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Smart phosphor with neuromorphic
behaviors enabling full-photoluminescent
Write and Read for all-optical physical
reservoir computing

Yifei Zhao 1, Man Li2, Man Chung Wong1, Xun Han 1, Feng Guo1,3, Yuan Liu1,
Xinyue Lao1, Zhaoying Dang1,3, Sin-Yi Pang1, Zehan Wu1, Shi Ye 2 &
Jianhua Hao 1,3,4

The unprecedented growth in information across diverse media drives an
urgent need for multifunctional materials and devices beyond conventional
electrical paradigms. This work explores all-optical information processing
based on photoluminescence functions using smart phosphor. The developed
composite phosphor of mixed-halide perovskite embedded macroporous
Y2O3:Eu

3+ exhibits adaptive photoluminescence variations with neuromorphic
characteristics. Theoretical simulations reveal interface-mediated halogen
migration processes with progressively evolving energy barriers, under-
pinning the neuron-like photoluminescence property variations. The system
enables full photoluminescence-based Write and Read functionalities for all-
optical neuromorphic computing, achieving 4-bit binary sequence dis-
crimination as physical reservoirs. It further demonstrates potential in
photoluminescence-based fingerprint authentication with 94.4% accuracy.
This work advances smart phosphor as an alternative approach to neuro-
morphic computing with optical-stimuli and optical-output. It also opens
avenues for designing function-oriented phosphor materials with tailored
properties for information science and artificial intelligence applications.

The explosive growth of the Internet of Things has generated unpre-
cedented volumes of data across diverse media, driving an urgent
demand for information processing technologies beyond conven-
tional electrical approaches1,2. Such demand has accelerated the rapid
development of multifunctional materials and devices, particularly
those incorporating bio-inspired computing algorithms for enhanced
efficiency and adaptability3–6. Compared to conventional electrical
systems, optical signal processing offers unique advantages such as
contactless operations, parallel processing capabilities, and high

information bandwidth7–9. Recent breakthroughs demonstrated that
optical computing could achieve complex computations with ultra-
low latency and high energy efficiency10,11. Consequently, the emerging
multimode computing primarily explores the interplay between elec-
trical and optical modes through four fundamental categories: elec-
trical input-electrical output, optical input-electrical output, electrical
input-optical output, and optical input-optical output12. Among these,
optoelectronic devices that convert light inputs into electrical signals
have achieved widespread practical implementation13–16. The electric-
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field-modulated optical and photoluminescence (PL) response have
also exhibited promising potential17–20. However, the development of
all-optical devices operating solely through light excitation and PL
emission remains largely underexplored.

Phosphors with multimodal luminescence have long been
recognized as critical components for information security, sensing,
and storage21–24. These applications exploit static multiplexity or
reversible luminescence variations against external stimuli, giving rise
to the concept of smart phosphor25. However, there is a pressing need
to push the boundaries of these materials beyond simple stimulus-
response mechanisms, and to exploit more sophisticated functional-
ities. Recent advances have revealed synaptic-like characteristics in
persistent luminescence (PersL), triplet excitonic emission, and
photon-avalanche (PA) upconversion (UC), which stem from excited-
state manipulations and subsequent luminescence decay26–28. These
PL-based functions are limited by continuous post-stimulation decay,
lacking an independent and on-demand Read mechanism. While bio-
logical systems do not explicitly feature Read operations, practical
electronic and photonic devices have incorporated distinct Read
functions to enhance data retrieval and streamline computation29–32.
Existing phosphor systems operate in a Write-only mode that leads to
passive signal broadcasting, resulting in compromised security
and heightened interference vulnerability. To achieve practical PL-
based neuromorphic computing, it is essential to develop dark PL
variations that enable distinct Write and non-destructive Read opera-
tions, moving beyond the current mechanisms of excited-state
manipulations.

In this context, phosphor composites offer a promising solution
through tailored design of components and interfacial effects, which
enables sophisticated coupling between stimuli and PL tuning33. Our
previous work has demonstrated this potential by strategically inte-
grating functional components such as ferroelectric nanomaterials,
magnetic phases, and porous hosts34–38. Building upon these findings,
we engineer a smart phosphor system with neuromorphic PL beha-
viors constructed on mixed-halide perovskite (MHPe) embedded
macroporous Y2O3:Eu

3+ (MYE). MHPe@MYE demonstrates progres-
sively evolved PL properties variations upon light stimuli. Theoretical
simulation reveals that halogen migrations at the interface between
MHPe and MYE play a crucial role in the adaptive PL variations under
light stimuli. The system enables full PL-based Write and Read pro-
cesses, while spectral investigations demonstrate rich neuromorphic
properties that closely mimic biological synaptic behaviors. Lever-
aging these features, the PL-based neuromorphic computing cap-
abilities of MHPe@MYE are further evaluated. It achieves 4-bit binary
sequence discrimination as a physical reservoir based on optical-
stimuli and PL-readouts. The system further demonstrates promising
potential in Modified National Institute of Standards and Technology
(MNIST) handwritten digit and Sokoto Coventry Fingerprint (SOCOF-
ing) recognition with notable 94.4% accuracy. This work expands
smart phosphor to tailored neuromorphic behaviors, which may pave
the way toward all-optical neuromorphic platforms that integrate PL
functionality for information processing.

