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A B S T R A C T

Fire accident environments expose firefighters to life-threatening hazardous gases such as CO, HCN, and HCl, 
which can cause asphyxiation, organ damage, or even fatalities. Despite advancements in protective gear, 
conventional firefighting suits primarily offer passive protection, lacking real-time hazard forecasting. This 
reactive paradigm often results in delayed warnings against dynamic gas threats. This study proposes an inno
vative hardware-software integrated firefighting suit designed for proactive safety. The system combines 
wearable multi-gas sensors, edge computing, and a time series prediction model to forecast gas concentrations 
with 96.25 % accuracy. By analyzing historical data trends, the suit dynamically classifies hazard levels using a 
human vulnerability probit model, enabling proactive risk mitigation. Experimental results from simulated fire 
scenarios demonstrate superior performance in predicting concentrations of gases like H2S and CO. The inte
gration of predictive algorithms with real-time monitoring shifts safety management from passive response to 
proactive decision-making, enhancing firefighter survivability and operational efficiency. This advancement lays 
the foundation for next-generation intelligent firefighting equipment. This study is expected to provide a basis for 
the design of a kind of active protective firefighting suit.

1. Introduction

In firefighting scenarios, firefighting suits, as the core personal pro
tective equipment for firefighters, directly affect the life safety of fire
fighters and the sustainability of firefighting operations. However, 
incidents of casualties caused by substandard firefighting suits remain 
frequent worldwide. Firefighting suits with inadequate thermal insu
lation properties in high-temperature environments may lead to heat 
stroke or severe burns, as exemplified by the case of an Arizona fire
fighter in the United States who succumbed to heat exhaustion while 
combating wildfires due to non-compliant protective clothing (U.S. 
Occupational Safety and Health Administration, 2013). Structural de
fects, such as insufficient seam strength, can also result in garment 
rupture, exposing firefighters to hazardous conditions− a situation 
illustrated by 5 Australian firefighter who suffered chemical burns 
during an industrial plant rescue when his protective suit tore (China 
National Emergency Broadcasting, 2019).

To address these issues, countries and regions have established 

regulations like NFPA 1971 (U.S.) (National Fire Protection Association, 
2018), EN 469 (EU) (European Committee for Standardization, 2020, 
and GA 10–2014 (China) (Ministry of Public Security of China, 2014), 
setting standards for flame resistance, thermal insulation, and chemical 
protection in firefighting suits. However, current standards still lack 
timeliness, enforcement, and systematic health monitoring for 
firefighters.

Fire environments produce toxic gases like CO, HCN, and H2S, which 
can cause asphyxiation or organ damage, as well as corrosive HCl and 
HF. Flammable gases like methane can explode, worsening injuries. 
Exposure to these gases often leads to firefighter casualties. For example, 
the 2015 Tianjin Port explosion killed 110 firefighters due to explosions 
and toxic gases (China Chemical Safety Association, 2016), while the 
2013 Santa Maria nightclub fire caused severe HCN poisoning in 10 
firefighters (Couto et al., 2023). These incidents underscore the need for 
better protection, combining suit performance with gas detection and 
tactical alerts to reduce harm.

The passive protection of firefighting suits refers to the inherent 

This article is part of a special issue entitled: APSS2025 published in Journal of Loss Prevention in the Process Industries.
* Corresponding author. Department of Building Environment and Energy Engineering, The Hong Kong Polytechnic University, Hong Kong Special Administrative 

Region of China.
E-mail address: zhichao.he@polyu.edu.hk (Z. He). 

