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Dominant Charging Location Choice of Commuters and

Non-commuters: A Big Data Approach

Abstract

This paper is focused on electric vehicle (EV) users’ dominant charging locations, where they
get their EVs recharged more frequently. We particularly compared the dominant charging
location choice of commuters and non-commuters using a unique one-month trajectory dataset
collected from 76,774 actual private EVs in Beijing in January 2018. Specifically, we first
grouped EV users for both commuters and non-commuters according to their dominant charging
locations and then characterized and compared their charging patterns. Further, we associated
the dominant charging location choice of EV users with their characteristics using a mixed
logistic regression model. The results suggested that over 50% of the EV users were the Home
Dominated (HD) users with most charging events occurring around home. Further, there were
significant differences in charging patterns of EV users from different groups by dominant
charging location, and also between commuters and non-commuters. Commuters tended to have
a lower SOC than non-commuters when they got their EVs recharged. Moreover, the dominant
charging location choice of EV users was significantly associated with their characteristics,
including charging opportunities available and mobility patterns, and the association is different
for commuters and non-commuters. The results are expected to be useful for deploying charging

infrastructure.

Keywords: Electric Vehicle; Commuters; Dominant Charging Location; Trajectory Data; Mixed

Logistic Regression Model



1 Introduction

Electric vehicles (EVs) have widely been deemed as a promising alternative to internal
combustion engine vehicles (ICEVs), advancing the transition to a more sustainable and
environmental-friendly transport system (Kang et al., 2022; Sun et al., 2015; Xu et al., 2017). To
promote the EV market share, the EV-related stakeholders (e.g., automakers and government
agencies) have contributed a lot in, for example, battery and vehicle technology innovation,
charging infrastructure deployment and planning, and EV-related policymaking (Chakraborty et
al., 2019). It is projected by International Energy Agency (IEA) that the penetration rate of EVs
in the road vehicle fleet will reach around 7% by 2030 and the adoption rate of EVs in 2030 will

be around 15% (IEA, 2021).

To further promote the adoption and usage of EVs, it is of great importance to understand
existing EV users’ charging behavior, such as charging location choice behavior (van der Kam et
al., 2020). Charging location choice characterizes how EV users get their EV recharged at
different locations. In general, there are three different types of locations for EV users to charge
their EVs, namely home, workplace, and other places. Charging at home is the most common
option for the majority of EV users, followed by charging at workplace and other places
(Chakraborty et al., 2019; Lee et al., 2020). Understanding charging location choice and its
influential factors could not only help to estimate the influence of EV charging demand and
electricity consumption on the local power grid load but also inform the future charging

infrastructure planning and investment, which are two pressing challenges for welcoming the era
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of massive EV adoption (Chakraborty et al., 2019; Xu et al., 2017).

There are a number of studies shedding light on EV users’ charging location choice
(Chakraborty et al., 2019; Lee et al., 2020; Sun et al., 2016; Xu et al., 2017; Yun et al., 2019).
Most of them tended to use datasets collected from a small number of participants (e.g.,
hundreds of EV users) and over a short observation period (e.g., one week) to analyze and
model charging location choice of each charging event or charging events in one day. However,
few of them have been conducted to reveal EV users’ long-term habit and preferences towards
charging location choice (e.g., dominant charging location, where EV users get their EVs
recharged more frequently). Also, little is known about charging location choice of both

commuters and non-commuters, in terms of their similarity and differences.

To overcome these limitations, we will particularly look at the dominant charging location of
EV users (where EV users get their EVs recharged more frequently) and compare the dominant
charging location choice of commuters and non-commuters, using a unique one-month
trajectory dataset collected from 76,774 actual private EVs in Beijing in January 2018.
Specifically, we will first use a clustering algorithm to group EV users for both commuters and
non-commuters according to their dominant charging locations and then characterize charging
patterns of EV users from different groups by dominant charging location. Further, we will
associate the dominant charging location choice of EV commuters and non-commuters with

their characteristics, including vehicle attributes, individual- and household- level attributes,



charging opportunities available, and mobility patterns. The findings from this paper are
expected to shed light on EV user’s charging behavior, particularly charging location choice
behavior of commuters and non-commuters, which could inform future EV-related
policymaking, infrastructure planning, and the management of power demand from the local

grid.

2 Literature Review

2.1 Charging Location Choice of Electric Vehicle (EV) Users

Understanding EV users’ charging behavior (e.g., when, where, and how EV users charge
their EVs) plays a significant role in promoting the adoption and usage of EVs through
informing, for example, the launch of successful charging infrastructure initiatives and the
rollout of effective and efficient charging strategies (van der Kam et al., 2020). Three main types
of charging behavior have received increasing attention, including charging decisions (i.e.,
whether to charge) (Ge et al., 2018; Wen et al., 2016; Yu & MacKenzie, 2016; Zoepf et al.,
2013), time-related charging choices (e.g., when and how often to get EVs recharged) (Kim et
al., 2017; Sun et al., 2015; Sun et al., 2018; Wolbertus et al., 2018) and charging location choice
(Chakraborty et al., 2019; Lee et al., 2020; Sun et al., 2016; Xu et al., 2017; Yun et al., 2019). As
this paper aims to explore EV users’ dominant charging location (where EV users get their EVs
recharged more frequently), the following review will be focused on those studies related to

charging location choice of EV users.



The low penetration of EVs in the automobile market makes it difficult to collect real EV
usage data. Consequently, the stated preference (SP) survey has become the dominant approach
to gathering charging location choice of the general public or EV users in given scenarios. For
example, Jabeen et al. (2013) studied charging preferences of 54 EV users in Western Australia
with four sets of stated choice experiments. It was observed that EV users preferred to charge at
home or work rather than at public charging stations in general. EV users with solar panels
installed at home preferred to get their EVs charged at home; while EV users picking up their
friends or family members preferred not to charge at home but to use public charging facilities.
Chakraborty et al. (2019) used the charging location choice data of more than 3,000 plug-in
electric vehicle (PEV) users in California, which were collected over 7 consecutive days, to
explore the factors influencing the daily charging location choice. The results showed that
factors related to sociodemographic attributes, charging cost and vehicle technology could
influence daily charging location choice. Lee et al. (2020) examined the 7-day charging patterns
of 7,979 PEV users in California, in terms of their charging locations and levels. Results
revealed that PEV users relied heavily on home charging, with more than half of them merely
charging with home chargers. Also, PEV users’ choices of charging locations were significantly
influenced by various factors, such as PEV wusers’ sociodemographic attributes, the
characteristics of owned PEVs, and the availability of charging infrastructure at workplace.
However, there is still a debate on whether such SP data could well characterize charging
location choice of EV users, because, on the one hand, the survey sample is usually small and

the survey data is collected in a fixed short period (e.g., one day); on the other hand, the



respondents in a SP survey do not always share the real information (for example, as they cannot

remember clearly what happened).