Results
Construction of smart phosphor with neuromorphic behaviors
Biological synapse is the fundamental unit of neural information pro-
cessing, which consists of presynaptic and postsynaptic terminals
separated by a synaptic cleft (Fig. 1a). This intricate structure facilitates
neurotransmitter-mediated communication, inspiring computational
models that emulate synaptic plasticity and adaptability for more
efficient information processing39,40. PL-based neuromorphic com-
puting offers potential advantages over electrical and optoelectrical
systems including high information bandwidth and visualizable
results. However, most existing PL-based neuromorphic systems are
constructed upon certain photophysical processes26–28. Their

continuous decay characteristic poses significant challenges in further
developments, particularly in terms of parallelism and information
security. To better address these challenges, we categorize current PL-
based neuromorphic phosphor systems into two types: Decay-type,
constructed upon certain photophysics phenomena with synaptic
post-stimulation PL signal, leading to passive Write-only operations;
Variation-type, exhibit history-dependent PL properties variations in
dark states originated from light-induced material reconfigurations,
which enables discrete Write and Read operations.

Such integration of Read operation in PL-based systems funda-
mentally relies onmaterials whose light-induced property changes can
give rise to PL variations with neuromorphic characteristics, together
with a non-destructive probing mechanism to read out the current PL
state. The potential advantages and importance of developing Read
operation in PL-based neuromorphic systems are discussed in Sup-
plementary Note 1, illustrating that the proposed variation-type may
align more closely to the requirements for practical PL-based neuro-
morphic computing.

To actualize this conceptual framework, we developMHPe@MYE
smart phosphor with porous composite structure (Fig. 1b). The rich
interfacial interactions within MHPe@MYE enable light-induced PL
properties variations and recovery in dark states, giving rise to
dynamics PL features (black dot line) and on-demand Read operations
(lavender arrows) as illustratively plotted in Fig. 1c. This adaptive var-
iation is primarily attributed to light-induced halogen migration at the
interfaces within MHPe@MYE. Fig. 1d presents a flow diagram of the
microscopic mechanisms upon high-energy Write, dark recovery, and
low-energy Read, corresponding to the frames tagged 1–5 in Fig. 1c.
Starting from interfacial regions containing defective MHPe and Br/Cl-
anchoredMYE surface (Frame 1), the adsorbed halogen species (Br/Cl)
would migrate to MHPe under intense Write light stimulation (Frame
2). It results in altered halogen composition and defect passivation of
MHPe, consequently modifying its PL properties. Upon removal of the
light stimulus, the PL properties gradually recover in dark states due to
reverse migration of halogen species (Frame 3). For implementing
Read operation, low-energy probing light is employed, which does not
induce further PL variation, thus allowing for non-destructive probing
of the current PL state (Frame 4). The system could return to its initial
state after long-term resting (Frame 5). This reversible process facil-
itates effective Write and Read operations, underpinning the neuro-
morphic functionality of MHPe@MYE for PL-based information
processing.Meanwhile, the inert Eu3+ luminescence fromMYEhost can
further serve as a baseline for calibrating the PL readouts.

MHPe@MYE is synthesized following the hard-templated sol-gel
procedure37. Aligned with our design, the kinetic PL mapping of
MHPe@MYE under continuous 360nm laser excitation (Fig. 1e) shows
characteristic PL variations featuring a red-shifted and drastically
enhanced PL intensity at the green region (cycled by blue dot lines), as
well as a steady Eu3+ peak at around 613 nm (marked by pink dot lines).
The decay process of the PL states can be probed using low-energy
Read excitation in non-destructive way (Fig. 1f). Read excitation also
reveals the initial PL characteristics featuring a weak peak at 470 nm
from defect-rich and Cl-rich MHPe (Supplementary Fig. 2). Using
alternating 360nm laser illumination as Write and weak 365 nm exci-
tation as Read, the PL dynamics of MHPe@MYE are investigated. As
shown in Fig. 1g, it shows an enhancing PL intensity upon Write exci-
tations, consistent with the kinetic PLmapping results. Multiple cycles
of alternating Write and Read operations reveal consistent recovery
endpoints during Read and starting points of subsequent Write pro-
cesses (marked by green dot lines). Similarly, consistency is observed
between orange dot lines marking the end of Write and the start of
Read operations. These consistencies confirm equivalent PL states at
these critical points, despite different PL intensities during Write and
Read conditions. It ensures the foundation for reliable operations in
MHPe@MYE artificial synapses.
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To clarify the structural underpinnings of the PL variations in
MHPe@MYE, a series of material characterizations are carried out.
X-ray diffraction (XRD) analysis confirms the good crystallinity and
high phase purity of MHPe@MYE. The phase ratios of the composites
are calibrated using XRD refinements, showing a majority of MYE and
minor MHPe (95.0% v.s. 5.03%, Supplementary Fig. 3a). Transmission
electron microscopy (TEM) and scanning electron microscopy (SEM)
reveal the uniform porous structures over the samples (Supplemen-
tary Fig. 3b). The corresponding energy dispersive spectrometer (EDS)
spectra and element mapping also demonstrate homogeneous dis-
tribution of all constituent elements (Supplementary Fig. 3c–j), con-
firming the formation of extensive interfacial regions that are crucial
for the light-induced and dark-recoverable PL variations.

