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Dominant Charging Location Choice of Commuters and 

Non-commuters: A Big Data Approach 

Abstract 

This paper is focused on electric vehicle (EV) users’ dominant charging locations, where they 

get their EVs recharged more frequently. We particularly compared the dominant charging 

location choice of commuters and non-commuters using a unique one-month trajectory dataset 

collected from 76,774 actual private EVs in Beijing in January 2018. Specifically, we first 

grouped EV users for both commuters and non-commuters according to their dominant charging 

locations and then characterized and compared their charging patterns. Further, we associated 

the dominant charging location choice of EV users with their characteristics using a mixed 

logistic regression model. The results suggested that over 50% of the EV users were the Home 

Dominated (HD) users with most charging events occurring around home. Further, there were 

significant differences in charging patterns of EV users from different groups by dominant 

charging location, and also between commuters and non-commuters. Commuters tended to have 

a lower SOC than non-commuters when they got their EVs recharged. Moreover, the dominant 

charging location choice of EV users was significantly associated with their characteristics, 

including charging opportunities available and mobility patterns, and the association is different 

for commuters and non-commuters. The results are expected to be useful for deploying charging 

infrastructure. 

 

Keywords: Electric Vehicle; Commuters; Dominant Charging Location; Trajectory Data; Mixed 

Logistic Regression Model  
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1 Introduction 

Electric vehicles (EVs) have widely been deemed as a promising alternative to internal 

combustion engine vehicles (ICEVs), advancing the transition to a more sustainable and 

environmental-friendly transport system (Kang et al., 2022; Sun et al., 2015; Xu et al., 2017). To 

promote the EV market share, the EV-related stakeholders (e.g., automakers and government 

agencies) have contributed a lot in, for example, battery and vehicle technology innovation, 

charging infrastructure deployment and planning, and EV-related policymaking (Chakraborty et 

al., 2019). It is projected by International Energy Agency (IEA) that the penetration rate of EVs 

in the road vehicle fleet will reach around 7% by 2030 and the adoption rate of EVs in 2030 will 

be around 15% (IEA, 2021). 

 

To further promote the adoption and usage of EVs, it is of great importance to understand 

existing EV users’ charging behavior, such as charging location choice behavior (van der Kam et 

al., 2020). Charging location choice characterizes how EV users get their EV recharged at 

different locations. In general, there are three different types of locations for EV users to charge 

their EVs, namely home, workplace, and other places. Charging at home is the most common 

option for the majority of EV users, followed by charging at workplace and other places 

(Chakraborty et al., 2019; Lee et al., 2020). Understanding charging location choice and its 

influential factors could not only help to estimate the influence of EV charging demand and 

electricity consumption on the local power grid load but also inform the future charging 

infrastructure planning and investment, which are two pressing challenges for welcoming the era 



 

4 

 

of massive EV adoption (Chakraborty et al., 2019; Xu et al., 2017).  

 

There are a number of studies shedding light on EV users’ charging location choice 

(Chakraborty et al., 2019; Lee et al., 2020; Sun et al., 2016; Xu et al., 2017; Yun et al., 2019). 

Most of them tended to use datasets collected from a small number of participants (e.g., 

hundreds of EV users) and over a short observation period (e.g., one week) to analyze and 

model charging location choice of each charging event or charging events in one day. However, 

few of them have been conducted to reveal EV users’ long-term habit and preferences towards 

charging location choice (e.g., dominant charging location, where EV users get their EVs 

recharged more frequently). Also, little is known about charging location choice of both 

commuters and non-commuters, in terms of their similarity and differences. 

 

To overcome these limitations, we will particularly look at the dominant charging location of 

EV users (where EV users get their EVs recharged more frequently) and compare the dominant 

charging location choice of commuters and non-commuters, using a unique one-month 

trajectory dataset collected from 76,774 actual private EVs in Beijing in January 2018. 

Specifically, we will first use a clustering algorithm to group EV users for both commuters and 

non-commuters according to their dominant charging locations and then characterize charging 

patterns of EV users from different groups by dominant charging location. Further, we will 

associate the dominant charging location choice of EV commuters and non-commuters with 

their characteristics, including vehicle attributes, individual- and household- level attributes, 
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charging opportunities available, and mobility patterns. The findings from this paper are 

expected to shed light on EV user’s charging behavior, particularly charging location choice 

behavior of commuters and non-commuters, which could inform future EV-related 

policymaking, infrastructure planning, and the management of power demand from the local 

grid. 

2 Literature Review 

2.1 Charging Location Choice of Electric Vehicle (EV) Users 

Understanding EV users’ charging behavior (e.g., when, where, and how EV users charge 

their EVs) plays a significant role in promoting the adoption and usage of EVs through 

informing, for example, the launch of successful charging infrastructure initiatives and the 

rollout of effective and efficient charging strategies (van der Kam et al., 2020). Three main types 

of charging behavior have received increasing attention, including charging decisions (i.e., 

whether to charge) (Ge et al., 2018; Wen et al., 2016; Yu & MacKenzie, 2016; Zoepf et al., 

2013), time-related charging choices (e.g., when and how often to get EVs recharged) (Kim et 

al., 2017; Sun et al., 2015; Sun et al., 2018; Wolbertus et al., 2018) and charging location choice 

(Chakraborty et al., 2019; Lee et al., 2020; Sun et al., 2016; Xu et al., 2017; Yun et al., 2019). As 

this paper aims to explore EV users’ dominant charging location (where EV users get their EVs 

recharged more frequently), the following review will be focused on those studies related to 

charging location choice of EV users. 
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The low penetration of EVs in the automobile market makes it difficult to collect real EV 

usage data. Consequently, the stated preference (SP) survey has become the dominant approach 

to gathering charging location choice of the general public or EV users in given scenarios. For 

example, Jabeen et al. (2013) studied charging preferences of 54 EV users in Western Australia 

with four sets of stated choice experiments. It was observed that EV users preferred to charge at 

home or work rather than at public charging stations in general. EV users with solar panels 

installed at home preferred to get their EVs charged at home; while EV users picking up their 

friends or family members preferred not to charge at home but to use public charging facilities. 

Chakraborty et al. (2019) used the charging location choice data of more than 3,000 plug-in 

electric vehicle (PEV) users in California, which were collected over 7 consecutive days, to 

explore the factors influencing the daily charging location choice. The results showed that 

factors related to sociodemographic attributes, charging cost and vehicle technology could 

influence daily charging location choice. Lee et al. (2020) examined the 7-day charging patterns 

of 7,979 PEV users in California, in terms of their charging locations and levels. Results 

revealed that PEV users relied heavily on home charging, with more than half of them merely 

charging with home chargers. Also, PEV users’ choices of charging locations were significantly 

influenced by various factors, such as PEV users’ sociodemographic attributes, the 

characteristics of owned PEVs, and the availability of charging infrastructure at workplace. 

However, there is still a debate on whether such SP data could well characterize charging 

location choice of EV users, because, on the one hand, the survey sample is usually small and 

the survey data is collected in a fixed short period (e.g., one day); on the other hand, the 
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respondents in a SP survey do not always share the real information (for example, as they cannot 

remember clearly what happened). 

