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Fire accident environments expose firefighters to life-threatening hazardous gases such as CO, HCN, and HCI,
which can cause asphyxiation, organ damage, or even fatalities. Despite advancements in protective gear,
conventional firefighting suits primarily offer passive protection, lacking real-time hazard forecasting. This
reactive paradigm often results in delayed warnings against dynamic gas threats. This study proposes an inno-
vative hardware-software integrated firefighting suit designed for proactive safety. The system combines
wearable multi-gas sensors, edge computing, and a time series prediction model to forecast gas concentrations
with 96.25 % accuracy. By analyzing historical data trends, the suit dynamically classifies hazard levels using a
human vulnerability probit model, enabling proactive risk mitigation. Experimental results from simulated fire
scenarios demonstrate superior performance in predicting concentrations of gases like H,S and CO. The inte-
gration of predictive algorithms with real-time monitoring shifts safety management from passive response to
proactive decision-making, enhancing firefighter survivability and operational efficiency. This advancement lays
the foundation for next-generation intelligent firefighting equipment. This study is expected to provide a basis for
the design of a kind of active protective firefighting suit.

1. Introduction

In firefighting scenarios, firefighting suits, as the core personal pro-
tective equipment for firefighters, directly affect the life safety of fire-
fighters and the sustainability of firefighting operations. However,
incidents of casualties caused by substandard firefighting suits remain
frequent worldwide. Firefighting suits with inadequate thermal insu-
lation properties in high-temperature environments may lead to heat
stroke or severe burns, as exemplified by the case of an Arizona fire-
fighter in the United States who succumbed to heat exhaustion while
combating wildfires due to non-compliant protective clothing (U.S.
Occupational Safety and Health Administration, 2013). Structural de-
fects, such as insufficient seam strength, can also result in garment
rupture, exposing firefighters to hazardous conditions—a situation
illustrated by 5 Australian firefighter who suffered chemical burns
during an industrial plant rescue when his protective suit tore (China
National Emergency Broadcasting, 2019).

To address these issues, countries and regions have established

regulations like NFPA 1971 (U.S.) (National Fire Protection Association,
2018), EN 469 (EU) (European Committee for Standardization, 2020,
and GA 10-2014 (China) (Ministry of Public Security of China, 2014),
setting standards for flame resistance, thermal insulation, and chemical
protection in firefighting suits. However, current standards still lack
timeliness, enforcement, and systematic health monitoring for
firefighters.

Fire environments produce toxic gases like CO, HCN, and H2S, which
can cause asphyxiation or organ damage, as well as corrosive HCl and
HF. Flammable gases like methane can explode, worsening injuries.
Exposure to these gases often leads to firefighter casualties. For example,
the 2015 Tianjin Port explosion killed 110 firefighters due to explosions
and toxic gases (China Chemical Safety Association, 2016), while the
2013 Santa Maria nightclub fire caused severe HCN poisoning in 10
firefighters (Couto et al., 2023). These incidents underscore the need for
better protection, combining suit performance with gas detection and
tactical alerts to reduce harm.

The passive protection of firefighting suits refers to the inherent
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protective capability provided by the material’s own flame-retardant,
heat-insulating, and high-temperature-resistant properties (e.g.,
aramid, carbon fiber, etc.), which can defend against flames, thermal
radiation, and high-temperature hazards (Chen et al., 2024). Its core
characteristic lies in relying on the physicochemical attributes of the
garment to achieve fundamental protection, thereby buying firefighters
critical survival time. For instance, recent research has explored
advanced materials such as nano-coated aramid to enhance fireproofing
and thermal protection (Dong et al., 2025). Additionally, innovations in
passive protection design, such as high-sweat-wicking thermal insu-
lation suits, further improve comfort and safety by optimizing heat
dissipation and moisture management (Xu et al., 2023).