Theoretical insight on adaptive photoluminescence variation
The PL variation in MHPe@MYE is primarily driven by light-
induced interface-controlled halogen migration, leading to com-
position variations from defective Cl-rich to Br-rich MHPe. While
halogen migration under light irradiation is common in hybrid
and mixed I/Br halide perovskite systems, it is rare in all-inorganic
Cl/Br systems due to their structural robustness41,42. Comparison
studies show no PL variation observed in CsPb(Br/Cl)3 (CPBC)
polycrystalline films or nanoparticles (refer to Supplementary

Note 2 for details). On the other hand, the halogen migration
process in metal-halide perovskites is known to be highly sus-
ceptible to surface effects43. Meanwhile, porous materials have
demonstrated vast potential in providing interface interactions in
luminescent materials38,44. In this context, the porous interface
unlocks this otherwise challenging halogen migration in all-
inorganic Cl/Br systems, thus prompting a detailed mechanistic
investigation.

To this end, DFT simulations are carried out to investigate the role
of MHPe@MYE interfaces in the halogen migration process. As
demonstrated in Fig. 2a and Supplementary Fig. 5a, the introduction of
halogen defects primarily increases the bandgap with increasing Cl
content. It does not lead to considerable variation in the band struc-
ture of CsPbBr3 (CPB), CPBC, or halogen-defective lattices (denoted as
v-CPB and v-CPBC), attributing to the defect tolerance of lead halide
perovskites45. Meanwhile, the large bandgap (4.2 eV) makes Y2O3 inert
in the PL variation process, and it only provides space to incorporate
Eu3+ dopants and 5D0→

7FJ emission (Supplementary Fig. 5b). Halogen
vacancy defects have low formation energies and commonly exist in
all-inorganic perovskite crystals46,47. On the other hand, Y2O3’s strong
adsorption of Br/Cl can create defect-rich MHPe at the porous chan-
nels, as evidenced in previous work37,38. The surface energies (γ) of Br/
Cl adsorption on different symmetric sites of Y2O3 surfaces are then

Fig. 1 | PL-based Write and Read mechanisms of MHPe@MYE. a Schematic of a
biological synapse. Created in BioRender. Lao, X. (2025) https://BioRender.com/
syuovcp. b Schematic illustration of the MHPe@MYE porous structure. Created in
BioRender. Lao,X. (2025)https://BioRender.com/at18ev9. cPLproperties variation
of MHPe@MYE showing PL properties changes duringWrite and Read operations,
with tagged points (1–5) corresponding to specific PL states. d Schematic

illustrations of themicroscopicmechanisms atpoints 1–5 in (c).eTime-resolved PL
intensity mapping of MHPe@MYE upon continuous 360 nm laser excitation. The
tagged area by blue and pink dash line represents PL signal from MHPe and MYE,
respectively. (Color bar: blue to red represents 1000 to 30020 in arb. units). f Inert
PL dynamics of MHPe@MYE under Read excitation. g PL dynamics featuring both
Read and Write processes.
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compared (Fig. 2b). It shows that values of Br-adsorbed models are
always larger than the corresponding Cl counterparts (Fig. 2c), indi-
cative of the comparably unstable Br adsorption. The charge density
difference (CDD) diagrams of halogen-adsorbed Y2O3 also demon-
strate the stronger charge interactions between Y andCl rather thanBr
as compared in Fig. 2d, attributing to the higher electronegativity of Cl
(3.0 vs. 2.8 for Br) and smaller ionic radius (1.81 Å vs. 1.96 Å).

