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Pinhole Effect on Linkability and Dispersion in
Speaker Anonymization

Kong Aik Lee, Zeyan Liu, Liping Chen, and Zhen-Hua Ling

Abstract—Speaker anonymization aims to conceal speaker-
specific attributes in speech signals, making the anonymized
speech unlinkable to the original speaker identity. Recent ap-
proaches achieve this by disentangling speech into content and
speaker components, replacing the latter with pseudo- speakers.
The anonymized speech can be mapped either to a common
pseudo-speaker shared across instances or to distinct pseudo-
speakers unique to each instance. This paper investigates the
impact of these mapping strategies on three key dimensions:
speaker linkability, dispersion in the anonymized speaker space,
and de-identification from the original identity. Our findings show
that using distinct pseudo-speakers increases speaker dispersion
and reduces linkability compared to common pseudo-speaker
mapping, while maintaining de-identification, thereby enhancing
overall privacy preservation. These observations are interpreted
through the proposed pinhole effect, a conceptual framework
introduced to explain the relationship between mapping strategies
and anonymization performance. The hypothesis is validated
through empirical evaluation.

Index Terms—Privacy-preserving speech processing, voice pri-
vacy preservation, speaker anonymization.

I. INTRODUCTION

SPEAKER anonymization is the task of altering the
speaker’s voice to hide their identity to the greatest possi-

ble extent while leaving all other speech attributes intact [1]–
[3]. For instance, speech signals are anonymized to conceal
the identity of the interviewee on a television program while
keeping the spoken contents. In a wider context, speaker
anonymization is posed as a privacy-preservation solution,
alongside homomorphic encryption [4], [5] and federated
learning [6]. Different from the latter, speaker anonymization
transforms speech signals into a privacy-preserving format that
aligns with current pipelines. This practicality has led to its
widespread adoption, as anonymized speech can be used in
downstream speech processing tasks (e.g., speech and emotion
recognition) with minimal or no modifications to existing
systems [7], while preserving speaker’s privacy.

Mainstream speaker anonymization approach is based on
replacing the speaker’s voice attributes with those of a pseudo
speaker [3], [8], [9]. In this approach, the input speech could
be anonymized to a common or distinct pseudo-speaker. Both
of these have their pros and cons. For instance, distinct pseudo-
speakers are useful for a multi-party conversational setting
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when multiple speakers are involved. In contrast, a common
pseudo-speaker is often used in passer-by interviews. It has
been stipulated that mapping to a common pseudo-speaker
would lead to more effective privacy preservation since all
anonymized speech would sound alike. This paper shows
that this first intuition does not hold. More specifically, we
hypothesize that mapping to distinct pseudo-speakers reduces
linkability (i.e., likelihood of re-identification) and thereby
enhances privacy preservation. We validate this hypothesis
through experiments using two different speaker anonymiza-
tion systems. Furthermore, we demonstrate that this phe-
nomenon can be explained by the pinhole effect, a conceptual
framework proposed for the first time in this paper.

II. SPEAKER ANONYMIZATION

Speaker anonymization belongs to a subclass of privacy-
preserving technology (PPT). PPT aims to protect data privacy
while the data is being processed, at rest on a system, or in
transit between systems [10]. Put it formally. Let Xp be the
private data in X , where Xp leads to the inference of Y (e.g.,
identity of the person, gender, ethnicity):

Xp → Y (1)

Privacy preservation aims to keep private data Xp opaque to
an insider or an outsider, when the data X is being processed,
in transit, or stored.