Compared with passive protection, active protection in firefighting
scenarios shows significant advantages in efficiency, early warning, and
auxiliary decision-making, and has become a research hotspot in recent
years (Blecha et al., 2018). Active protection can identify potential
dangerous areas in advance and guide firefighters to avoid risks by
real-time monitoring of fire environment parameters (e.g., temperature,
gas concentration, flame spread rate) (Spitzenberger et al., 2016). This
allows firefighters to focus more efficiently on key tasks, significantly
improving the overall progress of firefighting operations. At the early
warning level, active protection systems can predict fire development
trends, toxic gas leaks, and deflagration risks through sensor networks
and intelligent algorithms, issuing accurate alarms before dangers occur
to buy valuable response time for firefighters (Mandal et al., 2018). In
auxiliary decision-making, active protection integrates
multi-dimensional fire data to generate visual situation analysis reports,
providing a scientific basis for commanders to formulate more reason-
able tactical strategies (e.g., optimizing rescue routes, allocating pro-
tective resources) (Shakeriaski et al., 2022). Thus, active protection
fundamentally changes the passive response mode and builds a more
proactive and intelligent safety protection system. Scholars have con-
ducted research on firefighting suits in areas such as evacuation decision
support (Zhang and Huang, 2024; Cheng et al., 2023), work duration
estimation (Blecha et al., 2018), comfort design (Mandal et al., 2018;
Zhang et al., 2023; Hur et al., 2013), and psychological cognition (Xu
et al., 2025). However, little research on firefighting suits has focused on
hazardous gases in firefighting environments, leaving a gap in the active
protection design of firefighting suits.

To bridge this gap, this paper proposes a design of a hardware-
software integrated firefighting suit that incorporates a time series
prediction algorithm for monitoring typical hazardous gas concentra-
tions in fire scenarios. The algorithm optimizes the parameters of an
ARIMA (Autoregressive Integrated Moving Average)-based time series
prediction model based on collected gas concentration data and gener-
ates predicted data for future periods. This study integrates protective
equipment with dynamic hazardous gases monitoring and early warn-
ing. Based on the predicted data of hazardous gases, the integrated
firefighting suit system can provide classified warnings on the risks of
firefighting operations in the future period based on the human
vulnerability model.

The innovation of this research is its focus on the hazardous gas
environments faced by firefighters. The hardware-software integrated
firefighting suit system can provide active and comprehensive protec-
tion, from hazardous gas concentration sensing to data processing, time
series prediction, and hazard classification warning. The application of
this research is expected to effectively reduce firefighter casualties in
hazardous gas environments at fire scenes and improve firefighting ef-
ficiency. During the case study in fire brigade, this firefighting suit
design has been well-received by firefighters.

This paper consists of four sections: Section 2 details the methodol-
ogy, employing an ARIMA-based framework for gas concentration pre-
diction and risk assessment. Section 3 validates the firefighting suit
system design through simulated fire experiments in an actual fire-
fighting scenario, demonstrating high prediction accuracy and the
hazard classification process for hazardous gases. Section 4 summarizes
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the study’s contributions, highlighting the potential of time-series
models in fire warnings and proposing future research directions for
intelligent firefighting equipment. Section 5 provides some concluding
remarks.

2. Methodology

This study presents a comprehensive system design for an active-
protection firefighting suit, which integrates real-time gas monitoring,
data processing, and predictive analytics to enhance firefighter safety.
This section introduces the hardware-software integrated design of the
firefighting suit, and focuses on the introduction of the hazardous gas
monitoring and prediction algorithm based on a time series model.

2.1. Integrated design of firefighting suit system

As shown in Fig. 1, the firefighting suit system operates through
three interconnected modules: (1) a sensor network that continuously
collects and transmits toxic gas concentration data, (2) a data processing
pipeline that analyzes and predicts gas concentration trends using
advanced time series models, and (3) a decision-support module that
classifies hazard levels and triggers early warnings. At the core of this
system is a hybrid analytical approach combining gas concentration
prediction and hazard assessment. The prediction module employs
optimized time series algorithms to forecast future gas concentrations
based on collected data patterns, while the hazard classification module
evaluates these predictions against toxicity thresholds using human
vulnerability models.

This dual analysis enables dynamic hazard assessment, transitioning
from reactive to proactive safety management. The developed software
architecture seamlessly integrates these analytical capabilities with
wearable hardware, featuring real-time data acquisition (1 Hz sampling
frequency), edge-based predictive computation, and multi-mode alert
systems. This integration creates a closed-loop workflow from environ-
mental sensing to hazard visualization, providing both individual fire-
fighters and command centers with critical decision-making support
during firefighting operations.

