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Abstract—Dynamic distribution network reconfiguration 
(DDNR) is a widely used technique for the secure and economic 
operation of power distribution networks (PDNs), especially in the 
presence of high-penetration renewable energy sources (RESs). 
DDNR is realized by controlling the on/off status of remotely 
controlled switches (RCSs) equipped at power lines in PDNs to 
optimize power flows. Thanks to the enhanced data availability of 
PDNs, data-driven solutions to DDNR, such as deep reinforcement 
learning (DRL), have gained growing attention recently. However, 
DDNR solves a sequence of combinatorial problems featuring a 
vast and sparse action space incurred by a so-called “radiality 
constraint,” which is highly challenging for DRLs to handle. 
Existing DRL methods either are unscalable to large-scale 
problems or potentially restrict optimality. Hence, we propose a 
sequential masking strategy to decompose its complex action space 
into a sequence of maskable sub-action spaces. A GRU-based 
agent and an adapted soft actor critic (SAC) algorithm are 
designed accordingly, producing a data-efficient, safety-
guaranteed, and scalable DRL solution to the DDNR problem. 
Comprehensive comparisons with existing data-driven methods 
and model-based benchmarks are conducted via various case 
studies, demonstrating the advantages of the proposed method in 
both algorithmic performance and scalability. 

Index Terms—Dynamic distribution network reconfiguration 
(DDNR), deep reinforcement learning (DRL), sequential masking, 
soft actor critic (SAC). 

I. INTRODUCTION

HE power distribution networks (PDNs) increasingly 
integrate renewable energy sources (RESs) to promote self-

sustainable and low-carbon transitions. High-penetration RESs 
with uncertain power generation are prone to overburden 
system operation, leading to various operational issues, such as 
increasing operation costs and potential risks of over/under-
voltage [1]. As an effective and low-cost technique, dynamic 
distribution network reconfiguration (DDNR) can be 
incorporated into the daily operation scheme in PDNs for its 
various functions like power loss reduction [2], [3], system 
constraint management [4], and stability enhancement [5]. 
PDNs are required to operate in a radial topology to facilitate 
management [6], and therefore DDNR allows PDNs to operate 
in a different configuration (leading to a different topology) by 
controlling the on/off status of remotely controlled switches 
(RCSs) equipped at power lines. Hence, DDNR aims to 
determine the optimal configuration in real time for the varying 
operation conditions of PDNs to enhance interested system 
indicators for operation [7]. 
 Existing studies for DDNR are primarily based on 
mathematical programming  [7], [8] and heuristic algorithms 
[9], [10]. While these methods may be capable of solving 
DDNR problems, they entail complete observability of system 
parameters in real time, leading to expensive implementation in 
practice. As the model-free alternative, the data-driven solution 
has been developed recently for DDNR applications by 
leveraging promising deep reinforcement learning (DRL). 
Owing to the combinatorial nature and a special “radiality 
constraint” of DDNR problems, the vast and constrained action 
space of DDNR poses challenges for DRLs in learning 
competitive policy with model-based traditional methods. The 
“radiality constraint” requires a DRL agent to act safely to avoid 
infeasible configurations of RCSs that cause disconnection or 
looped connections in PDNs [11]. Existing solutions have 
addressed this constraint by 1) penalizing infeasible actions via 
rewards [12], 2) constructing action sets for all feasible 
configurations [13], and 3) adopting a reduced action space [3]. 
However, these strategies are known to either lack scalability to 
large-scale problems or limit optimality. 

To tackle the identified research gap, this paper proposes an 
action space-unrestricted and scalable learning framework for 
DDNR problems. Concretely, a sequential masking strategy is 
proposed to decompose the DDNR action into a sequence of 
sub-actions. Starting from a fully connected graph of the PDN, 
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each sub-action decides which RCS to stay open sequentially, 
after which an arbitrary configuration can be determined. A 
computationally scalable mask is then introduced to truncate 
the probability of those constraint-violated sub-actions. The 
sequential decision process is formulated as a probability chain 
and modeled by the gated recurrent unit (GRU) thanks to its 
recurrent neural structure. Lastly, the necessity of modeling the 
truncated policy distribution and the desire for data efficiency 
inspire us to adapt the policy-gradient and off-policy SAC to 
the designed sequential masking process. SAC is applied to the 
discrete action space via Gumbel softmax and is trained on a 
dedicated representation of configurations, enabling a scalable 
and data-efficient algorithm for DDNR problems. Various case 
studies are implemented to compare the proposed method with 
the existing action strategies and model-based approaches on 
various PDNs. Results show that our method can achieve 
competitive performance and is scalable to the large-scale 
problem as a model-free solution. 

The major contributions are summarized below. 
1) It is the first paper to summarize the pros and cons of 

existing action strategies for tackling the vast and constrained 
action space of DDNR. Given the identified gap, a sequential 
masking strategy is proposed for decomposing its action space 
into a sequence of maskable sub-action spaces, which are 
scalable, unrestricted, and safe for DRL to learn efficiently. 

2) An off-policy DRL algorithm is proposed to demonstrate 
the viability of the proposed strategy, where a GRU agent is 
designed to structurally model the probability chain of the 
sequential decision process based on a dedicated binary-vector 
representation of configurations, and SAC is adapted to its 
discrete action space for sample-efficient training. 

3) Extensive case studies are conducted to validate our 
method with various action strategies and model-based 
benchmarks, revealing that our method can surpass existing 
DRL solutions in either scalability or performance for DDNR. 

The rest of the paper is organized as follows: Section II 
introduces the related work. Section III introduces the problem 
of DDNR and its formulation as an MDP. Section IV 
summarizes the previous DRL approaches and presents the 
proposed sequential masking strategy and algorithm for DDNR. 
Section V validates the proposed method in various case studies. 
Section VI draws our conclusions. 

II. RELATED WORK 
The section summarizes the advantages and shortcomings of 

existing methods for DDNR problems. Existing methods can be 
divided into model-based and model-free methods, which are 
introduced as follows. 

Model-based methods: They constitute the majority of 
traditional methods for DDNR problems, including some naïve 
methods [1], heuristic methods [9], and mathematical 
programming [7]. Naïve methods usually resort to repetitively 
solving power flows to assess different network configurations 
generated by a simple strategy. Such strategies fall short of 
efficiently utilizing computation resources to find promising 
configurations. To improve the search process, meta heuristics, 
such as genetic algorithms [9] and harmony search [10], have 

been developed to seek quality solutions for multiple objectives 
in DDNR problems [4]. The black-box optimization of these 
meta heuristics allows them to be easily applied to DDNR 
problems regardless of problem complexity and non-linearity. 
However, they are still inefficient for online decision-making 
as they rely on power flow calculations for objective evaluation  
[11]. With a proper approximation of the physical model of 
PDNs, mixed-integer programming (MIP) [7], [14], [15] can be 
used to solve DDNR problems with efficiency and robustness, 
though it may be computationally costly for very large-scale 
problems and suffer approximation errors pertaining to problem 
complexity. Overall, these model-based methods are more 
appealing if the complete parameters of PDNs are available for 
the real-time decision-making of DDNR, while such a pre-
condition may result in higher operation costs and reduce their 
reliability under contingency. 

Model-free methods: They are growing popular due to 
recent advances in data-driven techniques, particularly, deep 
learning and reinforcement learning. For instance, in [5] a deep 
learning model is introduced into DDNR to realize rapid control 
response to abrupt voltage contingency via the generalizability 
of neural networks (NNs). Without relying on expert 
knowledge like supervised training, DRL algorithms, such as 
deep Q network (DQN) [4], [12] and soft actor critic (SAC) [3], 
can learn high-quality policy from scratch by interacting with a 
simulated DDNR environment. As reported in DDNR literature, 
DRL methods have several advantages over model-based 
counterparts, such as rapid decision-making via generalization 
[16], strong predictability and modeling capability for uncertain 
and complex operation scenarios of PDNs [2], [13], and model-
free nature for reducing the cost of overseeing entire PDNs [3]. 
However, the radiality constraint in DDNR creates a vast and 
sparse discrete action space, which is still not soundly 
addressed by existing DRL methods. In contrast to the model-
based MIP that can effectively address the constraint via 
“spanning tree” modeling [7], it is difficult for DRL to integrate 
the hard constraint into its learning process directly. Existing 
research addresses the challenge as follows. 1) Studies [12], 
[17], [16], [18] penalize violated actions by adding punitive 
signals in the reward function. However, the scarcity of feasible 
actions can lead to inefficient learning, and the agent may still 
generate dangerous actions (a backup plan in [16] may help 
guarantee its safety). 2) Studies [13], [19], [20], [21] construct 
a valid action set before training for the agent to pick feasible 
actions, but its scalability is questionable, especially 
considering the sheer number of feasible configurations in large 
PDNs. 3) Studies [3], [11], [22], [23] adopt a scalable solution 
that restricts action space by allowing only a pair of RCSs to 
exchange status (i.e., close one RCS and then open one), and 
thus, the action mask can be analytically constructed and 
imposed on the agent to eliminate infeasible options to the 
radiality constraint. However, such an action space reduction 
inevitably limits the optimality of DDNR. To tackle the 
identified research gap, this paper develops an action space-
unrestricted, scalable, and safe DRL framework for DDNR 
problems in the following sections. 
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III. PRELIMINARY 
The section introduces the typical modeling of a DDNR 

problem involving its objectives and constraints, which are then 
formulated into an MDP to facilitate DRL methods. 

A. Reconfigurable Power Distribution Network 

 PDNs normally operate in a radial topology to facilitate 
management, as illustrated in Fig. 1. Electrical power is 
delivered from the high-voltage main grid to the low-
voltage PDN and finally to the demand sites (nodes in Fig. 
1) via transformers and underground cables (lines in Fig. 1). 
Due to high-penetration RESs distributed in the PDN, 
system dynamics are growingly complicated in both spatial 
and temporal dimensions. For enhanced network security 
and economy, shown in Fig. 1, DDNR can be adopted to 
mitigate various operational issues in PDNs, such as 
overloading and overvoltage. DDNR is enabled by the two 
types of RCSs in PDN: the sectionalizing switch (normally 
closed) and the tie switch (normally open). DDNR aims to 
form optimal radial configurations for PDNs by determining 
the on/off status of RCSs in real time.  

The PDN can be described as a graph 𝒢𝒢 = (𝒱𝒱,ℰ), where 
𝒱𝒱 is a set of electric nodes and ℰ is a set of existing lines. 
Power flows follow the physical rule below. 

𝑃𝑃𝑖𝑖,𝑡𝑡 = 𝑉𝑉𝑖𝑖,𝑡𝑡 ∑ 𝑏𝑏𝑖𝑖𝑖𝑖,𝑡𝑡𝑉𝑉𝑗𝑗,𝑡𝑡�𝐺𝐺𝑖𝑖𝑖𝑖cos𝜃𝜃𝑖𝑖𝑖𝑖,𝑡𝑡 + 𝐵𝐵𝑖𝑖𝑖𝑖sin𝜃𝜃𝑖𝑖𝑖𝑖,𝑡𝑡�𝑗𝑗∈𝒱𝒱

𝑄𝑄𝑖𝑖,𝑡𝑡 = 𝑉𝑉𝑖𝑖,𝑡𝑡 ∑ 𝑏𝑏𝑖𝑖𝑖𝑖,𝑡𝑡𝑉𝑉𝑗𝑗,𝑡𝑡�𝐺𝐺𝑖𝑖𝑖𝑖sin𝜃𝜃𝑖𝑖𝑖𝑖,𝑡𝑡 − 𝐵𝐵𝑖𝑖𝑖𝑖cos𝜃𝜃𝑖𝑖𝑖𝑖,𝑡𝑡� 
𝑗𝑗∈𝒱𝒱

,           (1) 

where 𝑃𝑃𝑖𝑖,𝑡𝑡 and 𝑄𝑄𝑖𝑖,𝑡𝑡 are the active and reactive power injected 
into the node 𝑖𝑖  at time 𝑡𝑡 , respectively, 𝑉𝑉𝑖𝑖,𝑡𝑡  is the voltage 
magnitude, 𝜃𝜃𝑖𝑖𝑖𝑖,𝑡𝑡 is the phase angle between 𝑉𝑉𝑖𝑖,𝑡𝑡 and 𝑉𝑉𝑗𝑗,𝑡𝑡, 𝑏𝑏𝑖𝑖𝑖𝑖,𝑡𝑡 
is a binary variable indicating the service status of the line 
𝑖𝑖𝑖𝑖 , 𝐺𝐺𝑖𝑖𝑖𝑖  and 𝐵𝐵𝑖𝑖𝑖𝑖  are the line conductance and susceptance, 
respectively. Nodal power injections consist of generation 
and demand that follow 𝑃𝑃𝑖𝑖,𝑡𝑡 = 𝑃𝑃𝑖𝑖,𝑡𝑡