Speaker anonymization realizes the goal of privacy preser-
vation by removing or concealing the voice attributes Xv ⊂
Xp that leads to the inference of speaker identity YID ∈ Y ,
i.e., Xv → YID, while keeping other private and non-private in-
formation (linguistic and para-linguistic) untouched. Formally,
let X be a speech signal, speaker anonymization encompasses
a mapping between the input and the anonymized speech,
represented by the function f , as follows:

f : X 7−→ X\Xv (2)

where the shorthand X\Xv denotes the set X excluding the
subset Xv . The resulting speech signal X\Xv is referred to
as the anonymized speech. In practice, since a speech signal
cannot exist without a speaker’s voice as a carrier of the spoken
words, the mapping is realized as

f ′ : X 7−→ (X\Xv) ∪Xpseu (3)

where Xpseu represents the pseudo-speaker voice introduced
to replace Xv . Pseudo-speakers are artificial speakers created
by algorithms that are not linked to any real person, thereby
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Fig. 1: Pinhole effect in speaker anonymization: (a) a common pseudo-speaker is used across all anonymization instances,
resulting in any-to-one (a2o) mappings, and (b) distinct pseudo-speakers are used for each anonymized utterance, resulting in
any-to-any (a2a) mappings.

avoiding infringing the privacy of real individuals. Many ap-
proaches have been proposed for the generation and selection
of pseudo speakers [3], [9], [11]–[15], for example, by taking
the average of a subset of speakers selected from a cohort set
with the further distance away from the source speaker [16].

III. PINHOLE EFFECT IN SPEAKER ANONYMIZATION

In the anonymization process, an important consideration
is whether to use the same pseudo-speaker across different
anonymization instances. One approach is to apply a common
pseudo-speaker to all anonymized utterances, while another is
to assign a distinct pseudo-speaker to each session. The former
leads to an any-to-one mapping, while the latter leads to an
any-to-any mapping.

In the case when a common pseudo-speaker Xi
pseu = Xpseu

is used for all i utterances, the anonymization function f ′

in (3) becomes an any-to-one mapping. On the other hand,
the function f ′ implements an any-to-any mapping when
Xi

pseu ̸= Xj
pseu for i ̸= j. In Figs. 1 (a) and (b), we illustrate the

any-to-one and any-to-any mappings graphically assuming a
two-dimensional feature space. Due to the imperfection in the
removal of speaker voice attributes, residual attributes cause
the anonymized utterances from the same speaker to cluster
together. In Fig. 1(a), this is illustrated as beams of light
passing through a pinhole, where beams originating from the
same source (i.e., in analogy to speech utterances from the
same speaker) passing through the pinhole will cluster around
in the same area. In Fig. 1(b), by using multiple pinholes
(i.e., analogous to multiple pseudo-speakers), the anonymized
utterances from the same speakers are scattered apart in the
anonymized space. In this case, the pseudo-speaker attributes
overwhelm the residual.

The pinhole effect and its implications for speaker
anonymization can be summarized as follows:

• Dispersion: Any-to-any mapping leads to greater dis-
persion in speaker representations of anonymized speech
compared to any-to-one mapping.

• Linkability: Any-to-any mapping reduces speaker sim-
ilarity among anonymized utterances, thereby lowering
linkability relative to any-to-one mapping.

• De-identification: The speaker similarity between origi-
nal and anonymized speech does not differ significantly
regardless of the number of pinholes (one or multiple).
Thus, both any-to-one and any-to-any mappings achieve
a comparable level of de-identification.

The implication for speaker linkability arises directly from
the assertion on speaker dispersion, as greater dispersion
leads to reduced linkablity between anonymized utterances.
Specifically, low linkability is achieved by assigning one
distinct pseudo-speaker per session (e.g., meeting), preventing
anonymized utterances from being linked across sessions. Both
of these relate to the distribution of anonymized speaker
representations on the right-hand side of the pinhole(s) in
Figs. 1 (a) and (b). In contrast, the assertion concerning
speaker de-identification involves a cross-side comparison,
evaluating the speaker similarity between original speech (left
side) and anonymized speech (right side) across the pinhole(s).

IV. EXPERIMENT

We validate the pinhole effect using two speaker anonymiza-
tion systems developed for the VoicePrivacy 2024 (VPC2024)
Challenge [17] under two anonymization settings. In the first,
all utterances are anonymized to a common pseudo-speaker,
corresponding to the any-to-one mapping strategy. In the
second, each utterance is anonymized using a different pseudo-
speaker, corresponding to the any-to-any mapping strategy.