Contents lists available at ScienceDirect

Journal of Loss Prevention in the Process Industries

journal homepage: www.elsevier.com/locate/jlp

https://doi.org/10.1016/j.jlp.2025.105894
Received 15 August 2025; Received in revised form 19 November 2025; Accepted 19 December 2025  

Journal of Loss Prevention in the Process Industries 100 (2026) 105894 

Available online 20 December 2025 
0950-4230/© 2025 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by- 
nc-nd/4.0/ ). 

https://orcid.org/0000-0002-1443-8391
https://orcid.org/0000-0002-1443-8391
mailto:zhichao.he@polyu.edu.hk
www.sciencedirect.com/science/journal/09504230
https://www.elsevier.com/locate/jlp
https://doi.org/10.1016/j.jlp.2025.105894
https://doi.org/10.1016/j.jlp.2025.105894
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


protective capability provided by the material’s own flame-retardant, 
heat-insulating, and high-temperature-resistant properties (e.g., 
aramid, carbon fiber, etc.), which can defend against flames, thermal 
radiation, and high-temperature hazards (Chen et al., 2024). Its core 
characteristic lies in relying on the physicochemical attributes of the 
garment to achieve fundamental protection, thereby buying firefighters 
critical survival time. For instance, recent research has explored 
advanced materials such as nano-coated aramid to enhance fireproofing 
and thermal protection (Dong et al., 2025). Additionally, innovations in 
passive protection design, such as high-sweat-wicking thermal insu
lation suits, further improve comfort and safety by optimizing heat 
dissipation and moisture management (Xu et al., 2023).

Compared with passive protection, active protection in firefighting 
scenarios shows significant advantages in efficiency, early warning, and 
auxiliary decision-making, and has become a research hotspot in recent 
years (Blecha et al., 2018). Active protection can identify potential 
dangerous areas in advance and guide firefighters to avoid risks by 
real-time monitoring of fire environment parameters (e.g., temperature, 
gas concentration, flame spread rate) (Spitzenberger et al., 2016). This 
allows firefighters to focus more efficiently on key tasks, significantly 
improving the overall progress of firefighting operations. At the early 
warning level, active protection systems can predict fire development 
trends, toxic gas leaks, and deflagration risks through sensor networks 
and intelligent algorithms, issuing accurate alarms before dangers occur 
to buy valuable response time for firefighters (Mandal et al., 2018). In 
auxiliary decision-making, active protection integrates 
multi-dimensional fire data to generate visual situation analysis reports, 
providing a scientific basis for commanders to formulate more reason
able tactical strategies (e.g., optimizing rescue routes, allocating pro
tective resources) (Shakeriaski et al., 2022). Thus, active protection 
fundamentally changes the passive response mode and builds a more 
proactive and intelligent safety protection system. Scholars have con
ducted research on firefighting suits in areas such as evacuation decision 
support (Zhang and Huang, 2024; Cheng et al., 2023), work duration 
estimation (Blecha et al., 2018), comfort design (Mandal et al., 2018; 
Zhang et al., 2023; Hur et al., 2013), and psychological cognition (Xu 
et al., 2025). However, little research on firefighting suits has focused on 
hazardous gases in firefighting environments, leaving a gap in the active 
protection design of firefighting suits.

To bridge this gap, this paper proposes a design of a hardware- 
software integrated firefighting suit that incorporates a time series 
prediction algorithm for monitoring typical hazardous gas concentra
tions in fire scenarios. The algorithm optimizes the parameters of an 
ARIMA (Autoregressive Integrated Moving Average)-based time series 
prediction model based on collected gas concentration data and gener
ates predicted data for future periods. This study integrates protective 
equipment with dynamic hazardous gases monitoring and early warn
ing. Based on the predicted data of hazardous gases, the integrated 
firefighting suit system can provide classified warnings on the risks of 
firefighting operations in the future period based on the human 
vulnerability model.

The innovation of this research is its focus on the hazardous gas 
environments faced by firefighters. The hardware-software integrated 
firefighting suit system can provide active and comprehensive protec
tion, from hazardous gas concentration sensing to data processing, time 
series prediction, and hazard classification warning. The application of 
this research is expected to effectively reduce firefighter casualties in 
hazardous gas environments at fire scenes and improve firefighting ef
ficiency. During the case study in fire brigade, this firefighting suit 
design has been well-received by firefighters.

