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Abstract—Dynamic distribution network reconfiguration I. INTRODUCTION

(DDNR) is a widely used technique for the secure and economic
operation of power distribution networks (PDNs), especially in the
presence of high-penetration renewable energy sources (RESs).
DDNR is realized by controlling the on/off status of remotely
controlled switches (RCSs) equipped at power lines in PDNs to
optimize power flows. Thanks to the enhanced data availability of
PDNs, data-driven solutions to DDNR, such as deep reinforcement
learning (DRL), have gained growing attention recently. However,
DDNR solves a sequence of combinatorial problems featuring a
vast and sparse action space incurred by a so-called “radiality
constraint,” which is highly challenging for DRLs to handle.
Existing DRL methods either are unscalable to large-scale
problems or potentially restrict optimality. Hence, we propose a
sequential masking strategy to decompose its complex action space
into a sequence of maskable sub-action spaces. A GRU-based
agent and an adapted soft actor critic (SAC) algorithm are
designed accordingly, producing a data-efficient, safety-
guaranteed, and scalable DRL solution to the DDNR problem.
Comprehensive comparisons with existing data-driven methods
and model-based benchmarks are conducted via various case
studies, demonstrating the advantages of the proposed method in
both algorithmic performance and scalability.

Index Terms—Dynamic distribution network reconfiguration
(DDNR), deep reinforcement learning (DRL), sequential masking,
soft actor critic (SAC).
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HE power distribution networks (PDNs) increasingly

integrate renewable energy sources (RESs) to promote self-
sustainable and low-carbon transitions. High-penetration RESs
with uncertain power generation are prone to overburden
system operation, leading to various operational issues, such as
increasing operation costs and potential risks of over/under-
voltage [1]. As an effective and low-cost technique, dynamic
distribution network reconfiguration (DDNR) can be
incorporated into the daily operation scheme in PDNs for its
various functions like power loss reduction [2], [3], system
constraint management [4], and stability enhancement [5].
PDNs are required to operate in a radial topology to facilitate
management [6], and therefore DDNR allows PDNs to operate
in a different configuration (leading to a different topology) by
controlling the on/off status of remotely controlled switches
(RCSs) equipped at power lines. Hence, DDNR aims to
determine the optimal configuration in real time for the varying
operation conditions of PDNs to enhance interested system
indicators for operation [7].

Existing studies for DDNR are primarily based on
mathematical programming [7], [8] and heuristic algorithms
[9], [10]. While these methods may be capable of solving
DDNR problems, they entail complete observability of system
parameters in real time, leading to expensive implementation in
practice. As the model-free alternative, the data-driven solution
has been developed recently for DDNR applications by
leveraging promising deep reinforcement learning (DRL).
Owing to the combinatorial nature and a special “radiality
constraint” of DDNR problems, the vast and constrained action
space of DDNR poses challenges for DRLs in learning
competitive policy with model-based traditional methods. The
“radiality constraint” requires a DRL agent to act safely to avoid
infeasible configurations of RCSs that cause disconnection or
looped connections in PDNs [11]. Existing solutions have
addressed this constraint by 1) penalizing infeasible actions via
rewards [12], 2) constructing action sets for all feasible
configurations [13], and 3) adopting a reduced action space [3].
However, these strategies are known to either lack scalability to
large-scale problems or limit optimality.

To tackle the identified research gap, this paper proposes an
action space-unrestricted and scalable learning framework for
DDNR problems. Concretely, a sequential masking strategy is
proposed to decompose the DDNR action into a sequence of
sub-actions. Starting from a fully connected graph of the PDN,
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each sub-action decides which RCS to stay open sequentially,
after which an arbitrary configuration can be determined. A
computationally scalable mask is then introduced to truncate
the probability of those constraint-violated sub-actions. The
sequential decision process is formulated as a probability chain
and modeled by the gated recurrent unit (GRU) thanks to its
recurrent neural structure. Lastly, the necessity of modeling the
truncated policy distribution and the desire for data efficiency
inspire us to adapt the policy-gradient and off-policy SAC to
the designed sequential masking process. SAC is applied to the
discrete action space via Gumbel softmax and is trained on a
dedicated representation of configurations, enabling a scalable
and data-efficient algorithm for DDNR problems. Various case
studies are implemented to compare the proposed method with
the existing action strategies and model-based approaches on
various PDNs. Results show that our method can achieve
competitive performance and is scalable to the large-scale
problem as a model-free solution.

The major contributions are summarized below.