𝑔𝑔 − 𝑃𝑃𝑖𝑖,𝑡𝑡𝑑𝑑   and 𝑄𝑄𝑖𝑖 ,𝑡𝑡 = 𝑄𝑄𝑖𝑖,𝑡𝑡
𝑔𝑔 −

𝑄𝑄𝑖𝑖,𝑡𝑡𝑑𝑑  , where 𝑔𝑔  and 𝑑𝑑  stand for generation and demand, 
respectively. The generation of RESs is bounded by a rated 
capacity 𝑆𝑆𝑖𝑖

𝑔𝑔 , i.e., �𝑃𝑃𝑖𝑖,𝑡𝑡
𝑔𝑔�2 + �𝑄𝑄𝑖𝑖,𝑡𝑡

𝑔𝑔 �2 ≤ �𝑆𝑆𝑖𝑖
𝑔𝑔�2 . The power 

imbalance is compensated by the main grid via the root node 
that features 𝑉𝑉𝑖𝑖 = 1 per unit (p.u.) with 𝑖𝑖 = 1. At the system 
level, the energy balance leads to ∑ 𝑃𝑃𝑖𝑖,𝑡𝑡

𝑔𝑔
𝑖𝑖∈𝒱𝒱 = ∑ 𝑃𝑃𝑖𝑖,𝑡𝑡𝑑𝑑𝑖𝑖∈𝒱𝒱 + 𝑃𝑃𝑡𝑡𝑙𝑙 , 

where 𝑃𝑃𝑡𝑡𝑙𝑙  is the line loss. The total power loss is calculated 
by:  

𝑃𝑃𝑡𝑡𝐿𝐿 = ∑ 𝑃𝑃𝑖𝑖𝑖𝑖,𝑡𝑡
𝑙𝑙

𝑖𝑖𝑖𝑖∈ℰ = ∑ 𝑏𝑏𝑖𝑖𝑖𝑖𝑅𝑅𝑖𝑖𝑖𝑖
𝑃𝑃𝑖𝑖𝑖𝑖,𝑡𝑡
2 +𝑄𝑄𝑖𝑖𝑖𝑖,𝑡𝑡

2

𝑉𝑉𝑖𝑖,𝑡𝑡
2𝑖𝑖𝑖𝑖∈ℰ ,            (2) 

where 𝑅𝑅𝑖𝑖𝑖𝑖  is the line resistance, 𝑃𝑃𝑖𝑖𝑖𝑖 ,𝑡𝑡  and 𝑄𝑄𝑖𝑖𝑖𝑖,𝑡𝑡  are the power 

flowing through the line 𝑖𝑖𝑖𝑖. 
During operation, the nodal voltages in PDNs should be 

maintained to approach a nominal value, i.e., 1 p.u., to 
guarantee satisfactory power quality and avoid adverse 
effects on power equipment [6]. To this end, voltages should 
be regulated by DDNR into a security range [11]: 

1 − 𝑉𝑉𝐵𝐵 ≤ 𝑉𝑉𝑖𝑖,𝑡𝑡 ≤ 1 + 𝑉𝑉𝐵𝐵,                           (3) 

where 1 − 𝑉𝑉𝐵𝐵  and 1 + 𝑉𝑉𝐵𝐵  confine the voltage magnitude to a 
security region, e.g., 0.95-1.05 p.u. [3]. 

Let �𝑏𝑏𝑖𝑖𝑖𝑖,𝑡𝑡
 �𝑖𝑖𝑖𝑖 ∈ ℰ𝑠𝑠� with ℰ𝑠𝑠 ⊆ ℰ be a set of binary variables 

denoting the on/off status of RCSs. After DDNR, the 
radiality constraint has to be satisfied [7] by: 1) there is no 
isolated node in the PDN (leading to power outage); 2) PDN 
should operate in a radial topology. It is described by: 

|𝒞𝒞| = 1,                                 (4a) 

|𝒱𝒱| − |𝒞𝒞| = |ℰ| −∑ �1 − 𝑏𝑏𝑖𝑖𝑖𝑖,𝑡𝑡
 �𝑖𝑖𝑖𝑖∈ℰ𝑠𝑠 ,            (4b) 

where 𝒞𝒞  is a set of connected components in 𝒢𝒢 . In graph 
theory, a forest graph 𝒢̂𝒢 always follows �𝒱𝒱�� = �𝒞̂𝒞� + �ℰ̂�, and 
it becomes a tree graph if �𝒞̂𝒞� = 1. As the RCS is electro-
mechanical equipment, a limit on the number of times (NoT) 
of switching should be considered by DDNR to prolong 
their service life. The NoT of switching denoted by 𝐴𝐴𝑡𝑡 can 
be calculated as follows: 

𝐴𝐴𝑡𝑡 = ∑ �𝑏𝑏𝑖𝑖𝑖𝑖,𝑡𝑡
 − 𝑏𝑏𝑖𝑖𝑖𝑖,𝑡𝑡−1

 �𝑖𝑖𝑖𝑖∈ℰ𝑠𝑠,𝑡𝑡∈𝒯𝒯 ,                   (5) 

B. Problem Formulation as Markov Decision Process 

DDNR can be formulated into a MDP to facilitate DRL 
learning. MDP can be described as a tuple 〈𝒮𝒮,𝒜𝒜,ℛ,𝒫𝒫, 𝛾𝛾〉, 
where 𝑠𝑠𝑡𝑡 ∈ 𝒮𝒮 is the observed state of the environment, 𝑎𝑎𝑡𝑡 ∈ 𝒜𝒜 
is the action generated by an agent, 𝑟𝑟𝑡𝑡 = ℛ(𝑠𝑠𝑡𝑡 , 𝑎𝑎𝑡𝑡) is the reward 
returned by a function ℛ , 𝑠𝑠𝑡𝑡+1 = 𝒫𝒫(𝑠𝑠𝑡𝑡 , 𝑎𝑎𝑡𝑡)  is the successive 
state returned by the transition function 𝒫𝒫, and 𝛾𝛾 is the discount 
factor for better convergence. The critical parts of MDP for the 
DDNR problem are described as follows. 

State: For alleviating the pressure on data acquisition, 
only nodal power/voltage and switch status are assumed for 
decision-making, which is defined as follows: 

𝑠𝑠𝑡𝑡 = �𝑉𝑉𝑖𝑖,𝑡𝑡 ,𝑃𝑃𝑖𝑖,𝑡𝑡 ,𝑄𝑄𝑖𝑖,𝑡𝑡�𝑖𝑖 ∈ 𝒱𝒱, 𝑡𝑡 ∈ 𝒯𝒯ℎ𝑖𝑖𝑖𝑖𝑖𝑖� ∪ �𝑏𝑏𝑖𝑖𝑖𝑖,𝑡𝑡−1
 �𝑖𝑖𝑖𝑖 ∈ ℰ𝑠𝑠� ,  (6) 

where 𝒯𝒯ℎ𝑖𝑖𝑖𝑖𝑖𝑖 = {𝑡𝑡 − 𝑡𝑡ℎ, … , 𝑡𝑡}  represents a set of historical 
time steps for the agent to learn temporal patterns. 

Action: The action of the DDNR agent is to determine the 
status of RCSs at time 𝑡𝑡, i.e., 𝑎𝑎𝑡𝑡 = �𝑏𝑏𝑖𝑖𝑖𝑖,𝑡𝑡

 �𝑖𝑖𝑖𝑖 ∈ ℰ𝑠𝑠�. 
Agent: Given 𝑠𝑠𝑡𝑡, the agent 𝜋𝜋 learns to find a policy for 

real-time decision, i.e., 𝑎𝑎𝑡𝑡 = 𝜋𝜋(𝑠𝑠𝑡𝑡) . In DRLs, a 
parameterized policy 𝜋𝜋𝜃𝜃   aims to find the optimal 𝜃𝜃  that 
maximizes 𝐽𝐽(𝜃𝜃), where 𝐽𝐽(𝜃𝜃) = ∑ 𝔼𝔼𝑠𝑠𝑡𝑡,𝑎𝑎𝑡𝑡~𝜏𝜏𝜋𝜋𝑟𝑟𝑡𝑡

 
𝑡𝑡∈𝒯𝒯 , where 𝜏𝜏𝜋𝜋 is 

the trajectory produced by the agent 𝜋𝜋. 
Transition: During operation, the observed states will 

evolve with dynamic power demand and RES generation 
interacting with each other via Eq. (1). The modeling can be 
realized by open-source platforms like Pandapower [24] 
with the real-world time series of demand and generation. 
The complexity of network interaction and the uncertainty 
in time series make DDNR challenging. 
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Fig. 1. Power distribution network with remotely controlled switches. 
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Reward: Algorithmic performance can be sensitive to 
reward shaping. The voltage barrier function with a bowl 
shape used in [25] is employed for voltage reward. Given 
economic considerations of the power loss and switching 
cost, the reward 𝑟𝑟𝑡𝑡 is defined as follows: 

𝑟𝑟𝑡𝑡 = −𝑘𝑘𝑣𝑣𝑟𝑟𝑣𝑣,𝑡𝑡 − 𝑘𝑘𝑒𝑒𝑟𝑟𝑒𝑒,𝑡𝑡 − 𝑟𝑟𝑐𝑐,𝑡𝑡

𝑟𝑟𝑣𝑣,𝑡𝑡 = �
�𝑉𝑉𝑡𝑡

𝑑𝑑𝑑𝑑𝑑𝑑

𝑉𝑉𝐵𝐵
�
2

,              ∀ 𝑉𝑉𝑑𝑑𝑑𝑑𝑑𝑑,𝑡𝑡 ≤ 𝑉𝑉𝐵𝐵

1 + 𝐶𝐶𝑣𝑣
𝑉𝑉𝑡𝑡
𝑑𝑑𝑑𝑑𝑑𝑑−𝑉𝑉𝐵𝐵
𝑉𝑉𝐵𝐵

,∀ 𝑉𝑉𝑑𝑑𝑑𝑑𝑑𝑑,𝑡𝑡 > 𝑉𝑉𝐵𝐵
𝑟𝑟𝑒𝑒,𝑡𝑡 = 𝑃𝑃𝑡𝑡𝐿𝐿𝐶𝐶𝑝𝑝 + 𝐴𝐴𝑡𝑡𝐶𝐶𝑎𝑎

,           (7) 

where 𝑟𝑟𝑣𝑣,𝑡𝑡  punishes the voltage deviation based on the 
maximum nodal voltage deviation at the time 𝑡𝑡, i.e., 𝑉𝑉𝑡𝑡𝑑𝑑𝑑𝑑𝑑𝑑 =
max��𝑉𝑉𝑖𝑖,𝑡𝑡 − 1��𝑖𝑖 ∈ 𝒱𝒱� in p.u., 𝐶𝐶𝑣𝑣 imposes a large penalty on 
the violated voltage deviation, 𝑟𝑟𝑒𝑒,𝑡𝑡 is the economic penalty 
consisting of power loss and action cost in $, 𝐶𝐶𝑝𝑝 and 𝐶𝐶𝑎𝑎 are 
electricity and switching prices [3], respectively, and 𝑟𝑟𝑐𝑐,𝑡𝑡 is 
a large constant penalty for actions violating the constraint 
in Eq. (4). RCSs is dispatched in a fixed and slow time 
interval (e.g., Δ𝑡𝑡 = 1  hour). Therefore, a daily operation 
scheme with fixed intervals (e.g., 𝑡𝑡 ∈ 𝒯𝒯 = {0,1, … , 24}  in 
hours) is considered to facilitate episodic learning of DRL.  
 To clarify the DDNR problem more rigorously, the 
corresponding mathematical formulation of the problem in 
the form of MIP is provided in the Appendix. 

IV. METHODOLOGY 

The section elaborates on existing DRL action strategies for 
DDNR problems and then introduces our proposed method with 
its theoretical explanation and practical implementation. 

A. Sequential Action Masking Strategy  

One challenge for DRLs in the DDNR problem is the vast 
and sparse action space incurred by its topology constraint 
in Eq. (4). For instance, the action size |𝒜𝒜|  of DDNR 
amounts to a combination number of 2|ℰ𝑠𝑠|, while its rate of 
feasible actions is lower than 5% on a modified IEEE 33-
bus PDN [13]. This rate tends to be even lower with growing 
RCSs [12]. Several commonly used strategies for 
addressing the action space are illustrated in Fig. 2. Their 
implementations are summarized below, and our proposed 
strategy is presented subsequently.  