This paper consists of four sections: Section 2 details the methodol
ogy, employing an ARIMA-based framework for gas concentration pre
diction and risk assessment. Section 3 validates the firefighting suit 
system design through simulated fire experiments in an actual fire
fighting scenario, demonstrating high prediction accuracy and the 
hazard classification process for hazardous gases. Section 4 summarizes 

the study’s contributions, highlighting the potential of time-series 
models in fire warnings and proposing future research directions for 
intelligent firefighting equipment. Section 5 provides some concluding 
remarks.

2. Methodology

This study presents a comprehensive system design for an active- 
protection firefighting suit, which integrates real-time gas monitoring, 
data processing, and predictive analytics to enhance firefighter safety. 
This section introduces the hardware-software integrated design of the 
firefighting suit, and focuses on the introduction of the hazardous gas 
monitoring and prediction algorithm based on a time series model.

2.1. Integrated design of firefighting suit system

As shown in Fig. 1, the firefighting suit system operates through 
three interconnected modules: (1) a sensor network that continuously 
collects and transmits toxic gas concentration data, (2) a data processing 
pipeline that analyzes and predicts gas concentration trends using 
advanced time series models, and (3) a decision-support module that 
classifies hazard levels and triggers early warnings. At the core of this 
system is a hybrid analytical approach combining gas concentration 
prediction and hazard assessment. The prediction module employs 
optimized time series algorithms to forecast future gas concentrations 
based on collected data patterns, while the hazard classification module 
evaluates these predictions against toxicity thresholds using human 
vulnerability models.

This dual analysis enables dynamic hazard assessment, transitioning 
from reactive to proactive safety management. The developed software 
architecture seamlessly integrates these analytical capabilities with 
wearable hardware, featuring real-time data acquisition (1 Hz sampling 
frequency), edge-based predictive computation, and multi-mode alert 
systems. This integration creates a closed-loop workflow from environ
mental sensing to hazard visualization, providing both individual fire
fighters and command centers with critical decision-making support 
during firefighting operations.

2.2. Hazardous gas monitoring and early warning

A hazard prediction process for hazardous gases is constructed with 
the goal of accurately forecasting hazard levels in firefighting scenarios. 
The first step involves in-depth analysis of collected gas concentration 
data. Through this analysis, preliminary parameters for the concentra
tion prediction model are determined, including differencing order, 
autoregressive order, and moving average order, which form the foun
dational framework for subsequent predictions and provide critical 
support for model construction.

The second step focuses on the fitting and optimization of pre
liminary parameters. By employing a strategy of traversing different 
parameter combinations derived from the initial parameters, fine-tuning 
is performed. This process aims to identify the most suitable parameter 
configuration for predicting leaked gas concentrations, enhancing the 
model’s ability to capture concentration variation patterns and ensuring 
higher reliability and accuracy in subsequent predictions. Once 
parameter optimization is complete, the process proceeds to the pre
diction phase. Using the optimized concentration prediction model, 
future concentration data can be generated, establishing a connection 
between current analysis and future hazard trends.

The final step involves hazard level assessment. The predicted gas 
concentration data, combined with the type of hazardous gas, are 
matched against predefined hazard level thresholds. Through this 
matching, the predicted hazard level of the hazardous gas can be 
accurately evaluated, providing robust quantitative support for safety 
decision-making and risk mitigation measures. This completes the 
closed-loop process of hazardous gas monitoring and prediction, 
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encompassing data analysis, model optimization, and hazard determi
nation, playing a critical role in protecting the safety of individual 
firefighters. Fig. 2 shows the flowchart of the process of hazardous gas 
monitoring and early warning.

2.3. Concentration prediction based on time series model

In the prediction of hazardous gas concentrations, the ARIMA model 
incorporating time series is employed. This method involves several 
essential steps: initial testing is conducted to determine whether the data 
exhibit white noise characteristics, as the presence of white noise in
dicates a lack of predictable structure and precludes further modeling. 
For data that are not white noise, stationarity testing is performed to 
ensure the suitability of the series for ARIMA modeling; if the data are 
non-stationary, appropriate transformations are applied until statio
narity is achieved. Following confirmation of stationarity, model iden
tification and parameter estimation are carried out. The resulting model 
is then subjected to validation procedures, and only validated models 
are used for forecasting future gas concentration sequences.