Next, the interface-controlled halogen migration process is
investigated from anchored Br/Cl on the MYE surface to the surface
site of MHPe, and finally into the deeper MHPe lattice by the nudged
elastic band (NEB) method. The model featuring an interface between
Y2O3 and CPBC is illustrated in Fig. 2e. First, we examine Br migration
into aCPBC lattice and calculated themigration energy barriers at each
layer (Fig. 2f). Detaching from the surfacial sites of Y2O3, Br needs to
overcomea small energy barrier of 1.0 eV to reach the surfaceofMHPe.
This process mirrors the initial stage of empirical PL variations, where
Br can detach from Y2O3 and migrate to the surface of defect-rich
MHPe upon illumination. Since surface defects and their passivation
are pivotal in determining the quantum efficiency of halide per-
ovskites, this process would lead to enhanced luminescence
intensity48,49. Further penetration of Br into CPBC faces substantially
higher barriers (3.9 eV and 7.0 eV for subsurface and inner layers,

respectively). Meanwhile, as the Br migration process proceeds, the
halide composition of MHPe also evolves, potentially altering the
migration energy barrier. Themodel of Brmigration fromY2O3 surface
into the CPB lattice is then investigated, which ideally coincides with
the final stage of empirical PL variations with dominated green light
emission from CPB. Compared to the CPBC case, the interface barrier
of Br migration decreases to only 0.71 eV, with subsequent energy
barriers also decreasing to 2.7 eV and 4.5 eV, respectively. This result
marks an accelerated Br migration as the Br composition of MHPe
increases, explaining the experimentally observed adaptive PL prop-
erties evolution with halogen composition. On the other hand, Cl
migration faces higher barriers, consistent with dominant green CPB
emission during PL evolution. In contrast, bulk CPB shows a higher Br
migration barrier (2.3 eV, Supplementary Fig. 6), highlighting the cri-
tical role of MHPe@MYE interfaces in enabling adaptive PL changes
with neuromorphic behaviors.

Neuromorphic behaviors in photoluminescence variations
Building upon the theoretically adaptive halogen migration behaviors
ofMHPe@MYE, the neuromorphic properties ofMHPe@MYE are then
studied through PL dynamics using programmed light pulses as exci-
tation sources. Fig. 3a illustrates the synaptic PL behavior of
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MHPe@MYE by monitoring emissions at 510 nm (MHPe) and 613 nm
(MYE). A 365 nm LED powered by an arbitrary waveform generator
(AWG) setting at 2Hz is used as excitation sources. The initial stage
requires 85 high-energy Write excitation pulses (~161.15μW·cm−2) to
reach the upper threshold (blue line). The subsequent dark recovery
process is monitored using low-energy probing pulses
(~7.96μW·cm−2). The lower threshold (lavender line) is reached within
time periods equivalent to 72 Read pulses. Notably, subsequent cycles
show adaptive responses, with the second round requiring only 36
Write pulses to reach the upper threshold but 90 Read pulses to
recover. This indicates MHPe@MYE’s ability to memorize recent
excitations, accelerating PL variation while slowing recovery. This
effect becomesmore pronounced in the third round,with 32Write and
112 Read pulses, whereas it slightly diminishes after a 1-min interval in
the fourth round (51 Write and 89 Read). This behavior mirrors the
experience-dependent plasticity in biological synapses, where prior
stimulation history influences system responses. In sharp contrast, the
Eu3+ emission from MYE exhibits constant binary On/Off states dic-
tated solely by excitation power without neuromorphic features. The
coexisting neuromorphic and inert PL behaviors within the MHPe@-
MYE system serve as an internal reference. To further characterize
these neuromorphic properties, detailed investigations into PL varia-
tion process are conducted in search of specific biological phenomena
and metrics.

In biological neurons, synaptic plasticity allows a synapse to
adjust its synaptic weight (SW) in response to stimuli. In PL-based
artificial systems, SW can be quantified by comparing the PL intensity
before and after excitation spikes, and the SW variation trends under