Compared to the SP data, the revealed preference (RP) data, which could realistically reflect
how EV users used their EVs, is more suitable for exploring EV users’ charging location choice.
For example, using a two-year long revealed preference data of 500 commercial and private
battery electric vehicles (BEVs) in Japan, Xu et al. (2017) studied what and how factors affected
the joint choice of charging mode and location for BEV users. The mixed logit estimation results
showed that the battery capacity, midnight indicator, initial SOC and number of past fast
charging events were the main predictors that determined BEV users’ joint choice of charging
mode and location. To determine the location of people charging their plug-in hybrid electric
vehicles (PHEVs), Yun et al. (2019) investigated the GPS trajectory data of 700 PHEVs and the
charging infrastructure data in Shanghai. The result indicated that PHEV users were more
inclined to charge at home or workplace than at public charging stations. the main factors
influencing users’ decisions on charging location included charging price and tariffs, the initial
SOC, dwell time, charging power, and vehicle kilometer travel (VKT) of the current trip and
current day. Although these studies did contribute to the studies of EV charging location choice,
there are two main limitations. On the one hand, for a few of the studies, the sample size was
small (e.g., hundreds). As a result, the samples used may not be well representative, and the
results may not be reliable. On the other hand, most studies investigated charging location

choice over a short period (e.g., one-time charging or daily charging choice), and paid almost no



attention to EV users’ long-term habit or preferences towards charging location (e.g., dominant

charging location, where EV users get their EVs recharged more frequently).

2.2 Travel and Charging Behavior of EV Commuters

Commuters are generally expected to be suitable early EV adopters considering the matching
between their rather fixed travel patterns with a short daily driving distance and the limited
range of most EVs (Brady & O’Mahony, 2011). Though there is an increasing number of studies
providing insights into EV user’s travel and charging behavior/patterns, limited knowledge is

known particularly for EV commuters.

Compared with other types of EV users (e.g., ride-hailing drivers), commuters have
heterogeneous travel patterns and charging behavior. Using a dataset comprising the real-world
data of 2,500 BEVs in Shanghai, Hu and Sun (2019) characterized BEV users’ travel and
charging behavior with six metrics (e.g., travel distance and start time of charging event), based
on which three groups of BEV users (namely commuters, ride-hailing drivers, and other users)
with distinct travel patterns and charging behavior were identified. Also, commuters owning
different types of EV models may have different travel and charging behavior. Based on an
online survey of 3,500 PEV users in California, Tal et al. (2014) explored the differences in
travel (e.g., commuting distance and daily travel distance) and charging (e.g., workplace
charging) behavior of PEV owners with different types of PEV models. It was found that drivers
with larger-battery PHEVs and BEVs travelled a longer distance and had more battery charge

than smaller-battery PHEVs because of the larger battery size and easier access to charging
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opportunities.

Understanding commuters’ travel/mobility patterns could inform, for example, the design of
EVs and the rollout of EV-related policies (Bjornsson & Karlsson, 2015; Hu et al., 2016; Smith
etal., 2011; Xu et al., 2018). Using the dataset collected from a fleet of 76 vehicles in Winnipeg,
Canada, Smith et al. (2011) constructed a commuter driving cycle presenting city commuting on
weekdays, based on which an energy-based simulation was conducted to explore the optimal
battery storage for a commuter sedan car. The results showed that with a 2.4-hour daytime
charge, the reduction in the battery size of such a vehicle can be around 40% without losing
functionality. Through combining three unique datasets from the Bay Area, including fine-scale
mobile phone data, census data and PEV charging session data, Xu et al. (2018) presented a
method coupling PEV users’ mobility patterns and charging profiles to optimize electricity
planning and management. The authors recommended commuters to change their start and end
times of PEV charging session at workplace to ease the power demand for the power grid at

peak charging hours. Also, the monetary gains from such a recommendation were quantified.

Several studies have contributed to characterize EV commuters’ charging patterns and the
potential association between commuters’ characteristics and their charging behavior
(Chakraborty et al., 2019; Daina et al., 2015; Lee et al., 2020; Lee et al., 2019). For example,
Chakraborty et al. (2019) collected the dataset comprised of characteristics and history charging

activities of more than 3,000 PEV commuters in California and developed error component logit



models to associate commuters’ daily charging location choices with their characteristics. The
results showed these driving factors on daily charging location choice include charging costs,
commuter’s sociodemographic attributes (e.g., gender) and the technological attributes of PEVs
owned (e.g., electric range). Lee et al. (2020) revealed the differences in the relationship
between commuting distance and the mixed use of charging infrastructure of BEV and PHEV
users using two multinomial logit models conducted based on a survey on 7,979 PEV users in
California. It was found that for BEV users, commuting distance was not a significant factor
influencing their choices on charging locations; while for PHEV users, those who resided farther
away from their workplace preferred to get their PHEVs charged at more diverse charging
locations. Although these studies have made efforts to understand charging behavior of
commuters, they failed to explore charging behavior of non-commuters and further reveal the
similarity and differences between commuters and non-commuters in terms of charging behavior,

such as charging location choice.

2.3 Research Gaps and Aims

We conducted a comprehensive review on charging location choice of EV users and travel

and charging behavior of EV commuters, and identified the following research gaps:

® SP and RP data have been used to explore charging location choice of EV users. However,
most studies tended to use the datasets with a small sample size (e.g., hundreds) or
collected over a short observation period (e.g., one week), and thus there is a big concern

about the representativeness of the samples.

® Most studies of EV charging location choice tried to model EV users’ charging location
10



choice over a short period (e.g., one-time charging or daily charging choice), and little is
known about the long-term habit or preferences towards charging location of EV users
(e.g., dominant charging location, where EV users get their EVs recharged more
frequently).

® A number of studies characterized charging behavior of commuters, but few of them
involved the charging behavior of non-commuters. Furthermore, it remains unclear about
how commuters and non-commuters behave similarly or differently regarding charging

behavior, in particular for charging location choice.

To fill these gaps, this paper will use a unique one-month trajectory dataset which was
collected from 76,774 actual private EVs in Beijing in January 2018 to provide insights into
private EV users’ charging behavior with a focus on the dominant charging location choice of
EV users (where they get their EVs recharged more frequently). Furthermore, we will explore
the possible association between EV users’ dominant charging location choices with their
characteristics. In particular, we will conduct a comparative study of commuters and non-

commuters, revealing their different dominant charging location choice behaviors.

