

This is the accepted version of the publication Teng J-G, Xiang Y, Yu T, Fang Z. Development and mechanical behaviour of ultra-high-performance seawater-sea-sand concrete. *Advances in Structural Engineering*. 2019;22(14):3100-3120. Copyright © 2019 The Author(s). DOI: 10.1177/1369433219858291.

Development and Mechanical Behaviour of Ultra-High Performance Seawater Sea-Sand Concrete

J.G. Teng^{1, 2*}, Yu Xiang¹, Tao Yu³ and Zhi Fang⁴

¹Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China

²Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China

³School of Civil, Mining & Environmental Engineering, University of Wollongong, Wollongong, NSW 2522, Australia

⁴College of Civil Engineering, Hunan University,
Changsha, Hunan 410082, China

ABSTRACT

17 Ultra-high performance concrete (UHPC) is typically defined as an advanced cementitious
18 material that has a compressive strength of over 150 MPa and superior durability. This paper
19 presents the development of a new type of UHPC, namely, ultra-high performance seawater sea-
20 sand concrete (UHPSSC). The development of UHPSSC addresses the challenges associated with
21 the shortage of freshwater, river sand and coarse aggregate in producing concrete for a marine
22 construction project. When used together with corrosion-resistant fibre-reinforced polymer (FRP)
23 composites, the durability of the resulting structures (i.e. hybrid FRP-UHPSSC structures) in a
24 harsh environment can be expected to be outstanding. The ultra-high strength of UHPSSC and the
25 unique characteristics of FRP composites also offer tremendous opportunities for optimization
26 towards new forms of high-performance structures. An experimental study is presented in this
27 paper to demonstrate the concept and feasibility of UHPSSC: UHPSSC samples with a 28-day
28 cube compressive strength of over 180 MPa were successfully produced; the samples were made
29 of seawater and sea-sand, but without steel fibres, and were cured at room temperature. The
30 experimental programme also examined the effects of a number of relevant variables, including
31 the types of sand, mixing water and curing water, among other parameters. The mini-slump spread,
32 compressive strength and stress-strain curve of the specimens were measured to clarify the effects
33 of experimental variables. The test results show that the use of seawater and sea-sand leads to a
34 slight decrease in workability, density and modulus of elasticity; it is also likely to slightly increase
35 the early strength but to slightly decrease the strengths at 7 days and above. Compared with
36 freshwater curing, the seawater curing method results in a slight decrease in elastic modulus and
37 compressive strength.

40 **Keywords:** Ultra-high performance concrete; Seawater sea-sand concrete; Seawater; Sea-sand;
41 Concrete mix proportion.

* Corresponding author:

Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China; Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China. Email: cejgteng@polyu.edu.hk.

43 **1. INTRODUCTION**

44

45 Coastal cities rely heavily on their coastal and marine infrastructure (e.g. ports, bridges and
46 offshore wind farms) for social-economic development. The major challenges for coastal and
47 marine infrastructure development include steel corrosion, which is the main cause for
48 infrastructure deterioration, and the shortage of freshwater and river sand for making concrete. To
49 address these challenges, the first author has recently proposed (Teng et al. 2011; Teng 2014) a
50 new type of concrete structures: seawater sea-sand concrete (SSC) structures reinforced with fibre-
51 reinforced polymer (FRP) composites (i.e. FRP-SSC structures). With this new structural concept,
52 seawater and sea-sand can be directly used in constructing coastal and marine infrastructure by
53 capitalizing on the excellent corrosion resistance of FRP composites (Teng et al. 2011; Teng 2014).
54 The idea of SSC structures reinforced with FRP composites has already stimulated a significant
55 amount of recent research (e.g. Li et al. 2016; Wang et al. 2017; Xiao et al. 2017; Li et al. 2018).
56

57 Seawater and untreated sea-sand are generally considered to be unsuitable for steel-reinforced
58 concrete structures because of the problem of steel corrosion (BSI 2002; BSI 2013; JGJ 2006; JGJ
59 2010). Nevertheless, many studies have been conducted on the effects of using seawater instead
60 of freshwater and sea-sand instead of river sand as raw materials for concrete on the properties of
61 concrete, and a review of these studies can be found in Xiao et al. (2017). Compared with
62 freshwater, seawater contains much higher salt contents, represented by the high contents of
63 chloride ions (Cl^-), sulphate ions (SO_4^{2-}), sodium cations (Na^+) and potassium cations (K^+) (Kuche
64 et al. 2015). Compared with river sand, sea-sand contains more salts and coral/seashell particles
65 (Newmon 1968). Coral/seashell particles have a detrimental effect on the workability of concrete
66 and may affect the elastic modulus and strength of concrete (Yang et al. 2005; Richardson et al.
67 2013). The high concentrations of salt ions in seawater and sea-sand generally lead to a higher
68 early strength (e.g. 7-day strength) but a similar long-term strength of concrete compared with
69 those of conventional concrete made with freshwater and river sand (Kaushik and Islam 1995;
70 Mohammed et al. 2004; Nishida et al. 2013; Etxeberria et al. 2016; Younis et al. 2018); they also
71 lead to a reduced setting time and may affect the workability of concrete (Ghorab et al. 1990;
72 Kaushik and Islam 1995; Younis et al. 2018). Findings from existing studies on the effects of salt
73 ions on the durability of unreinforced concrete are inconclusive: De Weerdt et al. (2014) found
74 that plain concrete is vulnerable to the attack of various salt ions available in seawater, while
75 Otsuki et al. (2014), through a recent survey conducted in Japan, revealed that plain concrete
76 structures made of seawater have very good durability. Nevertheless, it is generally agreed that
77 high-strength SSC has a lower permeability, and is thus more durable, than normal-strength SSC
78 because of the lower water-to-cement ratio of the former (Kaushik and Islam 1995; Otsuki et al.
79 2014). The existing research on SSC has been limited to SCC with a compressive strength smaller
80 than 80 MPa; no research has been published in the open literature on the use of seawater and sea-
81 sand to make ultra-high performance concrete (UHPC).

82

83 UHPC is typically defined as an advanced cementitious material that has a compressive strength
84 of over 150 MPa and superior durability (Richard 1995; Graybeal and Tanesi 2007; Graybeal 2011;
85 Wille et al. 2011; Wille et al. 2014; Wille and Boisvert-Cotulio 2015; Alkaysi et al. 2016). The
86 ultra-high strength of UHPC is generally achieved by increasing its particle packing density,
87 improving the interfacial transition zones between aggregate(s) and the paste matrix, and
88 enhancing its homogeneity (Shi et al. 2015; Wille and Boisvert-Cotulio 2015). Therefore, the

89 production of UHPC normally does not involve the use of coarse aggregate (Shi et al. 2015). To
90 increase the tensile strength and fracture toughness, steel fibres are often used in the mix proportion
91 of UHPC, and such UHPC is also referred to as ultra-high performance fibre-reinforced concrete
92 or UHPFRC (Shi et al. 2015). Steel fibres, although beneficial to the mechanical properties of
93 UHPC, especially its ductility and tensile strength, are expensive and contribute considerably to
94 the high cost of UHPC. Various curing regimes, including room temperature curing, heat curing
95 under atmospheric pressure and autoclave curing, have been used in the production of UHPC, and
96 their effects on the material properties have been investigated. While heat curing and autoclave
97 curing have been found to considerably increase the strength of UHPC (Yazici 2007), they
98 generally involve the use of specific equipment and can be both costly and inconvenient.
99

100 The raw materials used to make UHPC typically include water, cement, silica fume, supplemental
101 fine materials [e.g. fly ash, ground granulated blast furnace slag (GGBS), silica powder], high
102 range water reducer (HRWR), aggregate(s) and fibres (Shi et al. 2015; Wille and Boisvert-Cotulio
103 2015). To enhance the homogeneity of concrete, fine quartz sand with a particle size smaller than
104 600 μm is commonly used as aggregate in early studies on UHPC (Shi et al. 2015). To reduce the
105 material cost, many researchers have investigated various alternatives to quartz sand (e.g. Yang et
106 al. 2009). These studies have conclusively shown that river sand can be used to replace quartz sand
107 to achieve UHPC with similar properties, if the mix proportion is properly designed (Yang et al.
108 2009). The particle size of sea-sand is typically between those of quartz sand and river sand, and
109 thus has the potential to be successfully used in producing UHPC.
110

111 The water-to-binder ratio of UHPC is typically around 0.2 and is much lower than that of normal
112 strength concrete (e.g. 0.5) (Shi et al. 2015). The permeability of UHPC is low because of its dense
113 microstructure: the chloride diffusion coefficient of UHPC can be as low as 1/55 that of normal
114 strength concrete (Roux et al. 1996). Therefore, the detrimental effects of salt ions from both the
115 mixing water and the water from the environment can be expected to be much smaller for UHPC
116 than for normal strength concrete. There is thus a great potential for UHPC to be made of seawater
117 and to be used in coastal and marine environments.
118

119 Against the above background, this paper presents the first ever experimental study on the
120 development of UHPC with seawater and sea-sand (i.e. ultra-high performance seawater sea-sand
121 concrete or UHPSSC). In the present study, the UHPSSC was made without steel fibres to reduce
122 costs and eliminate steel corrosion concerns, and was cured at room temperature. The absence of
123 steel fibres means that the present UHPSSC, in strict terms of conventional terminology, is a plain
124 UHPSSC or a UHPSSC matrix. In practical applications, the potential weaknesses associated with
125 the elimination of steel fibres can be addressed at material level by incorporating non-metallic
126 fibres, or at component level by the combined use of the present UHPSSC with FRP confinement.
127 For example, the present UHPSSC can be used with filament-wound FRP tubes to form hybrid
128 columns, in which the ductility of UHPSSC in compression can be greatly enhanced by FRP
129 confinement. Teng et al. (2018) has recently proposed a novel type of steel-free reinforcing bars
130 (referred to as hybrid bars) for use in seawater sea-sand concrete, and such a hybrid bar typically
131 consists of an FRP tube filled with plain UHPSSC which is centrally reinforced with an FRP bar.
132 In these hybrid bars, the UHPSSC can be well confined by the FRP tube, so the absence of steel
133 fibres from the UHPSSC does not create any concerns.
134

135 **2. EXPERIMENTAL PROGRAMME**

136

137 **2.1 Mix design**

138

139 In the present study, 15 different mixes were prepared and tested. The mixes all had the same
140 proportions of the six constituents [i.e. cement, silica fume (SF), supplemental fine materials (SM),
141 fine aggregate, water and HRWR]; the main differences between the mixes were the raw materials
142 used. The mix proportions were developed by a trial-and-error process based on the
143 recommendations provided by Wille and Boisvert-Cotulio (2015).

144

145 Mixes 1 to 5 were designed to investigate the effect of salinity of mixing water and are referred to
146 collectively as Group 1. The five mixes were all prepared with quartz sand (QS) and the so-called
147 artificial seawater (ASW), which was made of tap water (TW) and dissolved commercial sea salt
148 of various doses. Mixes 6 to 10 (referred to collectively as Group 2) were all prepared with river
149 sand (RS) and tap (fresh) water, while Mixes 11 to 15 (referred to collectively as Group 3) were
150 all prepared with sea-sand (SS) and natural seawater (SW). Other than that, Groups 2 and 3, each
151 with 5 mixes, were both so designed that the effects of a different cement [i.e. white cement (WC)
152 or ordinary Portland cement (OPC)] and a different supplemental material [i.e. quartz powder (QP)
153 or Class C fly ash (FA)], as well as the effect of sand washing, can be investigated. Table 1
154 summarizes the details of all the 15 mixes.

155

156 Each mix is given a name, which consists of four components representing the fine aggregate,
157 water, cement and supplemental material used in the mix, respectively. In the present study, the
158 river sand and sea-sand were washed before being used, except for Mixes 6 and 11 in which
159 untreated river sand (uRS) and untreated sea-sand (uSS) were used. Therefore, in the mix names,
160 “RS” and “SS” were used only for treated river sand and treated sea-sand, respectively. For
161 example, the name SS-SW-WC-QP represents a mix with treated sea-sand, natural seawater, white
162 cement and quartz powder.

163

164 **2.2 Raw Materials**

165

166 *2.2.1 Cement*

167

168 Existing research (e.g. Sakai et al. 2008; Graybeal 2011; Wille and Boisvert-Cotulio 2015)
169 suggests that white cement, which is rich in the sum of C₃S and C₂S, is preferred in making UHPC
170 to ensure favorable strength development and workability. White cement, however, is considerably
171 more expensive than ordinary Portland cement. In the present study, an EN 197-1 CEM I 52.5N
172 white cement and an EN 197-1 CEM I 52.5N ordinary Portland cement, both produced by the
173 Green Island Cement (Holdings) Limited, Hong Kong, were used to clarify their effects on
174 concrete properties.