different stimulus conditions reflect the stimuli-dependent synaptic
behaviors. Our study investigates these behaviors across varying spike
parameters specifically based on PL features, including emission
wavelength (λem), excitation wavelength (λex), excitation intensity (Iex)
and frequency (f). The results are summarized in Fig. 3b, with raw
spectral data displayed in Supplementary Figs. 7–10. Taking the λem
series as a reference, when monitoring shorter wavelengths
(470–490 nm), SW grows rapidly within 20 spikes but saturates at
small values, which is due to the red-shifting wavelength at initial
stages. The largest SW is observed at 500 nm,with longer wavelengths
showing slower evolution and smaller SW. These trends highlight the
diverse synaptic behaviors across different λem. Notably, as shown in
Supplementary Fig. 7, after 45 s intervals, fewer spikes are required for
MHPe@MYE to reach the same SW values, attributed to the history-
dependent adaptive behavior of MHPe@MYE. Similarly diverse
synaptic evolution trends can be observed in the Iex series. As
demonstrated in Supplementary Fig. 9, the SW values and variation
speeds decrease monotonically as Iex decreases, whereas the acceler-
ated recovery behavior persists after resting periods. When Iex is fur-
ther reduced to ~33.12μW·cm−2, approaching the energy density of
Read (~7.96 μW·cm−2), PL variations can no longer be observed. The
dependence of SW is similarly studied when varying other parameters
of excitation spikes (f, λex), showing that higher SW correlates with
shorter λex and higher f. Reproducibility of such stimuli-dependent
synaptic behaviors are examined across four measurements with tol-
erable standard deviation (s.d.). These rich and adjustable neuro-
morphic behaviors through multiple spiking parameters enhance the
information bandwidth and offer flexibility in designing PL-based
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neuromorphic systems, such as the potential task-adaptive parameters
tunning50. Moreover, this ability to sustain neuromorphic character-
istics after resting periods is similar to the long-term memory (LTM)
phenomena.

LTM behavior represents a sustained synaptic strength modula-
tion over extended periods, driven by mechanisms like receptor acti-
vation and Ca²⁺ influx that stabilize experience-dependent memory in
biological origins51. As shown in Fig. 3c, we observe analogous LTM
behavior in MHPe@MYE from the recovery and recalling processes
from a highly potentiated PL states after various resting time (denoted
as x). The inset spectrum demonstrates how LTM behaviors are
quantified by comparing Nt, Nn, and Nx, as defined in Supplementary
Note 3. Statistical analysis of five independentmeasurements confirms
high consistency, as evidenced by theminimal error bars in Fig. 3c (raw
data in Supplementary Fig. 11). It demonstrates that a smaller x leads to
a higher Ix and fewerNx required to arouse the same It again, indicating
good preservation (smaller Nn) and fast recalling (smaller Nx) of
memory after short periods. As x prolongs, Nn and Nx become larger
and move close to pristine Nt (indicated by gray arrows in Fig. 3c),
mimicking the gradual fading (lager Nn) and hard recalling (larger Nx)
ofmemory after long intervals.When resting intervals exceed a critical
duration (~180 s), the system loses its retained state (Supplementary
Fig. 12), analogous to biological forgetting processes. The above
behaviors replicate the LTM effects by PL manners, indicating the
intriguing long-term neuromorphic behaviors of MHPe@MYE.

On the other hand, pair-pulse facilitation (PPF) is a pivotal indi-
cator for determining the short-term functions of neuromorphic
behaviors. It occurs when two consecutive identical pre-synaptic sti-
muli are applied, leading to a progressively enhanced postsynaptic
response. Here, the PPF is measured at higher excitation energy
(365 nm, ~668.78μW·cm−2), while λem is set at 500nm for they exhibit
faster adaptation during the early stages. PPF index can be defined as
the PL intensity ratios between two paired pulse excitation at time
interval Δt (Supplementary Fig. 13). Supplementary Table 1 gives a
comprehensive benchmark of PPF behavior in a wide spectrum of
synaptic devices. MHPe@MYE exhibits ~181% PPF index measured at
Δt= 0.1 s, which is a modest value among existing reports. PPF index
typically exhibits a bi-exponential decay relationship against pulse
interval (Δt) regardless of the input/output modes14,52–54:

PPF index =C0 +C1 exp �Δt
τ1

� �
+C2 exp �Δt

τ2

� �
ð1Þ

where C0 is a constant, C1 and C2 represent the initial facilitation
degrees of the two phases, and τ1 and τ2 are the characteristic
relaxation times for the fast and slow phases, respectively. Supple-
mentary Fig. 13 presents the measured PPF values at different time
intervals, and the resultantfitting curve is shown inFig. 3d. Thefitted τ1
and τ2 values are 0.205 and 5.04 s (adjusted R2 ≈0.99), respectively.
The two decay channels are indicative of the fast and slow relaxation
phases of PPF: the short τ1 value enables immediate signal amplifica-
tion, while the longer τ2 value reflects a more gradual change in
facilitation for sustained memory over extended periods. This dual-
phase relaxation behavior closely mimics the dynamic response of
synaptic facilitation, where both fast and slow processes contribute to
the complex temporal and adaptive signal processing.