3 Study Area and Dataset

3.1 Study Area: Beijing

Beijing, the capital of China, is one of the Chinese cities acting actively to promote the uptake

of electric vehicles (EVs) and the development of charging infrastructure (Gong et al., 2018;
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Kang et al., 2022). According to the 2021 Beijing Transport Annual Report by Beijing Transport
Institute (BTI), the number of passenger New Energy Vehicles (NFVs, nearly all of them were
EVs) in Beijing has reached 389,000 at the end of 2020, with an increase rate of 26.6% (BTI,
2021). Meanwhile, as reported by Beijing Municipal Commission of Urban Management
(BMCUM), an EV charging infrastructure network comprised of more than 200,000 charging
posts has been developed. Among them, private charging posts accounted for more than two-
thirds, and the remaining (around 50,000 charging posts) were open and partially open to the
public (BMCUM, 2021). From a spatial perspective, these charging facilities were mostly
located in the central area of Beijing with a dense population, and were expected to ensure that
EV wusers can, on average, find charging infrastructure within 5 km (excluding those

mountainous areas in Beijing) (BMCUM, 2021).

3.2 GPS Trajectory Data on Private EVs

We used a unique one-month trajectory dataset which was collected from 76,774 actual
private EVs in Beijing in January 2018, as detailed in the work by Sun et al. (2021). Table 1 is
an example about the key fields in the dataset, including EV identification, timestamp, latitude
and longitude (reporting an EV’s real-time location), distance travelled, instantaneous speed,

and state of charge (SOC).

Table 1 An example about the key fields in the EV trajectory dataset

. . . . Distance Instantaneous | SOC

Vehicle ID Timestamp Latitude Longitude Travelled (km) Speed (km/h) (%)
P1G4024922 | 2018-1-220:52:47 | 39.762900 | 116.377450 56056 21.7 68
P1G4024922 | 2018-1-220:53:17 | 39.763380 | 116.382540 56057 26.8 68
P1G4024922 | 2018-1-220:53:47 | 39.763380 | 116.382540 56057 26.8 68
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P1G4024922 | 2018-1-220:54:17 | 39.764305 | 116.393000 56058 49.6 66

P1G4024922 | 2018-1-220:54:47 | 39.764305 116.393000 56058 49.6 66
P1G4024922 | 2018-1-220:55:17 | 39.758217 | 116.395325 56058 29.3 66
P1G4024922 | 2018-1-220:55:47 | 39.758217 | 116.395325 56058 29.3 66
P1G4024922 | 2018-1-220:56:17 | 39.761368 116.398445 56059 39.1 65

With the EV trajectory dataset, we need to identify travel, parking and charging events of EVs.
Fig. 1 illustrates how an EV trajectory can be segmented into a series of connected travel,
parking and charging events using an EV trajectory data analytical framework by Sun et al.

(2021) and Yang et al. (2021).

| Parking with Charging| Trip |  OnlyParking |
l SOC Increased l l SOC Not Increased l
. S T e e T
Legend

® A timestamp point with “Instantaneous Speed” equal to 0

@ A timestamp point with “Instantaneous Speed” above 0

Fig. 1 An illustration of trajectory segmentation (Source: Adapted from Yang et al. (2021))

4 Methodology

4.1 Inferring Commuters and Non-Commuters

Since the EV trajectory dataset does not contain sociodemographic characteristics of EV users
(e.g., age and employment statue), we need to infer their employment statue (i.e., commuter or
non-commuter, defined as whether having a fixed workplace) and residential location, so as to
further conduct a comparative study of commuter and non-commuters on dominant charging
location (see Section 4.2). Generally, residential location and workplace are conceptualized as

the places where a commuter most visits and stays for substantial amounts of time during
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nighttime and working hours, respectively (Alexander et al., 2015; Lv et al., 2016; Tu et al.,
2017; Wang et al., 2018; Zhou et al., 2017). Following this concept, we proposed a two-step
procedure below for home and workplace inference using the travel and parking events of EV

users extracted from EV trajectory data:

Step 1: Identify potential home/workplace visiting events. Specifically, those parking events
within a period from 7 pm to 7 am (the next day) and lasting for more than 3 hours are
considered as potential home visiting events; while those parking events within a period from 7
am to 7 pm on weekdays and lasting for more than 3 hours are considered as potential
workplace visiting events. Similar rules have been widely used for inferring residential location
and workplace with big data (e.g., mobile phone data and vehicle trajectory data) in the previous
work (Alexander et al., 2015; Colak et al., 2015; Tu et al., 2017; Xiong et al., 2021; Zhou et al.,
2017). It is worth mentioning that the rules above are designed to identify potential
home/workplace visiting events (i.e., candidates for home/workplace inference), and thus these
rules should be applicable to most cases (both individuals not driving EVs and EV users). There
is a chance that some actual non-home/workplace visiting events are included as candidates for
inference. For example, when compared to the individuals not driving EVs, EV users may have
more parking events longer than 3 hours (due to EV charging) outside home/workplace, and
these events could be selected as candidates. Nonetheless, given that the place with few
visitations cannot be inferred as home/workplace (see Step 2) in this study, including these

events as candidates would have little influence on the inference of residential locations and
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workplace, as their size is rather small and also they are geographically dispersed.

Step 2: Infer the location for home/workplace. Given a list of potential home/workplace
visiting events (obtained from Step 1), we used the mean shift clustering algorithm (Cheng,
1995) to find the place which has the most potential home/workplace visiting events within a
specific distance (set to 400 m in this study). If the located place was visited less than 4 times
per month (once a week, on average) by the EV user, we inferred this place as other locations
rather than home/workplace considering the uncertainty to infer a place as home/workplace with
infrequent visitations (Alexander et al., 2015). Then, we defined EV users with an inferred
workplace as commuters; otherwise, non-commuters. Note that 1) the inference of home
location was conducted firstly and those parking events within the specific distance of the
inferred home location were removed before inferring workplace; 2) we filtered out those EV

users without an inferred home (Alexander et al., 2015; Colak et al., 2015).

It should be pointed out that there is no ground truth to verify our inferences from EV
trajectory data, in terms of the exact residential location and workplace for each EV user and
whether a specific EV user is a commuter (defined as having an inferred workplace) or not.
Indeed, this is a common concern (i.e., no ground truth for result verification) when working
with big data, such as trajectory data, mobile phone data, and smart card data. However, there is
a growing trend of using big data to conduct behavior-related research, particularly when it

comes to understanding the travel and charging behavior of EV users. This is because big data
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has several advantages over traditional survey data, such as larger sample sizes, longer
observation periods, and lower data collection costs, which make it more promising for studying
individuals’ behavior, habits, and preferences (Sun et al., 2021). On the other hand, inferring
residential locations and workplace for individuals using big data (e.g., trajectory data) and
conducting further research based on these inferences are quite common and well-established
practice in literature (Alexander et al., 2015; Wang et al., 2018; Xu et al., 2018; Yan et al., 2019),
as the rather rhythmic activity patterns of individuals at residential locations and workplace
could lead to the high reliability of residential location and workplace inferences. Further, we
compared the ownership of all private New Energy Vehicles (NFVs, nearly all of them were
EVs) in Beijing in 2018 to the private EVs used in this study at the district level (see Appendix
A in the Supplementary Materials and note that the visualization for the private EVs used in this
study was based on the inferred residential locations). The comparison shows that their spatial
distributions at the district level are rather similar, to some extent implying that our inferences

should be reliable.