Stationarity is a fundamental prerequisite for ARIMA modeling, as 
non-stationary time series can compromise the validity of statistical 
inference. In this study, stationarity is assessed using the Augmented 
Dickey-Fuller (ADF) test, which evaluates the presence of a unit root in 
the data (Brockwell and Davis, 2016; Said and Dickey, 1984). The null 
hypothesis of the ADF test posits that the series contains a unit root, 
indicating non-stationarity. Rejection of the null hypothesis at the 5 % 
significance level provides statistical evidence that the series is sta
tionary. If the series fails to meet the stationarity criterion, differencing 
is applied iteratively until stationarity is achieved, with first-order dif
ferencing commonly employed to stabilize the mean and variance. Upon 
confirmation of stationarity, model identification and parameter esti
mation are conducted to fit the ARIMA model to the transformed data. 
The fitting formula is as follows: 

yt = μ +
∑p

i=1
ϕiγi− 1 + εt +

∑q

i=1
θtεt− i (1) 

In this formula, yt represents the value of the time series at time t, μ is the 
constant term, p and q are the orders of the autoregressive and moving 
average components respectively, γi and Θt are the model parameters, 
and εt denotes the white noise error term at time t. By applying this 
formula to the stationary time series data, the ARIMA model parameters 
are estimated using statistical techniques such as maximum likelihood 
or least squares; once the optimal parameters are determined, the fitted 
ARIMA model can be used for forecasting and analysis of future values in 
the series. The model’s performance is evaluated based on the Bayesian 
Information Criterion (BIC) (Hastie et al., 2009), with the optimal model 
selected accordingly.

In addition to real-time gas concentration prediction in firefighting 
environments, the proposed algorithm incorporates the Gauss-Hermite 
quadrature method to calculate the cumulative exposure dose experi
enced by firefighters during prolonged operations. This numerical 
integration technique utilizes Hermite polynomials and the corre
sponding Gaussian nodes to perform curve fitting on discrete sampling 
data points. Specifically, it approximates the integral of a one- 
dimensional real function f(x) over the interval (− ∞,+∞) as (Press 
et al., 2007): 
∫ ∞

− ∞
e− x2 f(x)dx ≈

∑n

j=1
Wif(Xi) (2) 

In this formula, Xi are the Gaussian nodes (integration points), and Wi 
are the corresponding weights used in the Gauss-Hermite quadrature. n 
represents the number of Gaussian nodes (or integration points) used in 
the Gauss-Hermite quadrature approximation.

2.4. Hazard classification based on human vulnerability models

The proposed firefighting suit design adopts the human vulnerability 
models to classify the hazard levels based on the hazardous gas con
centration (Finney, 1971). The model is designed to estimate individual 
and societal risk indices, where vulnerability (the probability of fatality 
for exposed individuals) is calculated based on physical impacts and 

Fig. 1. Firefighting suit system design schematic.
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estimated exposure duration using a probit model of human vulnera
bility. The model employs an injury factor Y to represent the harm 
caused by different gas concentrations to the human body. The formula 
is as follows (Lees, 2012): 

Y = a + b ln(Cnt) (3) 

where a, b, and n are gas-specific constants representing their respective 
effects on the human body, C denotes gas concentration (ppm), and t 
represents the exposure time (min). This model establishes a quantita
tive relationship that describes the cumulative harm to the human body 
from prolonged exposure to varying concentrations of toxic gases.

By applying the probit model, the probability of fatality at a given 
location can be quantitatively derived from the corresponding injury 
factor for each event. This probabilistic approach enables the assessment 
of dose-effect relationships for human exposure to hazardous gases, 
utilizing the cumulative normal (Gaussian) probability distribution 
function to relate injury factors to vulnerability outcomes. The formula 
is as follows (National Fire Protection Association, 2018): 

V =
1

σ
̅̅̅̅̅̅
2π

√

∫ Y− 5

− ∞
e− u2/2du (4) 

Where V represents the lethality probability, and σ denotes the standard 
normal cumulative distribution function.