A. Models

We used two speaker anonymization systems in the experi-
ments. The first system (SYS1) corresponds to the B5 baseline
in VPC2024 1. As depicted in Fig. 2(a), the system consists
of (i) an ASR acoustic model (ASR AM) to extract speech
features containing the linguistic content, and (ii) a pitch track-
ing model to extract F0 features. Vector quantization (VQ) is
applied to the linguistic features, while per-utterance mean-
variance normalization (MVN) is applied to the F0 features;
both aim to reduce residual voice attributes. The quantized

1https://github.com/deep-privacy/SA-toolkit
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Fig. 2: Two speaker anonymization systems used in the experiments to validate the pinhole effect.

features are then fed together with the F0 prosodic feature into
a HiFi-GAN neural source-filter model [18] to synthesize an
anonymized speech. SYS1 can be configured for either any-to-
one or any-to-any mapping by selecting an appropriate one-hot
speaker vector. For the former, a constant one-hot speaker ID
is used for all anonymized utterances to produce a common
pseudo-speaker. For the latter, a different one-hot speaker ID is
randomly assigned to each anonymized utterance. In the any-
to-one setting, speaker ID 103 was arbitrarily chosen from a
pool of 251 speakers for the experiments.

The second system (SYS2) is a variant of the B5 baseline,
where the one-hot vector input to the HiFi-GAN vocoder is
replaced with a speaker embedding. As shown in Fig. 2(b), the
pseudo-speaker embedding ϕpseu is fed to a vocoder with the
other two components (i.e., the F0 and linguistic features)
to synthesize the anonymized speech. SYS2 can also be
configured for either any-to-one or any-to-any mapping by
manipulating the speaker embedding. In the experiments, utter-
ances are anonymized to a common pseudo-speaker, obtained
by averaging the x-vector embeddings from the LibriSpeech
train-clean-100 [19]. For any-to-any mapping, each utterance
is anonymized using a distinct pseudo-speaker embedding,
computed by averaging the x-vector embeddings of 100 ut-
terances randomly selected from LibriSpeech train-clean-100.

B. Datasets

The configurations and datasets used to train each module of
the anonymization systems are described as follow. The ASR
AM comprises a wav2vec2 [20] front-end with three additional
TDNN-F layers [21]. As in the VPC2024 B5 baseline, the
wav2vec2 model was pre-trained on VoxPopuli dataset [22]
and then fine-tuned on LibriSpeech train-clean-100 [19]. The
VQ has a codebook size of 48, with a dimensionality of 256.
The x-vector extractor [23] was trained on the VoxCelb-1 and
VoxCeleb-2 datasets [24]. As in most implementations, the x-
vector has a dimensionality of 512. The HiFi-GAN vocoder
was trained on the LibriSpeech train-clean-100 with both
ASR-AM and x-vector extractor frozen. A Pytorch implemen-

TABLE I: Evaluation of anonymization methods on the Lib-
riSpeech dataset using ASV EER (where higher values indicate
better anonymization) and ASR WER (where lower values
indicate better linguistic preservation).

Test set Partition ORG SYS1 SYS2

EER (%)

libri-dev F 10.51 33.37 34.94
M 0.93 31.94 34.32

libri-test F 8.76 31.84 33.73
M 0.42 32.19 32.74

avg 5.16 32.23 33.93

WER (%) libri-dev - 1.79 3.95 3.88
libri-test - 1.84 4.15 4.01

tation of YAAPT pitch tracking algorithm [25] was used for
the F0 extraction.

C. Performance metrics

Our experiments were carried out following the evaluation
protocol provided in VPC2024 [17]. The privacy-preserving
capability of the anonymization systems was evaluated using
ASV tests, with performance measured by the equal error
rate (EER). To minimize inference risk, anonymized speech
should not be successfully verified by an ASV system, which
corresponds to a higher EER. The ability to preserve linguistic
content was assessed using ASR tests, measured by the
word error rate (WER). Since the goal is to retain speech
information other than the speaker’s identity, the anonymized
speech should have a WER as close as possible to that of the
original speech.