1) It is the first paper to summarize the pros and cons of
existing action strategies for tackling the vast and constrained
action space of DDNR. Given the identified gap, a sequential
masking strategy is proposed for decomposing its action space
into a sequence of maskable sub-action spaces, which are
scalable, unrestricted, and safe for DRL to learn efficiently.

2) An off-policy DRL algorithm is proposed to demonstrate
the viability of the proposed strategy, where a GRU agent is
designed to structurally model the probability chain of the
sequential decision process based on a dedicated binary-vector
representation of configurations, and SAC is adapted to its
discrete action space for sample-efficient training.

3) Extensive case studies are conducted to validate our
method with various action strategies and model-based
benchmarks, revealing that our method can surpass existing
DRL solutions in either scalability or performance for DDNR.

The rest of the paper is organized as follows: Section II
introduces the related work. Section III introduces the problem
of DDNR and its formulation as an MDP. Section IV
summarizes the previous DRL approaches and presents the
proposed sequential masking strategy and algorithm for DDNR.
Section V validates the proposed method in various case studies.
Section VI draws our conclusions.

II. RELATED WORK

The section summarizes the advantages and shortcomings of
existing methods for DDNR problems. Existing methods can be
divided into model-based and model-free methods, which are
introduced as follows.

Model-based methods: They constitute the majority of
traditional methods for DDNR problems, including some naive
methods [1], heuristic methods [9], and mathematical
programming [7]. Naive methods usually resort to repetitively
solving power flows to assess different network configurations
generated by a simple strategy. Such strategies fall short of
efficiently utilizing computation resources to find promising
configurations. To improve the search process, meta heuristics,
such as genetic algorithms [9] and harmony search [10], have

been developed to seek quality solutions for multiple objectives
in DDNR problems [4]. The black-box optimization of these
meta heuristics allows them to be easily applied to DDNR
problems regardless of problem complexity and non-linearity.
However, they are still inefficient for online decision-making
as they rely on power flow calculations for objective evaluation
[11]. With a proper approximation of the physical model of
PDNs, mixed-integer programming (MIP) [7], [14], [15] can be
used to solve DDNR problems with efficiency and robustness,
though it may be computationally costly for very large-scale
problems and suffer approximation errors pertaining to problem
complexity. Overall, these model-based methods are more
appealing if the complete parameters of PDNs are available for
the real-time decision-making of DDNR, while such a pre-
condition may result in higher operation costs and reduce their
reliability under contingency.

Model-free methods: They are growing popular due to
recent advances in data-driven techniques, particularly, deep
learning and reinforcement learning. For instance, in [5] a deep
learning model is introduced into DDNR to realize rapid control
response to abrupt voltage contingency via the generalizability
of neural networks (NNs). Without relying on expert
knowledge like supervised training, DRL algorithms, such as
deep Q network (DQN) [4], [12] and soft actor critic (SAC) [3],
can learn high-quality policy from scratch by interacting with a
simulated DDNR environment. As reported in DDNR literature,
DRL methods have several advantages over model-based
counterparts, such as rapid decision-making via generalization
[16], strong predictability and modeling capability for uncertain
and complex operation scenarios of PDNs [2], [13], and model-
free nature for reducing the cost of overseeing entire PDNs [3].
However, the radiality constraint in DDNR creates a vast and
sparse discrete action space, which is still not soundly
addressed by existing DRL methods. In contrast to the model-
based MIP that can effectively address the constraint via
“spanning tree” modeling [7], it is difficult for DRL to integrate
the hard constraint into its learning process directly. Existing
research addresses the challenge as follows. 1) Studies [12],
[17], [16], [18] penalize violated actions by adding punitive
signals in the reward function. However, the scarcity of feasible
actions can lead to inefficient learning, and the agent may still
generate dangerous actions (a backup plan in [16] may help
guarantee its safety). 2) Studies [13], [19], [20], [21] construct
a valid action set before training for the agent to pick feasible
actions, but its scalability is questionable, especially
considering the sheer number of feasible configurations in large
PDNs. 3) Studies [3], [11], [22], [23] adopt a scalable solution
that restricts action space by allowing only a pair of RCSs to
exchange status (i.e., close one RCS and then open one), and
thus, the action mask can be analytically constructed and
imposed on the agent to eliminate infeasible options to the
radiality constraint. However, such an action space reduction
inevitably limits the optimality of DDNR. To tackle the
identified research gap, this paper develops an action space-
unrestricted, scalable, and safe DRL framework for DDNR
problems in the following sections.
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Fig. 1. Power distribution network with remotely controlled switches.