The integrated firefighting suit system we’ve designed and produced 
can monitor and predict 10 common fire-scene hazardous gases, 
including toxic gases like CO, HCl, NO2 and flammable gases CH4 and 
H2. The system also establishes hazard classification criterion for each 
gas type based on the human vulnerability models.

3. Case study

To systematically evaluate the hazardous gas concentration predic
tion accuracy, hazard classification precision, and early-warning 
response effectiveness of the integrated active protective firefighting 
suit, a comprehensive experimental study was conducted in a training 
base of city fire brigade in Hebei, China. The experiments simulated fire 
scenarios by releasing toxic gases and combustible gases, to replicate the 
actual firefighting environments. Firefighters wore the integrated fire
fighting suit we designed to verify its ability to monitor, predict, and 
warn of hazardous gas concentrations. Fig. 3 shows the firefighting suit 
system modeling of the training base. Fig. 4 shows the firefighters 
wearing the firefighting suit and the software analyzing gas data.

Fig. 2. Flowchart of the process of hazardous gas monitoring and early warning.
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3.1. Data collection

The training center consisted of a sealed steel structure (30 m(L) ×
20 m(W) × 8 m(H)). The experiment involved continuously releasing 
hazardous gases (CH2O and CH4) into the center of the building, and 
using a firefighting suit system to collect gas concentration data.

The dynamic concentrations of the other eight toxic and flammable 
gases were simulated based on the collected CH2O and CH4 concentra
tion time series to create a multi-gas prediction benchmark with realistic 
temporal dynamics. Specifically, each simulated gas sequence Sj was 
created using linear transformations, time lags, and additive Gaussian 
noise applied to the measured CH2O and CH4 data: 

Sj(t)=αj CCH2O(t)+ βjCCH4

(
t+ δj

)
+ N

(
0,σj

2) (5) 

where αj and βj are scaling factors, βj is a small time lag (positive or 
negative) introduced to create phase differences, and N is Gaussian 
noise. This approach preserves the general non-stationary trends of the 
real fire environment while producing diverse, physically plausible 
concentration profiles for each gas.

Real-time concentration data for 10 representative toxic and haz
ardous gases were collected during a 270-s monitoring period. The 
collected hazardous gas concentrations are shown in Table 1.

3.2. Concentration prediction

The ARIMA time series model was employed to predict the concen
trations of 10 gases over the next five periods (10− 50 s) based on 
collected data. Table 2 shows the predicted concentrations of the gases. 
Fig. 5 shows the curves of the collected and predicted concentrations of 
the 10 gases. The predictions demonstrated a consistent upward trend 
for most gases, aligning with experimental observations. The results 
validated the model’s capability to capture temporal trends, supporting 
proactive hazard classification.

3.3. Hazard classification

Applying the collected and predicted gas concentration data, this 
study implemented a hierarchical classification method to assess hazard 
levels of toxic and flammable gases based on the human vulnerability 
models. The classification algorithm is developed through establishing a 
dose-effect relationship model that correlates gas concentration with 
exposure duration, while incorporating specific toxicity and flamma
bility characteristics of each hazardous gases, shown as Figs. 6 and 7. 
Toxic gas hazard classification is based on the probability of death from 
1 min of inhalation. The classification thresholds are: low: <1 %, 1 % ≤
moderate <10 %, 10 % ≤ high <50 %, and 50 % ≤ extreme. The hazard 
classification of flammable gases is based on the ratio of volume con
centration to the lower explosion limit (LEL): low: <10 %, 10 % ≤
moderate <25 %, 25 % ≤ high <50 %, and 50 % ≤ extreme. The hazard 
classification thresholds can be adjusted according to different standards 
in different application scenarios.

Fig. 3. 3D model of the training base generated by the firefighting 
suit software.