175

176 The chemical compositions of the two cements, analysed by X-ray fluorescence (XRF)
177 spectroscopy (AXS GmbH, Bruker), are summarized in Table 2, in which the Bogue components
178 were calculated based on the Bogue equations (Hewlett 1998). Compared with the ordinary
179 Portland cement, the white cement was found to have high contents of C₃S and C₂S. In addition,
180 the Fe₂O₃ content in the white cement (i.e. 0.41%) was very low compared with that in the ordinary

181 Portland cement (i.e. 3.04%), which is the main reason for its white color (Hamad 1995). The
182 specific surface area of the white cement ($3540 \text{ cm}^2/\text{g}$) was found to be smaller than that of the
183 ordinary Portland cement ($3840 \text{ cm}^2/\text{g}$).

184

185 2.2.2 Silica Fume and Supplemental Materials

186

187 The silica fume used in all mixes were produced by Sap Corp., China. The chemical composition
188 of the silica fume is given in Table 2, which shows that it had a silica content of over 94%.

189

190 Two supplemental materials were used in the present study: quartz powder with a mean particle
191 diameter of $7.47 \mu\text{m}$ from the Y.S. Corp., China, and fly ash with a mean particle diameter of $8.96 \mu\text{m}$
192 produced by CLP Power Ltd., Hong Kong. The quartz powder had a silica content of over
193 96%, while the fly ash had a sum of oxides ($\text{SiO}_2 + \text{Al}_2\text{O}_3 + \text{Fe}_2\text{O}_3$) in the range of 50% to 70% and
194 can thus be classified into a Class C fly ash according to ASTM C618 (2017) (Table 2).

195

196 Quartz powder has often been used in making UHPC because of its high material purity (Wille
197 and Boisvert-Cotulio 2015). However, the use of fly ash is more environmentally friendly and
198 economical. In addition, the spherical particle shape and pozzolanic reactivity of fly ash have been
199 reported to benefit the workability, the long-term strength development and the durability of
200 concrete (Hemalatha and Ramaswamy 2017).

201

202 2.2.3 Water

203

204 Local tap water in Hong Kong was used as freshwater in the present study. The chemical
205 composition of the tap water, measured from ion chromatography (IC) tests, is given in Table 3. It
206 is evident from Table 3 that the salinity of the tap water was very small ($<0.1 \text{ g/L}$).

207

208 Two sources of mixing water were often used in existing studies on seawater concrete: natural
209 seawater and artificial seawater made of tap water and dissolved commercial sea salt. In the present
210 study, natural seawater was used in Mixes 11-15, while artificial seawater was used in Mixes 2-5
211 so that the salinity of mixing water could be precisely controlled to investigate its effects.

212

213 Natural seawater was obtained from three locations along the coast of Hong Kong, and their
214 chemical compositions were measured and compared with the world-average composition in Table
215 3. It is evident that the chemical compositions of seawater from the three sources are all close to
216 the world-average composition. The seawater from Chek Lap Kok (CLK), which is away from
217 residential areas, was used in Mixes 11-15 of the present study.

218

219 To select the most suitable salt for making artificial seawater, three commercial sea salts were
220 dissolved in tap water respectively, all with a dose of 36 g/L , and the chemical compositions of
221 the three types of resulting artificial seawater were measured. Table 3 shows that the Cl^- content
222 in Artificial Seawater 1 is slightly lower than the world-average value, but the contents of other
223 ions (e.g. Br^- , SO_4^{2-} , NO_3^- , Mg^{2+} and Ca^{2+}) in Artificial Seawater 1 are much closer to the
224 corresponding world-average values of natural seawater than those in Artificial Seawater 2 and 3.
225 Therefore, Sea Salt 1 was used in the present study (i.e. for Mixes 2-5) for making artificial
226 seawater. The doses of sea salt for making the artificial seawater used in Mixes 2-5 are 18 g/L , 36

227 g/L, 54 g/L and 72 g/L, respectively, representing around 50%, 100%, 150% and 200% of the
228 salinity of typical natural seawater. The artificial seawater is thus denoted by 50ASW, 100ASW,
229 150ASW, 200ASW in the names of Mixes 2-5, respectively.

230

231 2.2.4 Sand

232

233 The sea-sand used in the present study was mined from CLK, Hong Kong, which is consistent
234 with the source of the natural seawater. The quartz sand was from the Y.S. Corp., China, while the
235 river sand was purchased from the local market in Hong Kong. Particles with a size of larger than
236 1.18 mm were eliminated from the sands before being used as suggested by Wille and Boisvert-
237 Cotulio (2015).

238

239 Existing research (Fernandes et al. 2007) suggests that the high content of clay in original river
240 sand and sea-sand may have detrimental effects on the workability and strength of UHPC.
241 Therefore, for most mixes in the present study, the river sand or the sea-sand were washed with
242 tap water to eliminate the clay. Unwashed river sand and unwashed sea-sand were only used for
243 comparison in Mixes 6 and 11, respectively. It should be noted that sea-sand should ideally be
244 washed by seawater, which is expected to be the case in practice, instead of tap water which may
245 change the salt concentration of sea sand. Tap water was used for washing sea-sand in the present
246 study because of the difficulty of obtaining a large amount of natural seawater. Nevertheless, to
247 minimize the potential effects, the washed sea-sand was soaked in natural seawater for 48 hours
248 after being washed. After the above desilting process, the river sand or sea-sand was dried at 105°C
249 for 48 hours and then stored until being used. In accordance with GB/T (2011), the silt contents of
250 sea-sand and river sand before desilting were measured to be 5.46% and 0.61%, respectively, while
251 the values for desilted sea and river sands were 1.54% and 0.25%, respectively.

252

253 IC tests were conducted to obtain the chemical compositions of the lixiviums of four kinds of sands:
254 original (unwashed) river sand and sea-sand, as well as washed sea-sand before and after being
255 soaked in seawater for 48 hours. The results summarized in Table 4 show that the original river
256 sand had a salinity (0.3579 g/L) much lower than that of the original sea-sand (i.e. 4.6809 g/L),
257 and contained a very small Cl content (i.e. 0.0119 g/L). It is also evident that after being washed
258 by tap water, the salinity of sea-sand was dramatically reduced, but it then returned to a level close
259 to that of the original sea-sand after being soaked in seawater for 48 hours.

260

261 The particle size distributions (PSD) of the sands used in the mixes are shown in Figure 1. It is
262 evident that the desilting process had little effect on the PSD. It is also evident that compared to
263 the river sand, the sea-sand contained more fine particles (e.g. those with a size between 0 to 300
264 µm) (Figure 1). The shell contents of desilted sea and river sands were measured to be 1.19% and
265 0.87%, respectively, in accordance with JGJ 52 (2006). These values are lower than those typically
266 reported by previous researchers (e.g. 4.4% for sea-sand as reported by Liu et al. 2016), which is
267 believed to be at least partially due to the elimination of particles larger than 1.18 mm in the present
268 study.

269

270 2.2.5 HRWR

271

272 A polycarboxylate-based superplasticizer produced by the BASF chemical company, Hong Kong,
273 was used as the HRWR in the present study. The superplasticizer had a solid content of 22% by
274 mass and a specific gravity of 1.05.

275

276 2.3 Methodology

277

278 2.3.1 Mixing, Casting and Curing Methods

279

280 The preparation process of UHPC included two steps: (1) mixing dry constituents (i.e. cement,
281 silica fume, supplemental material and sand) for 5 minutes; (2) mixing water with HRWR and
282 adding the mixture in two steps, and then mixing for another 8 minutes until the UHPC reached
283 an acceptable level of fluidity.

284

285 The freshly mixed UHPC was slowly filled into 50 mm cube moulds and $\varnothing 75$ mm \times 150 mm
286 cylinder moulds, and then vibrated on a vibration table for 2 minutes to eliminate air voids in the
287 concrete. After casting, all moulds were covered with a plastic sheet within 10 minutes. All
288 specimens were demoulded after 24 hours.

289

290 Three kinds of curing methods were adopted in the present study after demoulding: (1) tap water
291 curing: 15 cube samples and 3 cylinder samples of each mix were immersed in tap water at $22\pm3^\circ\text{C}$
292 using a thermostatic water tank until the specific ages for testing; (2) seawater curing: 15 cube
293 samples and 3 cylinder samples of Mixes 12 and 13 were immersed in seawater at $22\pm3^\circ\text{C}$ using
294 another thermostatic water tank until specific ages for testing; and (3) 24-hour heat curing: 3 cube
295 samples of each mix were immersed in a programmable accelerated curing tank with hot tap water
296 at $90\pm1^\circ\text{C}$ for 24 hours.

297

298 2.3.2 Workability

299

300 In previous studies (Wille et al. 2011; Wille and Boisvert-Cotulio 2015; Meng and Khayat, 2017;
301 Soliman and Tagnit-Hamou 2017), a dynamic mini-slump spread was usually measured in
302 accordance with ASTM C1473 (2015) using a flow table specified in ASTM C230 (2014).
303 However, trial tests using the above method showed that the slump spreads of UHPC/UHPSSC in
304 the present study exceeded the maximum diameter of the flow table (i.e. 255 ± 2.5 mm) after 25
305 drops within 15 seconds. The observation suggested that accurate slump spreads cannot be
306 obtained using this method. Therefore, a free mini-slump spread test was performed in accordance
307 with ASTM C1856 (2017) to determine the workability of UHPC/UHPSSC in the present study.

308

309 2.3.3 Density

310

311 The densities of all specimens at ages of 1, 28 and 90 days were obtained in accordance with
312 ASTM C642-13 (2013), in which the following equation is given for the calculation of hardened
313 density of a specimen:

314

$$\rho = \frac{W_a}{W_a - W_w} \times \rho_w \quad (1)$$

315 where W_a is the weight of a specimen measured in air; W_w is the weight of a specimen measured
316 in water; ρ_w is the density of water and $\rho_w = 1000 \text{ kg/m}^3$.

317

318 2.3.4 Cube Compressive Strength

319

320 Standard concrete cube tests (50 mm) were conducted to obtain the compressive strengths at ages
321 of 1, 7, 14, 28 and 90 days in accordance with ASTM C109 (2016). For each age of each mix,
322 three specimens were tested, and the average value was obtained. The loading rate of 1 MPa/s was
323 adopted so that each test was completed around three minutes.

324

325 2.3.5 Compressive Stress-Strain Relationship

326

327 Standard concrete cylinder tests ($\Phi 75 \text{ mm} \times 150 \text{ mm}$) were conducted at an age of 35 days to
328 obtain the compressive stress-strain relationship in accordance with ASTM C1856 (2017). An
329 MTS testing system was used for these tests with a displacement control rate of 0.18 mm/min,
330 which is similar to the loading rate of 1 MPa/s used for the initial stage of loading. A total of six
331 strain gauges, three in the axial direction with a gauge length of 50 mm and another three in the
332 hoop direction with a gauge length of 30 mm, were installed on each specimen. Figure 2 shows
333 the test setup and layout of strain gauges.

334

335 2.3.6 Material Supplies

336

337 Only a single supply of each raw material for the concrete was used during the present
338 experimental program to ensure the consistency of material quality and properties.

339

340 3. EXPERIMENTAL RESULTS AND DISCUSSIONS

341

342 3.1 Workability

343

344 The workability of UHPC is associated with the good packing of raw constituent materials as well
345 as the compatibility of cementitious materials with the HRWR (Meng and Khayat 2017), and is
346 normally checked using various slump tests. The slump spreads obtained from free mini-slump
347 spread tests are summarized in Table 5 for all the 15 mixes of the present study.

348

349 The results of Group 1 (Mixes 1-5) show that the workability of UHPC generally decreases with
350 the salinity of mixing water (Table 5). The slump spread of Mix 5 using artificial seawater with a
351 salinity of 72 g/L was only around 50% of that of Mix 1 using tap water. This is believed to be at
352 least partially due to the existence of CaCl_2 in the artificial seawater, which accelerated the
353 formation of C-S-H and heat release in the hydration process (Juengera et al. 2016).

354

355 A comparison between the results of Group 2 (Mixes 6-10) and Group 3 (Mixes 11-15) shows that
356 the use of seawater and sea-sand generally leads to decreases in the slump spread, and the degree
357 of decrease appears to be also dependent on other raw constituent materials used in the mix. This
358 observation is consistent with findings from previous studies (Mohammed et al. 2004; Kaushik
359 and Islam 1995; Islam et al. 2012). Besides the accelerated hydration due to the existence of salts,

360 it is believed that the finer particles (and thus larger surface areas) of sea-sand, as compared with
361 river sand, may also contribute to this decrease in workability (Hasdemir et al. 2016).

362

363 A comparison between the five mixes (Mixes 6-10) of Group 2 shows evidently the effects of
364 various raw constituent materials. The desilting of sand and the replacement of quartz powder with
365 fly ash led to increases in the slump spread, while the replacement of white cement with ordinary
366 Portland cement was found to negatively affect workability. These observations are consistent with
367 previous studies on UHPC and are believed to be at least partially due to the fineness (or surface
368 areas) of the raw constituent materials: the desilting of sand reduced significantly its amount of
369 clay which consists of very fine particles (Fernandes et al. 2007), while compared with the white
370 cement, the ordinary Portland cement used in the present study had a larger specific surface area.
371 In addition, compared with the quartz powder, the fly ash has the potential of pozzolanic reactions
372 and may reduce frictions between aggregate particles because of its spherical shape of particles,
373 which both contribute to increased slump spreads (Hemalatha and Ramaswamy 2017).