III. PRELIMINARY

The section introduces the typical modeling of a DDNR
problem involving its objectives and constraints, which are then
formulated into an MDP to facilitate DRL methods.

A. Reconfigurable Power Distribution Network

PDNs normally operate in a radial topology to facilitate
management, as illustrated in Fig. 1. Electrical power is
delivered from the high-voltage main grid to the low-
voltage PDN and finally to the demand sites (nodes in Fig.
1) via transformers and underground cables (lines in Fig. 1).
Due to high-penetration RESs distributed in the PDN,
system dynamics are growingly complicated in both spatial
and temporal dimensions. For enhanced network security
and economy, shown in Fig. 1, DDNR can be adopted to
mitigate various operational issues in PDNs, such as
overloading and overvoltage. DDNR is enabled by the two
types of RCSs in PDN: the sectionalizing switch (normally
closed) and the tie switch (normally open). DDNR aims to
form optimal radial configurations for PDNs by determining
the on/off status of RCSs in real time.

The PDN can be described as a graph G = (V, ), where
V is a set of electric nodes and € is a set of existing lines.
Power flows follow the physical rule below.

Py = Vi Xjev bij, eV e (Gijcosbyj ¢ + Byjsindy )

. , (1)
Qi¢ = Vit Xjev bijeV;e(Gijsinbyj . — Bijcostyj )

where P; ¢ and Q;, are the active and reactive power injected
into the node i at time t, respectively, V;, is the voltage
magnitude, 0;;, is the phase angle between V;, and V; ., b;j,
is a binary variable indicating the service status of the line
ij, Gij and B;; are the line conductance and susceptance,
respectively. Nodal power injections consist of generation
and demand that follow P, = P — P{ and Q;, = Q7, —
Qgt , where g and d stand for generation and demand,
respectively. The generation of RESs is bounded by a rated
capacity S7, i.e., (Pii)z + (th)z < (s9)". The power
imbalance is compensated by the main grid via the root node
that features V; = 1 per unit (p.u.) with i = 1. At the system
level, the energy balance leads to Y;ep Plgt = Yiev P4 + P,

where P} is the line loss. The total power loss is calculated
by:

2 2
PiietQijt
2 5
Vit

Pf = Yijee Plir = Dijec bijRyj 2)

where R;; is the line resistance, P;;. and Q;;, are the power

flowing through the line ij.

During operation, the nodal voltages in PDNs should be
maintained to approach a nominal value, i.e., 1 p.u., to
guarantee satisfactory power quality and avoid adverse
effects on power equipment [6]. To this end, voltages should
be regulated by DDNR into a security range [11]:

1-Vy <V, <14V, 3)

where 1 — Vp and 1 + Vp confine the voltage magnitude to a
security region, e.g., 0.95-1.05 p.u. [3].

Let {bij‘t|ij € 85} with € C € be a set of binary variables
denoting the on/off status of RCSs. After DDNR, the
radiality constraint has to be satisfied [7] by: 1) there is no
isolated node in the PDN (leading to power outage); 2) PDN
should operate in a radial topology. It is described by:

Icl =1,

V| —1e] = &l = Tijee, (1 — bij,t)’

where C is a set of connected components in G. In graph
theory, a forest graph G always follows |17| = |é| + |<§|, and
it becomes a tree graph if |é| = 1. As the RCS is electro-
mechanical equipment, a limit on the number of times (NoT)
of switching should be considered by DDNR to prolong
their service life. The NoT of switching denoted by A4; can
be calculated as follows:

Ar = Yijeegter |bij,t - bij,t—1|’ (5)
B. Problem Formulation as Markov Decision Process

DDNR can be formulated into a MDP to facilitate DRL
learning. MDP can be described as a tuple (S, A, R, P,y),
where s; € § is the observed state of the environment, a; € A
is the action generated by an agent, 1, = R(s;, a;) is the reward
returned by a function R, s;,.; = P(s;, a;) is the successive
state returned by the transition function P, and y is the discount
factor for better convergence. The critical parts of MDP for the
DDNR problem are described as follows.

State: For alleviating the pressure on data acquisition,
only nodal power/voltage and switch status are assumed for
decision-making, which is defined as follows:

S¢ = {Vi,t' Py, Qi,t|i EV,tE j;list} u {bij,t—1|ij € 55} , (6)

where Ty, = {t — tp, ..., t} represents a set of historical
time steps for the agent to learn temporal patterns.

Action: The action of the DDNR agent is to determine the
status of RCSs at time ¢, i.e., a; = {bi]-'t|ij € 85}.