2.2. Hazardous gas monitoring and early warning

A hazard prediction process for hazardous gases is constructed with
the goal of accurately forecasting hazard levels in firefighting scenarios.
The first step involves in-depth analysis of collected gas concentration
data. Through this analysis, preliminary parameters for the concentra-
tion prediction model are determined, including differencing order,
autoregressive order, and moving average order, which form the foun-
dational framework for subsequent predictions and provide critical
support for model construction.

The second step focuses on the fitting and optimization of pre-
liminary parameters. By employing a strategy of traversing different
parameter combinations derived from the initial parameters, fine-tuning
is performed. This process aims to identify the most suitable parameter
configuration for predicting leaked gas concentrations, enhancing the
model’s ability to capture concentration variation patterns and ensuring
higher reliability and accuracy in subsequent predictions. Once
parameter optimization is complete, the process proceeds to the pre-
diction phase. Using the optimized concentration prediction model,
future concentration data can be generated, establishing a connection
between current analysis and future hazard trends.

The final step involves hazard level assessment. The predicted gas
concentration data, combined with the type of hazardous gas, are
matched against predefined hazard level thresholds. Through this
matching, the predicted hazard level of the hazardous gas can be
accurately evaluated, providing robust quantitative support for safety
decision-making and risk mitigation measures. This completes the
closed-loop process of hazardous gas monitoring and prediction,
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Fig. 1. Firefighting suit system design schematic.

encompassing data analysis, model optimization, and hazard determi-
nation, playing a critical role in protecting the safety of individual
firefighters. Fig. 2 shows the flowchart of the process of hazardous gas
monitoring and early warning.

2.3. Concentration prediction based on time series model

In the prediction of hazardous gas concentrations, the ARIMA model
incorporating time series is employed. This method involves several
essential steps: initial testing is conducted to determine whether the data
exhibit white noise characteristics, as the presence of white noise in-
dicates a lack of predictable structure and precludes further modeling.
For data that are not white noise, stationarity testing is performed to
ensure the suitability of the series for ARIMA modeling; if the data are
non-stationary, appropriate transformations are applied until statio-
narity is achieved. Following confirmation of stationarity, model iden-
tification and parameter estimation are carried out. The resulting model
is then subjected to validation procedures, and only validated models
are used for forecasting future gas concentration sequences.

Stationarity is a fundamental prerequisite for ARIMA modeling, as
non-stationary time series can compromise the validity of statistical
inference. In this study, stationarity is assessed using the Augmented
Dickey-Fuller (ADF) test, which evaluates the presence of a unit root in
the data (Brockwell and Davis, 2016; Said and Dickey, 1984). The null
hypothesis of the ADF test posits that the series contains a unit root,
indicating non-stationarity. Rejection of the null hypothesis at the 5 %
significance level provides statistical evidence that the series is sta-
tionary. If the series fails to meet the stationarity criterion, differencing
is applied iteratively until stationarity is achieved, with first-order dif-
ferencing commonly employed to stabilize the mean and variance. Upon
confirmation of stationarity, model identification and parameter esti-
mation are conducted to fit the ARIMA model to the transformed data.
The fitting formula is as follows:

Ye=Hp+ Zﬁzl(/)i}’i,l + &+ Z?:l Ocee—i (€8]

In this formula, y; represents the value of the time series at time ¢, y is the
constant term, p and q are the orders of the autoregressive and moving
average components respectively, y; and @, are the model parameters,
and ¢ denotes the white noise error term at time t. By applying this
formula to the stationary time series data, the ARIMA model parameters
are estimated using statistical techniques such as maximum likelihood
or least squares; once the optimal parameters are determined, the fitted
ARIMA model can be used for forecasting and analysis of future values in
the series. The model’s performance is evaluated based on the Bayesian
Information Criterion (BIC) (Hastie et al., 2009), with the optimal model
selected accordingly.