In biological systems, short-term plasticity (STP) and long-term
plasticity (LTP) represent fundamentalmechanismunderlying learning
andmemory formation. STP functions as a dynamic filter for temporal
information processing and working memory, whereas LTP facilitates
the consolidationof significant information into long-termmemory via
sustained synaptic enhancement55. MHPe@MYE can also emulate STP
and LTP behaviors in PL-based manner, and the distinct decay pro-
cesses can be monitored by Read operations. As shown in Fig. 3e, the
PL states of MHPe@MYE can be categorized into STP with fewerWrite

spikes (blue) and LTP with more spikes (red). The variation trends of
both LTP and STP demonstrate good reproducibility across eight dif-
ferent measurements. Decay time constants can be acquired from the
decay curves (Fig. 3f) of STP and LTP, respectively, by fitting the bi-
exponential decay function:

y= y0 +A1 exp �Δt
τ1

� �
+A2 exp �Δt

τ2

� �
ð2Þ

The fitted time constants are larger for LTP (τ1 = 6.5 s, τ2 = 41 s)
than STP (τ1 = 1.3 s, τ2 = 29 s), with tolerable s.d. error margins as
shown in the inset of Fig. 3f. This suggests the capability of MHPe@-
MYE to emulate enduring synaptic modifications by LTP induction,
which allows for sustained potentiation over extended periods com-
pared to STP. Such behavior is consistent with the fundamental prin-
ciples of synaptic plasticity observed in biological systems.

The reproducibility of MHPe@MYE’s neuromorphic properties is
further verified through four new batches. The PL properties and
structural characteristics of other MHPe@MYE samples demonstrate
high batch-to-batch consistency, showing similar porous structure and
history-dependent reversible PL properties variations. Supplementary
Note 4presents a detailed comparisonbasedon representative results.
It should be emphasized that the PL-based neuromorphic behaviors
observed in MHPe@MYE mainly mimic excitatory processes, which
capture the essential nature of memory acquisition, reinforcement,
and retention56. Biological synapses also exhibit complementary
functions like inhibitory behaviors. Achieving bidirectional optical
modulation of optical responses remains a technical challenge due to
the unidirectional nature of light, and PL-based inhibitory excitation
requires further mechanism innovations. Learning from existing
optoelectrical devices, recent reports have demonstrated that het-
erostructural designs can enable both excitatory and inhibitory con-
trol of electrical states by optical stimuli14,57,58. Other studies have
successfully employed electrical control or combined optical-
electrical architectures to realize inhibitory behaviors52,59. These
approaches provide valuable insights into further enriching the PL-
based neuromorphic functions of smart phosphor, particularly in
terms of heterostructure engineering and strategic introduction of
secondary physical terminals.

Physical reservoir computing based on smart phosphor
The above results confirm the intriguing PL-based neuromorphic
behaviors of MHPe@MYE, characterized by volatile and nonlinear
responses to optical stimuli in ultraviolet (UV) and blue regions.
These characteristics align well with the fundamental principles
of reservoir computing, including nonlinear signal processing and
high-dimensional data projection, which facilitates effective fea-
ture extraction and transformation of original dataset before
downstream classification60–62. To evaluate the feasibility of
MHPe@MYE as PL-based physical reservoir, we design an
experimental setup using Write pulses (λex = 365 nm,
~668.78 μW·cm−2) as inputs and PL intensities under Read excita-
tion (λem = 500 nm, read by ~7.96 μW·cm−2) as outputs, respec-
tively. The custom measurement setup is depicted in
Supplementary Note 5. The input signal encoded 4-bit binary
sequences (0000 to 1111) as periodic waveforms controlled by
AWG (1 Hz), with 1 represented by an active cycle and 0 by
absence. An example waveform for the sequence 1011 is shown in
Fig. 4a. The measured Read PL dynamics are shown in Fig. 4b,
where all 16 Iem-t curves (from 0000 to 1111) exhibit distinct PL
dynamics features with notable reproducibility (Supplementary
Fig. 15). The results demonstrate that the PL-based MHPe@MYE
physical reservoir exhibits stable fading memory characteristics,
where the output PL state depends critically on both the number
of excitation pulses and their temporal distributions. This can be
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exemplified by sequences 1100 and 0110 (Fig. 4c), though both
contain two pulses, their distinct timing sequence induces dif-
ferent PL trajectories. Similarly, sequences with varying pulse
counts (1100, 1110, and 1111) also generate distinct PL variations.
This nonlinear weighting of excitation spikes enables MHPe@MYE
reservoir to map distinct 4-bit sequence to characteristic PL
responses. Furthermore, sampling points (SMPs) are discrete time
instants at which readouts are sampled from the PL dynamics of
MHPe@MYE reservoir, thereby encoding temporal PL responses
into static features. As tagged in Fig. 4b, two SMPs are manually
assigned based on inter-class separation among 16 PL dynamics.
While PL readouts at individual SMP show high reproducibility
with minimal s.d. errors among eight experiments, neither could
fully differentiate all 4-bit codes due to signal overlaps in the one-
dimensional feature space (Fig. 4d). By contrast, plotting paired
SMP readouts can transfer the time-resolved waveforms into a

two-dimensional (2D) feature space of PL intensity map (Fig. 4e),
where all 16 binary patterns become clearly and reproducibly
distinguishable.