374

375 Similar observations can be made when comparing the five mixes (Mixes 11-15) of Group 3, which
376 were prepared with seawater and sea-sand. The only notable difference is that the effect of desilting
377 process seems to be much more pronounced for sea-sand than for river sand, probably due to the
378 larger content of clay in the former (i.e. 5.46%) compared to that in the latter (i.e. 0.61%).

379

380 **3.2 Density**

381

382 The densities of UHPC at different ages are summarized in Table 5 for all the 15 mixes. These
383 results were obtained using samples subjected to tap water curing at room temperature (i.e. tap
384 water curing). In the subsequent sections, unless otherwise specified, the reported test results were
385 all obtained from samples subjected to tap water curing.

386

387 In general, the density increases with the age for all the mixes because of the continuous water
388 absorption process of the concrete when immersed in water (Table 5). The effects of various
389 parameters of the mix on the density appear to be similar to those on the workability: the density
390 generally decreases with the salinity for the five mixes (Mixes 1-5) of Group 1, while the use of
391 seawater and sea-sand generally led to a decrease in density (see results of Groups 2 and 3). The
392 density is shown against the slump spread in Figure 3 to further examine the correlation between
393 the two. It is evident that they are almost linearly correlated (Figure 3).

394

395 **3.3 Cube Compressive Strength**

396

397 Table 6 summarizes the results of cube compressive strengths of all mixes at different ages. In
398 Table 6, the mean value and the standard deviation (SD) were both obtained based on the results
399 of three nominally identical specimens. It is evident from Table 6 that the UHPSSC made in the
400 present study reached a 28-day cube compressive strength of up to 184 MPa.

401

402 The results of specimens with Mixes 1-5 of Group 1 are compared in Figure 4 to examine the
403 effect of salinity of mixing water on the compressive strength of concrete. For ease of comparison,
404 the compressive strengths of different mixes are also normalized with the corresponding strength
405 of Mix 1 at the same age in Figure 4 (referred to as normalized f_{cu}). It is evident from Figure 5 that:

406 (1) the 7-day strengths of Mixes 2-5 are generally higher than that of Mix 1, suggesting that the
407 use of saltwater generally leads to a higher early strength of concrete; (2) the strengths of Mix 2
408 with a salinity of 18 g/L at various ages are all higher than Mixes 1 and 3-5, suggesting that an
409 optimum salinity of mixing water, equal or close to that of Mix 2, may exist for the compressive
410 strength of concrete; (3) the 14-day, 28-day and 90-day strengths of Mixes 3-5 are slightly lower
411 than Mix 1, and appear to decrease with an increase in salinity, suggesting that when the salinity
412 of mixing water exceeds a certain value, it may have a slight negative effect on the long-term
413 compressive strength of concrete. Similar observations were also made in existing studies on
414 normal strength concrete mixed with saltwater (e.g. Taylor and Kuwairi 1978; Kaushik and Islam
415 1995; Tiwari et al. 2014). It is believed that the slightly higher early strength of concrete with
416 saltwater is due to the formation of the so-called Friedel's salt ($3\text{CaO}\cdot\text{Al}_2\text{O}_3\cdot\text{CaCl}_2\cdot 10\text{H}_2\text{O}$) and
417 Kuzel's salt ($3\text{CaO}\cdot\text{Al}_2\text{O}_3\cdot 0.5\text{CaSO}_4\cdot 0.5\text{CaCl}_2\cdot 11\text{H}_2\text{O}$) because of the existence of chloride ions
418 (Weerd et al 2014); the decomposition of these salts with time, on the other hand, is believed to
419 affect the long-term strength of concrete (Suryavanshi and Swamy 1996).

420

421 Figure 5 compares the results of Groups 2 and 3. In Figure 5, the only difference between the two
422 mixes in each subfigure is that one mix (of Group 2) used river sand and tap water while the other
423 (of Group 3) used sea-sand and seawater. The results indicate that due to the use of sweater and
424 sea-sand, the early strength is likely to increase, but the strengths at 7 days and above are likely to
425 decrease, although these trends are not shared by one of the sub-figures. Nevertheless, the
426 differences at various ages between the two mixes in each of the four subfigures are all within 8%
427 except for the 1-day strength of one pair (Figure 5d), suggesting that the use of seawater and sea-
428 sand to replace tap water and river sand only has a small effect on the compressive strength of
429 UHPC. This observation is also consistent with previous research on normal strength concrete,
430 which reported that chloride ion-induced strength variations are generally within 10% (Younis et
431 al. 2018; Kaushik and Islam 1995).

432

433 The effect of using Class C fly ash to replace quartz powder is illustrated in Figure 6 by comparing
434 four pairs of mixes; the only difference between the two mixes in each pair is the supplemental
435 fine material (i.e. fly ash or quartz powder). It is evident that the mixes with fly ash have similar
436 strengths to those of the mixes with quartz powder at an age of 7 days or above. The variation in
437 1-day strength in Figure 6d may be attributed to the scatter of test data of Mix 14 in Group 3 (i.e.
438 SS-SW-OPC-QP). Fly ash is known to have the potential of pozzolanic reactions (Papadakis 2000;
439 Hemalatha and Ramaswamy 2017) which may be beneficial to the strength development of
440 concrete, but the high content of free calcium oxide (i.e. CaO) of Class C fly ash may negatively
441 affect the concrete strength especially with the presence of sulphate ions (Tikalsky and
442 Carrasquillo 1989). The observation illustrated in Figure 6 is believed to be a result of
443 counteracting effects of many factors, including the two mentioned above. Further research
444 involving analysis of the material structure of UHPSSC is needed to clarify these effects.

445

446 Figure 7 illustrates the effects of cement type; the only difference between the two mixes in each
447 subfigure of Figure 7 is the type of cement (i.e. white cement or ordinary Portland cement). It is
448 evident that the use of ordinary Portland cement to replace white cement generally leads to lower
449 early age strengths, especially the 1-day strength, but its effect on the 28-day and 90-day strengths
450 seems dependent on other constituents of the mix: for Group 2 with river sand and tap water, the

451 mixes with ordinary Portland cement have higher 28-day and 90-day strengths, but the opposite
452 was found for Group 3 with seawater and sea-sand.

453

454 Figure 8 shows the effect of sand desilting on the concrete strength. It is evident that the mixes
455 with washed sand generally have higher strengths at various ages compared with their counterparts
456 with unwashed sand. This effect appears to be more pronounced for the sea-sand group (Figure 8b)
457 due to the relatively high clay content in the unwashed sea-sand: sand desilting is shown to lead to
458 an increase of around 10% in the 28-day strength of this group. This is not a surprise as the negative
459 effect of clay in sand (e.g. weakening the bond between sand and cement paste) has been well
460 recognized by existing research (e.g. Fernandes et al. 2007).

461

462 Previous research (e.g. Wille et al. 2011; Wille and Boisvert-Cotulio 2015) has shown that the
463 compressive strength of UHPC has a strong correlation to its rheological properties (e.g. slump
464 spread), as the latter is an indicator of its particle packing density. The 28-day cube compressive
465 strengths ($f_{cu,28d}$) of all mixes are shown against their respective slump spreads (D) in Figure 9,
466 which reveals clearly the correlation between the two for all the mixes including those prepared
467 with seawater and sea-sand.

468

469 3.4 Compressive Stress-Strain Relationship

470

471 Figure 10 shows the compressive stress-strain curves obtained from standard cylinder tests for nine
472 mixes of Groups 2 and 3. The axial strain and hoop strain values shown in Figure 10 were both
473 averaged from the readings of three strain gauges. It should be noted that since Specimen 2 of Mix
474 13 and Specimen 3 of Mix 14 failed prematurely due to operational errors during the pre-loading
475 process, only results for the remaining two specimens for each of the two mixes (i.e. Mixer 13 and
476 14) are presented in Figures 10g and 10h respectively. Similar to the observations reported in the
477 open literature (e.g. Wu et al. 2016), the stress-strain curves all have an almost linear shape as no
478 fibres were used in the mixes. All test cylinders failed in a brittle manner and thus the descending
479 branch of the stress-strain curves could not be captured during the tests.

480

481 The characteristic parameters of the stress-strain curves are summarized in Table 7, in which the
482 cylinder compressive strength (f_{co}) as well as the corresponding axial (ε_{co}) and hoop strains (ε_{lo})
483 were the stress and strain values at the peak point on the curve, while the modulus of elasticity (E_c)
484 and the Poisson's ratio (ν) were calculated in accordance with ASTM C469 (2014).

485

486 The elastic modulus and the axial and hoop strains at the peak stress are shown against the cylinder
487 compressive strength in Figures 11a-11c, respectively. Figure 11a shows that the elastic moduli of
488 specimens in Group 2 are slightly larger than those of the corresponding UHPSSC specimens in
489 Group 3 with the same compressive strength, suggesting that the use of seawater and sea-sand may
490 have a slight negative effect on the value of elastic modulus. By looking at all the data points in
491 Figure 11b and 11c, it appears that the axial and hoop strains at the peak stress of specimens in
492 Group 2 are both slightly smaller than those of the corresponding UHPSSC in Group 3 with the
493 same compressive strength. The above observations are further evidenced by the two trend lines
494 in each of the subfigures, which were obtained from linear regression analyses for the two groups,
495 respectively. In addition, the measured axial strain at peak stress ranges between 3870 $\mu\epsilon$ and 4473
496 $\mu\epsilon$. These values are larger than that of normal high-strength concrete with a compressive strength

497 of less than 100 MPa (Carreia and Chu 1985; Lu and Zhao 2010), but they are consistent with
498 those reported in the existing research on UHPC (Sobuz et al. 2016; Hoang and Fehling 2017).
499 The Poisson's ratios (ν) of all the mixes, however, are consistently 0.20 or 0.21, despite the
500 variations in raw constituent materials and compressive strength.

501

502 The average cylinder compressive strengths of the nine mixes are shown against their cube
503 compressive strengths in Figure 12, which show that the former is slightly larger for the same mix.
504 This is opposite to the common observation for normal strength concrete, but is consistent with
505 the findings by Kusumawardaningsih et al. (2015) for UHPC. However, even for UHPC, Graybeal
506 and Davis (2008) found that the cylinder compressive strength is lower than the cube compressive
507 strength. In the present study, the end surfaces of the cylinder specimens were ground to ensure
508 that they were flat and parallel, but the surfaces of the cube specimens, which satisfied the
509 requirement of the standard (ASTM C109 2016), were not ground. In addition, although the
510 cylinder specimens were prepared using exactly the same mix proportions as the cube specimens,
511 they were prepared in different batches. The above two factors might also have affected the test
512 results. Further research is needed to clarify the relationship between the cube and cylinder
513 compressive strengths of UHPC.

514

515 **3.5 Effect of Curing Method**

516

517 Figure 13 compares the results of two pairs of specimens; the only difference between the
518 specimens in each pair was the curing method. It is evident that compared with tap water curing,
519 seawater curing led to evident reductions in the compressive strength of concrete (up to around
520 15% at the age of 90 days), and such a reduction appears to increase with the age of concrete. The
521 seawater curing method also appears to have a slight negative effect on the elastic modulus of
522 concrete, but this effect was not as pronounced as the effect on strength (see Table 8). The above
523 observations are similar to those reported in the open literature (e.g. Etxeberria et al. 2016; Islam
524 et al. 2016), and are believed to be at least partially due to the existence of magnesium sulphate
525 when seawater is used for curing (Ragab et al. 2016).

526

527 In Figure 14 the compressive strengths of specimens after 28 and 90 days of $22\pm3^\circ\text{C}$ tap water
528 immersion curing (i.e. $f_{\text{cu},28\text{d}}$ and $f_{\text{cu},90\text{d}}$) are shown against the strengths of the corresponding
529 specimens after 24 hours of $90\pm1^\circ\text{C}$ heat curing (i.e. $f_{\text{cu},\text{H-24hr}}$). Trend lines obtained using linear
530 regression analyses are also given in the figure to show the correlation between results obtained
531 with different curing methods. In addition, the $f_{\text{cu},\text{H-24hr}}$ values of all the mixes are summarized in
532 Table 6. It is evident from Figure 14a and Table 6 that $f_{\text{cu},\text{H-24hr}}$ is generally close to $f_{\text{cu},28\text{d}}$ while
533 lower than $f_{\text{cu},90\text{d}}$ for the mixes of Group 2. However, for the UHPSSC mixes of Group 3, Figure
534 14b shows that both $f_{\text{cu},28\text{d}}$ and $f_{\text{cu},90\text{d}}$ are lower than $f_{\text{cu},\text{H-24hr}}$. It may thus be concluded that compared
535 with UHPC, it takes more time for UHPSSC cured at room temperature to develop the same
536 strength as that subjected to heat curing.