 

Compared to the SP data, the revealed preference (RP) data, which could realistically reflect 

how EV users used their EVs, is more suitable for exploring EV users’ charging location choice. 

For example, using a two-year long revealed preference data of 500 commercial and private 

battery electric vehicles (BEVs) in Japan, Xu et al. (2017) studied what and how factors affected 

the joint choice of charging mode and location for BEV users. The mixed logit estimation results 

showed that the battery capacity, midnight indicator, initial SOC and number of past fast 

charging events were the main predictors that determined BEV users’ joint choice of charging 

mode and location. To determine the location of people charging their plug-in hybrid electric 

vehicles (PHEVs), Yun et al. (2019) investigated the GPS trajectory data of 700 PHEVs and the 

charging infrastructure data in Shanghai. The result indicated that PHEV users were more 

inclined to charge at home or workplace than at public charging stations. the main factors 

influencing users’ decisions on charging location included charging price and tariffs, the initial 

SOC, dwell time, charging power, and vehicle kilometer travel (VKT) of the current trip and 

current day. Although these studies did contribute to the studies of EV charging location choice, 

there are two main limitations. On the one hand, for a few of the studies, the sample size was 

small (e.g., hundreds). As a result, the samples used may not be well representative, and the 

results may not be reliable. On the other hand, most studies investigated charging location 

choice over a short period (e.g., one-time charging or daily charging choice), and paid almost no 
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attention to EV users’ long-term habit or preferences towards charging location (e.g., dominant 

charging location, where EV users get their EVs recharged more frequently). 

2.2 Travel and Charging Behavior of EV Commuters 

Commuters are generally expected to be suitable early EV adopters considering the matching 

between their rather fixed travel patterns with a short daily driving distance and the limited 

range of most EVs (Brady & O’Mahony, 2011). Though there is an increasing number of studies 

providing insights into EV user’s travel and charging behavior/patterns, limited knowledge is 

known particularly for EV commuters. 

 

Compared with other types of EV users (e.g., ride-hailing drivers), commuters have 

heterogeneous travel patterns and charging behavior. Using a dataset comprising the real-world 

data of 2,500 BEVs in Shanghai, Hu and Sun (2019) characterized BEV users’ travel and 

charging behavior with six metrics (e.g., travel distance and start time of charging event), based 

on which three groups of BEV users (namely commuters, ride-hailing drivers, and other users) 

with distinct travel patterns and charging behavior were identified. Also, commuters owning 

different types of EV models may have different travel and charging behavior. Based on an 

online survey of 3,500 PEV users in California, Tal et al. (2014) explored the differences in 

travel (e.g., commuting distance and daily travel distance) and charging (e.g., workplace 

charging) behavior of PEV owners with different types of PEV models. It was found that drivers 

with larger-battery PHEVs and BEVs travelled a longer distance and had more battery charge 

than smaller-battery PHEVs because of the larger battery size and easier access to charging 
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opportunities.  

 

Understanding commuters’ travel/mobility patterns could inform, for example, the design of 

EVs and the rollout of EV-related policies (Björnsson & Karlsson, 2015; Hu et al., 2016; Smith 

et al., 2011; Xu et al., 2018). Using the dataset collected from a fleet of 76 vehicles in Winnipeg, 

Canada, Smith et al. (2011) constructed a commuter driving cycle presenting city commuting on 

weekdays, based on which an energy-based simulation was conducted to explore the optimal 

battery storage for a commuter sedan car. The results showed that with a 2.4-hour daytime 

charge, the reduction in the battery size of such a vehicle can be around 40% without losing 

functionality. Through combining three unique datasets from the Bay Area, including fine-scale 

mobile phone data, census data and PEV charging session data, Xu et al. (2018) presented a 

method coupling PEV users’ mobility patterns and charging profiles to optimize electricity 

planning and management. The authors recommended commuters to change their start and end 

times of PEV charging session at workplace to ease the power demand for the power grid at 

peak charging hours. Also, the monetary gains from such a recommendation were quantified.  

 

Several studies have contributed to characterize EV commuters’ charging patterns and the 

potential association between commuters’ characteristics and their charging behavior 

(Chakraborty et al., 2019; Daina et al., 2015; Lee et al., 2020; Lee et al., 2019). For example, 

Chakraborty et al. (2019) collected the dataset comprised of characteristics and history charging 

activities of more than 3,000 PEV commuters in California and developed error component logit 
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models to associate commuters’ daily charging location choices with their characteristics. The 

results showed these driving factors on daily charging location choice include charging costs, 

commuter’s sociodemographic attributes (e.g., gender) and the technological attributes of PEVs 

owned (e.g., electric range). Lee et al. (2020) revealed the differences in the relationship 

between commuting distance and the mixed use of charging infrastructure of BEV and PHEV 

users using two multinomial logit models conducted based on a survey on 7,979 PEV users in 

California. It was found that for BEV users, commuting distance was not a significant factor 

influencing their choices on charging locations; while for PHEV users, those who resided farther 

away from their workplace preferred to get their PHEVs charged at more diverse charging 

locations. Although these studies have made efforts to understand charging behavior of 

commuters, they failed to explore charging behavior of non-commuters and further reveal the 

similarity and differences between commuters and non-commuters in terms of charging behavior, 

such as charging location choice. 

2.3 Research Gaps and Aims 

We conducted a comprehensive review on charging location choice of EV users and travel 

and charging behavior of EV commuters, and identified the following research gaps: 

 

⚫ SP and RP data have been used to explore charging location choice of EV users. However, 

most studies tended to use the datasets with a small sample size (e.g., hundreds) or 

collected over a short observation period (e.g., one week), and thus there is a big concern 

about the representativeness of the samples. 

⚫ Most studies of EV charging location choice tried to model EV users’ charging location 
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choice over a short period (e.g., one-time charging or daily charging choice), and little is 

known about the long-term habit or preferences towards charging location of EV users 

(e.g., dominant charging location, where EV users get their EVs recharged more 

frequently). 

⚫ A number of studies characterized charging behavior of commuters, but few of them 

involved the charging behavior of non-commuters. Furthermore, it remains unclear about 

how commuters and non-commuters behave similarly or differently regarding charging 

behavior, in particular for charging location choice. 

 

To fill these gaps, this paper will use a unique one-month trajectory dataset which was 

collected from 76,774 actual private EVs in Beijing in January 2018 to provide insights into 

private EV users’ charging behavior with a focus on the dominant charging location choice of 

EV users (where they get their EVs recharged more frequently). Furthermore, we will explore 

the possible association between EV users’ dominant charging location choices with their 

characteristics. In particular, we will conduct a comparative study of commuters and non-

commuters, revealing their different dominant charging location choice behaviors.  