Agent: Given s;, the agent i learns to find a policy for
real-time decision, i.e., a,=mn(s;) . In DRLs, a
parameterized policy my aims to find the optimal 6 that
maximizes J(0), where J(0) = Y,er Eg, q,~7, 7, Where T is
the trajectory produced by the agent m.

Transition: During operation, the observed states will
evolve with dynamic power demand and RES generation
interacting with each other via Eq. (1). The modeling can be
realized by open-source platforms like Pandapower [24]
with the real-world time series of demand and generation.
The complexity of network interaction and the uncertainty
in time series make DDNR challenging.

(42)
(4b)

~Tr
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Reward: Algorithmic performance can be sensitive to
reward shaping. The voltage barrier function with a bowl
shape used in [25] is employed for voltage reward. Given
economic considerations of the power loss and switching
cost, the reward 1; is defined as follows:

Te = —kyTye — keler — Tt
thev 2
_ (W) , v Vdev,t = VB
rli,t - Vdev—V s (7)
146", Ve > Vs

T'e_t = PtLCp + AtCa

where 7;,, punishes the voltage deviation based on the
maximum nodal voltage deviation at the time ¢, i.e., V3¢’ =
max{lVi,C - 1||i € V} in p.u., C, imposes a large penalty on
the violated voltage deviation, 7, is the economic penalty
consisting of power loss and action cost in §, C, and C, are
electricity and switching prices [3], respectively, and 7, is
a large constant penalty for actions violating the constraint
in Eq. (4). RCSs is dispatched in a fixed and slow time
interval (e.g., At =1 hour). Therefore, a daily operation
scheme with fixed intervals (e.g., t € T ={0,1,...,24} in
hours) is considered to facilitate episodic learning of DRL.

To clarify the DDNR problem more rigorously, the
corresponding mathematical formulation of the problem in
the form of MIP is provided in the Appendix.

IVv. METHODOLOGY

The section elaborates on existing DRL action strategies for
DDNR problems and then introduces our proposed method with
its theoretical explanation and practical implementation.

A. Sequential Action Masking Strategy

One challenge for DRLs in the DDNR problem is the vast
and sparse action space incurred by its topology constraint
in Eq. (4). For instance, the action size |A| of DDNR
amounts to a combination number of 2/6s!, while its rate of
feasible actions is lower than 5% on a modified IEEE 33-
bus PDN [13]. This rate tends to be even lower with growing
RCSs [12]. Several commonly used strategies for
addressing the action space are illustrated in Fig. 2. Their
implementations are summarized below, and our proposed
strategy is presented subsequently.

Penalize infeasible actions via rewards: Fig. 2(a) shows
an intuitive strategy to tackle the constraint in Eq. (4) by
adding an order of magnitude larger penalty to infeasible
actions generated by the agent [12]. It enables the agent to
sample freely in the original vast action space, whereas it
may suffer two major drawbacks: 1) frequent penalty
signals due to the scarcity of feasible actions quickly make
the policy stuck in a local optimum; 2) “indirect constraint”
on the agent likely leads to dangerous behaviors once the

agent cannot generalize to unseen states properly in practice.

Encode all the feasible actions: Given the scarcity of
feasible actions, Fig. 2(b) suggests directly encoding all the
feasible actions into a valid action set that can be
constructed via an enumeration process [13]. Based on the
action set, algorithms like DQN can be applied to DDNR

Feasible

G

(Reward)

M, tlExch ange
Infeasible .

M, ,k 5 Generate
v

Cin

— — — (N
(Penalty) a,= Cy a;= Cp1 a=C/™"
(a) Penalize (b) Encode all (c) Limit (d) The proposed:
infeasible the feasible changes to generate feasible
configurations configurations configurations  configurations

Fig. 2. Four action strategies to produce configurations for DDNR.

without adaptation. While this strategy can guarantee a hard
constraint for Eq. (4), its scalability to the large-scale
DDNR problem is questionable. For instance, even with a
rate of 0.1%, the size of the valid action set constructed by
a PDN with thirty RCSs can be more than one million, thus
making the strategy incompetent to handle large-scale
problems.