To validate the practical utility of MHPe@MYE as physical
reservoir, it is first applied to process MNIST dataset for hand-
written digit recognition63. The MNIST images are preprocessed
into stripes of 4-bit binary codes, with detailed methodology
outlined in Supplementary Note 6. To compare different SMP
designs, three virtual devices with varying abilities to distinguish
4-bit binary codes are constructed. Dev1 employs two SMPs for
dual-feature sampling, ensuring better input code identification
according to the well-separated features in Fig. 4e. In contrast,
Dev2 and Dev3 use only SMP1 or SMP2 as the readout, respec-
tively. The experimental PL readouts are extracted from Fig. 4d
with different SMP configurations, which are then fed into a
simple artificial neural network (ANN) for offline software-based
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training to evaluate the MNIST recognition accuracy after PL-
based physical reservoir computing. As plotted in Supplementary
Fig. 17, the training results show that Dev1 can achieve classifi-
cation accuracy of 92% within 20 epochs, while Dev2 and Dev3
reach only 90% and 87%, respectively. This result highlights that
the dual-feature method offers better performance in PL-based
physical reservoir computing.

To further validate the capability of PL-based reservoir computing
in more complex application scenarios, their potential in UV light-
based fingerprint recognition is then explored. While optoelectronic
devices are typically employed for processing UV light inputs, our
study shows that MHPe@MYE can effectively replicate this process
throughPL-basedmanner64–66. Theworkflowof proposedMHPe@MYE
physical reservoir for SOCOFing fingerprint authentication is illu-
strated in Fig. 4f and described in Supplementary Note 7, as modified
from previous reports based on optoelectronic devices64. After opti-
mizing the binarization and resizing parameters of SOCOFing images
in Supplementary Figs. 18–20, we select the adaptive thresholding
binarization and 64 × 64 resizing pixels due to their good performance
in balancing training costs and preservation of features. A similar
approach is then used to transform the resized images into 4-bit binary
codes (Supplementary Fig. 21a, b), which further modulate the input
waveform to MHPe@MYE PL-based physical reservoir. Experimental
PL dynamics maps are again extracted as the readouts, and fed into
ANN to evaluate the recognition accuracy (Fig. 4g). The training results
are plotted in Fig. 4h, showing that the dual-feature method (Dev1)
leads to much higher accuracies throughout the training process, and
finally reaches 94.4% after 60 epochs. The results are comparable to
optoelectronic neuromorphic devices despite the different informa-
tion processing modes and algorithms15,16,64,67. In sharp contrast, the
result of Dev2 (employing SMP2 only) attainsmarkedly lower accuracy
of 84.2%. The disparity between dual- and single-SMP methods is
consistently observed across different resizing strategies as compared
in Supplementary Fig. 21c–e. Supplementary Fig. 21f summarizes the
accuracy and loss of SOCOFing recognition training process at dif-
ferent resize methods.

The above PL-based physical reservoir concept can be broadly
extended to other smart phosphor systems, such as the decay-type
PersL phosphors, as exemplified in Supplementary Note 8. Never-
theless, the absence of Read mechanism impedes the effective retrie-
val of information due to internal and external interferences.
Comparative studies reveal that decay-type systems experience nota-
bly increased computational costs and decreased accuracy resulting
from wrong readouts and feature-loss events, particularly with decay
signal overlaps from adjacent units (details in Supplementary Note 9).
This marks the importance of achieving distinct Read operations for
future developments of PL-based neuromorphic computing.

Discussion
In conclusion, we presentMHPe@MYE smart phosphorwith intriguing
PL-based neuromorphic characteristics. This work promotes conven-
tional smart phosphor from passive stimuli actuators to active infor-
mation processors, enabling PL-based all-optical neuromorphic
computing. By intentionally establishing distinct Write and Read
operations through engineered interfacial interaction, this system
overcomes the inherent challenges of previous decay-type Write-only
phosphor systems. These improvements are crucial for the advance-
ment of PL-based neuromorphic computing. Its potential in real-world
applications is demonstrated through high-accuracy recognition tasks
as a physical reservoir, validated using MNIST handwritten number
recognition and SOCOFing UV fingerprint authentication. These
results underscore the feasibility of phosphor materials in all-optical
neuromorphic computing, opening alternative pathways for function-
oriented design of phosphor materials for information science.