3 Study Area and Dataset 

3.1 Study Area: Beijing 

Beijing, the capital of China, is one of the Chinese cities acting actively to promote the uptake 

of electric vehicles (EVs) and the development of charging infrastructure (Gong et al., 2018; 
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Kang et al., 2022). According to the 2021 Beijing Transport Annual Report by Beijing Transport 

Institute (BTI), the number of passenger New Energy Vehicles (NFVs, nearly all of them were 

EVs) in Beijing has reached 389,000 at the end of 2020, with an increase rate of 26.6% (BTI, 

2021). Meanwhile, as reported by Beijing Municipal Commission of Urban Management 

(BMCUM), an EV charging infrastructure network comprised of more than 200,000 charging 

posts has been developed. Among them, private charging posts accounted for more than two-

thirds, and the remaining (around 50,000 charging posts) were open and partially open to the 

public (BMCUM, 2021). From a spatial perspective, these charging facilities were mostly 

located in the central area of Beijing with a dense population, and were expected to ensure that 

EV users can, on average, find charging infrastructure within 5 km (excluding those 

mountainous areas in Beijing) (BMCUM, 2021). 

3.2 GPS Trajectory Data on Private EVs  

We used a unique one-month trajectory dataset which was collected from 76,774 actual 

private EVs in Beijing in January 2018, as detailed in the work by Sun et al. (2021). Table 1 is 

an example about the key fields in the dataset, including EV identification, timestamp, latitude 

and longitude (reporting an EV’s real-time location), distance travelled, instantaneous speed, 

and state of charge (SOC).  

 

Table 1 An example about the key fields in the EV trajectory dataset 

Vehicle ID Timestamp Latitude Longitude 
Distance 

Travelled (km) 

Instantaneous 

Speed (km/h) 

SOC 

(%) 

… … … … … … … 

P1G4024922 2018-1-2 20:52:47 39.762900 116.377450 56056 21.7 68 

P1G4024922 2018-1-2 20:53:17 39.763380 116.382540 56057 26.8 68 

P1G4024922 2018-1-2 20:53:47 39.763380 116.382540 56057 26.8 68 
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P1G4024922 2018-1-2 20:54:17 39.764305 116.393000 56058 49.6 66 

P1G4024922 2018-1-2 20:54:47 39.764305 116.393000 56058 49.6 66 

P1G4024922 2018-1-2 20:55:17 39.758217 116.395325 56058 29.3 66 

P1G4024922 2018-1-2 20:55:47 39.758217 116.395325 56058 29.3 66 

P1G4024922 2018-1-2 20:56:17 39.761368 116.398445 56059 39.1 65 

… … … … … … … 

 

With the EV trajectory dataset, we need to identify travel, parking and charging events of EVs. 

Fig. 1 illustrates how an EV trajectory can be segmented into a series of connected travel, 

parking and charging events using an EV trajectory data analytical framework by Sun et al. 

(2021) and Yang et al. (2021).  

 

 

Fig. 1 An illustration of trajectory segmentation (Source: Adapted from Yang et al. (2021)) 

4 Methodology 

4.1 Inferring Commuters and Non-Commuters  

Since the EV trajectory dataset does not contain sociodemographic characteristics of EV users 

(e.g., age and employment statue), we need to infer their employment statue (i.e., commuter or 

non-commuter, defined as whether having a fixed workplace) and residential location, so as to 

further conduct a comparative study of commuter and non-commuters on dominant charging 

location (see Section 4.2). Generally, residential location and workplace are conceptualized as 

the places where a commuter most visits and stays for substantial amounts of time during 
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nighttime and working hours, respectively (Alexander et al., 2015; Lv et al., 2016; Tu et al., 

2017; Wang et al., 2018; Zhou et al., 2017). Following this concept, we proposed a two-step 

procedure below for home and workplace inference using the travel and parking events of EV 

users extracted from EV trajectory data: 

 

Step 1: Identify potential home/workplace visiting events. Specifically, those parking events 

within a period from 7 pm to 7 am (the next day) and lasting for more than 3 hours are 

considered as potential home visiting events; while those parking events within a period from 7 

am to 7 pm on weekdays and lasting for more than 3 hours are considered as potential 

workplace visiting events. Similar rules have been widely used for inferring residential location 

and workplace with big data (e.g., mobile phone data and vehicle trajectory data) in the previous 

work (Alexander et al., 2015; Çolak et al., 2015; Tu et al., 2017; Xiong et al., 2021; Zhou et al., 

2017). It is worth mentioning that the rules above are designed to identify potential 

home/workplace visiting events (i.e., candidates for home/workplace inference), and thus these 

rules should be applicable to most cases (both individuals not driving EVs and EV users). There 

is a chance that some actual non-home/workplace visiting events are included as candidates for 

inference. For example, when compared to the individuals not driving EVs, EV users may have 

more parking events longer than 3 hours (due to EV charging) outside home/workplace, and 

these events could be selected as candidates. Nonetheless, given that the place with few 

visitations cannot be inferred as home/workplace (see Step 2) in this study, including these 

events as candidates would have little influence on the inference of residential locations and 
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workplace, as their size is rather small and also they are geographically dispersed. 

 

Step 2: Infer the location for home/workplace. Given a list of potential home/workplace 

visiting events (obtained from Step 1), we used the mean shift clustering algorithm (Cheng, 

1995) to find the place which has the most potential home/workplace visiting events within a 

specific distance (set to 400 m in this study). If the located place was visited less than 4 times 

per month (once a week, on average) by the EV user, we inferred this place as other locations 

rather than home/workplace considering the uncertainty to infer a place as home/workplace with 

infrequent visitations (Alexander et al., 2015). Then, we defined EV users with an inferred 

workplace as commuters; otherwise, non-commuters. Note that 1) the inference of home 

location was conducted firstly and those parking events within the specific distance of the 

inferred home location were removed before inferring workplace; 2) we filtered out those EV 

users without an inferred home (Alexander et al., 2015; Çolak et al., 2015).  

 

It should be pointed out that there is no ground truth to verify our inferences from EV 

trajectory data, in terms of the exact residential location and workplace for each EV user and 

whether a specific EV user is a commuter (defined as having an inferred workplace) or not. 

Indeed, this is a common concern (i.e., no ground truth for result verification) when working 

with big data, such as trajectory data, mobile phone data, and smart card data. However, there is 

a growing trend of using big data to conduct behavior-related research, particularly when it 

comes to understanding the travel and charging behavior of EV users. This is because big data 
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has several advantages over traditional survey data, such as larger sample sizes, longer 

observation periods, and lower data collection costs, which make it more promising for studying 

individuals’ behavior, habits, and preferences (Sun et al., 2021). On the other hand, inferring 

residential locations and workplace for individuals using big data (e.g., trajectory data) and 

conducting further research based on these inferences are quite common and well-established 

practice in literature (Alexander et al., 2015; Wang et al., 2018; Xu et al., 2018; Yan et al., 2019), 

as the rather rhythmic activity patterns of individuals at residential locations and workplace 

could lead to the high reliability of residential location and workplace inferences. Further, we 

compared the ownership of all private New Energy Vehicles (NFVs, nearly all of them were 

EVs) in Beijing in 2018 to the private EVs used in this study at the district level (see Appendix 

A in the Supplementary Materials and note that the visualization for the private EVs used in this 

study was based on the inferred residential locations). The comparison shows that their spatial 

distributions at the district level are rather similar, to some extent implying that our inferences 

should be reliable. 