537

538 **4. COST ANALYSIS**

539

540 The cost per cubic meter within the Hong Kong context was calculated for the mixes in Group 3
541 (i.e. UHPSSC) and compared with that of normal concrete having a cylinder compressive strength
542 of 54.1 MPa, whose mix proportions are given in Zhang et al. (2014). In the calculations, the

543 following prices of the raw materials, obtained in July 2018 from the suppliers of materials used
544 in the present study, were used: (1) HKD 2080 per tonne for white cement; (2) HKD 810 per tonne
545 for ordinary Portland cement; (3) HKD 2070 per tonne for silica fume; (4) HKD 2300 per tonne
546 for quartz powder; (5) HKD 300 per tonne for fly ash; (6) HKD 750 per tonne for quartz sand; and
547 (7) HKD 13000 per tonne for HRWR. The prices of natural river sand and crushed stone are
548 assumed to be HKD 138 per tonne and HKD 67 per tonne, respectively, according to the Census
549 and Statistics Department (CSD) of Hong Kong (HK CSD 2018a). Natural sea-sand is abundant
550 in coastal regions, so it may be used at no cost. However, in the calculations, it is conservatively
551 assumed to cost the same amount as river sand (i.e. HKD 138 per tonne). Similarly, seawater is
552 conservatively assumed to have the same cost of HKD 7.11 per tonne as tap water according to
553 the Water Supplies Department (WSD) of Hong Kong (HK WSD 2018).

554

555 The desilting of sand was found to increase the compressive strength of UHPSSC. The desilting
556 process involves additional energy and labour costs, which are estimated to be HKD 2.05 per tonne
557 based on the following assumption: (1) a typical 15 kW sand washing machine (e.g. Model KSW
558 200) (Mewarhitech 2018) capable of washing 130 tonnes of sand per hour; (2) the cost for
559 electricity is HKD 1.15 per kWh (CLP 2018); and (3) two workers are needed to operate such a
560 sand washing machine and their average salary is HKD 998.2 per day (HD CSD 2018b). The
561 labour and equipment costs for casting concrete are negligible compared with other costs, so they
562 are not included in the calculations for simplicity.

563

564 The so-calculated costs per cubic meter are summarized in Table 9. It is evident that significant
565 reductions in the costs can result from the use of ordinary Portland cement to replace white cement,
566 and the use of fly ash to replace quartz powder. The cost per unit volume of UHPSSC is shown to
567 be significantly higher than that of normal concrete. However, considering its ultrahigh strength,
568 the cost per MPa per cubic meter of UHPSSC is comparable to or even lower than that of normal
569 concrete. The UHPSSC mix with ordinary Portland cement and fly ash (i.e. SS-SW-OPC-FA) is
570 the most cost-effective, with a cost of only HKD 9.43 per MPa per cubic meter.

571

572 In the above calculations, seawater and sea-sand were assumed to cost the same amounts as tap
573 water and river sand, respectively. By doing so, the costs per cubic meter of Mixes 11-15
574 (UHPSSC) are exactly the same as those of Mixes 6-10 (tap water-river sand UHPC), respectively.
575 In practice, seawater and sea-sand may be obtained at nearly no cost so that the costs of UHPSSC
576 can be further reduced to the numbers provided in the brackets of Table 9.

577

578 5. CONCLUSIONS

579

580 This paper has been concerned with the development of ultra-high performance concrete using
581 seawater and sea-sand (referred to as UHPSSC) to address the challenges associated with the
582 shortage of fresh water, river sand and coarse aggregate in producing concrete for coastal and
583 marine infrastructure. To minimise the cost of producing UHPSSC and eliminating corrosion
584 concerns with steel fibres, the study has been focussed on the development and behaviour of
585 UHPSSC without short steel fibres. The paper has presented an experimental study to demonstrate
586 the concept of UHPSSC and to clarify the effects of several parameters on its mechanical
587 behaviour. The test results showed that the highest-strength UHPSSC in the present study, which
588 was prepared with white cement, silica fume and quartz powder and cured at room temperature,

589 achieved a 28-day cube compressive strength of 184 MPa, with its mini-slump spread, modulus of
590 elasticity and Poisson's ratio being 324 mm, 51 GPa and 0.21, respectively. The results and
591 discussions presented in the paper also allow the following conclusions to be drawn:

592

- 593 (1) The use of seawater and sea-sand generally leads to decreases in the workability and the density
594 of UHPC. Such decreases are shown to be dependent on the other constituent materials and
595 can be small.
- 596 (2) The use of seawater and sea-sand is likely to slightly increase the early strength of UHPC but
597 is likely to slightly decrease the strengths at 7 days and above.
- 598 (3) Compared to tap water-river sand UHPC, the UHPSSC with the same compressive strength
599 generally has a slightly lower modulus of elasticity but slightly higher axial and hoop strains
600 at peak axial stress.
- 601 (4) Sand desilting results in a considerable increase in the workability and strength of UHPSSC.
602 The use of ordinary Portland cement to replace white cement leads to a slight decrease in the
603 workability and early strength of UHPSSC, whereas the use of Class C fly ash to replace quartz
604 powder leads to a slight increase in the workability of UHPSSC.
- 605 (5) The cost per MPa per cubic metre of UHPSSC is comparable to or even lower than that of a
606 normal concrete with a cylinder compressive strength of 54.1 MPa. The most cost-effective
607 UHPSSC in the present study, which was mixed with ordinary Portland cement and Class C
608 fly ash, has a unit cost of only HKD 9.43 per MPa per cubic meter and a 28-day cube
609 compressive strength of 174 MPa.

610

611 ACKNOWLEDGEMENTS

612

613 The authors gratefully acknowledge the financial support provided by the Hong Kong Research
614 Grants Council (Project Nos: PolyU 152634/16E and T22-502/18-R) and The Hong Kong
615 Polyethnic University (Project account code: 1-BBAG). The authors would also like to thank
616 Messrs Ze-Jian Chen, Ryan Ho and Jia-Chen Ma for their assistance in the execution of the tests
617 and BASF Chemical, Hong Kong for donating the HRWR used in the tests. They would also like
618 to thank Drs Lik Lam, Cheng Jiang, Botong Zheng and Rui Zhong for helpful discussions during
619 the study.

620

621 REFERENCES

622

- 623 ASTM. (2016). Standard test method for compressive strength of hydraulic cement mortars (using
624 2-in. or [50-mm] cube specimens). *ASTM C109/C109M-16a*, West Conshohocken, PA.
- 625 ASTM. (2014). Standard specification for flow table for use in tests of hydraulic cement. *ASTM
626 C230/C230M - 14*, West Conshohocken, PA.
- 627 ASTM. (2014). Standard test method for static modulus of elasticity and poisson's ratio of concrete
628 in compression. *ASTM C469/C469M-14*, West Conshohocken, PA.
- 629 ASTM. (2017). Standard specification for coal fly ash and raw or calcined natural pozzolan for
630 use in concrete. *ASTM C618 - 17a*, West Conshohocken, PA.
- 631 ASTM. (2013). Standard test method for density, absorption, and voids in hardened concrete.
632 *ASTM C642 - 13*, West Conshohocken, PA.
- 633 ASTM. (2015). Standard test method for flow of hydraulic cement mortar. *ASTM C1437/C1437M-
634 15*, West Conshohocken, PA.

635 ASTM. (2017). Standard practice for fabricating and testing specimens of ultra-high performance
636 concrete. *ASTM C1856/C1856M-17*, West Conshohocken, PA.

637 Alkaysi, M., El-Tawil, S., Liu, Z., & Hansen, W. (2016). Effects of silica powder and cement type
638 on durability of ultra high performance concrete (UHPC). *Cement and Concrete Composites*,
639 66, 47-56.

640 BSI. (2002). Mixing water for concrete - specification for sampling, testing and assessing the
641 suitability of water, including water recovered from processes in the concrete industry, as
642 mixing water for concrete. *BSI EN 1008*, London, UK.

643 BSI. (2013). Aggregates for concrete, *BS EN1260*, London, UK.

644 Carreira, D. J., and Chu, K. H. (1985). Stress-strain relationship for plain concrete in compression.
645 *ACI Journal*, 82(6), 797-804.

646 CLP, Hong Kong. (2018). <https://www.clp.com.hk/zh/customer-service/tariff/business-and-other-customers/bulk-tariff> (accessed 20/08/18).

647 Dickson, A. G., & Goyet, C. (1994) *Handbook of Methods for the Analysis of the Various
649 Parameters of the Carbon Dioxide System in Sea Water. Version 2*, Oak Ridge National
650 Laboratory, Oak Ridge, 10-12.

651 De Weerdt, K., Justnes, H., & Geiker, M. R. (2014). Changes in the phase assemblage of concrete
652 exposed to sea water. *Cement and Concrete Composites*, 47, 53-63.

653 Etxeberria, M., Fernandez, J. M., & Limeira, J. (2016). Secondary aggregates and seawater
654 employment for sustainable concrete dyke blocks production: case study. *Construction and
655 Building Materials*, 113, 586-595.

656 Fernandes, V. A., Purnell, P., Still, G. T., & Thomas, T. H. (2007). The effect of clay content in
657 sands used for cementitious materials in developing countries. *Cement and Concrete Research*,
658 37(5), 751-758.

659 GB/T. (2011). Sand for construction. *GB/T 14684-2011*, Beijing, China. (in Chinese).

660 Ghorab, H. Y., Hilal, M. S., & Kishar, E. A. (1989). Effect of mixing and curing waters on the
661 behaviour of cement pastes and concrete part 1: microstructure of cement pastes. *Cement and
662 Concrete Research*, 19(6), 868-878.

663 Graybeal, B., & Tanesi, J. (2007). Durability of an ultrahigh-performance concrete. *Journal of
664 Materials in Civil Engineering*, 19(10), 848-854.

665 Graybeal, B., & Davis, M. (2008). Cylinder or cube: strength testing of 80 to 200 MPa (11.6 to 29
666 ksi) ultra-high-performance fiber-reinforced concrete. *ACI Materials Journal*, 105(6), 603-609.

667 Graybeal, B. A. (2011). *Ultra-High Performance Concrete (No. FHWA-HRT-11-038)*. Federal
668 Highway Administration, Washington, DC, USA.

669 Hamad, B.S. (1995). Investigations of chemical and physical properties of white cement concrete.
670 *Advanced Cement Based Materials*, 2(4), 161-167.

671 Hasdemir, S., Tuğrul, A., & Yılmaz, M. (2016). The effect of natural sand composition on concrete
672 strength. *Construction and Building Materials*, 112, 940-948.

673 Hemalatha, T., & Ramaswamy, A. (2017). A review on fly ash characteristics—towards promoting
674 high volume utilization in developing sustainable concrete. *Journal of Cleaner Production*, 147,
675 546-559.

676 Hewlett P.C. (1998). *LEA's Chemistry of Cement and Concrete*, John Wiley& Sons Inc., New
677 York, USA.

678 HK CSD. (2018a). *Average Wholesale Prices of Selected Building Materials in April 2018*, Census
679 and Statistics Department, Hong Kong.

680 HK CSD. (2018b). *Average Daily Wages of Workers Engaged in Public Sector Construction*
681 *Projects as Reported by Main Contractors in May 2018*, Census and Statistics Department,
682 Hong Kong.

683 HK WSD. (2018). <https://www.wsd.gov.hk/tc/customer-services/manage-account-and-water-bills/water-sewage-tariff/index.html> (accessed 11/01/2019).

685 Hoang, A. L., & Fehling, E. (2017). Influence of steel fiber content and aspect ratio on the uniaxial
686 tensile and compressive behavior of ultra high performance concrete. *Construction and*
687 *Building Materials*, 153, 790-806.

688 Islam, M. M., Islam, M. S., Al-Amin, M., & Islam, M. M. (2012). Suitability of sea water on curing
689 and compressive strength of structural concrete. *Journal of Civil Engineering (IEB)*, 40, 37-45.

690 JGJ. (2006). Mixing water for concrete. *JGJ 63-2006*, Beijing, China. (in Chinese).

691 JGJ. (2006). Standard for technical requirements and test method of sand and crushed stone (or
692 gravel) for ordinary concrete. *JGJ 52-2006*, Beijing, China. (in Chinese).

693 JGJ. (2010). Technical code for application of sea-sand concrete. *JGJ206-2010*, Beijing, China.
694 (in Chinese).

695 Juengera, M. C. G., Monteiro, P. J. M., Gartnerc, E. M. & Denbeauxd, G. P. (2016). A soft X-
696 ray microscope investigation into the effects of calcium chloride on tricalcium silicate hydration.
697 *Cement and Concrete Research*, 35, 19-25.

698 Kaushik, S. K., & Islam, S. (1995). Suitability of sea water for mixing structural concrete exposed
699 to a marine environment. *Cement and Concrete Composites*, 17(3), 177-185.

700 Kusumawardaningsih, Y., Fehling, E., & Ismail, M. (2015). UHPC compressive strength test
701 specimens: Cylinder or cube?. *Procedia Engineering*, 125, 1076-1080.

702 Li, Y. L., Zhao, X. L., Singh, R. R., & Al-Saadi, S. (2016). Tests on seawater and sea sand
703 concrete-filled CFRP, BFRP and stainless steel tubular stub columns. *Thin-Walled Structures*,
704 108, 163-184.

705 Li, Y. L., Teng, J. G., Zhao, X. L., & Raman, R. S. (2018). Theoretical model for seawater and sea
706 sand concrete-filled circular FRP tubular stub columns under axial compression. *Engineering*
707 *Structures*, 160, 71-84.