Fig. 4. (a) (b) Firefighters wear the firefighting suits; (c) The software interface analyzing real-time and predicted gas data; (d) Close-up view of the multi-gas sensor 
module integrated into the suit (red frame).
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Table 1 
The collected hazardous gas concentration data (partial data).

Time period (10s) Gas concentration (ppm)

HCL HCN NO2 SO2 HF CO CH2O H2S H2 CH4

3 46.46 16.95 11.24 15.52 36.47 270.02 19.80 20.78 10,598.39 8149.59
6 112.28 30.76 25.48 39.13 84.96 589.28 44.49 45.55 16,255.97 11,300.56
9 197.73 47.62 41.67 66.72 146.42 1021.55 73.58 77.69 22,554.59 14,130.62
12 301.45 66.59 61.51 92.01 220.94 1469.56 105.66 115.43 28,929.75 17,050.25
15 398.93 86.88 83.11 125.53 291.54 1983.33 135.83 165.35 34,822.16 20,557.08
18 507.35 106.82 107.74 174.31 357.13 2376.88 183.28 214.82 42,884.91 24,422.47
21 609.99 136.09 135.54 226.61 457.61 2818.41 232.96 269.28 51,549.69 31,058.66
24 692.54 176.89 157.62 270.23 577.26 3543.90 270.95 312.99 57,656.07 38,314.10
27 793.96 212.17 181.40 295.26 716.32 4391.76 330.83 332.17 58,823.27 41,012.02

Table 2 
The predicted hazardous gas concentration data.

Time period (10s) Gas concentration (ppm)

HCL HCN NO2 SO2 HF CO CH2O H2S H2 CH4

30 883.32 228.32 201.57 330.59 769.13 5001.61 381.41 324.34 61,084 41,544.56
31 899.03 230.1 205.09 338.48 772.08 5116.25 390.77 322.03 61,359.49 41,822.55
32 914.56 231.85 208.59 346.3 774.93 5229.28 399.95 319.76 61,620.46 42,097.76
33 929.93 233.56 212.06 354.06 777.71 5340.73 408.96 317.52 61,867.68 42,370.22
34 945.13 235.24 215.5 361.74 780.41 5450.6 417.8 315.33 62,101.88 42,639.96

Fig. 5. The collected and predicted concentration trends for the 10 hazardous gases (blue: collected data, red: predicted data, ppm). (a) HCl (b) HCN (c) NO2 (d) SO2 
(e) HF (f) CO (g) CH2O (h) H2S (i) H2 (j) CH4.
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By implementing gas-specific classification thresholds, the system 
achieved real-time dynamic monitoring and evaluation of multiple 
hazardous gases. This integrated system provides accurate and timely 
risk warnings for firefighters during operational scenarios, significantly 
enhancing situational awareness and personnel safety.

3.4. Quality analysis of predicted results

Quantitative analysis was performed using Root Mean Square Error 
(RMSE), Mean Absolute Error (MAE), and Mean Absolute Percentage 
Error (MAPE), with results in Table 3. RMSE reflects the overall 

Fig. 6. The hazard classification of toxic gases based on collected and predicted data.

Fig. 7. The hazard classification of flammable gases based on collected and predicted data.

Table 3 
The quality analysis of predicted results.

Gas MAE MAE equality RMSE RMSE equality MAPE (%) MAPE equality data range

HCL 849.397 normal 988.3334 normal 3.3204 excellent 2840.625
HCN 699.378 normal 863.9093 normal 8.7166 excellent 3217.886
NO2 1187.832 good 1416.921 poor 20.1496 normal 3256.145
SO2 729.9107 poor 827.1249 poor 8.2941 excellent 1685.239
HF 994.73 good 1137.727 good 5.0695 excellent 5033.214
CO 10,518.52 normal 12,777.64 normal 9.2604 excellent 36,693.05
CH2O 529.5385 good 589.8763 good 5.2447 excellent 2968.54
H2S 343.9053 good 395.637 excellent 3.4175 excellent 2737.886
H2 76,963.79 good 100,783.9 good 3.9074 excellent 486,603.2
CH4 75,981.6 poor 83,685.18 poor 7.271 excellent 223,219.8
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magnitude of prediction errors and is sensitive to large deviations; MAE 
represents the average absolute error, offering an intuitive measure of 
typical prediction accuracy; and MAPE expresses the average error as a 
percentage of actual values, facilitating comparison across different 
datasets or scales.