4.2 Grouping EV users by Dominant Charging Location

4.2.1 Classifying Charging Events by Charging Location

According to the location where a charging event occurs, we classified the event into three

different types:

® Home-based charging events: refer to those charging events occurring within the

specific distance of the EV user’s home location. In this study, the distance is set to 400
16



m. There are two reasons for us to use 400 m as the threshold. First, Huang et al. (2020)
who used the trajectory data on private conventional vehicles found that 400 m was the
most appropriate radius to cluster parking events to a specific activity location,
considering the drift of GPS trajectory points and the change of exact parking locations
around a specific activity location. Second, we did a sensitivity analysis to explore how
the threshold would influence the quantities of those charging events that are considered
as home-based charging events and workplace-based charging events, respectively. The
results show that when the distance is larger than 400 m, the number of events to be
further considered as home-based charging events or workplace-based charging events
becomes much smaller (see Appendix B in the Supplementary Materials).
Workplace-based charging events: refer to those charging events occurring within the
specific distance of the EV user’s workplace location.

Other charging events: refer to those charging events occurring outside the specific

distance of the EV user’s home and workplace locations.

For EV commuters, they could have all of the three charging event types, i.e., home-based,

workplace-based and other charging events; while non-commuters only have home-based and

other charging events (without workplace-based ones).

Grouping EV users

To characterize EV users’ charging location patterns and further group them into different

categories according to their dominant charging locations, we made a charging event portfolio
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for each user, based on the percentage of the three charging event types (i.e., home-based,
workplace-based, and other charging events). Accordingly, commuters and non-commuters can
be represented by 3-tuples and 2-tuples, respectively, as workplace-based charging is only
applicable to commuters (see Equation (1) and (2)). Here, each tuple represents the percentage

of a specific charging event type.

c, = ( Nnn Nnw Nno ) (1)

Nnn+Npw+Nno ’ Nnn+Npw+Nno ’ Nnn+Npw+Nno

NCn=( Nnp Nno ) ()

)
NnntNno NnntNno

Where, C,, and NC,, denote the n;, EV commuter and non-commuter, respectively; Nyp, Ny,
and N,,, denote the numbers of home-based, workplace-based, and other charging events which

the ny, commuter/non-commauter has, respectively (note: N,,,, is only applicable to commuters).

Based on the calculation above, we further clustered EV users into different groups for
commuters and non-commuters, respectively, using the k-meanst++ clustering algorithm
(Vassilvitskii & Arthur, 2006). Note that we filtered out those EV users (including both
commuters and non-commuters) with less than 4 charging events per month (i.e., charging once
a week, on average), as their charging patterns were unlikely to be representative. Totally, we

got 33,625 commuters and 4,784 non-commuters for subsequent analyses.

In order to explore the proper number of groups to be clustered, we first tried the automatic

way informed by two commonly used clustering quality indexes (namely Silhouette Score and
18



Davies Bouldin Index) (Helmus et al., 2020). The results (see Appendix C in the Supplementary
Materials) show that the number of groups to be clustered should be 3 for EV commuters, and
then the three groups would be Home Dominated (HD), Workplace Dominated (WD), and Other
Dominated (OD). However, these three groups cannot well represent those commuters
frequently charging their EVs at more than one location (such as both home and workplace, both
home and other places, and both workplace and other places) found in our preliminary analysis
of the dataset used for clustering. Therefore, to better represent those commuters frequently
charging their EVs at more than one location, we set the number of groups to be clustered as 6
in the k-means++ clustering algorithm with an expectation that EV commuters could be
clustered into six groups, i.e., Home Dominated (HD), Workplace Dominated (WD), Other
Dominated (OD), Home-Workplace (H-W), Home-Other (H-O), and Workplace-Other (W-O)
(see Table 2 for a detailed description). It is worth mentioning that we did try 7 for the number
of groups, with an expectation that there might be a group of EV users who equally rely on
home-based, workplace-based, and other-based charging facilities. However, no such a group
could be found, and thus we eventually set the number of groups to be clustered as 6. For the
same reason (i.e., to better represent those non-commuters frequently charging their EVs at
more than one location), we set the number of groups to be clustered as 3 for non-commuters
(with an expectation that EV non-commuters could be clustered into three groups, namely HD,
OD, and H-O, see Table 2), instead of two groups informed by the indicators Silhouette Score
and Davies Bouldin Index (see Appendix C in the Supplementary Materials). The clustering

results showed in Section 5.1.1 verified the reasonability of clustering six groups for commuters
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and three groups for non-commuters.

Table 2 Clustering EV users based on their dominant charging locations

. Applicable to Applicable to
Group Description Commuters Non-Commuters
Home (]I){(i)rr)nnated Most charging events occurred around home Yes Yes
Workp lazz\i/g())mmated Most charging events occurred around workplace Yes No
Other Dominated Most charging events occurred at other places Yes Yes
(OD) (i.e., non-home and -workplace)
Home-Workplace Charging events occurred frequently around both Yes No
(H-W) home and workplace
Home-Other Charging events occurred frequently around home Yes Yes
(H-O) and at other places
Workplace-Other Charging events occurred frequently around Yes No
(W-0) workplace and at other places

4.3 Associating EV Users’ Dominant Charging Locations with their
Characteristics: A Mixed Logistic Regression Model

After clustering EV users into different groups according to their dominant charging locations,
we further explored whether the grouping results (i.e., EV users’ dominant charging location
choice) were associated with EV users’ characteristics. We used the mixed logistic regression
model for the association analysis, which is a typical type of discrete choice model (DCM) and
considers the differences in preference across individuals (McFadden & Train, 2000). Mixed
logistic regression models have been widely used in modelling of charging behavior of EV users

(Sun et al., 2015; Xu et al., 2017; Yu & MacKenzie, 2016; Zoepf et al., 2013).

4.3.1 Mixed Logistic Regression Model Specification

Let J denote a set of alternatives (i.e., dominant charging location choices) available for
commuters/non-commuters. To be specific, there are six alternatives for commuters, namely HD,

WD, OD, H-W, H-O, and W-O, while there are three alternatives for non-commuters, namely
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HD, OD, and H-O (see Table 2). The utility (U,;) that a commuter/non-commuter n obtains

from choosing the alternative j € J is defined as Equation (3).