Penalize infeasible actions via rewards: Fig. 2(a) shows 
an intuitive strategy to tackle the constraint in Eq. (4) by 
adding an order of magnitude larger penalty to infeasible 
actions generated by the agent [12]. It enables the agent to 
sample freely in the original vast action space, whereas it 
may suffer two major drawbacks: 1) frequent penalty 
signals due to the scarcity of feasible actions quickly make 
the policy stuck in a local optimum; 2) “indirect constraint” 
on the agent likely leads to dangerous behaviors once the 
agent cannot generalize to unseen states properly in practice. 

Encode all the feasible actions: Given the scarcity of 
feasible actions, Fig. 2(b) suggests directly encoding all the 
feasible actions into a valid action set that can be 
constructed via an enumeration process [13]. Based on the 
action set, algorithms like DQN can be applied to DDNR 

without adaptation. While this strategy can guarantee a hard 
constraint for Eq. (4), its scalability to the large-scale 
DDNR problem is questionable. For instance, even with a 
rate of 0.1%, the size of the valid action set constructed by 
a PDN with thirty RCSs can be more than one million, thus 
making the strategy incompetent to handle large-scale 
problems. 

Restrict action space: As shown in Fig. 2(c), a scalable 
solution is to reduce the action space by restricting the 
extent of topology changes. Concretely, in each decision 
step, one RCS is selected to close and another RCS to open, 
so as to exchange their on/off status. The action size is then 
reduced from an exponential scale of 2|ℰ𝑠𝑠| to a polynomial 
scale. For instance, assuming that 𝑎𝑎𝑡𝑡 = (𝑖𝑖𝑗𝑗1, 𝑖𝑖𝑗𝑗2)  selects a 
pair of RCSs to close and open, its action size can be |ℰ𝑠𝑠|2 −
|ℰ𝑠𝑠| + 1 [11], where |ℰ𝑠𝑠|2 − |ℰ𝑠𝑠| is the combination number 
of (𝑖𝑖𝑗𝑗1, 𝑖𝑖𝑗𝑗2) with 𝑖𝑖𝑖𝑖1, 𝑖𝑖𝑖𝑖2 ∈ ℰ𝑠𝑠 and 𝑖𝑖𝑗𝑗1 ≠ 𝑖𝑖𝑗𝑗2, and the one extra 
action is the option to maintain the current configuration. 
The action can strictly follow Eq. (4) using an action mask 
𝑀𝑀𝑡𝑡 ∈ ℝ|ℰ𝑠𝑠|2−|ℰ𝑠𝑠|+1 . The construction process of 𝑀𝑀𝑡𝑡  can be 
referred to [11]. In 𝑀𝑀𝑡𝑡, 𝑀𝑀𝑡𝑡,(𝑖𝑖𝑖𝑖1,𝑖𝑖𝑖𝑖2) = 1 if (𝑖𝑖𝑖𝑖1, 𝑖𝑖𝑖𝑖2) is a feasible 
action, and 𝑀𝑀𝑡𝑡,(𝑖𝑖𝑖𝑖1,𝑖𝑖𝑖𝑖2) = 0  if otherwise. Hence, a feasible 
action can be sampled from a truncated conditional 
probability distribution by:  

𝑎𝑎𝑡𝑡  ~ 𝑝𝑝(𝐶𝐶𝑡𝑡+1|𝐶𝐶𝑡𝑡 ,𝑀𝑀𝑡𝑡 , 𝑠𝑠𝑡𝑡).                            (8) 

For instance, it can be modeled in DQN by 𝑎𝑎𝑡𝑡 =
argmax𝑎𝑎𝑡𝑡(𝑄𝑄𝜃𝜃(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡) + Γ(𝑀𝑀𝑡𝑡)) , where 𝑄𝑄𝜃𝜃   outputs Q values 
and Γ(𝑀𝑀𝑡𝑡) is defined as −𝐶𝐶𝑚𝑚(1 −𝑀𝑀𝑡𝑡) with a large constant 
𝐶𝐶𝑚𝑚 (e.g., 𝐶𝐶𝑚𝑚 = 1𝑒𝑒16). While the approach is more scalable 
in computation than strategy (2) and more secure in practice 
than strategy (1), it inevitably restricts the optimality of the 
policy due to the action space reduction. In DDNR, the 
number of RCSs to keep open is always a constant of the 
number of tie switches, i.e., 𝑁𝑁𝑡𝑡𝑡𝑡. It has to take up to 𝑁𝑁𝑡𝑡𝑡𝑡-step 
actions to reach an arbitrary configuration. Since DDNR is 
implemented in a long-time interval, such a restriction on 
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Fig. 2. Four action strategies to produce configurations for DDNR. 
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topology changes may hinder the agent from catching up to 
the fast-varying dynamics of PDN, especially in large PDNs 
owning more tie switches. 
 Proposed sequential masking strategy: A novel action 
strategy based on a sequential masking process is proposed 
to fully handle the fundamental constraints in Eq. (4) for 
DDNR. The strategy is presented in Fig. 2(d), where a 
feasible configuration is produced by sequentially 
disconnecting lines (via RCSs) from a fully connected graph 
of a PDN with the aid of masks. Its rationale is explained as 
follows. 

In the fundamental constraints, constraint (4a) states that 
the network should be connected (i.e., only one connected 
component), and constraint (4b) demands that the number 
of nodes (i.e., |𝒱𝒱| ) should always be one (|𝒞𝒞| = 1 ) more 
than the number of connected lines (i.e., |ℰ| − ∑ �1 −𝑖𝑖𝑖𝑖∈ℰ𝑠𝑠 

𝑏𝑏𝑖𝑖𝑖𝑖,𝑡𝑡
 �). Since constraint (4b) requires that there should be 

|ℰ| − |𝒱𝒱| + |𝒞𝒞|  disconnected lines after reconfiguration, it 
can be realized by sequentially switching off this number of 
RCSs starting from a fully connected graph. However, this 
cannot necessarily satisfy constraint (4a). Directly 
penalizing the agent for the constraint can be of low 
efficiency. Luckily, by decomposing the action space into a 
sequence of sub-action spaces for constraint 4(b), we can 
now guarantee constraint 4(a) by ensuring that the agent 
only switches off one of the RCSs in cycles of the current 
graph each time. It is obvious that cutting off a line in a 
cycle will not cause disconnection of a graph, as there are 
at least two paths to connect any two nodes having the line 
between them. To force the agent to select RCSs in cycles, 
action masks can be introduced and constructed based on 
existing cycles to eliminate the probabilities of infeasible 
action options. Finally, the sequential masking strategy is 
finished with “sequential” decision-making for constraint 
4(b) and “masking” for constraint 4(a). 

Given the sequential masking strategy, for each 
intermediate configuration 𝐶𝐶𝑡𝑡𝑘𝑘, a sub-action can be sampled 
from a mask-truncated sub-policy distribution as follows: 

𝑎𝑎𝑡𝑡𝑘𝑘  ~ 𝑝𝑝(𝐶𝐶𝑡𝑡𝑘𝑘�𝐶𝐶𝑡𝑡𝑘𝑘−1,𝑀𝑀𝑡𝑡
𝑘𝑘−1, 𝑠𝑠𝑡𝑡),                     (9) 

where 𝑘𝑘 ∈ {1, … ,𝑁𝑁𝑡𝑡𝑡𝑡} , 𝑎𝑎𝑡𝑡𝑘𝑘 ∈ ℝ|ℰ𝑠𝑠|  is the 𝑘𝑘𝑡𝑡ℎ  sub-action at 
time 𝑡𝑡, and 𝑀𝑀𝑡𝑡

𝑘𝑘 ∈ ℝ|ℰ𝑠𝑠| is the 𝑘𝑘𝑡𝑡ℎ binary sub-mask.  
We now provide a simple yet likely not the most 

algorithmically efficient implementation for its mask 
construction: first search for fundamental cycles of the 
intermediate topology 𝐶𝐶𝑡𝑡𝑘𝑘 , then fill one in 𝑀𝑀𝑡𝑡

𝑘𝑘  for those 
RCSs in the cycles and zero for the rest of RCSs. The 
computation time of fundamental cycles (also cycle basis) 
in NetworkX grows with 𝑂𝑂�|𝒱𝒱|𝛽𝛽�  bounded by 2 ≤ 𝛽𝛽 ≤ 3 
[26]. As 𝑁𝑁𝑡𝑡𝑡𝑡  sub-actions should be conducted, the 
calculation time of masking grows with 𝑂𝑂�|𝒱𝒱|𝛽𝛽 ⋅ 𝑁𝑁𝑡𝑡𝑡𝑡�. This 
can be further improved by merging the neighboring nodes 
whose connected line is not used for DDNR. Hence, the 
vertex number is reduced, and the operation time can 
roughly grow with 𝑂𝑂�|ℰ𝑠𝑠|𝛽𝛽 ⋅ 𝑁𝑁𝑡𝑡𝑡𝑡�.   

Note that with recurrent calculation for generating sub-
policy and increased complexity for calculating masks 
compared with the strategy in Fig. 2(c), our strategy 

inevitably takes longer for training and inference. 
Nevertheless, following offline training and online 
inference, DRL can isolate such a computational burden 
from online decision-making. Commonly, there is enough 
time budget for offline training, and the increased inference 
time (in milliseconds) can easily match the implementation 
time interval of DDNR (in tens of minutes to a few hours 
[11]). Overall, our proposed strategy can guarantee both the 
reachability and safety of actions for DDNR and is 
computationally viable for large-scale PDNs.  

B. GRU-based Sequential Masking Process 

The proposed method for flexibly generating network 
configurations employs a sequence of sub-actions made in an 
action step of DDNR, which can be described by a probability 
chain rule below. 

𝑝𝑝�𝐶𝐶𝑡𝑡+1 = 𝐶𝐶𝑡𝑡
𝑁𝑁𝑡𝑡𝑡𝑡�𝑠𝑠𝑡𝑡� = ∏ 𝑝𝑝(𝐶𝐶𝑡𝑡𝑘𝑘�𝐶𝐶𝑡𝑡𝑘𝑘−1,𝑀𝑀𝑡𝑡

𝑘𝑘−1, 𝑠𝑠𝑡𝑡)
𝑁𝑁𝑡𝑡𝑡𝑡
𝑘𝑘=1 ,      (10) 

where 𝐶𝐶𝑡𝑡  is a set of the current status of RCSs, 𝐶𝐶𝑡𝑡𝑘𝑘 is a set of 
intermediate status of RCSs for calculation, 𝑎𝑎𝑡𝑡 directly applies 
the last configuration 𝐶𝐶𝑡𝑡

𝑁𝑁𝑡𝑡𝑡𝑡  after a sequence of sub-actions 
delinking the edges from an initial configuration 𝐶𝐶𝑡𝑡0, where all 
the lines are assumed to be connected. Note that 𝐶𝐶𝑡𝑡𝑘𝑘 is just a 
feature in calculation and does not require actual 
implementation in the PDN, which will be detailed in Section 
III-C. Then, we demonstrate how an RNN-based agent can be 
constructed accordingly to generate a sequence of sub-policy 
distributions conditioned on the current state 𝑠𝑠𝑡𝑡  and the 
previous intermediate configuration 𝐶𝐶𝑡𝑡𝑘𝑘−1.  