The results demonstrate significant variations in the model’s pre
dictive performance across different gases. For instance, H2S exhibited 
“excellent” performance in both RMSE and MAPE metrics, with an MAE 
of 343.9053 and an exceptionally low MAPE of 3.4175 %, indicating 
high prediction accuracy. Similarly, CH2O showed “good” performance 
in both MAE and RMSE, while achieving an “excellent” MAPE of 5.2447 
%, suggesting reliable prediction outcomes.

However, the model demonstrated poorer performance for certain 
gases, such as SO2 and CH4, which received “poor” ratings for both MAE 
and RMSE, despite maintaining “excellent” MAPE scores (8.2941 % and 
7.271 %, respectively). This discrepancy may stem from the substan
tially larger data ranges of these gases (SO2: 1685.239; CH4: 223219.8), 
resulting in higher absolute errors while maintaining relatively low 
percentage errors. Notably, H2 and CO exhibited high absolute errors (e. 
g., H2’s MAE reached 76,963.79), yet achieved “excellent” MAPE per
formance (3.9074 % and 9.2604 %, respectively), underscoring the 
necessity of considering both absolute and relative error metrics when 
evaluating model performance.

Based on historical gas concentration data from time periods 0− 24, 
time series models were employed to predict gas concentrations at time 
periods 25− 29. Subsequently, actual experimental measurements were 
simultaneously collected at these time points to serve as validation 
benchmarks. By conducting point-by-point comparisons between pre
dicted and measured values, the model’s prediction accuracy and early 
warning capability were evaluated, as shown in Table 4.

The analysis of the results indicates that the gas concentration pre
diction model achieves an average accuracy of 96.25 %, demonstrating 
strong predictive capability for future data. Among the tested gases, SO2, 
NO2, and HCl exhibit the highest precision (accuracy >99 %), whereas 
H2 and CH4 show relatively larger errors while still maintaining an 
overall accuracy above 90 %. Further optimization of the model is rec
ommended to improve prediction performance for gases with higher 
errors.

In summary, the model demonstrates superior predictive capability 
for gases with smaller data ranges (e.g., H2S, CH2O), while showing 
limitations for gases with larger ranges or higher volatility (e.g., CH4, 
SO2). Although most gases achieved “excellent” MAPE levels, indicating 
effective control of relative errors, further optimization is requir
ed–particularly in reducing absolute errors for gases like CH4 and SO2–to 
enhance overall prediction accuracy.

4. Advantages of the application of time series modeling

Previous hazard classification methods for firefighting scenarios rely 
on comparing real-time monitored gas concentration data to preset 
thresholds, constituting a “passive response" assessment. The funda
mental limitation of these traditional methods, such as threshold-based 

alarms and moving average techniques, is their inherent lack of pre
dictive capability. This often leads to delayed warnings or misjudgments 
when gas concentrations change rapidly. In contrast, our proposed 
ARIMA model directly addresses this gap by providing proactive fore
casting. We quantify its superiority by highlighting the achieved 50-s 
early-warning time and 96.25 % prediction accuracy—benefits that 
are unattainable by passive threshold systems. Furthermore, compared 
to simpler techniques like moving averages, the ARIMA model’s ability 
to capture complex temporal trends and nonlinear dynamics is evi
denced by its high accuracy across multiple gases, enabling it to antic
ipate sudden concentration spikes that would overwhelm conventional 
methods. For example, in the 2015 Tianjin Port explosion accident, 
concentrations of toxic gases (e.g., HCN) rose sharply in a short time. 
Traditional classification methods, lacking predictive capabilities, failed 
to guide firefighters to evacuate in advance, ultimately resulting in 
casualties.