708 Liu, W., Cui, H., Dong, Z., Xing, F., Zhang, H., & Lo, T. Y. (2016). Carbonation of concrete made
709 with dredged marine sand and its effect on chloride binding. *Construction and Building*
710 *Materials*, 120, 1-9.

711 Lu, Z. H., & Zhao, Y. G. (2010). Empirical stress-strain model for unconfined high-strength
712 concrete under uniaxial compression. *Journal of Materials in Civil Engineering*, 22(11),
713 1181-1186.

714 Mewarhitech, India. (2018). <http://www.mewarhitech.com/sand-washer-machine/> (accessed
715 20/08/2018).

716 Mohammed, T. U., Hamada, H., & Yamaji, T. (2004). Performance of seawater-mixed concrete
717 in the tidal environment. *Cement and Concrete Research*, 34(4), 593-601.

718 Meng, W. N., & Khayat, K. (2017). Effects of saturated lightweight sand content on key
719 characteristics of ultra-high-performance concrete. *Cement and Concrete Research*, 101, 46-54.

720 Nishida, T., Otsuki, N., Ohara, H., Garba-Say, Z. M., & Nagata, T. (2013). Some considerations
721 for applicability of seawater as mixing water in concrete. *Journal of Materials in Civil*
722 *Engineering*, 27(7), B4014004.

723 Papadakis, V. G. (2000). Effect of fly ash on Portland cement systems: Part II. High-calcium fly
724 ash. *Cement and Concrete Research*, 30(10), 1647-1654.

725 Ragab, A. M., Elgammal, M. A., Hodhod, O. A., & Ahmed, T. E. (2016). Evaluation of field
726 concrete deterioration under real conditions of seawater attack. *Construction and Building
727 Materials*, 119, 130-144.

728 Ramachandran, V.S. (1979). Differential thermal method of estimating calcium hydroxide in
729 calcium silicate and cement pastes, *Cement and Concrete Research*, 9(6), 677-684

730 Richard, P., & Cheyrezy, M. (1995). Composition of reactive powder concretes. *Cement and
731 Concrete Composites*, 25(7), 1501-1511.

732 Richardson, A. E., & Fuller, T. (2013). Sea shells used as partial aggregate replacement in
733 concrete. *Structural Survey*, 31(5), 347-354.

734 Roux, N., Andrade, C., & Sanjuan, M. (1996). Experimental study of durability of reactive powder
735 concretes. *Journal of Materials in Civil Engineering*, 8(1), 1-6.

736 Sakai, E., Akinori, N., Daimon, M., Aizawa, K., & Kato, H. (2008). Influence of Superplasticizer
737 on the Fluidity of Cements with Different Amount of Aluminate Phase. *Second International
738 Symposium on Ultra High Performance Concrete*, 85-92.

739 Shi, Z. G., Shui, Z. H., Li, Q., & Geng, H. N. (2015). Combined effect of metakaolin and sea water
740 on performance and microstructures of concrete. *Construction and Building Materials*, 74, 57-
741 64.

742 Shi, C., Wu, Z., Xiao, J., Wang, D., Huang, Z., & Fang, Z. (2015). A review on ultra high
743 performance concrete: Part I. Raw materials and mixture design. *Construction and Building
744 Materials*, 101, 741-751.

745 Sobuz, H. R., Visintin, P., Ali, M. M., Singh, M., Griffith, M. C., & Sheikh, A. H. (2016).
746 Manufacturing ultra-high performance concrete utilising conventional materials and
747 production methods. *Construction and Building materials*, 111, 251-261.

748 Soliman, N. A., & Tagnit-Hamou, A. (2017). Using glass sand as an alternative for quartz sand in
749 UHPC. *Construction and Building Materials*, 145, 243-252.

750 Suryavanshi, A. K., & Swamy, R. N. (1996). Stability of Friedel's salt in carbonated concrete
751 structural elements. *Cement and Concrete Research*, 26(5), 729-741.

752 Taylor, M. A., & Kuwairi, A. (1978). Effect of ocean salts on the compressive strength of concrete.
753 *Cement and Concrete Research*, 8, 491-500.

754 Teng, J. G. (2014). Performance enhancement of structures through the use of fibre-reinforced
755 polymer (FRP) composites, in: *Proceedings of 23rd Australasian Conference on the Mechanics
756 of Structures and Materials (ACMSM23)*, New south wales, Australia.

757 Teng, J. G., Yu, T., Dai, J. G., & Chen, G. M. (2011). FRP composites in new construction: current
758 status and opportunities, in: *Proceedings of 7th National Conference on FRP Composites in
759 Infrastructure*, Hangzhou, China.

760 Teng, J.G., Zhang, B., Zhang, S.S. & Fu, B. (2018). Steel-free hybrid reinforcing bars for concretes
761 structures. *Advances in Structural Engineering*, 21(16), 2617-2621.

762 Tikalsky, P.J., & Carrasquillo, R. L. (1989) *The Effect of Fly Ash on the Sulfate Resistance of
763 Concrete. Research Report 481-5*, Center for Transportation Research, the University of Texas
764 at Austin, 15-16.

765 Tiwari, P., Chandak, R., & Yadav, R. K. (2014). Effect of salt water on compressive strength of
766 concrete. *International Journal of Engineering Research and Applications*, 4(4), 38-42.

767 Wang, J., Feng, P., Hao, T., & Yue, Q. (2017). Axial compressive behaviour of seawater coral
768 aggregate concrete-filled FRP tubes. *Construction and Building Materials*, 147, 272-285.

769 Wegian, F. M. (2010). Effect of seawater for mixing and curing on structural concrete. *The IES
770 Journal Part A: Civil & Structural Engineering*, 3(4), 235-243.

771 Whipmix, USA, (2019). <https://whipmix.com/products/silky-rock/> (accessed 11.01.2019).

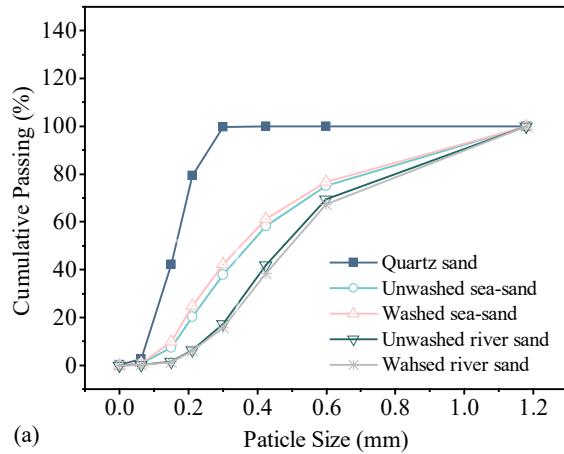
772 Wille, K., Naaman, A. E., & Parra-Montesinos, G. J. (2011). Ultra-high-performance concrete
773 with compressive strength exceeding 150 MPa (22 ksi): A Simpler Way. *ACI Materials Journal*,
774 108(1), 46-54.

775 Wille, K., El-Tawil, S., & Naaman, A. E. (2014). Properties of strain hardening ultra high
776 performance fiber reinforced concrete (UHP-FRC) under direct tensile loading. *Cement and*
777 *Concrete Composites*, 48, 53-66.

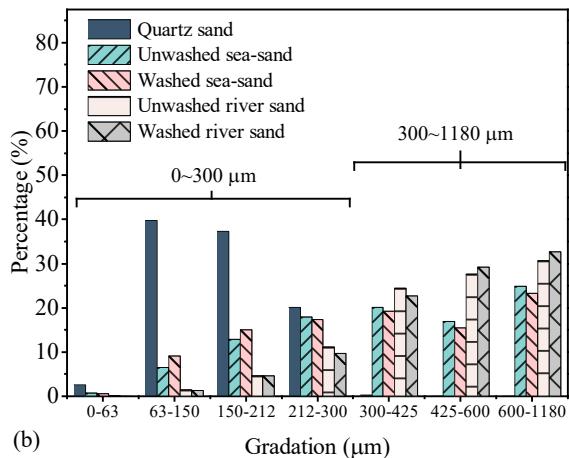
778 Wille, K., & Boisvert-Cotulio, C. (2015). Material efficiency in the design of ultra-high-
779 performance concrete. *Construction and Building Materials*, 86, 33-43.

780 Wu, Z., Shi, C., He, W., & Wang, D. (2016). Uniaxial compression behavior of ultra-high
781 performance concrete with hybrid steel fiber. *Journal of Materials in Civil Engineering*, 28(12),
782 06016017.

783 Xiao, J., Qiang, C., Nanni, A., & Zhang, K. (2017). Use of sea-sand and seawater in concrete
784 construction: current status and future opportunities. *Construction and Building Materials*, 155,
785 1101-1111.


786 Yang, E. I., Yi, S.T., & Leem, Y.M. (2005). Effect of oyster shell substituted for fine aggregate on
787 concrete characteristics: Part I. Fundamental properties, *Cement and Concrete Research*. 35
788 (11), 2175-2182.

789 Younis, A., Ebead, U., Suraneni, P., & Nanni, A. (2018). Fresh and hardened properties of
790 seawater-mixed concrete. *Construction and Building Materials*, 190, 276-286.

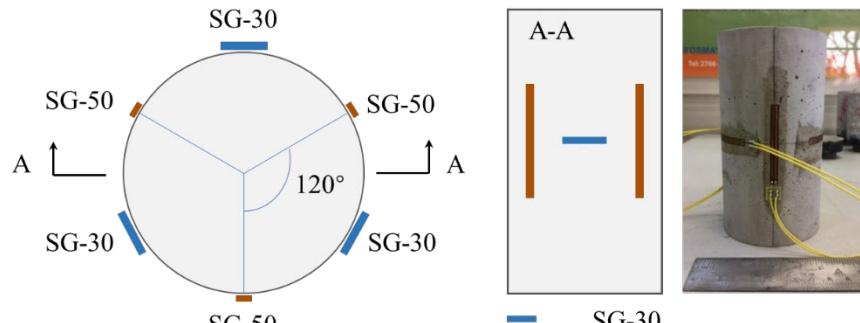

791 Zhang, B., Yu, T., & Teng, J. G. (2014). Behavior of concrete-filled FRP tubes under cyclic axial
792 compression. *Journal of Composites for Construction*, 19(3), 04014060.

1 **Figures**

2

3 (a)

4 (b)


5 **Figure 1.** Particle size distributions of sands: (a) cumulative passing; and (b) gradations.

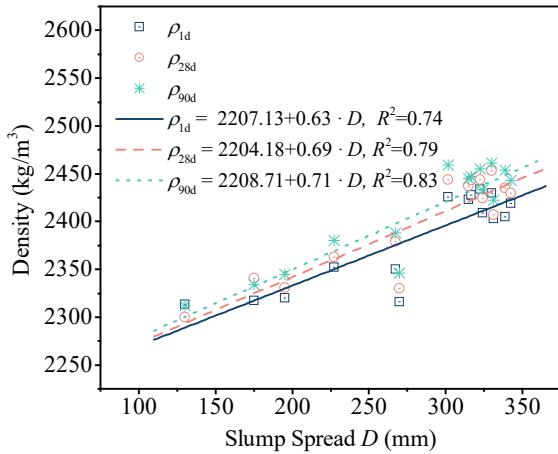
6

(a)

7

A-A

SG-30
SG-50


Note: SG means strain gauge.