Recurrent neural networks (RNNs) are known for their 
efficiency in sequential modeling. For instance, an RNN-based 
seq-to-seq framework is used in Pointer Network [27] to solve 
combinatorial optimization problems. In this paper, GRU, as a 
widely used variant of RNNs, is employed to generate a 
sequence of conditional probabilities defined in Eq. (10). The 
calculation in a GRU cell can be briefly described by:  

𝑟𝑟𝑘𝑘 = 𝜎𝜎(𝑊𝑊𝑟𝑟 ⋅ [ℎ𝑘𝑘−1, 𝑥𝑥𝑘𝑘]𝑇𝑇)
𝑧𝑧𝑘𝑘 = 𝜎𝜎(𝑊𝑊𝑧𝑧 ⋅ [ℎ𝑘𝑘−1, 𝑥𝑥𝑘𝑘]𝑇𝑇)

ℎ�𝑘𝑘 = tanh �𝑊𝑊ℎ ⋅ �𝑟𝑟𝑘𝑘 ⊗ ℎ�𝑘𝑘−1, 𝑥𝑥𝑘𝑘�
𝑇𝑇�

ℎ𝑘𝑘 = (1 − 𝑧𝑧𝑘𝑘) ⊗ ℎ𝑘𝑘−1 + ℎ�𝑘𝑘 ⊗ 𝑧𝑧𝑘𝑘

,               (11) 

where ⊗ denotes element-wise product, 𝑟𝑟𝑘𝑘 and 𝑧𝑧𝑘𝑘 serve as the 
reset and update gates at the 𝑘𝑘𝑡𝑡ℎ step, respectively, to control 
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Fig. 3.  Sequential masking process in a decision step. 
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information flows delivered by input 𝑥𝑥𝑘𝑘 and memory ℎ𝑘𝑘−1, and  
𝑊𝑊𝑟𝑟 , 𝑊𝑊𝑧𝑧 , and 𝑊𝑊ℎ  are optimizable parameters. A GRU cell 
outputs ℎ𝑘𝑘  for the next GRU cell and downstream neural 
network (NN) modules. The calculation is simplified as ℎ𝑘𝑘 =
GRU(ℎ𝑘𝑘−1, 𝑥𝑥𝑡𝑡). By conditioning ℎ0  on 𝑠𝑠𝑡𝑡 , ℎ𝑘𝑘  can be used to 
pass state information for subsequent decisions. The 
configuration 𝐶𝐶𝑡𝑡𝑘𝑘−1 can be used as the input 𝑥𝑥𝑘𝑘. Accordingly, 
the function 𝑝𝑝𝜃𝜃(𝐶𝐶𝑡𝑡𝑘𝑘�𝐶𝐶𝑡𝑡𝑘𝑘−1, 𝑠𝑠𝑡𝑡;𝜃𝜃) can be parameterized by: 

𝐶𝐶𝑡𝑡𝑘𝑘 = 𝑔𝑔(GRU(ℎ𝑘𝑘−1 ,𝐶𝐶𝑡𝑡𝑘𝑘−1),𝑀𝑀𝑡𝑡
𝑘𝑘−1),               (12) 

where 𝑔𝑔(⋅) denotes a series of operations to convert the GRU 
output ℎ𝑘𝑘 into the next 𝐶𝐶𝑡𝑡𝑘𝑘 using the mask 𝑀𝑀𝑡𝑡

𝑘𝑘−1. 
The sequential masking process is illustrated in Fig. 3. The 

truncation of the probability distribution for infeasible 
immediate configurations can be described as follows: 

𝑝𝑝𝜃𝜃(𝐶𝐶𝑡𝑡𝑘𝑘�𝐶𝐶𝑡𝑡𝑘𝑘−1,𝑀𝑀𝑡𝑡
𝑘𝑘−1, 𝑠𝑠𝑡𝑡) = Softmax �𝑙𝑙𝑡𝑡𝑘𝑘 + Γ(𝑀𝑀𝑡𝑡

𝑘𝑘−1)�,   (13) 

where 𝑙𝑙𝑡𝑡𝑘𝑘 ∈ ℝ|ℰ𝑠𝑠| denote the logits output by the last layer of 
NNs at the current step 𝑘𝑘 (assume NNs to be stacked on GRUs), 
and Γ(𝑀𝑀𝑡𝑡

𝑘𝑘−1 )  sets the invalid logits (corresponding to an 
infeasible sub-action) in 𝑙𝑙𝑡𝑡𝑘𝑘  into extremely negative values 
while valid logits remain unchanged. Given the truncated policy 
distribution via Softmax, a sampling policy can then be applied 
to pick a safe configuration, guaranteeing the flexibility of 
action to reach any feasible 𝐶𝐶𝑡𝑡+1  in the one-step decision 
regardless of the current configuration 𝐶𝐶𝑡𝑡.  

C. Off-policy DRL for Configuration Generation. 

DRL algorithms used for solving DDNR problems are 
mostly model-free and off-policy algorithms. These methods 
can be majorly categorized into value-based (e.g., DQN [12]) 
and actor-critic-based DRLs (e.g., SAC [3]). We develop an 
SAC-based neural agent for the proposed sequential masking 
strategy considering that: 1) a policy-based agent that outputs 
policy distribution is naturally more suitable for the proposed 
sequential masking strategy than a value-based agent; 2) SAC 
with entropy regularization for balancing exploration and 
exploitation can be advantageous in algorithmic performance 
and convergence stability for DDNR problems [11]; 3) off-
policy SAC has a better sample efficiency than on-policy 
algorithms that can also be adapted to the strategy, such as 
proximal policy optimization. 
 Following soft policy iteration, SAC aims to simultaneously 
maximize the entropy of the policy 𝜋𝜋  and the reward 𝑟𝑟𝑡𝑡 =
ℛ(𝑠𝑠𝑡𝑡 , 𝑎𝑎𝑡𝑡) as follows: 

max
𝜋𝜋

𝐽𝐽(𝜋𝜋)  = ∑ 𝔼𝔼𝑠𝑠𝑡𝑡,𝑎𝑎𝑡𝑡~𝜏𝜏𝜋𝜋�ℛ(𝑠𝑠𝑡𝑡 , 𝑎𝑎𝑡𝑡) + 𝛼𝛼ℋ�𝜋𝜋(⋅ |𝑠𝑠𝑡𝑡)�� 
𝑡𝑡∈𝒯𝒯 ,  (14) 

where ℋ�𝜋𝜋(⋅ |𝑠𝑠𝑡𝑡)� = −∑ 𝜋𝜋(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡) log𝜋𝜋(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡)𝑎𝑎𝑡𝑡  calculates 
the entropy of 𝜋𝜋 given 𝑠𝑠𝑡𝑡 , 𝜏𝜏𝜋𝜋 denotes the trajectory generated 
by 𝜋𝜋, and 𝛼𝛼 adjusts the weight of the entropy. The soft policy 
iteration of SAC can be described by: 

𝑄𝑄𝜋𝜋(𝑠𝑠𝑡𝑡 , 𝑎𝑎𝑡𝑡) ← 𝑟𝑟𝑡𝑡 + 𝔼𝔼𝑠𝑠𝑡𝑡+1~𝜏𝜏𝜋𝜋𝑉𝑉𝜋𝜋(𝑠𝑠𝑡𝑡+1)
𝑉𝑉𝜋𝜋(𝑠𝑠𝑡𝑡) ← 𝔼𝔼𝑎𝑎𝑡𝑡~𝜏𝜏𝜋𝜋�𝑄𝑄𝜋𝜋(𝑠𝑠𝑡𝑡 , 𝑎𝑎𝑡𝑡) + 𝛼𝛼ℋ�𝜋𝜋(⋅ |𝑠𝑠𝑡𝑡)��

,       (15) 

where 𝑉𝑉𝜋𝜋 and 𝑄𝑄𝜋𝜋 are the state and state-action value functions, 
respectively. Let the critic 𝑄𝑄𝜋𝜋  be parameterized by 𝜙𝜙  and 
denoted as 𝑄𝑄𝜙𝜙, and let the actor 𝜋𝜋 be parameterized by 𝜃𝜃 and 

denoted as 𝜋𝜋𝜃𝜃 . SAC trains the critic using a time-difference (TD) 
loss and the actor using policy gradients as follows [28]: 

∇𝜙𝜙𝑖𝑖𝐽𝐽𝑄𝑄(𝜙𝜙𝑖𝑖) = ∇𝜙𝜙𝑖𝑖�𝑦𝑦𝑡𝑡 − 𝑄𝑄𝜙𝜙𝑖𝑖(𝑠𝑠𝑡𝑡 , 𝑎𝑎𝑡𝑡)�
2, 𝑖𝑖 ∈ {1,2}

𝑦𝑦𝑡𝑡 = 𝑟𝑟𝑡𝑡 + 𝛾𝛾 min
𝑖𝑖=1,2

�𝑄𝑄𝜙𝜙�𝑖𝑖(𝑠𝑠𝑡𝑡+1, 𝑎𝑎𝑡𝑡+1) + 𝛼𝛼ℋ�𝜋𝜋𝜃𝜃(⋅ |𝑠𝑠𝑡𝑡+1)��
, (16) 

∇𝜃𝜃𝐽𝐽𝜋𝜋(𝜃𝜃) = −∇𝜃𝜃𝛼𝛼ℋ�𝜋𝜋𝜃𝜃(⋅ |𝑠𝑠𝑡𝑡)�−∇𝑎𝑎𝑡𝑡𝑄𝑄𝜙𝜙1
(𝑠𝑠𝑡𝑡 , 𝑎𝑎𝑡𝑡)∇𝜃𝜃𝜋𝜋𝜃𝜃(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡), (17) 

where 𝑦𝑦𝑡𝑡 is the TD target. 𝐽𝐽𝑄𝑄 adopts a double DQN (DDQN)-
style TD loss by maintaining two delayed updated critics 
�𝑄𝑄𝜙𝜙�𝑖𝑖�𝑖𝑖 ∈ {1,2}�  to suppress value over-estimation, 𝐽𝐽𝜋𝜋  passes 
policy gradients from the critic 𝑄𝑄𝜙𝜙1  into the actor 𝜋𝜋𝜃𝜃. 

The proposed strategy based on SAC is illustrated in Fig. 4, 
where the state 𝑠𝑠𝑡𝑡  is first extracted by the fully connected 
networks (FCNs) and then fed into the actor and critic, 
respectively. During calculation, the current configuration 𝐶𝐶𝑡𝑡 is 
defined as a binary vector �𝑏𝑏𝑖𝑖𝑖𝑖,𝑡𝑡�𝑖𝑖𝑖𝑖 ∈ ℰ𝑠𝑠�

𝑇𝑇
, the intermediate 

configuration 𝐶𝐶𝑡𝑡𝑘𝑘  is a binary vector  �1 − 𝑏𝑏𝑖𝑖𝑖𝑖,𝑡𝑡
𝑘𝑘 �𝑖𝑖𝑖𝑖 ∈ ℰ𝑠𝑠�

𝑇𝑇  to 
represent the status of RCSs, and the initial configuration 𝐶𝐶𝑡𝑡0 is 
a vector �1 − 𝑏𝑏𝑖𝑖𝑖𝑖,𝑡𝑡

0 �𝑏𝑏𝑖𝑖𝑖𝑖0 = 1, 𝑖𝑖𝑖𝑖 ∈ ℰ𝑠𝑠�
𝑇𝑇
 with all zeros to represent 

a completely connected graph of a PDN at the outset. Such an 
arrangement allows us to represent the sub-action 𝑎𝑎𝑡𝑡𝑘𝑘 as a one-
hot vector, which is important for subsequent operations. The 
one in 𝑎𝑎𝑡𝑡𝑘𝑘  indicates which RCS is the next to open based on 
𝐶𝐶𝑡𝑡𝑘𝑘−1 . Hence, once a sub-action 𝑎𝑎𝑡𝑡𝑘𝑘  is obtained, the next 
intermediate configuration 𝐶𝐶𝑡𝑡𝑘𝑘 is calculated by:  

𝐶𝐶𝑡𝑡𝑘𝑘 = 𝐶𝐶𝑡𝑡𝑘𝑘−1 + 𝑎𝑎𝑡𝑡𝑘𝑘.                             (18) 

The simple additive operation allows gradients to be propagated 
through forward calculation flows in agents. The final DDNR 
action, i.e., the configuration 𝐶𝐶𝑡𝑡

𝑁𝑁𝑡𝑡𝑡𝑡, can be obtained by summing 
up all the sub-actions: 

𝑎𝑎𝑡𝑡 = 𝐶𝐶𝑡𝑡
𝑁𝑁𝑡𝑡𝑡𝑡 = ∑ 𝑎𝑎𝑡𝑡𝑘𝑘

𝑁𝑁𝑡𝑡𝑡𝑡
𝑘𝑘=1 .                        (19) 
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Fig. 4. The actor-critic neural structure of the SAC agent for generating 
arbitrary feasible configurations via a sequential masking process. 
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One can simply use 𝐶𝐶𝑡𝑡+1 = 1 − 𝑎𝑎𝑡𝑡 to implement 𝑎𝑎𝑡𝑡. With this 
differentiable masking process, the GRU-based agent can 
explore the complex action space safely and scalably and can 
be optimized efficiently by back-propagation algorithms.  
 There are two adaptations of SAC to the designed learning 
framework. First, SAC was originally proposed for continuous 
actions [28], whereas the agent in Fig. 4 features a discrete and 
one-hot action representation. Hence, a re-parameterization 
trick called Gumbel softmax [29] is adopted to build a discrete 
and stochastic policy for the actor and approximate policy 
gradients delivered from the critic. The mask-truncated Gumbel 
softmax distribution is formulated as follows: 