In addition to real-time gas concentration prediction in firefighting
environments, the proposed algorithm incorporates the Gauss-Hermite
quadrature method to calculate the cumulative exposure dose experi-
enced by firefighters during prolonged operations. This numerical
integration technique utilizes Hermite polynomials and the corre-
sponding Gaussian nodes to perform curve fitting on discrete sampling
data points. Specifically, it approximates the integral of a one-
dimensional real function f(x) over the interval (—oo0,+o0) as (Press
et al., 2007):

00
2 - n
[ e feoa Y witx) @
In this formula, X; are the Gaussian nodes (integration points), and W;
are the corresponding weights used in the Gauss-Hermite quadrature. n
represents the number of Gaussian nodes (or integration points) used in
the Gauss-Hermite quadrature approximation.

2.4. Hazard classification based on human vulnerability models

The proposed firefighting suit design adopts the human vulnerability
models to classify the hazard levels based on the hazardous gas con-
centration (Finney, 1971). The model is designed to estimate individual
and societal risk indices, where vulnerability (the probability of fatality
for exposed individuals) is calculated based on physical impacts and
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Fig. 2. Flowchart of the process of hazardous gas monitoring and early warning.

estimated exposure duration using a probit model of human vulnera-
bility. The model employs an injury factor Y to represent the harm
caused by different gas concentrations to the human body. The formula
is as follows (Lees, 2012):

Y=a+blIn(C"t) 3)
where a, b, and n are gas-specific constants representing their respective
effects on the human body, C denotes gas concentration (ppm), and t
represents the exposure time (min). This model establishes a quantita-
tive relationship that describes the cumulative harm to the human body
from prolonged exposure to varying concentrations of toxic gases.

By applying the probit model, the probability of fatality at a given
location can be quantitatively derived from the corresponding injury
factor for each event. This probabilistic approach enables the assessment
of dose-effect relationships for human exposure to hazardous gases,
utilizing the cumulative normal (Gaussian) probability distribution
function to relate injury factors to vulnerability outcomes. The formula
is as follows (National Fire Protection Association, 2018):

Y-5
V= ! / e 2dy
V21

4

Where V represents the lethality probability, and ¢ denotes the standard
normal cumulative distribution function.

The integrated firefighting suit system we’ve designed and produced
can monitor and predict 10 common fire-scene hazardous gases,
including toxic gases like CO, HCl, NO5 and flammable gases CH4 and
Hj. The system also establishes hazard classification criterion for each
gas type based on the human vulnerability models.

3. Case study

To systematically evaluate the hazardous gas concentration predic-
tion accuracy, hazard classification precision, and early-warning
response effectiveness of the integrated active protective firefighting
suit, a comprehensive experimental study was conducted in a training
base of city fire brigade in Hebei, China. The experiments simulated fire
scenarios by releasing toxic gases and combustible gases, to replicate the
actual firefighting environments. Firefighters wore the integrated fire-
fighting suit we designed to verify its ability to monitor, predict, and
warn of hazardous gas concentrations. Fig. 3 shows the firefighting suit
system modeling of the training base. Fig. 4 shows the firefighters
wearing the firefighting suit and the software analyzing gas data.
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Fig. 3. 3D model of the training base generated by the firefighting
suit software.

3.1. Data collection

The training center consisted of a sealed steel structure (30 m(L) x
20 m(W) x 8 m(H)). The experiment involved continuously releasing
hazardous gases (CH20 and CHy) into the center of the building, and
using a firefighting suit system to collect gas concentration data.

The dynamic concentrations of the other eight toxic and flammable
gases were simulated based on the collected CH,O and CH4 concentra-
tion time series to create a multi-gas prediction benchmark with realistic
temporal dynamics. Specifically, each simulated gas sequence S; was
created using linear transformations, time lags, and additive Gaussian
noise applied to the measured CH;0 and CH4 data:

5i(t) = Cemo(t) +4;Cen, (t+8;) + N(0,0,%) ®)
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where a; and §; are scaling factors, f; is a small time lag (positive or
negative) introduced to create phase differences, and N is Gaussian
noise. This approach preserves the general non-stationary trends of the
real fire environment while producing diverse, physically plausible
concentration profiles for each gas.

Real-time concentration data for 10 representative toxic and haz-
ardous gases were collected during a 270-s monitoring period. The
collected hazardous gas concentrations are shown in Table 1.