4.2 Grouping EV users by Dominant Charging Location 

4.2.1 Classifying Charging Events by Charging Location 

According to the location where a charging event occurs, we classified the event into three 

different types: 

 

⚫ Home-based charging events: refer to those charging events occurring within the 

specific distance of the EV user’s home location. In this study, the distance is set to 400 
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m. There are two reasons for us to use 400 m as the threshold. First, Huang et al. (2020) 

who used the trajectory data on private conventional vehicles found that 400 m was the 

most appropriate radius to cluster parking events to a specific activity location, 

considering the drift of GPS trajectory points and the change of exact parking locations 

around a specific activity location. Second, we did a sensitivity analysis to explore how 

the threshold would influence the quantities of those charging events that are considered 

as home-based charging events and workplace-based charging events, respectively. The 

results show that when the distance is larger than 400 m, the number of events to be 

further considered as home-based charging events or workplace-based charging events 

becomes much smaller (see Appendix B in the Supplementary Materials).  

⚫ Workplace-based charging events: refer to those charging events occurring within the 

specific distance of the EV user’s workplace location. 

⚫ Other charging events: refer to those charging events occurring outside the specific 

distance of the EV user’s home and workplace locations.  

 

For EV commuters, they could have all of the three charging event types, i.e., home-based, 

workplace-based and other charging events; while non-commuters only have home-based and 

other charging events (without workplace-based ones).  

4.2.2 Grouping EV users 

To characterize EV users’ charging location patterns and further group them into different 

categories according to their dominant charging locations, we made a charging event portfolio 
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for each user, based on the percentage of the three charging event types (i.e., home-based, 

workplace-based, and other charging events). Accordingly, commuters and non-commuters can 

be represented by 3-tuples and 2-tuples, respectively, as workplace-based charging is only 

applicable to commuters (see Equation (1) and (2)). Here, each tuple represents the percentage 

of a specific charging event type. 

 

𝐶𝑛 =  (
𝑁𝑛ℎ

𝑁𝑛ℎ+𝑁𝑛𝑤+𝑁𝑛𝑜
,

𝑁𝑛𝑤

𝑁𝑛ℎ+𝑁𝑛𝑤+𝑁𝑛𝑜
,

𝑁𝑛𝑜

𝑁𝑛ℎ+𝑁𝑛𝑤+𝑁𝑛𝑜
)  (1) 

𝑁𝐶𝑛 =  (
𝑁𝑛ℎ

𝑁𝑛ℎ+𝑁𝑛𝑜
,

𝑁𝑛𝑜

𝑁𝑛ℎ+𝑁𝑛𝑜
)  (2) 

 

Where, 𝐶𝑛 and 𝑁𝐶𝑛 denote the 𝑛𝑡ℎ EV commuter and non-commuter, respectively; 𝑁𝑛ℎ, 𝑁𝑛𝑤, 

and 𝑁𝑛𝑜 denote the numbers of home-based, workplace-based, and other charging events which 

the 𝑛𝑡ℎ commuter/non-commuter has, respectively (note: 𝑁𝑛𝑤 is only applicable to commuters). 

 

Based on the calculation above, we further clustered EV users into different groups for 

commuters and non-commuters, respectively, using the k-means++ clustering algorithm 

(Vassilvitskii & Arthur, 2006). Note that we filtered out those EV users (including both 

commuters and non-commuters) with less than 4 charging events per month (i.e., charging once 

a week, on average), as their charging patterns were unlikely to be representative. Totally, we 

got 33,625 commuters and 4,784 non-commuters for subsequent analyses. 

 

In order to explore the proper number of groups to be clustered, we first tried the automatic 

way informed by two commonly used clustering quality indexes (namely Silhouette Score and 
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Davies Bouldin Index) (Helmus et al., 2020). The results (see Appendix C in the Supplementary 

Materials) show that the number of groups to be clustered should be 3 for EV commuters, and 

then the three groups would be Home Dominated (HD), Workplace Dominated (WD), and Other 

Dominated (OD). However, these three groups cannot well represent those commuters 

frequently charging their EVs at more than one location (such as both home and workplace, both 

home and other places, and both workplace and other places) found in our preliminary analysis 

of the dataset used for clustering. Therefore, to better represent those commuters frequently 

charging their EVs at more than one location, we set the number of groups to be clustered as 6 

in the k-means++ clustering algorithm with an expectation that EV commuters could be 

clustered into six groups, i.e., Home Dominated (HD), Workplace Dominated (WD), Other 

Dominated (OD), Home-Workplace (H-W), Home-Other (H-O), and Workplace-Other (W-O) 

(see Table 2 for a detailed description). It is worth mentioning that we did try 7 for the number 

of groups, with an expectation that there might be a group of EV users who equally rely on 

home-based, workplace-based, and other-based charging facilities. However, no such a group 

could be found, and thus we eventually set the number of groups to be clustered as 6. For the 

same reason (i.e., to better represent those non-commuters frequently charging their EVs at 

more than one location), we set the number of groups to be clustered as 3 for non-commuters 

(with an expectation that EV non-commuters could be clustered into three groups, namely HD, 

OD, and H-O, see Table 2), instead of two groups informed by the indicators Silhouette Score 

and Davies Bouldin Index (see Appendix C in the Supplementary Materials). The clustering 

results showed in Section 5.1.1 verified the reasonability of clustering six groups for commuters 
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and three groups for non-commuters. 

 

Table 2 Clustering EV users based on their dominant charging locations 

Group Description 
Applicable to 

Commuters 

Applicable to 

Non-Commuters 

Home Dominated 

(HD) 
Most charging events occurred around home Yes Yes 

Workplace Dominated 

(WD) 
Most charging events occurred around workplace Yes No 

Other Dominated 

(OD) 

Most charging events occurred at other places 

(i.e., non-home and -workplace) 
Yes Yes 

Home-Workplace 

(H-W) 

Charging events occurred frequently around both 

home and workplace 
Yes No 

Home-Other 

(H-O) 

Charging events occurred frequently around home 

and at other places 
Yes Yes 

Workplace-Other 

(W-O) 

Charging events occurred frequently around 

workplace and at other places 
Yes No 

 

4.3 Associating EV Users’ Dominant Charging Locations with their 

Characteristics: A Mixed Logistic Regression Model 

After clustering EV users into different groups according to their dominant charging locations, 

we further explored whether the grouping results (i.e., EV users’ dominant charging location 

choice) were associated with EV users’ characteristics. We used the mixed logistic regression 

model for the association analysis, which is a typical type of discrete choice model (DCM) and 

considers the differences in preference across individuals (McFadden & Train, 2000). Mixed 

logistic regression models have been widely used in modelling of charging behavior of EV users 

(Sun et al., 2015; Xu et al., 2017; Yu & MacKenzie, 2016; Zoepf et al., 2013). 

4.3.1 Mixed Logistic Regression Model Specification 

Let 𝐽  denote a set of alternatives (i.e., dominant charging location choices) available for 

commuters/non-commuters. To be specific, there are six alternatives for commuters, namely HD, 

WD, OD, H-W, H-O, and W-O, while there are three alternatives for non-commuters, namely 
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HD, OD, and H-O (see Table 2). The utility (𝑈𝑛𝑖) that a commuter/non-commuter 𝑛 obtains 

from choosing the alternative 𝑗 ∈ 𝐽 is defined as Equation (3). 