Unj = BnjXn + €nj 3)

Where, ;X defines the observed utility, in which X;, denotes a vector of observed variables
related to individual n (i.e., characteristics of an EV user in this case, see Section 4.3.2) and Sy,
denotes a vector of coefficients estimated to characterize the effects of the observed variables;
&nj denotes the unobservable error term. It should be pointed out that the dominant charging
location choice (j) of an EV user is individual specific, characterizing the long-term habit or
preferences towards charging location (rather than one-time charging location choice for a
specific charging event). Thus, those attributes related to the charging location choice of a
specific charging event were not considered in this study. Instead, those factors related to
characteristics of the EV user that could potentially influence the dominant charging location
choice were included as explanatory variables (X},) in the regression model. All the explanatory
variables were extracted from the EV trajectory data on private EVs and introduced in Section

4.3.2 in a detailed way.

Unlike the conventional multinominal logistic regression model (MNL) with fixed f; (i.e., the
same to all individuals), B,; in the mixed logistic regression model is assumed to be randomly
distributed (following a specific continuous distribution f(£]6)) to accommodate the preference
heterogeneity across individuals, such that the probably (P,;) for commuter/non-commuter n to

choose alternative i can be defined as Equation (4) by integrating MNL choice probabilities
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(Train, 2009) over the continuous probability distribution f (£]6) (Hess & Polak, 2005).

eﬁnixn

= mf(ﬁ’l@)dﬁ 4)
je

P ni
Where, 6 is a vector of parameters of the distribution f(f|8) that can be assumed to be, for

example, normal or lognormal. In this study, we assumed it to be normal, and the assumption

has been widely used (Sun et al., 2015; Wen et al., 2016).

For the determination of random parameters in this study, we assumed all parameters as
random to test whether the standard deviation for each parameter is statistically significant or
not. Those parameters with a statistically significant standard deviation were kept as random

parameters and the others were set as non-random parameters (Hensher et al., 2005).

4.3.2  Exploratory Variables

We used 12 exploratory variables to describe EV wusers’ characteristics, which can be
categorized into 4 groups, namely Vehicle Attributes, Individual- and Household- Level
Attributes, Charging Opportunities Available, and Mobility Patterns. Table 3 shows the
definitions of the 12 exploratory variables (see Appendix D in the Supplementary Materials for a

detailed description).
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Table 3 Definitions of exploratory variables

Variable . Applicable to Applicable to
Index Group Name Definition Commuters Non-Commuters
1 Vehicle Battery The battery capacity of the EV Yes Yes
Attributes Capacity owned by an EV user.
The socioeconomic status of an
Socioeconomic | EV user, characterized by the
2 o . . S Yes Yes
Individual- Status housing price around the user
and home location (Xu et al., 2018).
Household- Home in Whether an EV user lives in the
3 Level Yes Yes
. Central Area | central area of Beijing.
Attributes
4 Workplace in | Whether an EV user works in Yes No
Central Area | the central area of Beijing.
. The number of charging stations
Charging o . 3
2 within the specific distance of an
5 Opportunities ‘s h hi Yes Yes
around Home EV user’s home. In this study,
the distance is set to 400 m.
) 0 C}gﬁiﬁtgies The number of charging stations
6 Charglqg p]zlroun d within the specific distance of an Yes No
Oppor.tunltles EV user’s workplace.
Available Workplace
The average number of charging
Charging stations within the specific
7 Opportunities | distance of the activity locations Yes Yes
at Other Places | (except home and workplace)
visited by an EV user.
Commutin The Euclidean distance between
8 . £ | an EV user’ home and Yes No
Distance
workplace.
The ratio of the number of non-
Ratio of Non- | working days that an EV user
9 Working Days | travelled with his/her EV to the Yes Yes
Having EV total number of days that an EV
Travel user travelled with his/her EV in
a month.
Diversity of | The average number of unique
10 Mobility ACtlYlty activity locations (1nclud1pg Yes Yes
Patterns Locations home and workplace) visited by
Visited Daily | an EV user per travel day.
Daily Travel The average distance travelled
11 Y by an EV user by EV per travel Yes Yes
Distance
day.
One mobility indicator measures
Standard the.ra'mge of an EV user’s ’
Distance activity space with the user’s
12 home as the reference point (Xu Yes Yes
Centered at
Home et al., 2015). A small value

reflects that the EV user tends to
perform activities near home.
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5 Results

5.1 Comparing Commuters and Non-Commuters’ Dominant Charging

Locations

5.1.1 Descriptive Analysis of EV User Groups

We grouped commuters and non-commuters according to their dominant charging locations.
As expected (see Section 4.2.2), we identified 6 groups of commuters and 3 groups of non-

commuters with distinct dominant charging location patterns.

(1) Percentage of Charging Events by Location for each EV User Group

Fig. 2 shows the percentage of charging events by location, based on which we identified
each EV user group (6 groups for commuters and 3 groups for non-commuters). We can find
similar dominant charging location patterns for commuter and non-commuters: in terms of HD,
OD, and H-O, the percentages of home-based (95% vs. 96%), other-based (93% vs. 95%) and
home- & other- based (36% & 61% vs. 39% & 61%) charging events are quite close to each
other. For WD commuters, 90% of charging events took place around their workplaces; For H-
W commuters, 49% and 43% of charging events occurred around their homes and workplaces,
respectively; For W-O commuters, 52% and 44% of charging events occurred around their

workplaces and at other places, respectively.
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Fig. 2 The percentage of charging events by location for each EV user group

(2) Proportions of EV User Groups for Commuters and Non-commuters
Fig. 3 shows the proportions of EV user groups for commuters (see subfigure (a)) and non-

commuters (see subfigure (b)). Key findings are listed as follows:

» More than half of commuters (50.7%) and non-commuters (57.5%) were HD users with
most charging events occurring around home. In total, 66.0% of commuters (including
the groups HD, H-O, and H-W) and 77.8% of non-commuters (including the groups HD
and H-O) charged frequently around their homes. This suggests that home is the most
common charging location for the majority of commuters and non-commuters.

» More than two-thirds of commuters (78.9%) and non-commuters (79.7%) tended to
charge their vehicles mainly at one single type of charging location (e.g., home,
workplace (only applicable to commuters), or other places), indicating that EV users

(including both commuters and non-commuters) might be used to get their EVs charged
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at those places with which they are familiar.