The time series analysis introduced in this study can generate rolling 
predicted concentration curves for the next 5− 10 min by mining time 
series characteristics of collected concentration data, upgrading hazard 
classification from “real-time judgment” to “trend prediction.” 
Compared with previous monitoring and warn methods that do not use 
time series algorithms, in simulated experiments for H2S leakage sce
narios, traditional methods only alarmed when the concentration 
reached 30 ppm (moderate risk). In the analysis of prediction accuracy 
and early warning timeliness, the time-series model demonstrated the 
capability to predict post-event thresholds within the next 50 s with an 
accuracy of 91.47 %, thereby providing firefighters with critical reaction 
time to adjust their routes.

For the common sudden concentration spikes in fire scenes (a sharp 
increase in gas concentration caused by deflagration), the time series 
model can capture subtle early concentration fluctuation signals, 
adjusting the hazard level in advance (e.g., directly predicting from “low 
risk” to “high risk”). In contrast, traditional methods must wait for stable 
concentrations before classification, easily missing the optimal response 
opportunity.

5. Conclusion

Firefighters face life-threatening exposure to toxic and flammable 
gases during firefighting operations. Traditional firefighting suits 
remain limited by passive protection mechanisms, lacking real-time gas 
concentration prediction and dynamic early-warning capabilities. 
Existing research predominantly focused on improving physical prop
erties of suits, neglecting the integration of active monitoring and 
intelligent prediction for dynamic fire environments.

This study develops an advanced active-protection firefighting suit 
system that integrates real-time gas monitoring, predictive analytics, 
and early warning functions. By combining a hybrid ARIMA prediction 
model with a human vulnerability probit model, the system achieves 
accurate gas concentration forecasting and dynamic risk assessment. 
The hardware-software co-designed prototype demonstrates strong 
performance in simulated environments, providing 50 s early warnings 
with 91.47–99.21 % prediction accuracy depending on gas 
characteristics.

The research highlights the potential of intelligent protective 
equipment through its three key innovations: (1) The firefighting suit 
system integrates an ARIMA time series model with human vulnerability 
probit models to predict toxic gas concentrations and assess hazards in 
fire scenarios; (2) Leveraging predicted data and vulnerability models, 
the system can dynamically adjust hazard classifications to provide 
actionable evacuation or tactical guidance. (3) The system embeds 
multi-gas sensors, edge computing modules, and a visualization inter
face to establish a closed-loop workflow from data acquisition to 
decision-making support.

Despite the promising results, this study has several limitations that 
warrant attention in future research. First, the environmental robustness 

Table 4 
The accuracy of the prediction algorithm.

Gas Average Error Average Accuracy

HCL 7.51 99.09
HCN 15.37 93.10
NO2 1.94 99.00
SO2 2.35 99.21
HF 51.55 93.17
CO 109.84 97.70
CH2O 9.63 97.21
H2S 28.03 91.47
H2 4660.89 92.24
CH4 1510.89 96.32
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of the system, including its performance under extreme conditions such 
as very high temperatures, dense smoke, and water exposure, requires 
further validation through large-scale field tests. Second, the general
izability of the prediction model needs enhancement to handle highly 
unpredictable events, such as sudden explosions that cause instanta
neous and non-linear changes in gas concentrations. Integrating addi
tional sensors (e.g., for pressure and optical density) and exploring more 
complex AI models could address this. Third, the long-term durability 
and reliability of the integrated wearable sensors and computing mod
ules in harsh firefighting conditions need to be thoroughly evaluated 
and improved. Future work will focus on addressing these limitations to 
advance the practical deployment of intelligent firefighting equipment.

This study establishes a foundation for the design of intelligent 
firefighting suits, demonstrating how the integration of predictive al
gorithms with protective gear can significantly improve firefighter 
safety and operational effectiveness in hazardous environments. The 
research results are expected to be applied in actual fire brigades, to 
reduce casualties among firefighters in fire scenes.
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