3.2. Concentration prediction

The ARIMA time series model was employed to predict the concen-
trations of 10 gases over the next five periods (10—50 s) based on
collected data. Table 2 shows the predicted concentrations of the gases.
Fig. 5 shows the curves of the collected and predicted concentrations of
the 10 gases. The predictions demonstrated a consistent upward trend
for most gases, aligning with experimental observations. The results
validated the model’s capability to capture temporal trends, supporting
proactive hazard classification.

3.3. Hazard classification

Applying the collected and predicted gas concentration data, this
study implemented a hierarchical classification method to assess hazard
levels of toxic and flammable gases based on the human vulnerability
models. The classification algorithm is developed through establishing a
dose-effect relationship model that correlates gas concentration with
exposure duration, while incorporating specific toxicity and flamma-
bility characteristics of each hazardous gases, shown as Figs. 6 and 7.
Toxic gas hazard classification is based on the probability of death from
1 min of inhalation. The classification thresholds are: low: <1 %, 1 % <
moderate <10 %, 10 % < high <50 %, and 50 % < extreme. The hazard
classification of flammable gases is based on the ratio of volume con-
centration to the lower explosion limit (LEL): low: <10 %, 10 % <
moderate <25 %, 25 % < high <50 %, and 50 % < extreme. The hazard
classification thresholds can be adjusted according to different standards
in different application scenarios.

Fig. 4. (a) (b) Firefighters wear the firefighting suits; (c) The software interface analyzing real-time and predicted gas data; (d) Close-up view of the multi-gas sensor

module integrated into the suit (red frame).
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Table 1

The collected hazardous gas concentration data (partial data).
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Time period (10s)

Gas concentration (ppm)

HCL HCN NO, SO, HF CcO CH,0 H,S H, CHy4
3 46.46 16.95 11.24 15.52 36.47 270.02 19.80 20.78 10,598.39 8149.59
6 112.28 30.76 25.48 39.13 84.96 589.28 44.49 45.55 16,255.97 11,300.56
9 197.73 47.62 41.67 66.72 146.42 1021.55 73.58 77.69 22,554.59 14,130.62
12 301.45 66.59 61.51 92.01 220.94 1469.56 105.66 115.43 28,929.75 17,050.25
15 398.93 86.88 83.11 125.53 291.54 1983.33 135.83 165.35 34,822.16 20,557.08
18 507.35 106.82 107.74 174.31 357.13 2376.88 183.28 214.82 42,884.91 24,422.47
21 609.99 136.09 135.54 226.61 457.61 2818.41 232.96 269.28 51,549.69 31,058.66
24 692.54 176.89 157.62 270.23 577.26 3543.90 270.95 312.99 57,656.07 38,314.10
27 793.96 212.17 181.40 295.26 716.32 4391.76 330.83 332.17 58,823.27 41,012.02
Table 2
The predicted hazardous gas concentration data.
Time period (10s) Gas concentration (ppm)
HCL HCN NO, SO, HF Cco CH>0 HyS Hy CH4
30 883.32 228.32 201.57 330.59 769.13 5001.61 381.41 324.34 61,084 41,544.56
31 899.03 230.1 205.09 338.48 772.08 5116.25 390.77 322.03 61,359.49 41,822.55
32 914.56 231.85 208.59 346.3 774.93 5229.28 399.95 319.76 61,620.46 42,097.76
33 929.93 233.56 212.06 354.06 777.71 5340.73 408.96 317.52 61,867.68 42,370.22
34 945.13 235.24 215.5 361.74 780.41 5450.6 417.8 315.33 62,101.88 42,639.96
— measured o ) — ::::‘.:: oe-e® = s:?:{:, =
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By implementing gas-specific classification thresholds, the system 3.4. Quality analysis of predicted results
achieved real-time dynamic monitoring and evaluation of multiple

hazardous gases. This integrated system provides accurate and timely Quantitative analysis was performed using Root Mean Square Error

risk warnings for firefighters during operational scenarios, significantly (RMSE), Mean Absolute Error (MAE), and Mean Absolute Percentage

enhancing situational awareness and personnel safety. Error (MAPE), with results in Table 3. RMSE reflects the overall