(b)

8

9 **Figure 2.** Test setup and instrumentation: (a) test setup; (b) layout of strain gauges.
10

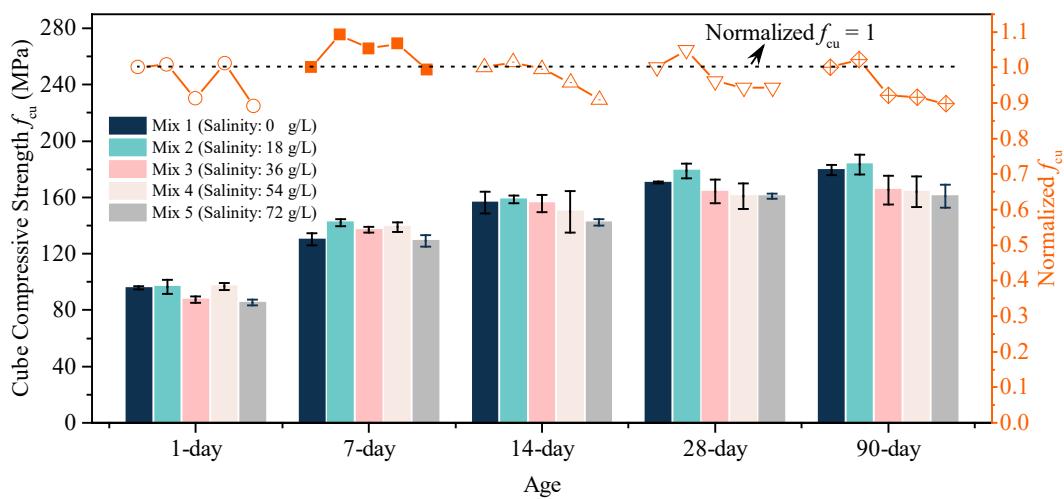
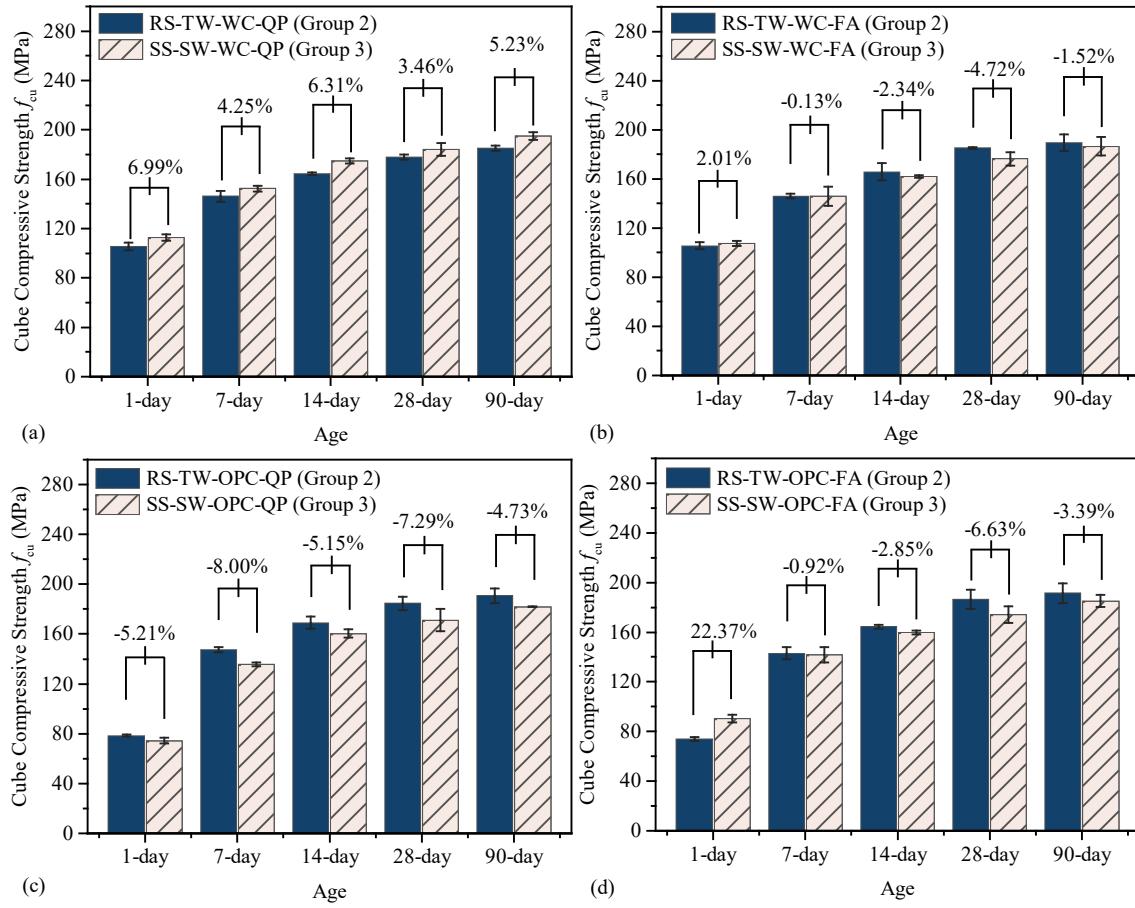

11

Figure 3. Relationship between density and slump spread.

12
13
14
15

16



17

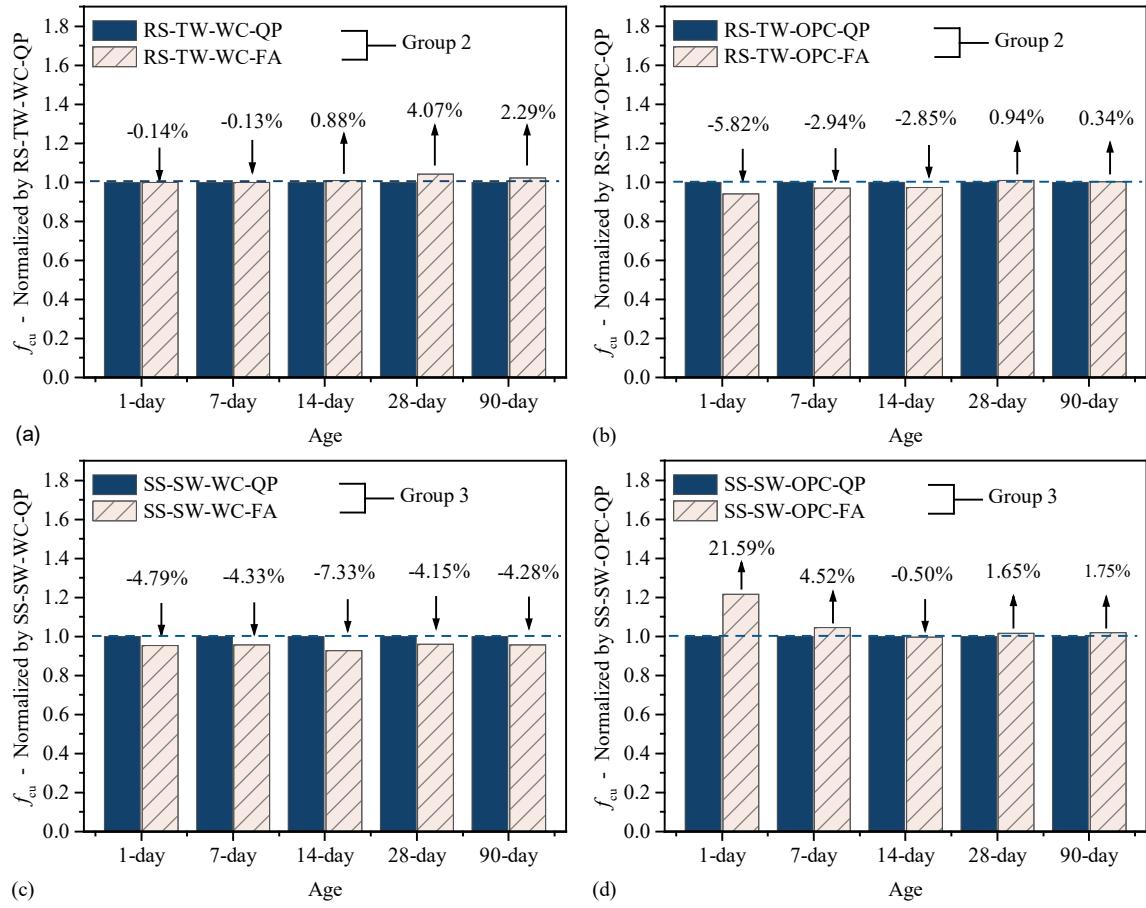
18

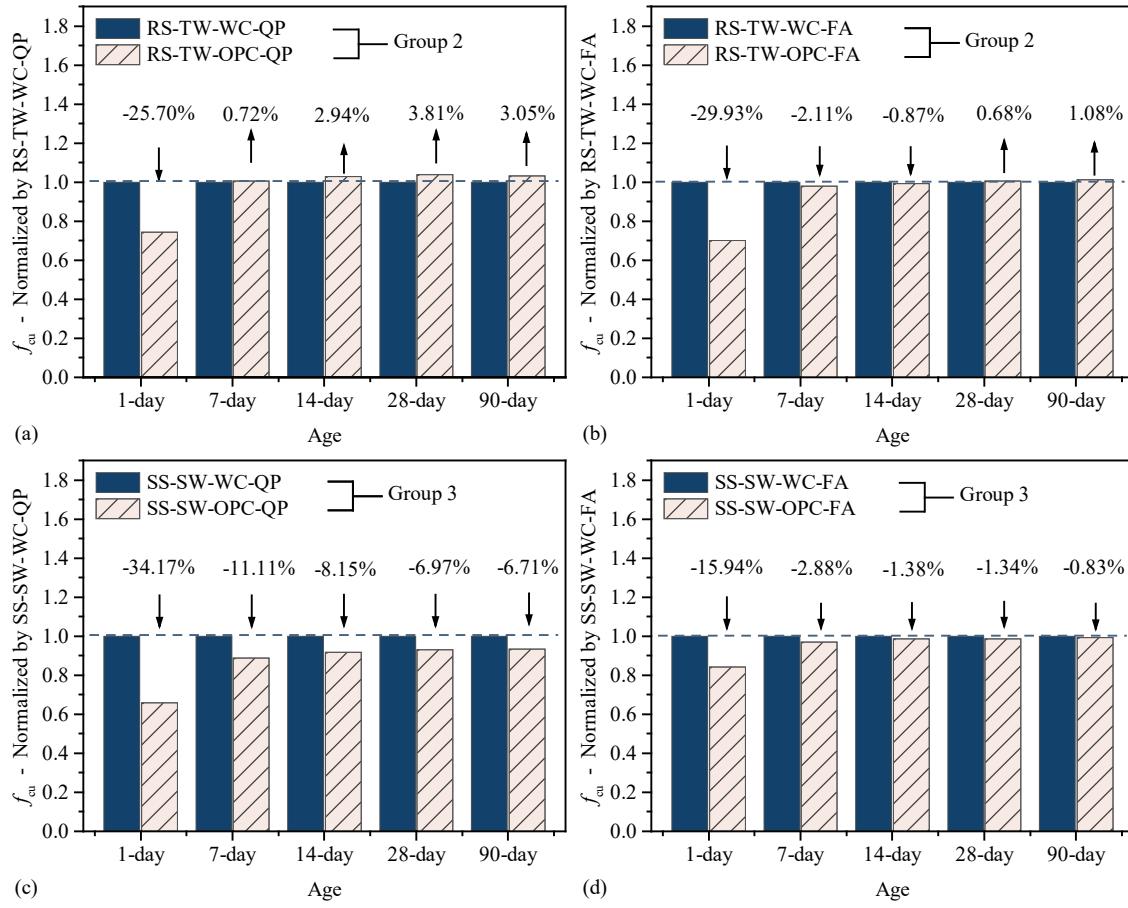
Figure 4. Effect of salinity on compressive strength.

19

Figure 5. Effect of seawater and sea-sand on the strength development of UHPC prepared with:
 (a) white cement and quartz powder; (b) white cement and fly ash; (c) ordinary Portland cement and quartz powder; and (d) ordinary Portland cement and fly ash.