Table I shows the baseline performance of the two
anonymization systems, SYS1 and SYS2, using the any-
to-one mapping to a common voice. The ASV evaluations
were conducted in a a gender-dependent manner. The average
EERs across the four subsets are included. Comparing to
the EERs in the ORG column, when no anonymization was
applied, both anonymization systems increase tremendously
the EER to over 30%. Both anonymization systems obtained
WERs comparable with the original speech (ORG) without
anonymization. These results show that the anonymization
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TABLE II: Scatter values and ratio J for original and
anonymized speech under different systems and mapping
strategies.

Method Mapping Tr(W⊤SwW ) Tr(W⊤SbW ) J
ORG – 206.71 305.39 1.477
SYS1 a2o 674.27 30.14 0.047
SYS1 a2a 1224.04 38.19 0.031
SYS2 a2o 730.91 31.83 0.045
SYS2 a2a 2192.49 48.95 0.023

TABLE III: ASV EER (%) on the VPC2024 LibriSpeech Dev
and Test subsets under any-to-one (a2o) and any-to-any (a2a)
mapping strategies.

Method Mapping Libri-Dev Libri-Test AvgF M F M
SYS1 a2o 33.37 31.94 31.84 32.19 32.23
SYS1 a2a 34.88 36.21 33.12 32.43 34.16
SYS2 a2o 34.94 34.32 33.73 32.74 33.93
SYS2 a2a 37.03 35.84 34.37 36.62 35.97

systems achieve good privacy preservation while retaining the
linguistic information for downstream tasks.

D. Results

The first experiment examines the speaker dispersion of
anonymized speech 2. Using the x-vector extractor described in
Section-IV(A), a total of 28, 539 utterances from 251 speakers
in the LibriSpeech train-clean-100 dataset were represented
as x-vector embeddings. The within-class and between-class
scatter matrices, denoted as Sw and Sb respectively, were
computed using the speaker labels. The trace of the within-
class scatter matrix, Tr(W⊤SwW ), quantifies the speaker
class compactness. A smaller value indicates tighter clustering.
In contrast, the trace of the between-class scatter matrix,
Tr(W⊤SbW ), measures the separation between speakers,
where a higher value indicates better speaker separation. Here,
W is the matrix of eigenvectors of S−1

w Sb. The within-class
and between-class scatter values for the original utterances
(ORG) are reported in the first row of Table II. The last column
shows the scatter ratio J = Tr((W⊤SwW )−1(W⊤SbW )).
While the between-class scatter reduces, the within-class
scatter increases substantially after anonymization. The re-
sulting reduction in the scatter ratio J indicates increased
speaker dispersion and, consequently, lower linkability among
anonymized utterances. Comparing the mapping strategies,
any-to-any (a2a) mapping yields a lower scatter ratio and
thus higher dispersion than any-to-one (a2o) mapping in both
systems.

In the second experiment, we examine the identity link-
ability property asserted by the pinhole effect. We assume
that an attacker attempts to verify the speaker identity us-
ing anonymized speech utterances. In this case, anonymized
utterances were used for enrollment and test in ASV. We
experimented with two settings described in Section IV-A. In
the first setting, utterances were anonymized using a common
pseudo-speaker leading to an a2o mapping as in Fig 1(a). In
the second setting, utterances were anonymized with distinct

2https://github.com/VoicePrivacy/Pinhole-effect-in-anonymization

TABLE IV: ASV EER (%) when original speech is used for
enrollment and anonymized speech for testing, measuring de-
identification.

Method Mapping Libri-Dev Libri-Test AvgF M F M
SYS1 a2o 47.87 49.38 50.34 48.80 49.10
SYS1 a2a 47.58 48.27 48.72 51.00 48.89
SYS2 a2o 48.72 48.27 47.81 49.00 48.45
SYS2 a2a 49.01 47.98 49.26 48.60 48.71

pseudo-speakers leading to an a2a mapping as in Fig 1(b).
Table III shows the ASV EER on the VPC2024 LibriSpeech
Dev and Test subsets, extending Table I with results for the a2a
setting. Looking at the second and third row for anonymization
system SYS1, a2a mapping leads to higher EER compared
to a2o mapping. The EER increment amount to 5.35% on
average. Bootstrap resampling was performed to compute the
95% confidence intervals of the EER differences between
a2a and a2o, confirming that the improvements achieved by
a2a are statistically significant (p < 0.05). Similar trend is
observed for anonymization system SYS2 in the last two
rows. These results support the assertion that a2a mapping
reduces linkability between anonymized utterances, due to
greater dispersion across anonymized samples.