Table 3

The quality analysis of predicted results.
Gas MAE MAE equality RMSE RMSE equality MAPE (%) MAPE equality data range
HCL 849.397 normal 988.3334 normal 3.3204 excellent 2840.625
HCN 699.378 normal 863.9093 normal 8.7166 excellent 3217.886
NO, 1187.832 good 1416.921 poor 20.1496 normal 3256.145
SO, 729.9107 poor 827.1249 poor 8.2941 excellent 1685.239
HF 994.73 good 1137.727 good 5.0695 excellent 5033.214
Cco 10,518.52 normal 12,777.64 normal 9.2604 excellent 36,693.05
CH,0 529.5385 good 589.8763 good 5.2447 excellent 2968.54
H,S 343.9053 good 395.637 excellent 3.4175 excellent 2737.886
H, 76,963.79 good 100,783.9 good 3.9074 excellent 486,603.2
CH4 75,981.6 poor 83,685.18 poor 7.271 excellent 223,219.8
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magnitude of prediction errors and is sensitive to large deviations; MAE
represents the average absolute error, offering an intuitive measure of
typical prediction accuracy; and MAPE expresses the average error as a
percentage of actual values, facilitating comparison across different
datasets or scales.

The results demonstrate significant variations in the model’s pre-
dictive performance across different gases. For instance, HyS exhibited
“excellent” performance in both RMSE and MAPE metrics, with an MAE
of 343.9053 and an exceptionally low MAPE of 3.4175 %, indicating
high prediction accuracy. Similarly, CH>O showed “good” performance
in both MAE and RMSE, while achieving an “excellent” MAPE of 5.2447
%, suggesting reliable prediction outcomes.

However, the model demonstrated poorer performance for certain
gases, such as SOz and CHy4, which received “poor” ratings for both MAE
and RMSE, despite maintaining “excellent” MAPE scores (8.2941 % and
7.271 %, respectively). This discrepancy may stem from the substan-
tially larger data ranges of these gases (SO5: 1685.239; CHy4: 223219.8),
resulting in higher absolute errors while maintaining relatively low
percentage errors. Notably, Hy and CO exhibited high absolute errors (e.
g., Ho’s MAE reached 76,963.79), yet achieved “excellent” MAPE per-
formance (3.9074 % and 9.2604 %, respectively), underscoring the
necessity of considering both absolute and relative error metrics when
evaluating model performance.

Based on historical gas concentration data from time periods 0—24,
time series models were employed to predict gas concentrations at time
periods 25—29. Subsequently, actual experimental measurements were
simultaneously collected at these time points to serve as validation
benchmarks. By conducting point-by-point comparisons between pre-
dicted and measured values, the model’s prediction accuracy and early
warning capability were evaluated, as shown in Table 4.

The analysis of the results indicates that the gas concentration pre-
diction model achieves an average accuracy of 96.25 %, demonstrating
strong predictive capability for future data. Among the tested gases, SOq,
NO,, and HCI exhibit the highest precision (accuracy >99 %), whereas
Hy and CH4 show relatively larger errors while still maintaining an
overall accuracy above 90 %. Further optimization of the model is rec-
ommended to improve prediction performance for gases with higher
errors.

In summary, the model demonstrates superior predictive capability
for gases with smaller data ranges (e.g., HaS, CH20), while showing
limitations for gases with larger ranges or higher volatility (e.g., CHa,
SO,). Although most gases achieved “excellent” MAPE levels, indicating
effective control of relative errors, further optimization is requir-
ed-particularly in reducing absolute errors for gases like CH4 and SO2-to
enhance overall prediction accuracy.

4. Advantages of the application of time series modeling

Previous hazard classification methods for firefighting scenarios rely
on comparing real-time monitored gas concentration data to preset
thresholds, constituting a “passive response" assessment. The funda-
mental limitation of these traditional methods, such as threshold-based

Table 4
The accuracy of the prediction algorithm.