 

𝑈𝑛𝑗 = 𝛽𝑛𝑗𝑋𝑛 + 𝜀𝑛𝑗 (3) 

Where, 𝛽𝑛𝑗𝑋𝑛 defines the observed utility, in which 𝑋𝑛 denotes a vector of observed variables 

related to individual 𝑛 (i.e., characteristics of an EV user in this case, see Section 4.3.2) and 𝛽𝑛𝑗 

denotes a vector of coefficients estimated to characterize the effects of the observed variables; 

𝜀𝑛𝑗 denotes the unobservable error term. It should be pointed out that the dominant charging 

location choice (𝑗) of an EV user is individual specific, characterizing the long-term habit or 

preferences towards charging location (rather than one-time charging location choice for a 

specific charging event). Thus, those attributes related to the charging location choice of a 

specific charging event were not considered in this study. Instead, those factors related to 

characteristics of the EV user that could potentially influence the dominant charging location 

choice were included as explanatory variables (𝑋𝑛) in the regression model. All the explanatory 

variables were extracted from the EV trajectory data on private EVs and introduced in Section 

4.3.2 in a detailed way. 

 

Unlike the conventional multinominal logistic regression model (MNL) with fixed 𝛽𝑗 (i.e., the 

same to all individuals), 𝛽𝑛𝑗 in the mixed logistic regression model is assumed to be randomly 

distributed (following a specific continuous distribution 𝑓(𝛽|𝜃)) to accommodate the preference 

heterogeneity across individuals, such that the probably (𝑃𝑛𝑖) for commuter/non-commuter 𝑛 to 

choose alternative 𝑖 can be defined as Equation (4) by integrating MNL choice probabilities 



 

22 

 

(Train, 2009) over the continuous probability distribution 𝑓(𝛽|𝜃) (Hess & Polak, 2005). 

 

𝑃𝑛𝑖 = ∫
𝑒𝛽𝑛𝑖𝑋𝑛

∑ 𝑒𝛽𝑛𝑗𝑋𝑛
𝑗∈𝐽

𝑓(𝛽|𝜃)𝑑𝛽 (4) 

Where, 𝜃 is a vector of parameters of the distribution 𝑓(𝛽|𝜃) that can be assumed to be, for 

example, normal or lognormal. In this study, we assumed it to be normal, and the assumption 

has been widely used (Sun et al., 2015; Wen et al., 2016). 

 

For the determination of random parameters in this study, we assumed all parameters as 

random to test whether the standard deviation for each parameter is statistically significant or 

not. Those parameters with a statistically significant standard deviation were kept as random 

parameters and the others were set as non-random parameters (Hensher et al., 2005). 

4.3.2 Exploratory Variables 

We used 12 exploratory variables to describe EV users’ characteristics, which can be 

categorized into 4 groups, namely Vehicle Attributes, Individual- and Household- Level 

Attributes, Charging Opportunities Available, and Mobility Patterns. Table 3 shows the 

definitions of the 12 exploratory variables (see Appendix D in the Supplementary Materials for a 

detailed description). 
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Table 3 Definitions of exploratory variables 

Index Group 
Variable 

Name 
Definition 

Applicable to 

Commuters 

Applicable to 

Non-Commuters 

1 
Vehicle 

Attributes 

Battery 

Capacity 

The battery capacity of the EV 

owned by an EV user. 
Yes Yes 

2 
Individual- 

and 

Household- 

Level 

Attributes 

Socioeconomic 

Status 

The socioeconomic status of an 

EV user, characterized by the 

housing price around the user’ 

home location (Xu et al., 2018). 

Yes Yes 

3 
Home in 

Central Area 

Whether an EV user lives in the 

central area of Beijing. 
Yes Yes 

4 
Workplace in 

Central Area 

Whether an EV user works in 

the central area of Beijing. 
Yes No 

5 

Charging 

Opportunities 

Available 

Charging 

Opportunities 

around Home 

The number of charging stations 

within the specific distance of an 

EV user’s home. In this study, 

the distance is set to 400 m. 

Yes Yes 

6 

Charging 

Opportunities 

around 

Workplace 

The number of charging stations 

within the specific distance of an 

EV user’s workplace. 

Yes No 

7 

Charging 

Opportunities 

at Other Places 

The average number of charging 

stations within the specific 

distance of the activity locations 

(except home and workplace) 

visited by an EV user. 

Yes Yes 

8 

Mobility 

Patterns 

Commuting 

Distance 

The Euclidean distance between 

an EV user’ home and 

workplace. 

Yes No 

9 

Ratio of Non-

Working Days 

Having EV 

Travel 

The ratio of the number of non-

working days that an EV user 

travelled with his/her EV to the 

total number of days that an EV 

user travelled with his/her EV in 

a month. 

Yes Yes 

10 

Diversity of 

Activity 

Locations 

Visited Daily 

The average number of unique 

activity locations (including 

home and workplace) visited by 

an EV user per travel day. 

Yes Yes 

11 
Daily Travel 

Distance 

The average distance travelled 

by an EV user by EV per travel 

day. 

Yes Yes 

12 

Standard 

Distance 

Centered at 

Home 

One mobility indicator measures 

the range of an EV user’s 

activity space with the user’s 

home as the reference point (Xu 

et al., 2015). A small value 

reflects that the EV user tends to 

perform activities near home. 

Yes Yes 
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5 Results  

5.1 Comparing Commuters and Non-Commuters’ Dominant Charging 

Locations 

5.1.1 Descriptive Analysis of EV User Groups 

We grouped commuters and non-commuters according to their dominant charging locations. 

As expected (see Section 4.2.2), we identified 6 groups of commuters and 3 groups of non-

commuters with distinct dominant charging location patterns. 

 

(1) Percentage of Charging Events by Location for each EV User Group 

Fig. 2 shows the percentage of charging events by location, based on which we identified 

each EV user group (6 groups for commuters and 3 groups for non-commuters). We can find 

similar dominant charging location patterns for commuter and non-commuters: in terms of HD, 

OD, and H-O, the percentages of home-based (95% vs. 96%), other-based (93% vs. 95%) and 

home- & other- based (36% & 61% vs. 39% & 61%) charging events are quite close to each 

other. For WD commuters, 90% of charging events took place around their workplaces; For H-

W commuters, 49% and 43% of charging events occurred around their homes and workplaces, 

respectively; For W-O commuters, 52% and 44% of charging events occurred around their 

workplaces and at other places, respectively. 
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Fig. 2 The percentage of charging events by location for each EV user group 

 

(2) Proportions of EV User Groups for Commuters and Non-commuters 

Fig. 3 shows the proportions of EV user groups for commuters (see subfigure (a)) and non-

commuters (see subfigure (b)). Key findings are listed as follows: 

 

➢ More than half of commuters (50.7%) and non-commuters (57.5%) were HD users with 

most charging events occurring around home. In total, 66.0% of commuters (including 

the groups HD, H-O, and H-W) and 77.8% of non-commuters (including the groups HD 

and H-O) charged frequently around their homes. This suggests that home is the most 

common charging location for the majority of commuters and non-commuters. 