21

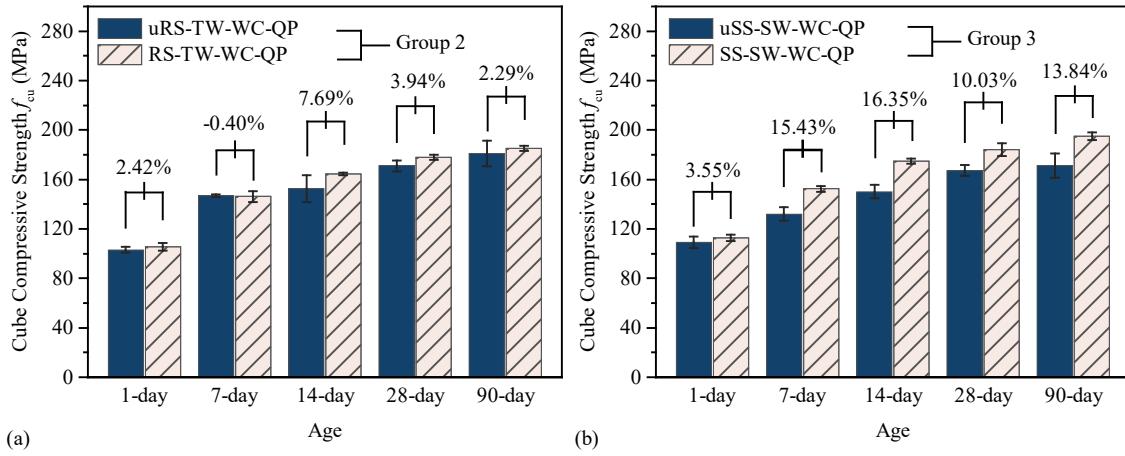

22


23

24

25

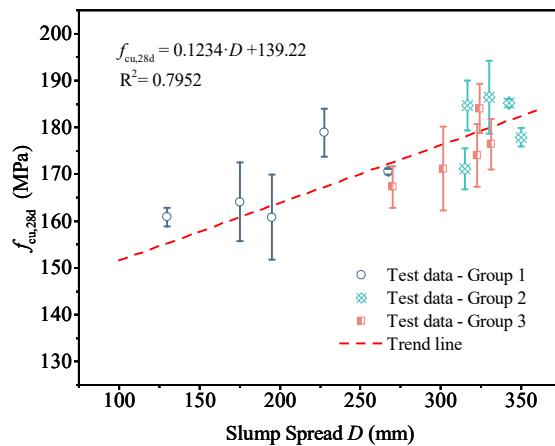
26



33

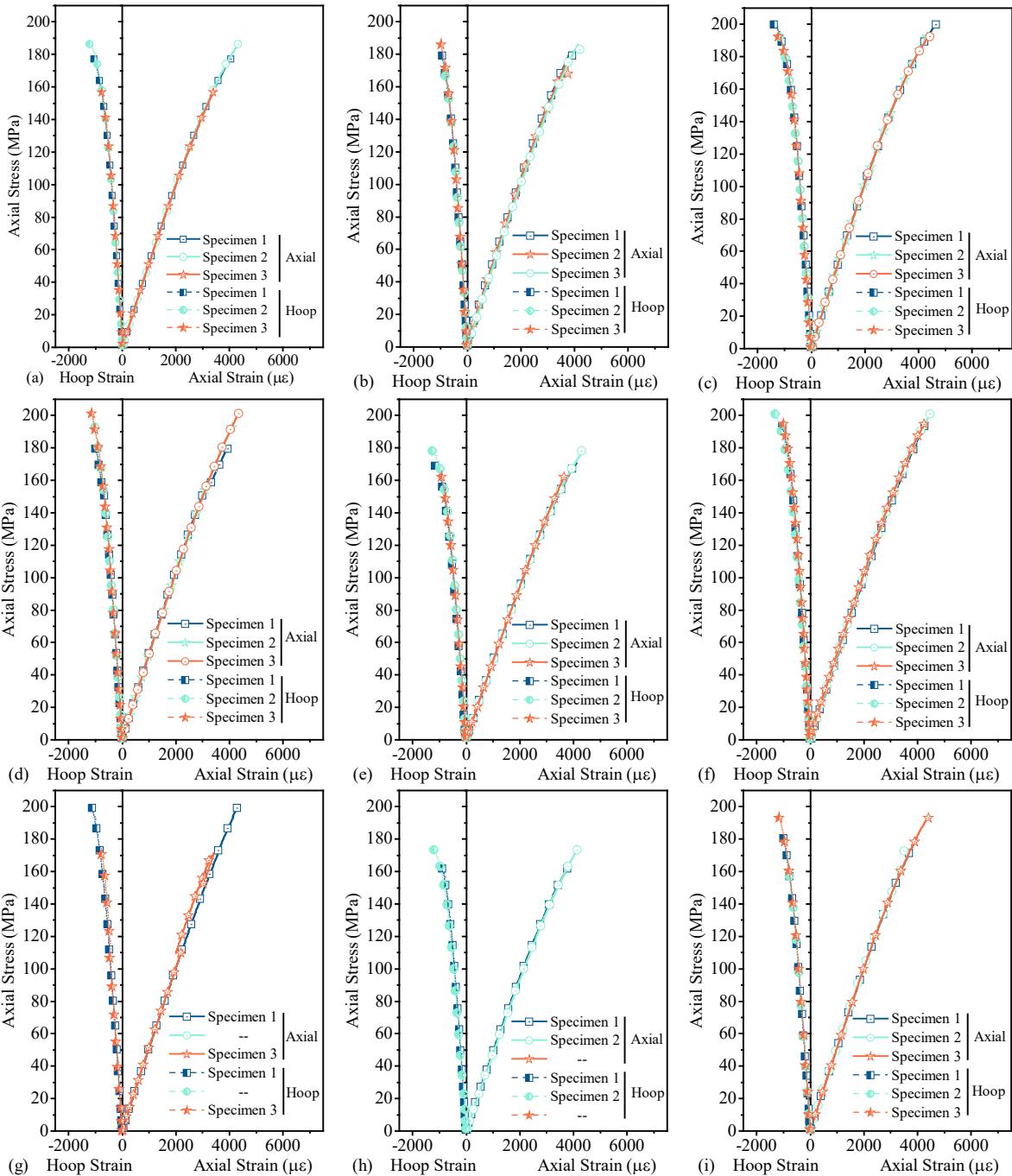
34

Figure 7. Effect of cement type on strength development: (a) tap water-river sand UHPC with quartz powder; (b) tap water-river sand UHPC with fly ash; (c) UHPSSC with quartz powder; and (d) UHPSSC with fly ash.

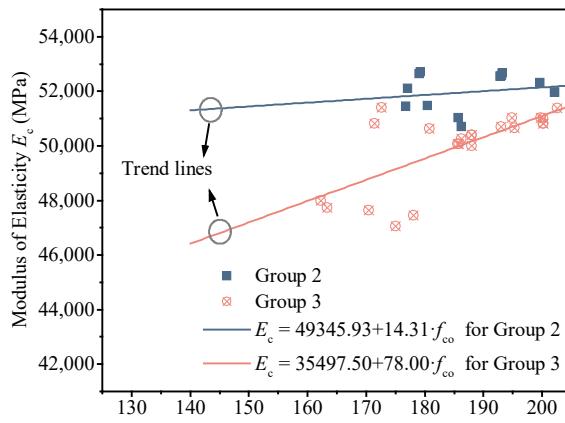

39

(a)

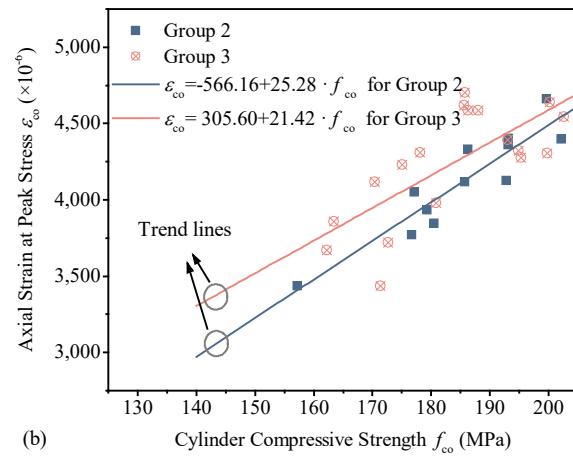
40 **Figure 8.** Effect of sand desilting on strength development: (a) tap water-river sand UHPC; and
41 (b) UHPSSC.


42

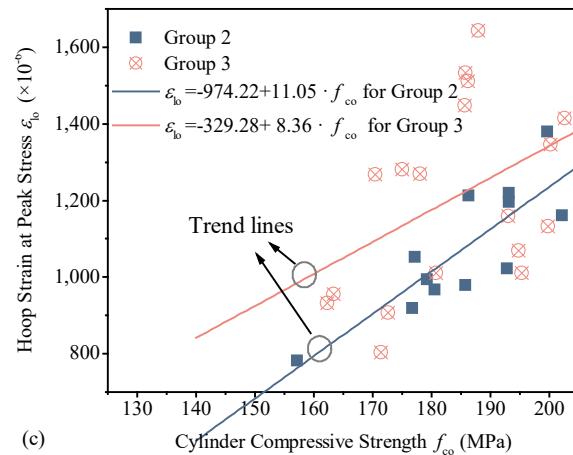
43


44

45 **Figure 9.** Relationship between 28-day cube compressive strength and slump spread.
46

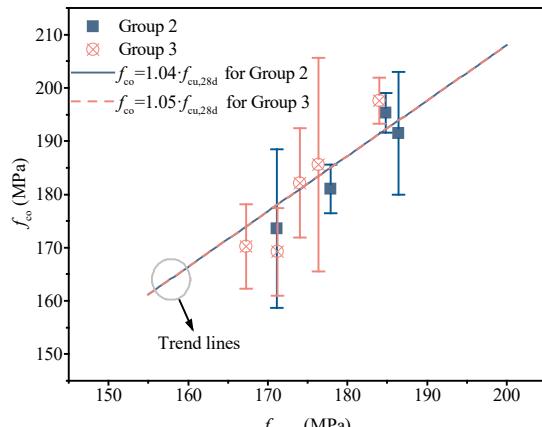

50 **Figure 10.** Stress-strain curves:

51 (a) uRS-TW-WC-QP; (b) RS-TW-WC-QP; (c) RS-TW-OPC-QP; (d) RS-TW-OPC-FA; (e) uSS-
 52 SW-WC-QP; (f) SS-SW-WC-QP; (g) SS-SW-WC-FA; (h) SS-SW-OPC-QP; (i) SS-SW-OPC-
 53 FA.

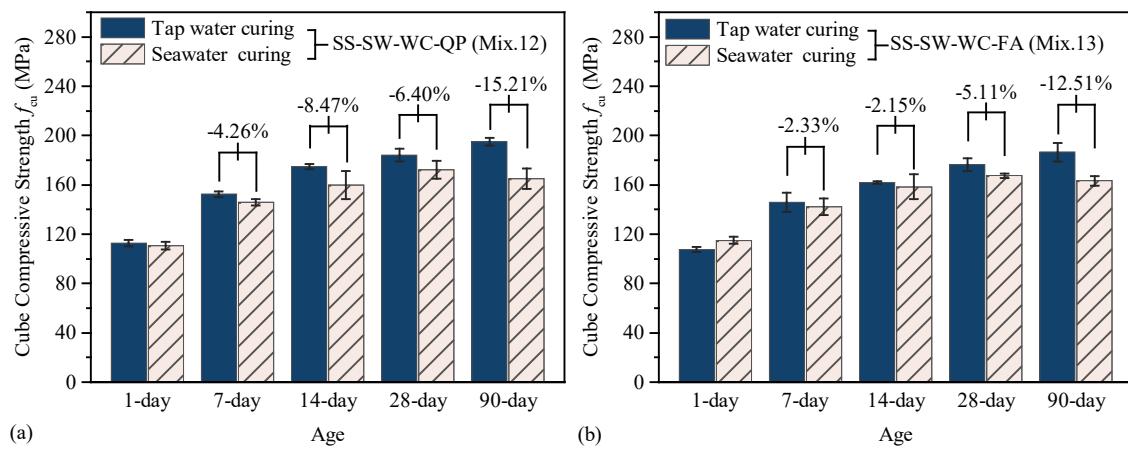

(a) Modulus of Elasticity E_c (MPa) versus Cylinder Compressive Strength f_{co} (MPa)

54
55

(b) Axial Strain at Peak Stress ε_{co} ($\times 10^{-6}$) versus Cylinder Compressive Strength f_{co} (MPa)


56

(c) Hoop Strain at Peak Stress ε_{lo} ($\times 10^{-6}$) versus Cylinder Compressive Strength f_{co} (MPa)


57

58 **Figure 11.** Characteristic parameters versus cylinder compressive strength: (a) E_c ; (b) ε_{co} ; and (c)
59 ε_{lo} .
60

61

62 **Figure 12.** Relationship between cylinder compressive strength (f_{co}) and 28-day cube
 63 compressive strength ($f_{cu,28d}$).
 64

67 **Figure 13.** Effect of seawater curing on the strength development of UHPSSC.

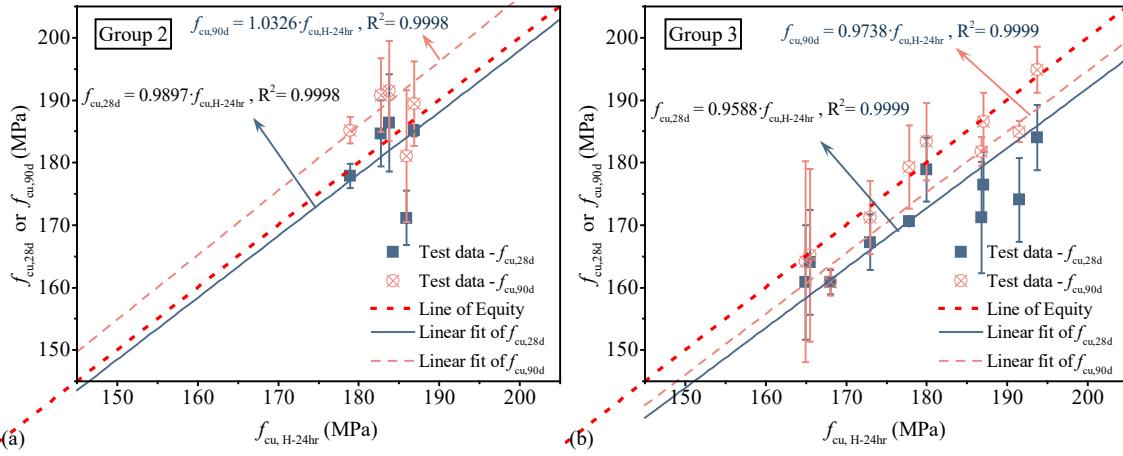


Figure 14. 28 and 90-day tap water immersion-cured cube compressive strengths (i.e. $f_{cu,28d}$ and $f_{cu,90d}$) versus 24-hour heat-cured cube compressive strengths (i.e. $f_{cu,H-24hr}$): (a) Group 2 (tap water-river sand UHPC); (b) Group 3 (UHPSSC).