Gas Average Error Average Accuracy
HCL 7.51 99.09
HCN 15.37 93.10
NO, 1.94 99.00
SO, 2.35 99.21
HF 51.55 93.17
Cco 109.84 97.70
CH,0 9.63 97.21
H,S 28.03 91.47
Hy 4660.89 92.24
CH4 1510.89 96.32
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alarms and moving average techniques, is their inherent lack of pre-
dictive capability. This often leads to delayed warnings or misjudgments
when gas concentrations change rapidly. In contrast, our proposed
ARIMA model directly addresses this gap by providing proactive fore-
casting. We quantify its superiority by highlighting the achieved 50-s
early-warning time and 96.25 % prediction accuracy—benefits that
are unattainable by passive threshold systems. Furthermore, compared
to simpler techniques like moving averages, the ARIMA model’s ability
to capture complex temporal trends and nonlinear dynamics is evi-
denced by its high accuracy across multiple gases, enabling it to antic-
ipate sudden concentration spikes that would overwhelm conventional
methods. For example, in the 2015 Tianjin Port explosion accident,
concentrations of toxic gases (e.g., HCN) rose sharply in a short time.
Traditional classification methods, lacking predictive capabilities, failed
to guide firefighters to evacuate in advance, ultimately resulting in
casualties.

The time series analysis introduced in this study can generate rolling
predicted concentration curves for the next 5—10 min by mining time
series characteristics of collected concentration data, upgrading hazard
classification from “real-time judgment” to “trend prediction.”
Compared with previous monitoring and warn methods that do not use
time series algorithms, in simulated experiments for H,S leakage sce-
narios, traditional methods only alarmed when the concentration
reached 30 ppm (moderate risk). In the analysis of prediction accuracy
and early warning timeliness, the time-series model demonstrated the
capability to predict post-event thresholds within the next 50 s with an
accuracy of 91.47 %, thereby providing firefighters with critical reaction
time to adjust their routes.

For the common sudden concentration spikes in fire scenes (a sharp
increase in gas concentration caused by deflagration), the time series
model can capture subtle early concentration fluctuation signals,
adjusting the hazard level in advance (e.g., directly predicting from “low
risk” to “high risk”). In contrast, traditional methods must wait for stable
concentrations before classification, easily missing the optimal response
opportunity.

5. Conclusion

Firefighters face life-threatening exposure to toxic and flammable
gases during firefighting operations. Traditional firefighting suits
remain limited by passive protection mechanisms, lacking real-time gas
concentration prediction and dynamic early-warning capabilities.
Existing research predominantly focused on improving physical prop-
erties of suits, neglecting the integration of active monitoring and
intelligent prediction for dynamic fire environments.

This study develops an advanced active-protection firefighting suit
system that integrates real-time gas monitoring, predictive analytics,
and early warning functions. By combining a hybrid ARIMA prediction
model with a human vulnerability probit model, the system achieves
accurate gas concentration forecasting and dynamic risk assessment.
The hardware-software co-designed prototype demonstrates strong
performance in simulated environments, providing 50 s early warnings
with 91.47-99.21 % prediction accuracy depending on gas
characteristics.

The research highlights the potential of intelligent protective
equipment through its three key innovations: (1) The firefighting suit
system integrates an ARIMA time series model with human vulnerability
probit models to predict toxic gas concentrations and assess hazards in
fire scenarios; (2) Leveraging predicted data and vulnerability models,
the system can dynamically adjust hazard classifications to provide
actionable evacuation or tactical guidance. (3) The system embeds
multi-gas sensors, edge computing modules, and a visualization inter-
face to establish a closed-loop workflow from data acquisition to
decision-making support.

Despite the promising results, this study has several limitations that
warrant attention in future research. First, the environmental robustness
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of the system, including its performance under extreme conditions such
as very high temperatures, dense smoke, and water exposure, requires
further validation through large-scale field tests. Second, the general-
izability of the prediction model needs enhancement to handle highly
unpredictable events, such as sudden explosions that cause instanta-
neous and non-linear changes in gas concentrations. Integrating addi-
tional sensors (e.g., for pressure and optical density) and exploring more
complex AI models could address this. Third, the long-term durability
and reliability of the integrated wearable sensors and computing mod-
ules in harsh firefighting conditions need to be thoroughly evaluated
and improved. Future work will focus on addressing these limitations to
advance the practical deployment of intelligent firefighting equipment.

This study establishes a foundation for the design of intelligent
firefighting suits, demonstrating how the integration of predictive al-
gorithms with protective gear can significantly improve firefighter
safety and operational effectiveness in hazardous environments. The
research results are expected to be applied in actual fire brigades, to
reduce casualties among firefighters in fire scenes.
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