➢ More than two-thirds of commuters (78.9%) and non-commuters (79.7%) tended to 

charge their vehicles mainly at one single type of charging location (e.g., home, 

workplace (only applicable to commuters), or other places), indicating that EV users 

(including both commuters and non-commuters) might be used to get their EVs charged 
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at those places with which they are familiar.  

➢ Since workplace charging is not applicable to non-commuters, the fractions of HD, OD, 

and H-O non-commuters were larger than those of commuters. For commuters, 

workplace-based charging opportunities may be available though, the fractions of WD, 

H-W, and W-O commuters were small, only accounting for 24.8% totally. This finding is 

consistent with what have been pointed out in others’ work: the charging at workplace is 

far less popular than that at home (Chakraborty et al., 2019; Lee et al., 2020). Also, the 

group H-W accounted for the least proportion of commuters (4.3%), likely because there 

is no need for the majority of EV commuters to get their EVs charged around both home 

and workplace frequently due to a short commuting distance relative to the EV driving 

range (for example, only 4.6% of EV commuters in Beijing had a commuting distance 

longer than 20 km). 

  

  

(a) Commuters (b) Non-commuters 

Fig. 3 The proportions of EV user groups for commuters and non-commuters 
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Further, we compared the proportions of EV user groups in Central and Non-Central Areas 

from a spatial perspective. As shown in Fig. 4, commuters and non-commuters have similar 

spatial patterns: central areas tended to have a smaller fraction of EV users with home-based 

charging included (i.e., HD, H-W, and H-O). This suggests that EV users (both commuters and 

non-commuters) in the central areas tended to rely less on home-based charging but more on 

workplace-based and other-based charging than those in the non-central area. It may be because 

that in the central area, the EV users tended to access to less private charging facilities, due to 

the limited land and less private parking spaces (Kang et al., 2022). On the other hand, a higher 

density of public charging infrastructure in the central area (BMCUM, 2021) provides more 

charging opportunities at non-home activity locations. Note that workplace-based charging and 

EV user groups with workplace-based charging included (i.e., WD, H-W, and W-O) are only 

applicable to commuters. 

  

 

Fig. 4 The proportions of EV user groups in Central Area and Non-Central Area 
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5.1.2 Charging Patterns of EV Users from Different Groups 

We further characterized and compared charging patterns of EV users from different groups 

for commuters and non-commuters using two indicators, namely start time of a charging event 

and EV’s start state of charge (SOC) in a charging event. Also, we compared charging patterns 

for commuters and non-commuters on working and non-working days (see Appendix E in the 

Supplementary Materials). 

 

(a)  Start Time of Charging Event 

Fig. 5 shows the probability density (estimated using the kernel density estimation) of start 

time of charging event for different EV user groups. It can be found from the subfigure (a) that 

for commuters from those groups with workplace-based charging included (i.e., WD, H-W, and 

W-O), their charging events mostly started during the working hours and charging demand 

peaked in the morning peak (specifically from 8 to 9 AM); while for those commuters from the 

groups with home-based charging included (i.e., HD, H-W, and H-O), their charging events 

mostly started during the nighttime and charging demand peaked in the evening peak 

(specifically, from 7 to 8 PM). Also, the group HD had the sharpest evening peak (as their 

charging events were mostly home-dominant), the group WD had the sharpest morning peak (as 

their charging were mostly workplace-dominant), and the group H-W had both the morning and 

evening peaks (as their charging event were mostly both home- and workplace-dominant). 

Moreover, the commuters from the group OD tended to have a flatter distribution of start time 

than those from the other 5 groups, as their charging events were mostly associated with those 



 

29 

 

flexible activities (e.g., shopping and leisure) with a flexible start time. 

 

In addition, the comparison of start time between commuters and non-commuters from groups 

HD, OD, and H-O (see the subfigure (b)) suggests that non-commuters tended to have flatter 

distributions of start time. This may be because non-commuters did not need to commute and 

thus had more flexible time for recharging their EVs.  

 

 
(a) Commuters 
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(b) Comparison between commuters and non-commuters 

Fig. 5 Probability density of start time of charging event for different EV user groups 

 

(b) EV’s Start State of Charge (SOC) in Charging Event 

Fig. 6 shows the statistical distributions of EV’s start SOC in charging event for different EV 

user groups, suggesting that those EV users (including both commuters and non-commuters) 

from the groups with other-based charging included (i.e., OD, H-O, and W-O) tended to get their 

EVs recharged with a lower SOC. In particular, the group OD had a much lower SOC 

(specifically, the average SOCs were 36.08% and 38.69% for commuters and non-commuters, 

respectively). This may be because the EV users from these groups (particularly the group OD) 

tended to have an urgent need to get their EVs recharged (when their SOC is running low); 

while for the EV users from other groups (e.g., HD, WD, and H-W), they usually did not have 

an urgent need to get their EVs recharged and could get EVs recharged as long as they have 

access to charging facilities (e.g., around their homes and workspaces). 
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As shown in subfigure (b), commuters, on average, tended to have a lower SOC than non-

commuters when they got their EVs recharged for all the three EV user groups, i.e., HD, OD, 

and H-O. This might be because non-commuters tended to have a more flexible time and thus 

could recharge their EVs more frequently and for a longer time. Another possible reason could 

be that compared against non-commuters, commuters tended to visit some fixed locations and to 

be less likely to visit those activity locations they were less familiar with (e.g., those activity 

locations other than home and workplace). The familiarity with the activity locations they 

visited could reduce their range anxiety, and thus they tended to have a lower SOC than non-

commuters when they got their EVs recharged. This can be somewhat evident from the 

information extracted from the trajectory data: after excluding those activity locations 

commuters/non-commuters were more familiar with (i.e., home and workplace for commuters 

and home for non-commuters), the diversity of activity locations visited daily (i.e., the number 

of unique activity locations visited daily) for commuters was less than that for non-commuters 

(1.39 vs. 1.91). 
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(a) Commuters 

 
(b) Comparison between commuters and non-commuters 

Fig. 6 Distributions of EV’s start SOC in charging event for different EV user groups 

(Unit: %) 

5.2 Mixed Logistic Regression Model for Associating EV Users’ Dominant 

Charging Locations with their Characteristics  

To consider the multicollinearity problem, we conducted the Pearson correlation coefficient 

test for explanatory variables firstly (see Appendix F in the Supplementary Materials for the 

results and discussion). The variable Standard Distance Centered at Home is closely related to 

both Commuting Distance and Daily Travel Distance, with the correlation coefficients of 0.720 

and 0.651, respectively, and thus it was eliminated from the model estimation for commuters. 

Also, since a comparative study was conducted for commuters and non-commuters, the variable 

Standard Distance Centered at Home was also not included in the model estimation for non-

commuters.  