Since workplace charging is not applicable to non-commuters, the fractions of HD, OD,
and H-O non-commuters were larger than those of commuters. For commuters,
workplace-based charging opportunities may be available though, the fractions of WD,
H-W, and W-O commuters were small, only accounting for 24.8% totally. This finding is
consistent with what have been pointed out in others’ work: the charging at workplace is
far less popular than that at home (Chakraborty et al., 2019; Lee et al., 2020). Also, the
group H-W accounted for the least proportion of commuters (4.3%), likely because there
is no need for the majority of EV commuters to get their EVs charged around both home
and workplace frequently due to a short commuting distance relative to the EV driving

range (for example, only 4.6% of EV commuters in Beijing had a commuting distance

longer than 20 km).

(a) Commuters (b) Non-commuters
Fig. 3 The proportions of EV user groups for commuters and non-commuters
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Further, we compared the proportions of EV user groups in Central and Non-Central Areas
from a spatial perspective. As shown in Fig. 4, commuters and non-commuters have similar
spatial patterns: central areas tended to have a smaller fraction of EV users with home-based
charging included (i.e., HD, H-W, and H-O). This suggests that EV users (both commuters and
non-commuters) in the central areas tended to rely less on home-based charging but more on
workplace-based and other-based charging than those in the non-central area. It may be because
that in the central area, the EV users tended to access to less private charging facilities, due to
the limited land and less private parking spaces (Kang et al., 2022). On the other hand, a higher
density of public charging infrastructure in the central area (BMCUM, 2021) provides more
charging opportunities at non-home activity locations. Note that workplace-based charging and
EV user groups with workplace-based charging included (i.e., WD, H-W, and W-O) are only

applicable to commuters.

Commuters Non-commuters
100% 5 5
3 10 12 20 21
3 o 4
© 80%+
O
—
b
D 60% -
>
w
]
n 40% A B HD
E e WD
E mmm OD
8‘ 20% A H-w
& H-O
W-0
o/
Central Area Non-Central Area Central Area Non-Central Area
Home Location Home Location

Fig. 4 The proportions of EV user groups in Central Area and Non-Central Area
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5.1.2  Charging Patterns of EV Users from Different Groups

We further characterized and compared charging patterns of EV users from different groups
for commuters and non-commuters using two indicators, namely start time of a charging event
and EV’s start state of charge (SOC) in a charging event. Also, we compared charging patterns
for commuters and non-commuters on working and non-working days (see Appendix E in the

Supplementary Materials).

(a) Start Time of Charging Event

Fig. 5 shows the probability density (estimated using the kernel density estimation) of start
time of charging event for different EV user groups. It can be found from the subfigure (a) that
for commuters from those groups with workplace-based charging included (i.e., WD, H-W, and
W-0), their charging events mostly started during the working hours and charging demand
peaked in the morning peak (specifically from 8 to 9 AM); while for those commuters from the
groups with home-based charging included (i.e., HD, H-W, and H-O), their charging events
mostly started during the nighttime and charging demand peaked in the evening peak
(specifically, from 7 to 8 PM). Also, the group HD had the sharpest evening peak (as their
charging events were mostly home-dominant), the group WD had the sharpest morning peak (as
their charging were mostly workplace-dominant), and the group H-W had both the morning and
evening peaks (as their charging event were mostly both home- and workplace-dominant).
Moreover, the commuters from the group OD tended to have a flatter distribution of start time

than those from the other 5 groups, as their charging events were mostly associated with those

28



flexible activities (e.g., shopping and leisure) with a flexible start time.

In addition, the comparison of start time between commuters and non-commuters from groups
HD, OD, and H-O (see the subfigure (b)) suggests that non-commuters tended to have flatter
distributions of start time. This may be because non-commuters did not need to commute and

thus had more flexible time for recharging their EVs.

4
=
Commuters
£ 0.25
w —— HD
g wD
© oD
T 0.20 H-W
6 H-O
bS] W-0
L]
E0.15
l_
£
o
w
b 0.10
-
-
@
[
& 0.05 <A
> -
=
.‘% -~ -/__/—\/
-g 0.00 T T T T T T T T T T T T T T T T T T T T T T T
£ 01 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24

Time of Day

(a) Commuters

29



Comparison between Commuters and Non-commuters
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(b) Comparison between commuters and non-commuters

Fig. 5 Probability density of start time of charging event for different EV user groups

(b) EV’s Start State of Charge (SOC) in Charging Event

Fig. 6 shows the statistical distributions of EV’s start SOC in charging event for different EV
user groups, suggesting that those EV users (including both commuters and non-commuters)
from the groups with other-based charging included (i.e., OD, H-O, and W-O) tended to get their
EVs recharged with a lower SOC. In particular, the group OD had a much lower SOC
(specifically, the average SOCs were 36.08% and 38.69% for commuters and non-commuters,
respectively). This may be because the EV users from these groups (particularly the group OD)
tended to have an urgent need to get their EVs recharged (when their SOC is running low);
while for the EV users from other groups (e.g., HD, WD, and H-W), they usually did not have
an urgent need to get their EVs recharged and could get EVs recharged as long as they have

access to charging facilities (e.g., around their homes and workspaces).

30



As shown in subfigure (b), commuters, on average, tended to have a lower SOC than non-
commuters when they got their EVs recharged for all the three EV user groups, i.e., HD, OD,
and H-O. This might be because non-commuters tended to have a more flexible time and thus
could recharge their EVs more frequently and for a longer time. Another possible reason could
be that compared against non-commuters, commuters tended to visit some fixed locations and to
be less likely to visit those activity locations they were less familiar with (e.g., those activity
locations other than home and workplace). The familiarity with the activity locations they
visited could reduce their range anxiety, and thus they tended to have a lower SOC than non-
commuters when they got their EVs recharged. This can be somewhat evident from the
information extracted from the trajectory data: after excluding those activity locations
commuters/non-commuters were more familiar with (i.e., home and workplace for commuters
and home for non-commuters), the diversity of activity locations visited daily (i.e., the number
of unique activity locations visited daily) for commuters was less than that for non-commuters

(1.39 vs. 1.91).
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Fig. 6 Distributions of EV’s start SOC in charging event for different EV user groups
(Unit: %)

5.2 Mixed Logistic Regression Model for Associating EV Users’ Dominant
Charging Locations with their Characteristics

To consider the multicollinearity problem, we conducted the Pearson correlation coefficient
test for explanatory variables firstly (see Appendix F in the Supplementary Materials for the
results and discussion). The variable Standard Distance Centered at Home is closely related to
both Commuting Distance and Daily Travel Distance, with the correlation coefficients of 0.720
and 0.651, respectively, and thus it was eliminated from the model estimation for commuters.
Also, since a comparative study was conducted for commuters and non-commuters, the variable
Standard Distance Centered at Home was also not included in the model estimation for non-

commuters.

Table 4 shows the coefficient estimation results of two mixed logistic regression models,
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which were used to explore the possible association between EV users’ dominant charging
locations and their characteristics for both commuters and non-commuters. Also, Appendix G in
the Supplementary Materials reports and discusses the results of marginal effects derived from

the estimated mixed logistic regression models for both commuters and non-commuters.