𝑝𝑝𝜃𝜃(𝐶𝐶𝑡𝑡𝑘𝑘�𝐶𝐶𝑡𝑡𝑘𝑘−1) = softmax �(𝑙𝑙𝑡𝑡𝑘𝑘 + Γ(𝑀𝑀𝑡𝑡
𝑘𝑘) + 𝜖𝜖) ⋅ 𝜏𝜏𝑔𝑔−1�

𝜖𝜖 = − log(− log𝑢𝑢) , 𝑢𝑢~Uniform(0, 1)
,   (20) 

where 𝑙𝑙𝑡𝑡𝑘𝑘 is output from the last layer of NNs stacked on the 
GRUs, as shown in Fig.4., 𝜖𝜖  is the sampled value from the 
Gumbel distribution, and 𝜏𝜏𝑔𝑔  is the temperature coefficient. 
Gumbel softmax operation proves to be equal to sampling from 
the corresponding softmax distribution, but the operation is 
differentiable. A straight-through conversion [29] can be used 
to generate actions in one-hot representation by:  

𝑎𝑎𝑡𝑡𝑘𝑘 = const �𝑧𝑧 − 𝑝𝑝𝜃𝜃(𝐶𝐶𝑡𝑡𝑘𝑘�𝐶𝐶𝑡𝑡𝑘𝑘−1)� + 𝑝𝑝𝜃𝜃(𝐶𝐶𝑡𝑡𝑘𝑘�𝐶𝐶𝑡𝑡𝑘𝑘−1),      (21) 

where const(⋅) cuts off gradient passing, and 𝑧𝑧 represents the 
one-hot vector obtained by 𝑧𝑧 = argmax𝑎𝑎𝑡𝑡𝑘𝑘 �𝑝𝑝𝜃𝜃(𝐶𝐶𝑡𝑡𝑘𝑘�𝐶𝐶𝑡𝑡𝑘𝑘+1)� . 
With the conversion, a differentiable binary-vector operation in 
Eqs. (18) and (19) can be realized. 

 Second, the entropy evaluation should be adapted to the 
framework accordingly. Theoretically, given the action 
probability 𝑝𝑝𝜃𝜃(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡) = ∏ 𝑝𝑝𝜃𝜃(𝐶𝐶𝑡𝑡𝑘𝑘�𝐶𝐶𝑡𝑡𝑘𝑘−1)𝑁𝑁𝑡𝑡𝑡𝑡

𝑘𝑘  , the entropy is 
evaluated to be −𝔼𝔼𝑎𝑎𝑡𝑡~𝜏𝜏𝜋𝜋 log 𝑝𝑝𝜃𝜃(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡) , which may be 
numerically unstable due to the long probability chain. Also, it 
is inconvenient to calculate the theoretical maximum 
entropy to facilitate a more tunable entropy regularization 
(i.e., 𝐻𝐻� = log�𝒜̂𝒜�  and �𝒜̂𝒜�  counts the total number of 
infeasible actions of DDNR). It is common to set a certain 

entropy ratio for discrete policy, e.g., 
ℋ�𝜋𝜋�⋅�𝑠𝑠𝑡𝑡��

𝐻𝐻�
=0.98 [30]. 

Hence, we approximate the entropy ratio using the sum of 
entropies of each sub-action by: 

𝐻𝐻𝑡𝑡
𝐻𝐻�
≈ −𝔼𝔼𝑎𝑎𝑡𝑡~𝜏𝜏𝜋𝜋 ∑

ℋ�𝑝𝑝𝜃𝜃�𝐶𝐶𝑡𝑡𝑘𝑘�𝐶𝐶𝑡𝑡𝑘𝑘−1��

𝑁𝑁𝑡𝑡𝑡𝑡⋅log∑ 𝑀𝑀𝑡𝑡,𝑖𝑖
𝑘𝑘|ℰ𝑠𝑠|

𝑖𝑖=1

𝑁𝑁𝑡𝑡𝑡𝑡
𝑘𝑘=1 ,             (22) 

where 𝐻𝐻𝑡𝑡  denotes the approximated entropy normalized into 
[0,1] using the single-step maximum entropy (log∑ 𝑀𝑀𝑡𝑡,𝑖𝑖

𝑘𝑘|ℰ𝑠𝑠|
𝑖𝑖=1 ). 

One can maintain a certain entropy level for SAC by 
dynamically adjusting the weight 𝛼𝛼 to balance exploration 
and exploitation as follows [31]: 

∇𝛼𝛼𝐽𝐽(𝛼𝛼) = ∇𝛼𝛼𝛼𝛼 �
𝐻𝐻𝑡𝑡
𝐻𝐻�
− 𝐻𝐻��,                         (23) 

where 𝐻𝐻� is the target entropy ratio for the agent to track. With 
these adaptations, SAC can be trained stably for DDNR to 
generate configurations flexibly and safely.  

D. Pseudo-codes of the Proposed Method 

The detailed implementation of the proposed DRL method 
for the DDNR problem is summarized in Algorithm.  

V. CASE STUDY 
The section examines the proposed method in various cases 

with different system scales and uncertainty levels and 
compares it with typical benchmarks and action strategies in 
terms of performance and behavior patterns. 
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Fig. 5. A modified IEEE 33-bus PDN for the DDNR problem. 

 

 
Fig. 6. Daily variation patterns of different data sources. 
 

Algorithm Sequential-masking SAC for DDNR problems 
Parameter:  𝑁𝑁𝑒𝑒 – number of episodes, 𝑁𝑁𝑠𝑠 – number of gradient steps, 

𝑁𝑁𝑡𝑡𝑡𝑡 – number of tie switches, 𝜌𝜌 – Polyak averaging factor,  
𝜂𝜂𝑄𝑄, 𝜂𝜂𝜋𝜋, 𝜂𝜂𝛼𝛼 – learning rates, 𝜇𝜇 – annealing rate. 

Input: 𝜃𝜃 and �𝜙𝜙𝑖𝑖,𝜙𝜙�𝑖𝑖�𝑖𝑖 ∈ {1,2}� – parameters of the agent. 
Output: 𝜋𝜋𝜃𝜃 for online execution. 
1: Initialize replay buffer 𝒟𝒟 ← ∅ and target critics 𝜙𝜙�𝑖𝑖 ← 𝜙𝜙𝑖𝑖. 
2: for 𝑛𝑛 ← 1 to 𝑁𝑁𝑒𝑒 do 
3:   Reset DDNR environment and obtain 𝑠𝑠1. 
4:   for 𝑡𝑡 ← 1 to |𝒯𝒯| do 
5:     Construct 𝐶𝐶𝑡𝑡0 and calculate ℎ𝑡𝑡0 from 𝑠𝑠𝑡𝑡. 
6:     for 𝑘𝑘 ← 1 to 𝑁𝑁𝑡𝑡𝑡𝑡 do 
7:               Construct sub-mask 𝑀𝑀𝑡𝑡

𝑘𝑘. 
8:               Calculate (𝑙𝑙𝑡𝑡𝑘𝑘 , ℎ𝑡𝑡𝑘𝑘) ← 𝜋𝜋𝜃𝜃(ℎ𝑡𝑡𝑘𝑘−1 ,𝐶𝐶𝑡𝑡𝑘𝑘−1). 
9:               Sample sub-action 𝑎𝑎𝑡𝑡𝑘𝑘 ← GumbelSoftmax(𝑙𝑙𝑡𝑡𝑘𝑘 + log𝑀𝑀𝑡𝑡

𝑘𝑘). 
10:               Construct configuration 𝐶𝐶𝑡𝑡𝑘𝑘 ← 𝐶𝐶𝑡𝑡𝑘𝑘−1 + 𝑎𝑎𝑡𝑡𝑘𝑘. 
11:     end 
12:     Obtain action 𝑎𝑎𝑡𝑡 ← ∑ 𝑎𝑎𝑡𝑡𝑘𝑘

𝑁𝑁𝑡𝑡𝑡𝑡
𝑘𝑘 . 

13:     Execute 𝑠𝑠𝑡𝑡+1 ← 𝒫𝒫(𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡) and 𝑟𝑟𝑡𝑡 ← ℛ(𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡). 
14     Save transition by 𝒟𝒟 ← (𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡, 𝑟𝑟𝑡𝑡 , 𝑠𝑠𝑡𝑡+1) ∪ 𝒟𝒟. 
15:   end 
16:   for 𝑖𝑖 ← 1 to 𝑁𝑁𝑠𝑠 do 
17:     Sample mini-batch ℬ~Uniform(𝒟𝒟). 
18:     Update critics by 𝜙𝜙𝑖𝑖 ← 𝜙𝜙𝑖𝑖 −

𝜂𝜂𝑄𝑄
|ℬ|
∇𝜙𝜙𝑖𝑖𝐽𝐽𝑄𝑄(𝜙𝜙𝑖𝑖). 

19:     Update target critics by 𝜙𝜙�𝑖𝑖 ← 𝜌𝜌𝜙𝜙𝑖𝑖 + (1 − 𝜌𝜌)𝜙𝜙�𝑖𝑖. 
20:     Update actor by 𝜃𝜃 ← 𝜃𝜃 − 𝜂𝜂𝜋𝜋

|ℬ|
∇𝜃𝜃𝐽𝐽𝜋𝜋(𝜃𝜃). 

21:     Update 𝛼𝛼 by 𝛼𝛼 ← 𝛼𝛼 − 𝜂𝜂𝛼𝛼
|ℬ|
∇𝛼𝛼𝐽𝐽𝛼𝛼(𝛼𝛼). 

22:   end 
23:   Anneal target 𝐻𝐻� by 𝐻𝐻� ← 𝜇𝜇 ⋅ 𝐻𝐻�. 
24: end 
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A. Environmental Settings 

The proposed method is first tested on the IEEE 33-bus PDN 
[7], which is modified to enable DDNR, as illustrated in Fig. 5. 
Five tie lines (i.e., 𝑁𝑁𝑡𝑡𝑡𝑡 = 5) equipped with tie switches are 
added to the network, connecting buses 25-28, 17-30, 7-22, 8-
13, and 11-33. Ten lines are chosen to be equipped with 
sectionalizing switches, including lines 6-7, 7-8, 9-10, 11-12, 
14-15, 19-20, 23-24, 26-27, 28-29, and 30-31. The PDN is 
assumed to operate at a low-voltage level of 15kV. For 
modelling the real dynamics and uncertainty in practice, the 
real-world power demand data is adopted to simulate power 
dynamics at buses from 2 to 33, referring to [25]. To tackle 
operation challenges in the presence of high-penetration RESs, 
DDNR is applied to wind power (WP)-dominated and 
photovoltaics (PV)-dominated PDNs, respectively, which is 
realized by real-world time series of WP [32] and PV [25]. The 
patterns of these time series are presented in Fig. 6. RESs are 
assumed to be installed at buses 14, 18, 21, 25, and 29, with a 
rated capacity of 𝑆𝑆𝑖𝑖

𝑔𝑔 = 2000 kW. Maximum loads of each bus 
are increased by 1.5 and 2 times for wind and solar power-
dominated PDNs, respectively. For the reward, 𝐶𝐶𝑝𝑝 and 𝐶𝐶𝑎𝑎 are 
set as 0.13$/kWh and 1$/switching, respectively, referring to 
[3]. With voltages in p.u., 𝐶𝐶𝑣𝑣 is set as 10 to penalize excess 
voltage deviations. To balance the multiple goals, 𝑘𝑘𝑣𝑣 and 𝑘𝑘𝑒𝑒 
are set as 1 and 0.023, respectively. 𝑟𝑟𝑐𝑐,𝑡𝑡  is set as 100 to 
penalize the actions violating (4). The decision interval is set 
as 1 hour, and an episode has 24 decision steps in a day. During 
training, the one-year time series of renewables and demands 
are used to simulate PDNs, and one hundred episodes simulated 
by the next-year data are used for evaluation. In each episode, 
PDNs start to operate with tie switches opened and 
sectionalizing switches closed [3].   

B. Settings of the Proposed Method and Benchmarks 

Various benchmarks are employed to demonstrate the 
advantages of the proposed method. Given the discrete action 
space, the value-based DDQN [12], [23], [16] is used for 
comparison with the actor-critic-based SAC [3], [33], [11]. 
Programming methods [7], [3] are also used to calibrate the 
relative performance of DRLs. They are given as follows. 

SAC-S (Ours): It denotes the proposed sequential masking-
based SAC algorithm. 