 

Table 4 shows the coefficient estimation results of two mixed logistic regression models, 
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which were used to explore the possible association between EV users’ dominant charging 

locations and their characteristics for both commuters and non-commuters. Also, Appendix G in 

the Supplementary Materials reports and discusses the results of marginal effects derived from 

the estimated mixed logistic regression models for both commuters and non-commuters.  

 

The unobserved heterogeneity among individuals were captured and represented using 

random parameters with standard deviation values in parentheses (see Table 4). It can be found 

that in general, EV users evaluated several variables (e.g., Battery Capacity and Daily Travel 

Distance) differently in dominant charging location choice. For example, commuters with a 

dominant charging location choice of H-W or H-O had heterogeneous tastes of Battery Capacity; 

non-commuters with a dominant charging location choice of OD valued Daily Travel Distance 

differently. 

 

Table 4 Mixed logistic regression model estimation results for commuters and non-commuters 

Group Variable 

Alternative Estimates 

Commuters Non-commuters 

WD OD H-W H-O W-O OD H-O 

Vehicle 

Attributes 
Battery Capacity 0.005 0.022 

-0.040 

(0.019) 

-0.022 

(0.014) 
-0.004 0.007 -0.013 

Individual- 

and 

Household- 

Level 

Attributes 

Socioeconomic Status 0.076 0.065 0.053 0.014 0.067 - - 

Home in Central Area 0.333 0.314 0.087 0.074 0.386 0.393 0.052 

Workplace in Central Area -0.381 0.101 -0.363 0.053 -0.199 × × 

Charging 

Opportunities 

Charging Opportunities 

around Home 
0.111 0.114 0.015 0.090 0.066 - - 
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Available Charging Opportunities 

around Workplace 
-0.114 0.049 -0.038 -0.019 0.004 × × 

Charging Opportunities at 

Other Places 
-0.083 -0.906 0.047 -0.443 -0.446 -0.755 -0.395 

Mobility 

Patterns 

Commuting Distance 0.019 0.035 0.040 
-0.006 

(0.025) 

0.020 × × 

Ratio of Non-working 

Days Having EV Travel 

-2.480 

(1.882) 

0.505 0.722 0.319 0.118 1.110 0.632 

Diversity of Activity 

Locations Visited Daily 
0.001 

1.094 

(0.230) 

0.175 0.450 0.484 0.921 0.318 

Daily Travel Distance 
-0.017 

(0.008) 

-0.038 

(0.013) 
0.006 0.007 -0.001 

-0.017 

(0.012) 
0.007 

 
Alternative-specific 

Constant 
-0.630 -3.750 -2.849 -2.104 -3.380 -2.551 -1.431 

Note: (1) The reference alternative is the group HD for both commuters and non-commuters; (2) 

coefficients highlighted in bold are statistically significant at the 0.05 level; (3) the random parameters 

are presented with standard deviation values in parentheses; (4) “-” denotes the exploratory variables that 

are not statistically significant and thus were eliminated from the final model; (5) “×” denotes the 

exploratory variables that are not applicable to non-commuters. 

5.2.1 Implications of Vehicle Attributes 

(1) Battery Capacity 

For commuters, the significantly negative estimates for groups H-W and H-O, and the 

significantly positive estimates for groups WD and OD indicate that those commuters with a 

larger EV battery (i.e., a longer driving range) were more likely to have a less complex charging 

location choice behavior and preferred to get their EVs charged at one single type of charging 

location (i.e., home, workplace, or other places). This may be because that a larger battery 
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capacity could mitigate range anxiety of EV users to some extent, allowing them to choose those 

charging stations where they usually get their EVs recharged. Moreover, those commuters with a 

larger EV battery were more likely to choose charging stations around workplaces or at other 

places and thus become WD or OD commuters (compared to the reference alternative, HD 

commuters). This may be attributed to a higher charging efficiency at non-home based charging 

stations where fast charging facilities are more accessible (Xu et al., 2017). This allows EV 

users to get their larger batteries recharged at a higher rate. The finding reflects the significant 

role of fast charging infrastructure particularly in the future EV market where the EV models 

with a high-storage battery (i.e., a long driving range) will become more common. In addition, 

the association between the variable Battery Capacity and the dominant charging location choice 

of non-commuters is similar to that of commuters. Specifically, for non-commuters with a high-

storage EV battery, they were more likely to become OD non-commuters but were less likely to 

become H-O non-commuters, compared to the reference alterative, HD non-commuters. 

5.2.2 Implications of Individual- and Household- Level Attributes 

(1) Socioeconomic Status 

For commuters, the significantly positive coefficients of the variable Socioeconomic Status 

for most alternatives (i.e., the groups WD, OD, H-W, and W-O) suggest that those commuters 

with a lower socioeconomic status (described with housing price in this case study) were more 

likely to become HD commuters (i.e., relying mainly on home-based charging). A possible 

reason may be that these commuters were more sensitive to charging costs. Home-based 

charging allows EV users to have more opportunities to get their EVs charged during the off-



 

36 

 

peak time slots (e.g., the period from 9:00 PM to 7:00 AM (the next day) in Beijing) with the 

lowest charging fee. This is consistent with the charging patterns of HD commuters, as shown in 

Fig. 5-(a): a considerable number of charging events were initialized by HD commuters after 

9:00 PM. For non-commuters, we found the variable Socioeconomic Status is not statistically 

associated with their dominant charging locations.  

 

(2) Home or Workplace in Central Area 

For both commuters and non-commuters, the coefficients of the variable Home in Central 

Area are significantly positive for those EV user groups without home-based charging included 

(namely WD, OD, and W-O). Meanwhile, the coefficients of the variable Workplace in Central 

Area (only applicable to commuters) are significantly negative for those EV user groups with 

workplace-based charging included (namely WD, H-W, and W-O). These results suggest that 

EV users living or working in the central area were less willing to rely on home- or workplace- 

based charging, respectively. The reason is discussed as follows: compared with the city 

periphery of Beijing, the buildings of residential neighbors and job gathering places in the 

central area tend to be much high-density (limiting the availability of parking infrastructure) and 

older (increasing the difficulty to renovate the circuits) (Kang et al., 2022). Because of this, the 

installation of private and workplace charging infrastructure become less feasible. As a result, 

those EV users living or working in the central area have less access to charging at home or 

workplace. 
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5.2.3 Implications of Charging Opportunities Available 

(1) Charging Opportunities around Home or Workplace 

For commuters, the coefficients of the variable Charging Opportunities around Home are 

estimated positively for all alternatives listed in Table 4, and significantly for three alternatives 

(namely WD, OD, and H-O). Meanwhile, the estimate of the variable Charging Opportunities 

around Workplace is only significantly negative for the group WD. These results suggest that 

those commuters with more charging opportunities (i.e., accessing a higher number of charging 

stations) around home or workplace were less likely to become HD or WD commuters. In other 

words, commuters with more charging opportunities around home tended to not mainly rely on 

home-based charging facilities, but tried to get their EVs recharged at other places rather than 

home. Similarly, commuters with more charging opportunities around workplace tended to not 

mainly rely on workplace-based charging facilities, but tried to get their EVs recharged at other 

places rather than workplace. This may be because more charging opportunities around home or 

workplace could potentially attract more EVs with home- or workplace- based charging demand. 