The unobserved heterogeneity among individuals were captured and represented using
random parameters with standard deviation values in parentheses (see Table 4). It can be found
that in general, EV users evaluated several variables (e.g., Battery Capacity and Daily Travel
Distance) differently in dominant charging location choice. For example, commuters with a
dominant charging location choice of H-W or H-O had heterogeneous tastes of Battery Capacity;
non-commuters with a dominant charging location choice of OD valued Daily Travel Distance

differently.

Table 4 Mixed logistic regression model estimation results for commuters and non-commuters

Alternative Estimates

Group Variable Commuters Non-commuters
WD OD H-W H-O W-0 oD H-0
Vehicle . -0.040 | -0.022
. Battery Capacity 0.005 0.022 -0.004 0.007 | -0.013
Attributes (0.019) | (0.014)
Individual- Socioeconomic Status 0.076 | 0.065 0.053 0.014 0.067 - -
and
Household- Home in Central Area 0.333 0.314 0.087 0.074 0.386 0.393 0.052
Level
Attributes Workplace in Central Area | -0.381 0.101 -0.363 0.053 -0.199 X X
Charging Charging Opportunities | 130 | o114 | 0.015 | 0.090 | 0.066 - -
Opportunities around Home
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Available Charging Opportunities

-0.114 | 0.049 | -0.038 | -0.019 | 0.004 x X
around Workplace

Charging Opportunities at
-0.083 | -0.906 | 0.047 | -0.443 | -0.446 | -0.755 | -0.395

Other Places
-0.006
Commuting Distance 0.019 0.035 0.040 0.020 X X
(0.025)
Ratio of Non-working -2.480
. 0.505 0.722 0.319 0.118 1.110 | 0.632
Mobility Days Having EV Travel (1.882)
Patterns
Diversity of Activity 1.094
. . . 0.001 0.175 0.450 0.484 0921 | 0318
Locations Visited Daily (0.230)
. ) -0.017 | -0.038 -0.017
Daily Travel Distance 0.006 0.007 -0.001 0.007
(0.008) | (0.013) (0.012)

Alternative-specific
-0.630 | -3.750 | -2.849 | -2.104 | -3.380 | -2.551 | -1.431
Constant

Note: (1) The reference alternative is the group HD for both commuters and non-commuters; (2)
coefficients highlighted in bold are statistically significant at the 0.05 level; (3) the random parameters
are presented with standard deviation values in parentheses; (4) “-” denotes the exploratory variables that
are not statistically significant and thus were eliminated from the final model; (5) “x” denotes the

exploratory variables that are not applicable to non-commuters.

5.2.1 Implications of Vehicle Attributes

(1) Battery Capacity

For commuters, the significantly negative estimates for groups H-W and H-O, and the
significantly positive estimates for groups WD and OD indicate that those commuters with a
larger EV battery (i.e., a longer driving range) were more likely to have a less complex charging
location choice behavior and preferred to get their EVs charged at one single type of charging

location (i.e., home, workplace, or other places). This may be because that a larger battery
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capacity could mitigate range anxiety of EV users to some extent, allowing them to choose those
charging stations where they usually get their EVs recharged. Moreover, those commuters with a
larger EV battery were more likely to choose charging stations around workplaces or at other
places and thus become WD or OD commuters (compared to the reference alternative, HD
commuters). This may be attributed to a higher charging efficiency at non-home based charging
stations where fast charging facilities are more accessible (Xu et al., 2017). This allows EV
users to get their larger batteries recharged at a higher rate. The finding reflects the significant
role of fast charging infrastructure particularly in the future EV market where the EV models
with a high-storage battery (i.e., a long driving range) will become more common. In addition,
the association between the variable Battery Capacity and the dominant charging location choice
of non-commuters is similar to that of commuters. Specifically, for non-commuters with a high-
storage EV battery, they were more likely to become OD non-commuters but were less likely to

become H-O non-commuters, compared to the reference alterative, HD non-commuters.

5.2.2  Implications of Individual- and Household- Level Attributes

(1) Socioeconomic Status

For commuters, the significantly positive coefficients of the variable Socioeconomic Status
for most alternatives (i.e., the groups WD, OD, H-W, and W-O) suggest that those commuters
with a lower socioeconomic status (described with housing price in this case study) were more
likely to become HD commuters (i.e., relying mainly on home-based charging). A possible
reason may be that these commuters were more sensitive to charging costs. Home-based

charging allows EV users to have more opportunities to get their EVs charged during the off-
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peak time slots (e.g., the period from 9:00 PM to 7:00 AM (the next day) in Beijing) with the
lowest charging fee. This is consistent with the charging patterns of HD commuters, as shown in
Fig. 5-(a): a considerable number of charging events were initialized by HD commuters after
9:00 PM. For non-commuters, we found the variable Socioeconomic Status is not statistically

associated with their dominant charging locations.

(2) Home or Workplace in Central Area

For both commuters and non-commuters, the coefficients of the variable Home in Central
Area are significantly positive for those EV user groups without home-based charging included
(namely WD, OD, and W-O). Meanwhile, the coefficients of the variable Workplace in Central
Area (only applicable to commuters) are significantly negative for those EV user groups with
workplace-based charging included (namely WD, H-W, and W-O). These results suggest that
EV users living or working in the central area were less willing to rely on home- or workplace-
based charging, respectively. The reason is discussed as follows: compared with the city
periphery of Beijing, the buildings of residential neighbors and job gathering places in the
central area tend to be much high-density (limiting the availability of parking infrastructure) and
older (increasing the difficulty to renovate the circuits) (Kang et al., 2022). Because of this, the
installation of private and workplace charging infrastructure become less feasible. As a result,
those EV users living or working in the central area have less access to charging at home or

workplace.
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5.2.3 Implications of Charging Opportunities Available

(1) Charging Opportunities around Home or Workplace

For commuters, the coefficients of the variable Charging Opportunities around Home are
estimated positively for all alternatives listed in Table 4, and significantly for three alternatives
(namely WD, OD, and H-O). Meanwhile, the estimate of the variable Charging Opportunities
around Workplace is only significantly negative for the group WD. These results suggest that
those commuters with more charging opportunities (i.e., accessing a higher number of charging
stations) around home or workplace were less likely to become HD or WD commuters. In other
words, commuters with more charging opportunities around home tended to not mainly rely on
home-based charging facilities, but tried to get their EVs recharged at other places rather than
home. Similarly, commuters with more charging opportunities around workplace tended to not
mainly rely on workplace-based charging facilities, but tried to get their EVs recharged at other
places rather than workplace. This may be because more charging opportunities around home or
workplace could potentially attract more EVs with home- or workplace- based charging demand.
On the one hand, this could increase the competition for using charging facilities. On the other
hand, home- or workplace- based charging is usually along with long parking duration (and thus
long occupation of charging facilities), which could decrease the turnover of charging facilities.
These two reasons may make commuters with more charging opportunities around home or
workplace not to mainly rely on home- or workplace- based charging, but to try charging
facilities at other places rather than home or workplace, as well. In addition, for non-commuters,

we found that their dominant charging location choices are not statistically associated with the
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variable Charging Opportunities around Home. These findings for commuters and non-
commuters suggest that how EV users chose their dominant charging locations was not simply

determined by the number of charging opportunities.

