the initial portions with deflection up to 1.0 mm.