On the one hand, this could increase the competition for using charging facilities. On the other 

hand, home- or workplace- based charging is usually along with long parking duration (and thus 

long occupation of charging facilities), which could decrease the turnover of charging facilities. 

These two reasons may make commuters with more charging opportunities around home or 

workplace not to mainly rely on home- or workplace- based charging, but to try charging 

facilities at other places rather than home or workplace, as well. In addition, for non-commuters, 

we found that their dominant charging location choices are not statistically associated with the 
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variable Charging Opportunities around Home. These findings for commuters and non-

commuters suggest that how EV users chose their dominant charging locations was not simply 

determined by the number of charging opportunities. 

 

(2) Charging Opportunities at Other Places 

For both commuters and non-commuters, the significantly negative estimates of the variable 

Charging Opportunities at Other Places for those EV user groups with other-based charging 

included (namely OD, H-O, and W-O) indicate that EV users with more charging opportunities 

(i.e., accessing a higher number of charging stations) at other places tended not to get their EVs 

recharged at other places. Similar finding was obtained in the work by Yun et al. (2019): for 

plug-in hybrid electric vehicle (PHEV) users in Shanghai, China, a higher average number of 

charging posts in public charging stations (i.e., higher public charging opportunities) would 

reduce the likelihood for public charging. In addition, previous studies have found that with the 

growth of charging facilities, EV users’ range anxiety decreases (Dong et al., 2014; Zhang et al., 

2021). Therefore, EV users accessing a higher number of charging stations at other places may 

have less range anxiety. Consequently, they tended to get their EVs recharged at more fixed and 

familiar locations (i.e., home and workplace for commuters and home for non-commuters), and 

thus less likely to be those groups with other-based charging included (namely OD, H-O, and W-

O). 

5.2.4 Implications of Mobility Patterns 

(1) Commuting Distance 
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The significantly positive association between the variable Commuting Distance (only 

applicable to commuters) and the dominant charging location choice of EV users from the 

groups WD, H-W, and W-O (i.e., those groups with workplace-based charging included) 

suggests that for those EV users with a longer commuting distance, they were more likely to get 

their EVs recharged around workplace. This finding reveals that a longer commuting distance 

could increase the possibility of EV charging around workplace for commuters. 

 

(2) Ratio of Non-working Days Having EV Travel 

The significantly negative estimates for those commuters from the group WD suggests 

commuter with a higher ratio of non-working days having EV travel were less likely to mainly 

rely on workplace-based charging facilities. This may be because most commuters would not 

commute to work on non-working days, decreasing the possibility of charging around workplace. 

Meanwhile, in order to support daily travel activities on both working and non-working days, 

there would be more charging activities conducted around home and at other places. On the 

other hand, the significantly positive estimates for those commuters from the group OD and for 

those non-commuters from the groups OD and H-O indicate that EV users with a higher ratio of 

non-working days having EV travel tended to get their EVs recharged more at other places. This 

may be because non-working days usually involves more leisure activities away from home, 

increasing the reliance on charging facilities located at sites for entertainment. 

 

(3) Diversity of Activity Locations Visited Daily 
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As expected, the variable, Diversity of Activity Locations Visited Daily, is significantly and 

positively associated with the dominant charging location choice of EV users from the groups 

OD, H-W, H-O, and W-O for commuters and from the groups OD and H-O for non-commuters. 

This is likely to be because visiting more diverse activity locations (which means that the chance 

of accessing to charging infrastructure located at different locations is increased) may allow EV 

users to charge their EVs at more diverse locations. On the other hand, the intention to get EV 

recharged at different locations could potentially increase the diversity of activity locations 

visited daily for EV users. 

 

(4) Daily Travel Distance 

For commuters, the coefficients of the variable Daily Travel Distance are estimated 

significantly negative for the alternatives WD and OD and significantly positive for the 

alternatives H-W and H-O. A longer daily travel distance means a higher charging demand when 

returning home, resulting in more charging around home, and thus there was less likely for 

commuters to be WD or OD users. Meanwhile, A longer daily travel distance could induce a 

higher range anxiety outside home, leading to charging outside home as a supplement to 

charging around home, and thus there was more likely for commuters to be H-W and H-O users. 

Similar to commuters, the estimates are significantly negative for non-commuters from the 

group OD and significantly positive for non-commuters from the group H-O. 
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6 Conclusions 

This paper used a unique trajectory dataset collected from 76,774 actual private electric 

vehicles (EVs) in Beijing in January 2018 to explore EV users’ dominant charging locations 

(where EV users get their EVs recharged more frequently), within a comparative study of 

commutes and non-commuters. The results showed that more than half of commuters and non-

commuters were the HD users with most charging events occurring around home. Moreover, 

there were significant differences in charging patterns of EV users from different groups by 

dominant charging location, and also between commuters and non-commuters. In addition, the 

dominant charging location choice of EV users was significantly associated with their 

characteristics, such as charging opportunities available and mobility patterns. Particularly, we 

found several unexpected results about those variables related to charging opportunities 

available. For example, those commuters with more charging opportunities around their home or 

workplace were less likely to become the HD or WD users with home or workplace dominant 

charging. These findings suggest that how EV users chose their charging locations was not 

simply determined by the number of charging opportunities. Also, the association between the 

same factor and dominant charging location choice for commuters and non-commuters is 

different. For example, Socioeconomic Status was estimated as a significant factor to influence 

commuters’ dominant charging location choice, but not significant for non-commuters. 

 

The findings of this study could be helpful for the EV-related stakeholders in their decision-

making. First, smart charging (e.g., time of use and V2G) is a good way to alleviate the load 
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pressure of the local power grid. To encourage greater participation in such an advanced 

program, tailored incentives and schemes should be devised based on EV users’ dominant 

charging location choice, as EV users with different dominant charging location choices 

exhibited distinct preferences regarding the commencement time of charging their EVs. Second, 

both EV commuters and non-commuters with a larger EV battery (i.e., a longer driving range) 

were more likely to be OD users (i.e., with most charging activities at other places rather than 

home and workplace), highlighting the significance of further developing charging infrastructure 

at public locations (e.g., leisure complex and shopping mall) in the near future with more EV 

models available with a larger battery. Third, EV commuters with a longer commuting distance 

tended to be WD, H-W, and W-O users with workplace-based charging included. In order to 

meet their charging demand at workplace, it is of great importance to promote the deployment 

of workplace-based charging facilities for those job gathering places with more commuters from 

the periphery of the city (and thus with a longer commuting distance). 

 

The future work will be focused on the following two aspects: first, we will try to collect 

more exploratory variables (such as EV users’ sociodemographic attributes and charging price of 

charging facilities located at different locations) that are generally expected to influence the 

dominant charging location choice of EV users and model their relationship. This could further 

deep our understanding of EV users’ charging location choice. Second, the unique large-scale 

trajectory dataset actually contains rich charging information. We will further investigate other 

charging choice behaviors of EV users with this dataset, such as charging decision and time-
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related charging behavior, in addition to the dominant charging location choice behavior. 
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