Methods
Materials synthesis
MYE host was first prepared by hard-templated sol-gel synthesis. First,
poly(methyl methacrylate) (PMMA) mesosphere (~80 nm in diameter)
were preparedby colloidal polymerization. The YE solwaspreparedby
mixing 5mmol Y(NO3)3 and Eu(NO3)3 in 25mL deionized water and
10mmol citric acid at 80 °C. Next, stacked hard templates of PMMA
were prepared by vacuum filtering, where the YE sol was later infil-
trated to immerse into the interval of PMMA templates. The obtained
composite was dried at 60 °C and calcined at 400 °C under an inert
atmosphere to discard PMMA. The final calcination was performed at
1000 °C in air to form the MYE host. The incorporation of MHPe into
MYE uses a DMSO precursor containing 1mol·L−1 CsCl and 0.33mol·L−1

PbCl2, and 0.67mol·L−1 PbBr2. 0.1 g of the as-preparedMYEwas soaked
into the aboveMHPe precursor for 1 h andwashedwith DMSO twice to
remove the remnant precursor on the outer surfaces. The obtained
MYE was heated at 150 °C for 15min to finally obtain MHPe@MYE.

Materials characterizations
A Rigaku SmartLab 9 kW Advance was utilized for XRD analyses using
Cu Kα radiation (λ = 1.5406Å) at 40kV and 200mA. Refinements of
XRD data were performed using GSAS-II software68. The TEM images
were capturedwith aTecnaiTF30 transmission electronmicroscope. A
Regulus 8100 (HITACHI) SEMequippedwith a Bruker NanoGmbHEDS
was used to capture the morphology and investigate the elemental
distribution of MHPe@MYE. The PL mapping was recorded using a
Nova high-sensitivity fiber spectrometer, while the PL dynamics were
recorded by Edinburgh FLS 920 using 360 nm laser, Xeon lamp, AWG-
controlled UV and blue LEDs (LED Guhon Optoelectronics) as excita-
tion sources, respectively. An optical power meter (SANWA) was used
to calibrate the light intensity of LEDs.

DFT computation methods
Theoretical simulations were performed based on the density func-
tional theory (DFT) using the generalized gradient approximation
(GGA) Perdew−Burke−Ernzerhof (PBE) exchange-correlation func-
tional in theMedeAVASP package69. The plane-wave cutoff energywas
set to be 400 eV. A 3 × 3 × 3 k-mesh centered at the gamma point was
used for investigating the electronic structures of bulkMHPe and Y2O3

(Eu3+), while 3 × 3 × 1 k-mesh was used for investigating the surface
adsorption and interface NEB migration processes. All the structures
were allowed to relax until the energy on the atoms was less than
1.0 × 10−5 eV and all the forces on atoms were below 0.1 eV·Å−1. γ of
halogen adsorption is calculated by the following equation:

γ =
Eslab � NEbulk � EHalogen

2A
ð3Þ

where Eslab is the total energy of the halogen-absorbed surface model
and Ebulk is the total energy for the corresponding bulk structure, N is
the supercell number,A is the area of adsorption surface, EHalogen is the
chemical reference energy of halogen which is derived from Br2 and
Cl2, respectively. The CCD diagram (ρdiff ) of halogen absorption on
Y2O3 surface was plotted based on the following equation:

ρdiff =ρ Y2O3 � X
� �� ρ Y2O3

� �� ρ Xð Þ ð4Þ

where ρ Y2O3 � X
� �

, ρ Y2O3

� �
, and ρ Xð Þ are the charge density of the

halogen-adsorbed Y2O3, empty Y2O3 surface, and the empty X
structure, respectively. The NEB method was employed to investigate
the energy barriers by tracing the migration path of halogen from
adsorption on the Y2O3 surface to surfacial CPBC (or CPB), the
subsurface layer, and finally into the inner layers. The atomic positions
of Y2O3 and the underlying CPBC (or CPB) layer were kept fixed during
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the relaxation of the initial and final images. All the DFT computations
have been performed with assistance from the VESTA software.

Software-based training methods of reservoir computing
Python code based on TensorFlow and Keras package was written
to evaluate the performance of MHPe@MYE physical reservoir in
MNIST and SOCOFing recognition. Readouts of MHPe@MYE
physical reservoir were extracted from experimentally acquired
PL features, which were fed into software-based ANN for offline
evaluation of recognition accuracy. The ANN was trained using
the Adam optimizer with sparse categorical cross-entropy as loss
function (L), which is defined as:

L= �
XN
i = 1

yi log byi� � ð5Þ

where N is the number of classes, yi is the true label, and ŷi is the
predictedprobability for class i. The optimizer updates theweights (w)
at each step (t) according to:

wt + 1 =wt �
ηffiffiffiffiffibvtp
+ ϵ

cmt ð6Þ

where cmt and bvt are the bias-corrected first and second moment
estimates of the gradients, η is the learning rate, and ϵ is a constant for
numerical stability.

Data availability
All data needed to evaluate the conclusions in the paper are present in
the paper and/or the Supplementary Information or available from the
corresponding authors upon request. Source data are provided with
this paper.

Code availability
The custom code used in this study is available from the correspond-
ing authors upon request.
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