SAC-V & DDQN-V: They sample actions from a valid 
action set that encodes all the feasible actions according to [13]. 
In this case, the total number of feasible actions is 609, 
compared to its original vast action space of 2|ℰ𝑠𝑠 | = 32768 
with |ℰ𝑠𝑠 | = 15 , leading to a rate of feasible actions of 1.86% 
at a decision step. 

SAC-E & DDQN-E: Their action space is restricted by the 
rule of “exchanging the status of a pair of RCSs” with a size of 
|ℰ𝑠𝑠|2 − |ℰ𝑠𝑠| + 1 = 226. At each step, they utilize a mask to 
avoid the violation of the radial constraint in Eq. (4). The total 
number of links via “status exchange” between any two 
feasible configurations amounts to 6182, leading to a rate of 
feasible actions of 9.43% on average at a decision step. 

SAC-R: It adapts a reward-based approach to address 
infeasible actions. A large penalty will be returned if the 

constraint in Eq. (4) is violated, after which an episode is 
terminated. As the agent may frequently sample infeasible 
actions, the action space of SAC-R is encoded in the same way 
as SAC-E with a higher action feasibility rate, referring to [12]. 
Since the 𝜖𝜖 -greedy exploration strategy of DDQN induces 
frequent violations that diverge the learning process, DDQN is 
not adopted for comparison. 

SSO: With the complete and accurate parameters of a PDN, 
the MIP model can be used to implement single-step 
optimization (SSO) of DDNR, referring to the model described 
in Appendix [7], [34]. Therefore, MIP is used to demonstrate 
the gaps between model-free DRL methods and the traditional 
model-based benchmark. 

MPC: Considering the dynamic-programming nature of 
DDNR, we also provide the solutions produced by a model 
predictive control (MPC)-like benchmark, referring to [3], 
which optimizes multiple future decision steps at a time and just 
implements the solution to the current decision. Instead of using 
predicted parameters, our implementation directly incorporates 
the accurate future parameters, so as to present “almost optimal 
solutions” for calibrating the performance of other methods. 
Four future steps are considered in this case, given its 
computational burden. 

MPC-E: It is MPC constrained by the same restricted action 
space as that of SAC-E, in order to present the “almost actual” 
performance gap incurred by the action strategy of SAC-E. 

DRL methods use consistent hyper-parameters for a fair 
comparison, and the critical ones are provided in Table I. The 
DDQN agents (Q networks) and critics in all the SAC agents 
are built by 100×4 FCNs. For the actors in SAC agents, SAC-E 
and SAC-R employ 100×4 FCNs, and the proposed SAC-S 
encodes state features by using 100×2 FCNs and then generates 
sub-actions by stacking a 100×1 GRU and 100×2 FCNs. Three-
step historical features (|𝒯𝒯ℎ𝑖𝑖𝑖𝑖𝑖𝑖| = 3) are used for learning. FCNs 
use the ReLU to introduce non-linearity.   

In the case study, we emphasize comparing different DRL 
action strategies to promote our proposed strategy for various 
data-driven applications based on DDNR. Comparisons 
between DRL and model-based methods are majorly used to 
provide approximate optimality gaps (e.g., MPC/MPC-E) and 
comparative insights (e.g., SSO). In practice, comparisons 
between model-based and model-free methods rely on various 
settings, such as the sufficiency of system observation [18], the 
accuracy of state estimation [3], and the costs of switching [11]. 
This paper assumes complete and accurate observations with 
proper switching costs [3] for model-based benchmarks, 
showing theoretical gaps for various methods. The performance 
and scalability comparison of model-free methods with various 
action strategies is of higher importance in the following 
subsections. 

TABLE I: CRITICAL HYPERPARAMETERS FOR TRAINING DRLS 
Hyper-parameter  Value Hyper-parameter Value 
Batch size |ℬ| 32 Number of episodes 𝑁𝑁𝑒𝑒 1e5 
Replay buffer size |𝒟𝒟| 3e5 Number of gradient steps 𝑁𝑁𝑠𝑠 10 
Discount factor 𝛾𝛾 0.96 Polyak averaging factor 𝜌𝜌 1e-3 
Learning rates 𝜂𝜂𝜋𝜋, 𝜂𝜂𝑄𝑄 1e-4 Annealing rate 𝜇𝜇 1-5e-5 
Learning rate 𝜂𝜂𝛼𝛼 1e-3 Decay rate of DDQN 1-5e-5  
Initial entropy target 𝐻𝐻� 0.98   
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C. Learning Curves of DRL Methods 

The learning curves of DRL methods are illustrated in Fig. 7. 
The major observations are given as follows. 1) The learning 
curves of the PV-dominated PDN feature noticeably lower 
variance, and their Scores (accumulated rewards) are closer 
than that of the WP-dominated PDN due to much lower 
uncertainty of PV as shown in Fig. 6. 2) Most DRLs can 
converge stably except SAC-R, demonstrating that frequent 
large penalty is prone to result in learning inefficiency and 
hinder performance. 3) SACs learn better than DDQNs likely 
due to their policy-based exploration strategy and entropy 
regularization. 4) SAC-S presents a close learning curve to the 
best-performing SAC-V, showing that it allows the agent to 
reach any feasible configuration freely like SAC-V. Also, SAC-
S can outperform SAC-E to prove that the action space 
reduction does restrict optimality.  

D. Comparative Analysis of Different DDNR Methods 

The evaluation results averaged over one hundred episodes 
are presented in Tables II and III. Regulation dynamics are 
visualized in Figs. 8 and 9. Without DDNR, the PV-dominated 
PDN has a severe voltage violation rate due to the concurrent 
PV generation from 10 am to 2 pm and heavy power demand 
after 8 pm, as illustrated in Fig. 8. Likewise, concurrent WP 
generation can also insecure PDN and cause over-voltage issues. 
The difference is that the timings of concurrent WP generation 
are irregular and hardly predictable compared to PV generation. 
For instance, in Fig. 9, WP can even lead to voltage-violated 
durations twice a day, i.e., before 6 am and around 2 pm. Such 
an uncertainty of WP inevitably makes the problem challenging.   
 It is undoubtful that PDNs with an effective DDNR can 
operate more securely and economically. Among these methods, 
MPC incorporates accurate future parameters to eliminate 
uncertainty to outperform others easily. Calibrated by the Score 
of MPC, the Gap of Scores is used to evaluate the relative 
performance of other methods, as shown in Tables II and III. 
We offer the following conclusions in terms of comprehensive 

 
Fig. 8. Typical operation patterns of the PV-dominated PDN. 
 

 
Fig. 9. Typical operation patterns of the WP-dominated PDN. 
 

 
Fig. 10. Daily number of times (NoT) of switching on average 
 

 
Fig. 7. Learning curves of different DRL methods on 33-bus PDNs. 
 

TABLE II: EVALUATION ON PV-DOMINATED PDN (LOW UNCERTAINTY) 

Method 
𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑉𝑉𝑑𝑑𝑑𝑑𝑑𝑑 

(%) 
𝑅𝑅𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 
(%) Score Gap 

(%) (kWh)  ($)  (NoT)  ($)  
No DDNR 2450 318.4 - - 4.57 37.04 -57.1 248.7 

MPC 1780 231.4 17.7 17.7 2.93 4.29 -16.4 0 
MPC-E 1828 237.7 16.3 16.3 3.01 4.71 -17.0 3.6 

SSO 1836 238.7 19.1 19.1 3.11 6.21 -18.2 10.8 
DDQN-E 1894 246.2 21.6 21.6 3.26 6.67 -19.1 16.8 
DDQN-V 1941 252.3 75.9 75.9 3.25 5.33 -20.1 22.9 

SAC-R 2218 288.4 12.2 12.2 3.36 12.58 -23.0  40.3 
SAC-E 1806 234.7 12.3 12.3 3.11 4.83 -17.4 6.1 
SAC-V 1793 233.2 20.4 20.4 3.00 4.46 -16.9 3.0 

SAC-S (Ours) 1800 234.1 26.0 26.0 3.01 4.46 -17.1 4.5  
Note: Score is the average accumulated reward ∑ 𝑟𝑟𝑡𝑡𝑡𝑡∈𝒯𝒯 , NoT is the number 
of times of switching, 𝑅𝑅𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 is the average rate of voltage violation, Gap is the 
performance gap with the best Score. 
 
TABLE III: EVALUATION ON WP-DOMINATED PDN (HIGH UNCERTAINTY) 

Method 
𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑉𝑉𝑑𝑑𝑑𝑑𝑑𝑑 

(%) 
𝑅𝑅𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 
(%) Score Gap 

(%) (kWh)  ($)  (NoT)  ($)  
No DDNR 3523 458.0 - - 4.73 40.54 -65.3 393.9 

MPC 2224 289.2 28.7 28.7 2.10 2.12 -13.2 0 
MPC-E 2290 297.7 23.8 23.8 2.21 3.33 -14.4 8.7 

SSO 2344 304.7 30.9 30.9 2.48 3.96 -15.9 20.6 
DDQN-E 2613 339.8 41.3 41.3 2.83 8.38 -20.6 55.9 
DDQN-V 2680 348.4 78.0 78.0 2.85 6.88 -21.0 58.7 
SAC-R 2688 349.5 5.6 5.6 3.10 11.62 -23.7 79.4 
SAC-E 2464 320.3 15.3 15.3 2.68 6.21 -18.0 36.4 
SAC-V 2383 309.7 31.2 31.2 2.57 4.33 -16.4 24.0 

SAC-S (Ours) 2323 302.0 39.4 39.4 2.55 3.88 -16.3 23.1 
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performance. 1) The increased uncertainty of WP causes a 
considerable Gap (over 20%) between MPC and the remaining 
methods due to larger prediction errors than in the cases with 
PV generation (they have smaller Gaps less than 10%). 2) SAC-
V and SAC-S have similar Scores, verifying the effectiveness 
of the sequential masking strategy to address the DDNR action 
space. 3) SAC-S/V can perform better than SAC-E consistently 
on both PDNs (e.g., the WP case shows a Gap of around 10%), 
proving that the reduced action space of SAC-E does restrict 
performance. 4) The Gap incurred by the “-E” constraint can 
also be reflected by comparing MPC and MPC-E, which is 
enlarged by an increased uncertainty from 3.6% with PV to 8.7% 
with WP. MPC-E outperforms SAC-S/V in the WP case, 
reflecting the potential of SAC-E. However, the larger 
uncertainty entails frequent configuration changes and reduces 
predictability for dynamics, making it more challenging for 
SAC-E to plan for a configuration in advance. 5) DDQNs 
deliver poorer policies than their SAC counterparts, and 
interestingly, DDQN cannot handle the valid action set 
sufficiently, leading to a poorer Score of DDQN-V than that of 
DDQN-E in both cases. DDQN-V with the 𝜖𝜖 -greedy 
exploration may have a higher possibility to sample 
unfavorable configurations than DDQN-E to reduce its learning 
efficiency, as indicated by the lower curves of DDQN-V 
throughout training in Fig. 7. 6) SAC-S is 5% better than the 
model-based SSO in the PV case, whereas they have similar 
results in the WP case. It shows that DRLs can be more 
advantageous when PDN dynamics are more predictable, so 
that DRLs can make more preventive decisions considering 
future scenarios. Note that a higher action cost can further 
enlarge gaps between SSO and DRLs [11]. 7) SAC-R cannot 
deliver sound solutions to DDNR with frequent penalties.   

As for voltage regulation (a security range between 0.95 p.u. 
and 1.05 p.u.), PDNs suffer voltage violations in around 40% 
of operation time without DDNR. In contrast, an effective 

DDNR can significantly reduce the violation rate to less than 
5%. Average voltage deviations (𝑉𝑉𝑑𝑑𝑑𝑑𝑑𝑑) are generally consistent 
with their Scores. In the PV-dominated case, the voltage 
profiles are quite similar due to less uncertainty, as shown in 
Fig. 8. In contrast, they have distinct voltage dynamics in the 
WP-dominated case. For instance, SAC-E, which cannot switch 
to an ideal configuration in one step, is likely to infringe the 
security code (e.g., at 1 am and 4 pm in Fig. 9). In contrast, 
SAC-S, closely approximating SAC-V, has lower risk of 
violations to show that its action strategy can definitely benefit 
DDNR problems.  

DDNR achieves around 50$ and 100$ savings (𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) 
per day in PV and WP-dominated cases, respectively. There is 
no significant difference in power loss optimization among 
these methods except SAC-R, as power losses are less sensitive 
to topological changes. On the contrary, they present 
inconsistent NoTs of switching due to adopting different action 
strategies as will be analyzed in Section IV-E. 