The third experiment examines the de-identification prop-
erty asserted by the pinhole effect. With reference to Fig. 1
(a) and (b), this setting corresponds to the comparison of the
original speech on the left to the anonymized speech on the
right of the pinhole(s). In this scenario, we assume that an
attacker attempts to verify an anonymized speech utterance
as if it was spoken by the same speaker given an original
speech utterance without anonymization. Table IV shows the
ASV EER. The EERs are relatively higher compared to the
EERs in Table III, since the enrollment utterances were not
anonymized. Comparing the EERs for any-to-one and any-
to-any mappings, there are no substantial differences between
using a common or distinct pseudo-speaker for anonymization.
This observation supports the second assertion of the pinhole
effect, indicating that both mapping strategies achieve compa-
rable de-identification performance.

V. CONCLUSION

We have introduced the pinhole effect as a conceptual frame-
work to explain the identity linkability behavior frequently
observed in speaker anonymization systems. By modeling the
anonymization process as a mapping function from original
speaker identities to pseudo-speakers, we examined two key
strategies: mapping to a common pseudo speaker (any-to-
one) and mapping to distinct pseudo speakers (any-to-any).
Our analysis shows that anonymizing each utterance to a
distinct pseudo-speaker significantly reduces speaker linkabil-
ity by increasing the dispersion in the anonymized speaker
space. While both mapping strategies achieve comparable de-
identification performance (i.e, the anonymized speech cannot
be reliably traced back to the original speaker), the use of
distinct pseudo-speakers offers a clear advantage in lowering
linkability, which is a desirable property in privacy-preserving
speech processing.
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P.-G. Noé, A. Nautsch, N. Evans, J. Yamagishi, B. O’Brien, A. Chan-
clu, J.-F. Bonastre, M. Todisco, and M. Maouche, “The VoicePrivacy
2020 Challenge: Results and findings,” Computer Speech & Language,
vol. 74, p. 101362, Jul. 2022.

[2] M. Panariello, N. Tomashenko, X. Wang, X. Miao, P. Champion,
H. Nourtel, M. Todisco, N. Evans, E. Vincent, and J. Yamagishi,
“The VoicePrivacy 2022 Challenge: Progress and perspectives in voice
anonymisation,” IEEE/ACM Transactions on Audio, Speech, and Lan-
guage Processing, vol. 32, pp. 3477–3491, 2024.

[3] L. Chen, W. Gu, K. A. Lee, W. Guo, and Z.-H. Ling, “Pseudo-speaker
distribution learning in voice anonymization,” IEEE Transactions on
Audio, Speech and Language Processing, vol. 33, pp. 272–285, 2025.

[4] M. A. Pathak, B. Raj, S. D. Rane, and P. Smaragdis, “Privacy-preserving
speech processing: Cryptographic and string-matching frameworks show
promise,” IEEE Signal Processing Magazine, vol. 30, no. 2, pp. 62–74,
Mar. 2013.

[5] S.-X. Zhang, Y. Gong, and D. Yu, “Encrypted speech recognition using
deep polynomial networks,” in Proc. IEEE Int. Conf. Acoust., Speech
Signal Process. (ICASSP), May 2019, pp. 5691–5695.

[6] D. Leroy, A. Coucke, T. Lavril, T. Gisselbrecht, and J. Dureau, “Feder-
ated learning for keyword spotting,” in Proc. IEEE Int. Conf. Acoust.,
Speech Signal Process. (ICASSP), May 2019, pp. 6341–6345.

[7] S. T. Arasteh, T. Arias-Vergara, P. A. Pérez-Toro, T. Weise,
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