(2) Charging Opportunities at Other Places

For both commuters and non-commuters, the significantly negative estimates of the variable
Charging Opportunities at Other Places for those EV user groups with other-based charging
included (namely OD, H-O, and W-O) indicate that EV users with more charging opportunities
(i.e., accessing a higher number of charging stations) at other places tended not to get their EVs
recharged at other places. Similar finding was obtained in the work by Yun et al. (2019): for
plug-in hybrid electric vehicle (PHEV) users in Shanghai, China, a higher average number of
charging posts in public charging stations (i.e., higher public charging opportunities) would
reduce the likelihood for public charging. In addition, previous studies have found that with the
growth of charging facilities, EV users’ range anxiety decreases (Dong et al., 2014; Zhang et al.,
2021). Therefore, EV users accessing a higher number of charging stations at other places may
have less range anxiety. Consequently, they tended to get their EVs recharged at more fixed and
familiar locations (i.e., home and workplace for commuters and home for non-commuters), and
thus less likely to be those groups with other-based charging included (namely OD, H-O, and W-

0).

5.2.4  Implications of Mobility Patterns

(1) Commuting Distance
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The significantly positive association between the variable Commuting Distance (only
applicable to commuters) and the dominant charging location choice of EV users from the
groups WD, H-W, and W-O (i.e., those groups with workplace-based charging included)
suggests that for those EV users with a longer commuting distance, they were more likely to get
their EVs recharged around workplace. This finding reveals that a longer commuting distance

could increase the possibility of EV charging around workplace for commuters.

(2) Ratio of Non-working Days Having EV Travel

The significantly negative estimates for those commuters from the group WD suggests
commuter with a higher ratio of non-working days having EV travel were less likely to mainly
rely on workplace-based charging facilities. This may be because most commuters would not
commute to work on non-working days, decreasing the possibility of charging around workplace.
Meanwhile, in order to support daily travel activities on both working and non-working days,
there would be more charging activities conducted around home and at other places. On the
other hand, the significantly positive estimates for those commuters from the group OD and for
those non-commuters from the groups OD and H-O indicate that EV users with a higher ratio of
non-working days having EV travel tended to get their EVs recharged more at other places. This
may be because non-working days usually involves more leisure activities away from home,

increasing the reliance on charging facilities located at sites for entertainment.

(3) Diversity of Activity Locations Visited Daily
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As expected, the variable, Diversity of Activity Locations Visited Daily, is significantly and
positively associated with the dominant charging location choice of EV users from the groups
OD, H-W, H-0O, and W-O for commuters and from the groups OD and H-O for non-commuters.
This is likely to be because visiting more diverse activity locations (which means that the chance
of accessing to charging infrastructure located at different locations is increased) may allow EV
users to charge their EVs at more diverse locations. On the other hand, the intention to get EV
recharged at different locations could potentially increase the diversity of activity locations

visited daily for EV users.

(4) Daily Travel Distance

For commuters, the coefficients of the variable Daily Travel Distance are estimated
significantly negative for the alternatives WD and OD and significantly positive for the
alternatives H-W and H-O. A longer daily travel distance means a higher charging demand when
returning home, resulting in more charging around home, and thus there was less likely for
commuters to be WD or OD users. Meanwhile, A longer daily travel distance could induce a
higher range anxiety outside home, leading to charging outside home as a supplement to
charging around home, and thus there was more likely for commuters to be H-W and H-O users.
Similar to commuters, the estimates are significantly negative for non-commuters from the

group OD and significantly positive for non-commuters from the group H-O.
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6 Conclusions

This paper used a unique trajectory dataset collected from 76,774 actual private electric
vehicles (EVs) in Beijing in January 2018 to explore EV users’ dominant charging locations
(where EV users get their EVs recharged more frequently), within a comparative study of
commutes and non-commuters. The results showed that more than half of commuters and non-
commuters were the HD users with most charging events occurring around home. Moreover,
there were significant differences in charging patterns of EV users from different groups by
dominant charging location, and also between commuters and non-commuters. In addition, the
dominant charging location choice of EV users was significantly associated with their
characteristics, such as charging opportunities available and mobility patterns. Particularly, we
found several unexpected results about those variables related to charging opportunities
available. For example, those commuters with more charging opportunities around their home or
workplace were less likely to become the HD or WD users with home or workplace dominant
charging. These findings suggest that how EV users chose their charging locations was not
simply determined by the number of charging opportunities. Also, the association between the
same factor and dominant charging location choice for commuters and non-commuters is
different. For example, Socioeconomic Status was estimated as a significant factor to influence

commuters’ dominant charging location choice, but not significant for non-commuters.

The findings of this study could be helpful for the EV-related stakeholders in their decision-

making. First, smart charging (e.g., time of use and V2Q) is a good way to alleviate the load
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pressure of the local power grid. To encourage greater participation in such an advanced
program, tailored incentives and schemes should be devised based on EV users’ dominant
charging location choice, as EV users with different dominant charging location choices
exhibited distinct preferences regarding the commencement time of charging their EVs. Second,
both EV commuters and non-commuters with a larger EV battery (i.e., a longer driving range)
were more likely to be OD users (i.e., with most charging activities at other places rather than
home and workplace), highlighting the significance of further developing charging infrastructure
at public locations (e.g., leisure complex and shopping mall) in the near future with more EV
models available with a larger battery. Third, EV commuters with a longer commuting distance
tended to be WD, H-W, and W-O users with workplace-based charging included. In order to
meet their charging demand at workplace, it is of great importance to promote the deployment
of workplace-based charging facilities for those job gathering places with more commuters from

the periphery of the city (and thus with a longer commuting distance).

The future work will be focused on the following two aspects: first, we will try to collect
more exploratory variables (such as EV users’ sociodemographic attributes and charging price of
charging facilities located at different locations) that are generally expected to influence the
dominant charging location choice of EV users and model their relationship. This could further
deep our understanding of EV users’ charging location choice. Second, the unique large-scale
trajectory dataset actually contains rich charging information. We will further investigate other

charging choice behaviors of EV users with this dataset, such as charging decision and time-
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related charging behavior, in addition to the dominant charging location choice behavior.
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