E. Action Pattern Comparison and Analysis 

The NoTs of switching are illustrated in Fig. 10. We give the 
following observations: 1) The NoT of switching grows fast 
when dynamics change significantly. Switching actions 
increase fast in two stages in the PV case, i.e., the initial stage 
with a default configuration at 0 am and the stage of varying PV 
and demand between 8 am and 7 pm. In the WP case, however, 
WP varies intermittently throughout the day, leading to evenly 
implemented switching actions after the initial stage. 2) Owing 
to the action space reduction, SAC-E and SAC-R act less 
frequently than others in both cases, restricting their optimality. 
3) Exploring in the same action space, SAC-S generally acts 
more frequently than SAC-V. The increased switching may 
result from the recurrent calculation of sub-actions in SAC-S, 
where a long probability chain may preferably generate more 
diverse configurations between successive states than SAC-V. 

       
Fig. 11. Distribution of visited configurations on PV-dominated PDN.            Fig. 12. Distribution of visited configurations on WP-dominated PDN. 
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Nevertheless, SAC-S can still deliver competitive results like 
SAC-V but has better scalability than SAC-V.   

The distributions of visited configurations are illustrated in 
Figs. 11 and 12, where the x-axis is the configuration number 
(a total of 609 in the cases) in an arbitrary order, and diversity 
means how many different configurations are visited. In the 
PV-dominated case, the configuration diversity is low since the 
PDN has regular dynamic patterns. Four critical configurations 
(ID and the on/off status of fifteen RCSs) identified by MPC 
are 247 (011001111101101), 341 (111001101011110), 352 
(011001111011101), and 569 (011011111101001) in Fig. 11. It 
can be found that SAC-E fails to identify configuration 341 in 
Fig. 11, which requires at least two decision steps (i.e., the “E” 
action) for SAC-E to reach it from the other three configurations, 
as illustrated by Fig. 13. It reveals the difficulty for SAC-E to 
learn the optimal solutions. The same may apply to a harder task 
in Fig. 12, where optimal solutions frequently jump among 
distinct configurations due to fast-varying states, making it 
more challenging for SAC-E to approach optimality. The 
comparison between MPC and MPC-E reveals that though 
MPC-E can effectively identify the configuration 341 missed 
by SAC-E, its visitation distribution is proportionally different 
from that of MPC due to the “-E” constraint due to using more 
intermediate configurations to reach configuration 341. In 
contrast, SAC-S and SAC-V capably identify the four 
configurations, though their proportions may slightly deviate 
from that of MPC. Tasks become challenging in WP cases, as 
stochastic WP generation produces various operation dynamics. 
It can be reflected by the significantly increased diversity of 
MPC actions. Due to the dimensionality curse, it is always 
challenging for DRLs with finite sampling times to search for 
the best configurations. Hence, DRLs tend to exploit tens of 
configurations to tackle the complexity, whereas the model-
based methods can directly calculate the best solution to their 
linearized model. Interestingly, SAC-E presents a greater 
diversity than SAC-V and SAC-S, likely because SAC-E has to 
visit more temporary configurations to reach expected 
configurations in the fast-varying dynamics.  

F. Hyperparameter Sensitivity and Training Stability 

DRL is often sensitive to hyperparameters and may converge 
unstably during training. This section presents the 
hyperparameter sensitivity of our method (SAC-S) by 
comparing it against its strong competitor, SAC-E, and 
illustrates its learning stability under different hyperparameter 
settings. Five critical hyperparameters are selected from Table 
I, i.e., the discount factor 𝛾𝛾, learning rate 𝜂𝜂𝜋𝜋/𝜂𝜂𝑄𝑄 , number of 

gradient steps 𝑁𝑁𝑠𝑠 , averaging factor 𝜌𝜌 , and annealing rate 𝜇𝜇 . 
Each one is moderately modified to form a new set of 
hyperparameters for evaluation. 

The training curves of SAC-S are presented in Fig. 14, and 
numerical results compared with SAC-E are given in Table IV. 
The converged training curves in Fig. 14 have small variances 
after sufficient training rounds, showcasing that our method can 
learn efficiently and stably for the DDNR problem with proper 
hyperparameters and under typical reward shaping [3], [25]. 
Table IV validates that the evaluation performance of SAC-S is 
less sensitive to proper hyperparameters, though reducing the 
exploration rate ( 𝜇𝜇 ) unsurprisingly compromises the 
performance of both SAC-S and SAC-E. Results reveal that 
SAC-S can consistently outperform the SAC-E even in the low-
uncertainty case (i.e., a small but valid average gap of 2.3%), 
and the restricted action space does limit the performance of 
SAC-E, especially when facing high uncertainty in PDNs (i.e., 
an average gap of 9.8%).  

G. Evaluation on Large Power Distribution Network 

We also evaluate the proposed method on a larger IEEE 118-
bus PDN [3], as demonstrated in Fig. 15, to present the 
scalability of the proposed method. In this case, fifteen tie lines 
(red dotted lines) are assumed (i.e., 𝑁𝑁𝑡𝑡𝑡𝑡 = 15 ), and twenty 
normally connected lines (red solid lines) are selected for 
DDNR. The system is assumed to operate at 10 kV. Both PV 
and WP generation are considered in the PDN. Six PV and WP 
plants with a rated capacity 𝑆𝑆𝑖𝑖

𝑔𝑔 of 3000kW are assumed to be 
distributed in the PDN. As power loss increases by around three 
times, 𝑘𝑘𝑒𝑒 is set as one-third of the one used in the 33-bus PDN, 
and 𝐶𝐶𝑎𝑎  is assumed to be 2$/switching. Hyperparameters are 
consistent as before, except that hidden layers are increased 
from 100 to 200 for every agent, and MPC solves three-step 
decisions considering the increased problem scale.  

 
Fig. 14. Training stability of our method with different hyperparameters. 
 
TABLE IV: HYPERPARAMETER SENSITIVITY EVALUATION ON PV- AND WP-

DOMINATED PDNS 

Hyperparameters Explanation 
PV-domin. PDN 
(low uncertainty) 

WP-domin. PDN 
(high uncertainty) 

Ours SAC-E Ours SAC-E 
Original settings - -17.1 -17.4 -16.3 -18.0 
𝛾𝛾: 0.96 → 0.98 Longer sighted -16.9 -17.6 -16.6 -17.8 

𝜂𝜂𝜋𝜋/𝜂𝜂𝑄𝑄: 1e-4 → 5e-4 Larger grad. step -17.0 -17.2 -16.5 -17.8 
𝑁𝑁𝑠𝑠: 10 → 15 More grad. steps -17.7 -17.8 -16.3 -18.1 
𝜌𝜌: 1e-3 → 5e-3 Less delayed critic -16.9 -17.3 -16.3 -17.7 

𝜇𝜇: 1-1e-4 → 1-5e-4 Less exploration -17.3 -18.0 -16.5 -18.8 
Average Score -17.2 -17.6 -16.4 -18.0 

Average Gap (%) 0 2.3 0 9.8 
 

ID
247

ID
352

ID
569

ID
341

2 “E” actions 

1 “E” action 

Configuration: 
111001101011110

Configuration: 011001111101101

Configuration:
011001111011101

Configuration: 011011111101001  
Fig. 13. Number of actions for SAC-E to jump between four major 
configurations exploited by MPC in the PV-dominated case.  
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With such a setting, even with an action feasibility rate of 
0.01%, the number of feasible configurations can be more than 
one million (235 × 0.01%), making SAC-V inapplicable to the 
problem. The evaluation results averaging over one hundred 
episodes are given in Table V. SAC-R can learn even worse 
policy on the large-scale PDN with a Gap of more than 100%. 
In the problem scale, while SAC-E is more computationally 
scalable than SAC-S (heavy calculation of RNN recurrence and 
masking operations), SAC-E is more inflexible in the aspect 
that it has to take more steps to reach an optimal configuration 
(the number of steps is fifteen at most between two 
configurations compared to just five in the 33-bus case). 
Combining these pros and cons, SAC-S can still deliver a better 
result than SAC-E and SSO, showing its greater potential to 
benefit PDN operators as a data-driven and model-free 
alternative to traditional methods. Note that RNNs may suffer a 
gradient vanishment problem once the recurrent gradient path 
is too long. Hence, there is definitely some room for 
performance enhancement using more advanced neural 
structures, such as attention mechanisms [35]. The proposed 
strategy can be compatible with such improvements, inspiring 
others to strengthen data-driven solutions.     

H. Comparison with A Different Sub-Action Strategy 

Another feasible way to implement our learning framework 
is to use “exchanging the status of a pair of RCSs” as a sub-

action since it takes at most 𝑁𝑁𝑡𝑡𝑡𝑡  steps to reach an arbitrary 
configuration. Two major modifications are made to adapt our 
learning framework to the sub-action strategy: 1) Since sub-
actions have a variable number of decision steps, we add a 
“Stop” option in the sub-action space for DRL to make no 
configuration change and stop selecting the next sub-action. 
Also, the number of sub-actions will be capped by 𝑁𝑁𝑡𝑡𝑡𝑡. 2) As 
these new sub-actions have no additive relation in Eq. (19), we 
concatenate and feed them into the critic network. For those 
numbers of sub-actions less than 𝑁𝑁𝑡𝑡𝑡𝑡, we pad the rest of the 
action vector with one-hot vectors that select the “Stop” 
option.  

There are two different ways for DRL to learn the new sub-
action strategy. A natural choice is to let DRL generate sub-
actions starting from the current configuration 𝐶𝐶𝑡𝑡 , which is 
dynamic in the learning process. In contrast, it is also possible 
to always start with a static initial configuration 𝐶𝐶0 since the 
PDN only implements the final configuration constructed by all 
the sub-actions. The latter one is similar to the proposed SAC-
S. Hence, two benchmarks based on the sequential-masking 
learning framework and “exchanging-status” sub-actions are 
named SAC-SE-Dynamic and SAC-SE-Static for comparison.   

The numerical results of cases with different uncertainty are 
presented in Table VI. It can be found that: 1) SAC-SE-
Dynamic delivers poorer Scores in both cases, revealing that 
dynamic initial configurations may lead to higher learning 
difficulty for DRL. A reason may be that DRL has to learn more 
transitions from a given configuration 𝐶𝐶𝑡𝑡  to a target 
configuration 𝐶𝐶𝑡𝑡+1. Specifically, if there are 𝑛𝑛 configurations to 
be frequently visited, there will be at most 𝑛𝑛(𝑛𝑛 − 1) transitions 
of configurations for DRL to explore, in order to jump between 
any two of these configurations. In contrast, DRL can only 
exploit at least 𝑛𝑛 transitions from a static initial configuration 
𝐶𝐶0  to the target configuration 𝐶𝐶𝑡𝑡 . 2) SAC-SE-Static shows a 
close performance to SAC-S, showing the potential of 
integrating other sub-action strategies into our learning 
framework. SAC-SE-Static falls slightly behind SAC-S in the 
high-uncertainty case, probably due to their nuances in the sub-
action behavior (e.g., an extra “Stop” option) and sub-action 
space (e.g., different dimension and sparsity). 3) Their Scores 
are noticeably better than the Score of SAC-E (i.e., -18.0) in the 
high-uncertainty case, demonstrating the effectiveness of action 
space decomposition in tackling the complex action space of 
DDNR. 4) SAC-SEs present less action cost than SAC-S, as the 
“Stop” option of SAC-SEs may result in more actions with 
fewer NoT of switching than SAC-S during exploration.  
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Fig. 15. A modified IEEE 118-bus PDN for the DDNR problem. 
 