69
70
71
72
73

1 Tables

2

Table 1. Mix proportions (in kg/m³)

Group number	Mix Number	Mix name	Cement		SF	SM		Fine aggregate				Water						HRWR
			WC	OPC		QP	FA	QS	uRS	RS	uSS	SS	TW	50AW	100AW	150AW	200AW	SW
1	1	QS-TW-WC-QP	830	207	207			913					164					27
	2	QS-50ASW-WC-QP	830	207	207			913					164					27
	3	QS-100ASW-WC-QP	830	207	207			913					164					27
	4	QS-150ASW-WC-QP	830	207	207			913					164					27
	5	QS-200ASW-WC-QP	830	207	207			913					164					27
2	6	uRS-TW-WC-QP	830	207	207			913					164					27
	7	RS-TW-WC-QP	830	207	207				913				164					27
	8	RS-TW-WC-FA	830	207		207			913				164					27
	9	RS-TW-OPC-QP		830	207	207			913				164					27
	10	RS-TW-OPC-FA		830	207		207		913				164					27
3	11	uSS-SW-WC-QP	830	207	207				913					164				27
	12	SS-SW-WC-QP	830	207	207					913				164				27
	13	SS-SW-WC-FA	830	207		207			913				164					27
	14	SS-SW-OPC-QP		830	207	207			913				164					27
	15	SS-SW-OPC-FA		830	207	207			913				164					27

3 Note: WC - white cement; OPC - ordinary Portland cement; SF - silica fume; SM - supplemental material; QP - quartz powder; FA - Class C fly ash; QS - quartz sand; uRS - unwashed river sand; RS - river sand; uSS - unwashed sea-sand; SS - sea-sand; TW - tap water; 50ASW - artificial seawater whose salinity is half that of typical natural seawater (TNSW); 100ASW - artificial seawater whose salinity is the same as that of TNSW; 150ASW - artificial seawater whose salinity is 1.5 times that of TNSW; 200ASW - artificial seawater whose salinity is twice that of TNSW; SW - natural seawater; HRWR - high range water reducer.

7 **Table 2.** Chemical and phase compositions of cements, silica fume and supplemental materials

Item	Identification	WC	OPC	SF	QP	FA
Chemical composition (in %)	SiO ₂	21.60	20.00	94.20	96.40	29.90
	Fe ₂ O ₃	0.41	3.04	0.35	0.14	16.00
	Al ₂ O ₃	5.16	5.53	0.71	0.74	16.20
	CaO	65.55	64.30	0.13	0.81	18.90
	TiO ₂	0.17	0.23	--	--	0.74
	SO ₃	3.63	4.49	0.17	0.90	3.99
	MgO	2.40	1.28	--	0.10	6.74
	Na ₂ O	--	--	--	--	4.89
	K ₂ O	0.26	0.62	0.09	--	1.48
	ZnO	--	0.02	--	--	0.03
Bogue components (in %)	ZrO ₂	--	--	3.84	--	--
	C ₃ S	57.00	55.40	--	--	--
	C ₂ S	19.02	15.63	--	--	--
	C ₃ A	12.99	9.52	--	--	--
	C ₄ AF	1.24	9.24	--	--	--

9 **Table 3.** Chemical compositions of natural seawater, artificial seawater and tap water (in g/L)

Ion	Seawater average (Dickson and Goyet 1994)	Tap water	Natural seawater			Artificial seawater		
			Chek Lap Kok	Whampoa	Repulse Bay	Salt 1	Salt 2	Salt 3
F ⁻	0.0013	0.0005	0.0000	0.0001	0.0000	0.0000	0.0000	0.0000
Cl ⁻	19.3524	0.0116	18.1526	19.0211	18.3124	17.7812	21.1087	19.8642
Br ⁻	0.0673	0.0000	0.0659	0.0991	0.0738	0.0617	0.0000	0.0000
SO ₄ ²⁻	2.7123	0.0176	1.6750	2.7282	1.6998	1.7438	0.0326	0.2045
NO ₂ ⁻	--	0.0000	0.0000	0.0000	0.0649	0.0000	0.0000	0.0000
NO ₃ ⁻	--	0.0099	0.0000	0.0138	0.0314	0.0285	0.0000	0.0283
PO ₄ ³⁻	--	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Li ⁺	--	0.0000	0.0007	0.0006	0.0006	0.0006	0.0005	0.0005
Na ⁺	10.7837	0.0091	10.4194	11.2169	11.1388	11.0738	15.0646	13.6546
NH ₄ ⁺	--	0.0000	0.0000	0.0148	0.0179	0.0057	0.0289	0.0000
K ⁺	0.3991	0.0035	0.3544	0.3923	0.3926	0.4329	0.0432	0.1526
Mg ²⁺	1.2837	0.0018	1.2152	1.3497	1.3410	1.2913	0.0135	0.3439
Ca ²⁺	0.4121	0.0169	0.3582	0.4060	0.4535	0.4609	0.0422	0.0789
Salinity	35.0119	0.0709	32.2413	35.2428	33.5268	32.8803	36.3342	34.3275

10

Table 4. Chemical compositions of sand lixiviums (in g/L)

Ion	Tap water	Natural seawater		Lixivium		
		Chek Lap Kok	River sand (Untreated)	Sea-sand (Untreated)	Sea-sand (Washed by tap water)	Sea-sand (Washed by tap water and soaked by seawater)
F ⁻	0.0005	0.0000	0.0000	0.0000	0.0000	0.0000
Cl ⁻	0.0116	18.1526	0.0119	1.8554	0.0130	1.9200
Br ⁻	0.0000	0.0659	0.0000	0.0000	0.0000	0.0780
SO ₄ ²⁻	0.0176	1.6750	0.1235	0.1817	0.0119	0.2134
NO ₂ ⁻	0.0000	0.0000	0.0000	0.0000	0.0000	0.0169
NO ₃ ⁻	0.0099	0.0000	0.0000	0.0000	0.0000	0.0000
PO ₄ ³⁻	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Li ⁺	0.0000	0.0007	0.0000	0.0000	0.0000	0.0000
Na ⁺	0.0091	10.4194	0.0456	2.2585	0.0238	1.1284
NH ₄ ⁺	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
K ⁺	0.0035	0.3544	0.0101	0.0884	0.0074	0.0480
Mg ²⁺	0.0018	1.2152	0.0190	0.1857	0.0056	0.0612
Ca ²⁺	0.0169	0.3582	0.1478	0.1112	0.0603	0.4575
Salinity	0.0709	32.2413	0.3579	4.6809	0.1221	3.9233

Table 5. Workability and densities of all mixes

Group number	Mix number	Mix name	Slump spread (mm)	ρ_{1d} (kg/m ³)	ρ_{28d} (kg/m ³)	ρ_{90d} (kg/m ³)
1	1	QS-TW-WC-QP	267.50	2350	2379	2388
	2	QS-50ASW-WC-QP	227.50	2352	2363	2380
	3	QS-100ASW-WC-QP	175.00	2317	2341	2334
	4	QS-150ASW-WC-QP	195.00	2320	2331	2345
	5	QS-200ASW-WC-QP	130.00	2313	2300	2312
2	6	uRS-TW-WC-QP	315.00	2423	2437	2445
	7	RS-TW-WC-QP	338.75	2405	2435	2454
	8	RS-TW-WC-FA	342.50	2419	2430	2443
	9	RS-TW-OPC-QP	316.67	2428	2443	2447
	10	RS-TW-OPC-FA	330.00	2430	2453	2461
3	11	uSS-SW-WC-QP	270.00	2316	2330	2346
	12	SS-SW-WC-QP	324.17	2409	2424	2433
	13	SS-SW-WC-FA	331.25	2403	2407	2422
	14	SS-SW-OPC-QP	301.67	2426	2444	2459
	15	SS-SW-OPC-FA	322.50	2434	2444	2455

Table 6. Cube compressive strengths of all mixes

Group number	Mix number	Mix name	$f_{cu,1d}$ (MPa)		$f_{cu,7d}$ (MPa)		$f_{cu,14d}$ (MPa)		$f_{cu,28d}$ (MPa)		$f_{cu,90d}$ (MPa)		$f_{cu,H-24hr}$ (MPa)	
			Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD
1	1	QS-TW-WC-QP	95.80	1.07	130.13	4.30	156.48	7.71	170.57	0.59	179.28	3.56	177.83	6.66
	2	QS-50ASW-WC-QP	96.60	4.88	142.07	2.70	158.77	2.70	178.90	5.13	183.35	7.15	179.94	6.20
	3	QS-100ASW-WC-QP	87.38	2.30	137.04	1.86	155.72	6.10	164.07	8.42	165.19	10.26	165.53	13.82
	4	QS-150ASW-WC-QP	96.85	2.42	138.95	3.29	149.87	14.75	160.83	9.13	164.15	10.79	164.96	16.06
	5	QS-200ASW-WC-QP	85.31	2.00	129.27	4.04	142.28	2.32	160.84	1.93	160.91	8.22	168.06	2.15
2	6	uRS-TW-WC-QP	103.11	2.48	146.84	0.92	152.60	10.88	171.15	4.38	181.03	10.54	185.92	5.03
	7	RS-TW-WC-QP	105.60	2.93	146.26	4.38	164.33	0.96	177.89	1.93	185.18	2.13	178.91	22.05
	8	RS-TW-WC-FA	105.45	2.87	146.06	1.91	165.78	7.16	185.14	0.91	189.42	6.76	186.85	0.42
	9	RS-TW-OPC-QP	78.46	0.70	147.31	1.92	169.17	4.85	184.66	5.28	190.82	5.86	182.72	2.95
	10	RS-TW-OPC-FA	73.89	1.50	142.98	4.83	164.34	1.46	186.40	7.79	191.47	8.02	183.78	20.84
3	11	uSS-SW-WC-QP	109.10	4.69	132.09	5.44	150.16	5.39	167.27	4.42	171.17	9.87	173.00	5.83
	12	SS-SW-WC-QP	112.98	2.62	152.47	2.25	174.71	1.97	184.04	5.21	194.86	2.99	193.71	3.67
	13	SS-SW-WC-FA	107.57	2.20	145.86	7.58	161.90	0.96	176.41	5.39	186.53	7.69	187.01	4.64
	14	SS-SW-OPC-QP	74.37	2.34	135.53	1.63	160.46	3.20	171.21	8.92	181.80	0.31	186.83	2.33
	15	SS-SW-OPC-FA	90.42	3.21	141.66	6.13	159.66	1.43	174.03	6.71	184.98	4.91	191.48	1.70

Table 7. Characteristic parameters of stress-strain curve

Group number	Mix number	Mix name	f_{co} (MPa)		E_c (GPa)		ν		ε_{co} ($\times 10^{-6}$)		ε_{lo} ($\times 10^{-6}$)	
			Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD
2	6	uRS-TW-WC-QP	173.54	14.88	51.542	0.745	0.20	0.00	3938	458	1015	218
	7	RS-TW-WC-QP	181.00	4.53	51.315	0.257	0.20	0.00	3912	184	955	32
	9	RS-TW-OPC-QP	195.34	3.74	52.509	0.180	0.21	0.00	4473	163	1264	100
	10	RS-TW-OPC-FA	191.44	11.51	52.403	0.385	0.21	0.00	4150	233	1059	89
3	11	uSS-SW-WC-QP	170.25	7.92	47.690	0.279	0.21	0.00	4032	329	1156	195
	12	SS-SW-WC-QP	197.59	4.35	51.024	0.362	0.20	0.01	4381	144	1165	219
	13	SS-SW-WC-FA	185.57	20.03	50.924	0.141	0.21	0.01	3870	614	968	232
	14	SS-SW-OPC-QP	169.21	8.23	47.388	0.489	0.21	0.01	4044	264	1118	231
	15	SS-SW-OPC-FA	182.16	10.27	50.910	0.431	0.22	0.00	4031	340	1026	126

Table 8. Effects of curing methods on properties of UHPSSC

Mix name	SS-SW-WC-QP (Mix 12/Group 3)		SS-SW-WC-FA (Mix 13/Group 3)	
Curing method	Tap water curing	Seawater curing	Tap water curing	Seawater curing
ρ_{1d} (kg/m ³)	2405	2409	2419	2403
ρ_{28d} (kg/m ³)	2435	2433	2430	2449
ρ_{90d} (kg/m ³)	2454	2446	2443	2446
$f_{cu,1d}$ (MPa)	112.98	110.91	107.57	115.01
$f_{cu, 7d}$ (MPa)	152.47	145.98	145.86	142.47
$f_{cu, 14d}$ (MPa)	174.71	159.91	161.9	158.43
$f_{cu, 28d}$ (MPa)	184.04	172.26	176.41	167.39
$f_{cu, 90d}$ (MPa)	194.86	165.22	186.53	163.19
f_{co} (MPa)	197.59	185.57	185.87	194.10
E_c (GPa)	51.024	50.924	50.132	50.499
ν	0.20	0.21	0.21	0.21
$\varepsilon_{co} (\times 10^{-6})$	4381	3870	4636	4613
$\varepsilon_{lo} (\times 10^{-6})$	1165	968	1497	1495

Table 9. Cost Comparison

Group number	Mix number	Mix name	$f_{cu,28d}$ (MPa)	Cost (HKD/m ³)	Cost per MPa (HKD/MPa/m ³)
--	--	Normal concrete	54.1	587	10.84
3	11	uSS-SW-WC-QP	167	3109 (2982)	18.59 (17.83)
	12	SS-SW-WC-QP	184	3109 (2982)	16.89 (16.20)
	13	SS-SW-WC-FA	176	2695 (2568)	15.28 (14.56)
	14	SS-SW-OPC-QP	171	2055 (1928)	12.02 (11.27)
	15	SS-SW-OPC-FA	174	1641 (1514)	9.43 (8.70)