TABLE V: EVALUATION ON 118-BUS PDN WITH MIXED RENEWABLES 

Method 
𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑉𝑉𝑑𝑑𝑑𝑑𝑑𝑑 

(%) 
𝑅𝑅𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 
(%) Score Gap 

(%) (kWh)  ($)  (NoT)  ($)  
No DDNR 11371 1478.3 - - 5.85 61.92 -93.5 471.5 

MPC 7260 943.8 45.0 89.9 2.71 2.87 -16.4 0 
MPC-E 7428 965.6 35.8 71.6 2.86 2.92 -17.2 5.1 

SSO 7641 993.3 42.5 85.1 3.03 4.21 -18.8 15.1 
SAC-R 8144 1058.8 10.4 20.8 3.90 20.08 -33.4 104.1 
SAC-E 7551 981.6 28.0 56.0 3.09 3.58 -18.6 13.5 
SAC-V - - - - - - - - 

SAC-S (Ours) 7434 966.5 68.2 136.4 2.92 3.00 -18.0 10.1 

 

TABLE VI: COMPARISON WITH A DIFFERENT SUB-ACTION STRATEGY 

Method 
𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑉𝑉𝑑𝑑𝑑𝑑𝑑𝑑 

(%) 
𝑅𝑅𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 
(%) Score Gap 

(%) (kWh)  ($)  (NoT)  ($)  
PV-Dominated PDN (low uncertainty) 

SAC-S (Ours) 1800 234.1 26.0 26.0 3.01 4.46 -17.1 0 
SAC-SE-Stat. 1802 234.2 20.6 20.6 3.05 4.63 -17.2 0.9 
SAC-SE-Dyn.  1911 248.5 14.2 14.2 3.11 6.25 -17.9 4.7 

WP-Dominated PDN (high uncertainty) 
SAC-S (Ours) 2323 302.0 39.4 39.4 2.55 3.88 -16.3 0 
SAC-SE-Stat. 2407 312.9 22.5 22.5 2.62 5.04 -16.7 2.8 
SAC-SE-Dyn. 2468 320.8 16.0 16.0 2.63 5.46 -17.2 5.5 
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VI. CONCLUSION 
This paper proposes a sequential masking strategy to 

effectively address the vast and constrained action space of the 
DDNR problem. A GRU-based SAC algorithm with scalable 
and data-efficient features is designed for the proposed strategy. 
Three types of typical DRL methods for DDNR are reviewed 
and compared to demonstrate the motivation and advantage of 
the proposed strategy. Comparative case studies are conducted 
with various benchmarks, and the results conclude that:  

1) Compared with other DRL benchmarks, the proposed 
method (SAC-S) can  
 significantly outperform SAC-R with a gap of 34.5%, 

45.4%, and 85.6% in cases with different uncertainties and 
system scales, showing that “penalizing infeasible action 
in the reward” is not a proper solution for DDNR. 

 consistently outperform SAC-E in various cases with a 
large gap of 10.4% in the high-uncertainty case while a 
small gap of only 1.7% in the low-uncertainty case, 
revealing that SAC-E with a restricted action space can 
only be a good choice for scenarios where system 
dynamics vary slowly and deterministically. 

 be more scalable than SAC-R in the large-system case 
despite similar performance in small-system cases, as the 
neural agent is highly inefficient in training with millions 
of feasible configurations as its output layer. 

2) DRLs can achieve a minimum optimality gap of 4.5% with 
the approximated optimum (MPC) in the low-uncertainty case, 
in which the proposed method can surpass the model-based 
SSO. In contrast, the gap is larger with 23.1% in the high-
uncertainty case, showing that uncertainty is a key factor to 
impact relative performance of DRL in DDNR. 

3) DRLs tend to exploit around 5 to 10 times less diverse 
configurations than model-based approaches, especially in the 
high-uncertainty case. This reflects a generalization challenge 
of DRLs trained by finite sampling times in handling a vast 
combinatorial action space.  

The proposed method further strengthens the data-driven 
solution to DDNR, serving as a valuable model-free option to 
operate PDNs more securely and economically. 

Finally, it is worth noting that in this study GRU is used to 
build the agent due to its structural suitability for modeling the 
probability chain of decomposed sub-actions and its 
computational simplicity compared with LSTM and attention 
modeling. This allows us to focus on the actual performance 
enhanced by the proposed action strategy. Besides, SAC is 
adopted for algorithmic optimization thanks to its higher data 
efficiency as an off-policy algorithm than on-policy 
counterparts like REINFORCE and PPO and its greater 
performance than Q-learning algorithms like DDQN. In the 
future, one may equip the proposed strategy with more 
advanced NN structures like graph NNs (GNNs) and 
Transformers for further improvement. Moreover, some DRL 
techniques like imitation learning that incorporates expert 
knowledge or advanced exploration strategy may also be 
instrumental in searching for promising solutions to tackle the 
challenge posed by the constrained and vast action space of 
DDNR. 

APPENDIX 
The mathematical formulation of the DDNR problem for 

MIP is given as follows. 

min
�𝑏𝑏𝑖𝑖𝑖𝑖,𝑡𝑡�𝑖𝑖𝑖𝑖 ∈ ℰ𝑠𝑠, 𝑡𝑡 ∈ 𝒯𝒯�

�𝑘𝑘𝑣𝑣𝑉𝑉𝑡𝑡𝑑𝑑𝑑𝑑𝑑𝑑 + 𝑘𝑘𝑒𝑒�𝐶𝐶𝑝𝑝𝑃𝑃𝑡𝑡𝐿𝐿 + 𝐶𝐶𝑎𝑎𝐴𝐴𝑡𝑡�
 

𝑡𝑡∈𝒯𝒯

 (24) 

subject to  

𝑉𝑉𝑖𝑖,𝑡𝑡 − 𝑉𝑉𝑗𝑗,𝑡𝑡 ≤ �1 − 𝑏𝑏𝑖𝑖𝑖𝑖,𝑡𝑡�𝑀𝑀 + 𝑅𝑅𝑖𝑖𝑖𝑖𝑝𝑝𝑖𝑖𝑖𝑖,𝑡𝑡 + 𝑋𝑋𝑖𝑖𝑖𝑖𝑞𝑞𝑖𝑖𝑖𝑖,𝑡𝑡, 
∀𝑖𝑖, 𝑗𝑗 ∈ 𝒩𝒩, ∀𝑖𝑖𝑖𝑖 ∈ ℰ 

𝑉𝑉𝑖𝑖,𝑡𝑡 − 𝑉𝑉𝑗𝑗,𝑡𝑡 ≥ �𝑏𝑏𝑖𝑖𝑖𝑖,𝑡𝑡 − 1�𝑀𝑀 + 𝑅𝑅𝑖𝑖𝑖𝑖𝑝𝑝𝑖𝑖𝑖𝑖,𝑡𝑡 + 𝑋𝑋𝑖𝑖𝑖𝑖𝑞𝑞𝑖𝑖𝑖𝑖,𝑡𝑡, 
∀𝑖𝑖, 𝑗𝑗 ∈ 𝒩𝒩, ∀𝑖𝑖𝑖𝑖 ∈ ℰ 

(24a) 

∑ 𝑝𝑝𝑖𝑖𝑖𝑖,𝑡𝑡 = 𝑃𝑃𝑖𝑖,𝑡𝑡
𝑔𝑔 − 𝑃𝑃𝑖𝑖 ,𝑡𝑡𝑑𝑑𝑗𝑗∈Ω(𝑖𝑖) , ∀𝑖𝑖 ∈ 𝒩𝒩 

∑ 𝑞𝑞𝑖𝑖𝑖𝑖,𝑡𝑡 = 𝑄𝑄𝑖𝑖,𝑡𝑡
𝑔𝑔 − 𝑄𝑄𝑖𝑖,𝑡𝑡𝑑𝑑𝑗𝑗∈Ω(𝑖𝑖) , ∀𝑖𝑖 ∈ 𝒩𝒩 

(24b) 

𝛽𝛽𝑖𝑖𝑖𝑖,𝑡𝑡 + 𝛽𝛽𝑗𝑗𝑗𝑗,𝑡𝑡 = 𝑏𝑏𝑖𝑖𝑖𝑖,𝑡𝑡, ∀𝑖𝑖𝑖𝑖 ∈ ℰ 
∑ 𝛽𝛽𝑖𝑖𝑖𝑖,𝑡𝑡𝑗𝑗∈Ω(𝑖𝑖) = 1, ∀𝑖𝑖 ∈ 𝒩𝒩 
𝛽𝛽0𝑗𝑗,𝑡𝑡 = 0, ∀𝑗𝑗 ∈ Ω(0) 

(24c) 

𝑉𝑉𝑡𝑡𝑑𝑑𝑑𝑑𝑑𝑑 = �𝑉𝑉𝑡𝑡
𝑚𝑚

𝑉𝑉𝐵𝐵
�
2
  

𝑉𝑉𝑡𝑡𝑚𝑚 ≥ 𝑉𝑉𝑖𝑖,𝑡𝑡 − 1, ∀𝑖𝑖 ∈ 𝒩𝒩 
𝑉𝑉𝑡𝑡𝑚𝑚 ≥ 1 − 𝑉𝑉𝑖𝑖,𝑡𝑡, ∀𝑖𝑖 ∈ 𝒩𝒩 

(24d) 

𝑃𝑃𝑡𝑡𝐿𝐿 = ∑ 𝑅𝑅𝑖𝑖𝑖𝑖�𝑝𝑝𝑖𝑖𝑖𝑖 ,𝑡𝑡
2 + 𝑞𝑞𝑖𝑖𝑖𝑖,𝑡𝑡

2 �𝑖𝑖𝑖𝑖∈ℰ   (24e) 

𝐴𝐴𝑡𝑡 = ∑ 𝛼𝛼𝑖𝑖𝑖𝑖,𝑡𝑡𝑖𝑖𝑖𝑖∈ℰ   
𝛼𝛼𝑖𝑖𝑖𝑖,𝑡𝑡 ≥ 𝑏𝑏𝑖𝑖𝑖𝑖,𝑡𝑡 − 𝑏𝑏𝑖𝑖𝑖𝑖,𝑡𝑡−1, ∀𝑖𝑖𝑖𝑖 ∈ ℰ 
𝛼𝛼𝑖𝑖𝑖𝑖,𝑡𝑡 ≥ 𝑏𝑏𝑖𝑖𝑖𝑖,𝑡𝑡−1 − 𝑏𝑏𝑖𝑖𝑖𝑖 ,𝑡𝑡, ∀𝑖𝑖𝑖𝑖 ∈ ℰ 

(24f) 

Constraints (24a) are the linearized DistFlow model [34] that 
approximates line flow equations in Eq. (1), where a big 𝑀𝑀 
constant is used to introduce the binary switching variable 𝑏𝑏𝑖𝑖𝑖𝑖,𝑡𝑡, 
and 𝑅𝑅𝑖𝑖𝑖𝑖 and 𝑋𝑋𝑖𝑖𝑖𝑖 are line resistance and reactance, respectively. 
Constraints (24b) are power balance equations at each node. 
Constraints (24c) are the spanning tree constraints [7] to 
guarantee a radial topology of PDN, where Ω(𝑖𝑖)  is a set of 
adjacent nodes to the node 𝑖𝑖, 𝛽𝛽𝑖𝑖𝑖𝑖,𝑡𝑡 is the binary variable, and 𝑖𝑖 =
0 means the root node (a substation) of a PDN. Constraints (24d) 
define the voltage penalty 𝑉𝑉𝑡𝑡𝑑𝑑𝑑𝑑𝑑𝑑  for the maximum voltage 
deviation 𝑉𝑉𝑡𝑡𝑚𝑚 , normalized by a security margin 𝑉𝑉𝐵𝐵 . The 
constraint (24e) defines the total power loss 𝑃𝑃𝑡𝑡𝐿𝐿 . The constraints 
(24f) define the total NoT of switching 𝐴𝐴𝑡𝑡, where 𝛼𝛼𝑖𝑖𝑖𝑖,𝑡𝑡 counts 
the status change of an RCS.  

For the consistency with the bowl-shaped voltage reward in 
Eq. (7), 𝑉𝑉𝑡𝑡𝑑𝑑𝑑𝑑𝑑𝑑  is then modified as follows. 

𝑉𝑉𝑡𝑡𝑠𝑠 ≥ 𝑉𝑉𝑡𝑡𝑚𝑚 − 𝜁𝜁𝜁𝜁 
𝑉𝑉𝑡𝑡𝑠𝑠 ≥ 𝑉𝑉𝐵𝐵𝜁𝜁 

𝑉𝑉𝑡𝑡𝑣𝑣 ≥ 𝑉𝑉𝑡𝑡𝑚𝑚 − 𝑉𝑉𝐵𝐵 
𝑉𝑉𝑡𝑡𝑣𝑣 ≥ 0 

𝑉𝑉𝑡𝑡𝑑𝑑𝑑𝑑𝑑𝑑 = �
𝑉𝑉𝑡𝑡𝑠𝑠

𝑉𝑉𝐵𝐵
�
2

+ 𝐶𝐶𝑣𝑣
𝑉𝑉𝑡𝑡𝑣𝑣

𝑉𝑉𝐵𝐵
 

(25) 

where 𝜁𝜁  is a binary variable, and variables 𝑉𝑉𝑡𝑡𝑠𝑠  and 𝑉𝑉𝑡𝑡𝑣𝑣  are 
defined as safe and violated voltage deviations, respectively. 
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