Restrict action space: As shown in Fig. 2(c), a scalable
solution is to reduce the action space by restricting the
extent of topology changes. Concretely, in each decision
step, one RCS is selected to close and another RCS to open,
so as to exchange their on/off status. The action size is then
reduced from an exponential scale of 2/%s! to a polynomial
scale. For instance, assuming that a, = (ij;, ij,) selects a
pair of RCSs to close and open, its action size can be |E;]2 —
|E| + 1 [11], where |&|? — |&,] is the combination number
of (ijy,ij,) with ijy, ij, € & and ij; # ij,, and the one extra
action is the option to maintain the current configuration.
The action can strictly follow Eq. (4) using an action mask
M, € RI&-I&+1 The construction process of M, can be
referred to [11]. In My, My (;j, ij,) = 1if (ij1, ij) is a feasible
action, and M, ;, ;j,) = 0 if otherwise. Hence, a feasible
action can be sampled from a truncated conditional
probability distribution by:

ay ~ p(Cey1|Ce, My, s¢). ¥

For instance, it can be modeled in DQN by a; =
argmaxg,, (Qg(acls,) + ['(My)), where Qg outputs Q values
and I'(M,) is defined as —C,,(1 — M) with a large constant
Cn (e.g., C,, = 1e16). While the approach is more scalable
in computation than strategy (2) and more secure in practice
than strategy (1), it inevitably restricts the optimality of the
policy due to the action space reduction. In DDNR, the
number of RCSs to keep open is always a constant of the
number of tie switches, i.e., N;. It has to take up to N.¢-step
actions to reach an arbitrary configuration. Since DDNR is
implemented in a long-time interval, such a restriction on
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topology changes may hinder the agent from catching up to
the fast-varying dynamics of PDN, especially in large PDNs
owning more tie switches.

Proposed sequential masking strategy: A novel action
strategy based on a sequential masking process is proposed
to fully handle the fundamental constraints in Eq. (4) for
DDNR. The strategy is presented in Fig. 2(d), where a
feasible configuration is produced by sequentially
disconnecting lines (via RCSs) from a fully connected graph
of a PDN with the aid of masks. Its rationale is explained as
follows.

In the fundamental constraints, constraint (4a) states that
the network should be connected (i.e., only one connected
component), and constraint (4b) demands that the number
of nodes (i.e., |V|) should always be one (|G| = 1) more
than the number of connected lines (i.e., |E] — Xjjee, (1 -
bij,t))- Since constraint (4b) requires that there should be
|E] — [V| + |C| disconnected lines after reconfiguration, it
can be realized by sequentially switching off this number of
RCSs starting from a fully connected graph. However, this
cannot necessarily satisfy constraint (4a). Directly
penalizing the agent for the constraint can be of low
efficiency. Luckily, by decomposing the action space into a
sequence of sub-action spaces for constraint 4(b), we can
now guarantee constraint 4(a) by ensuring that the agent
only switches off one of the RCSs in cycles of the current
graph each time. It is obvious that cutting off a line in a
cycle will not cause disconnection of a graph, as there are
at least two paths to connect any two nodes having the line
between them. To force the agent to select RCSs in cycles,
action masks can be introduced and constructed based on
existing cycles to eliminate the probabilities of infeasible
action options. Finally, the sequential masking strategy is
finished with “sequential” decision-making for constraint
4(b) and “masking” for constraint 4(a).

Given the sequential masking strategy, for each
intermediate configuration Cf, a sub-action can be sampled
from a mask-truncated sub-policy distribution as follows:

af ~ p(CE|CEY, MEY s,), )

where k € {1,..., Ny}, aF € RI®! is the k™ sub-action at
time t, and M¥ € RI®s! is the k" binary sub-mask.

We now provide a simple yet likely not the most
algorithmically efficient implementation for its mask
construction: first search for fundamental cycles of the
intermediate topology CK, then fill one in M} for those
RCSs in the cycles and zero for the rest of RCSs. The
computation time of fundamental cycles (also cycle basis)
in NetworkX grows with 0(|V|ﬁ) bounded by 2 < <3
[26]. As N, sub-actions should be conducted, the
calculation time of masking grows with O(|V|# - N,). This
can be further improved by merging the neighboring nodes
whose connected line is not used for DDNR. Hence, the
vertex number is reduced, and the operation time can
roughly grow with O(|&|# - Ng).

Note that with recurrent calculation for generating sub-
policy and increased complexity for calculating masks
compared with the strategy in Fig. 2(c), our strategy

Safe DDNR via Sequential Masking
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Fig. 3. Sequential masking process in a decision step.

inevitably takes longer for training and inference.
Nevertheless, following offline training and online
inference, DRL can isolate such a computational burden
from online decision-making. Commonly, there is enough
time budget for offline training, and the increased inference
time (in milliseconds) can easily match the implementation
time interval of DDNR (in tens of minutes to a few hours
[11]). Overall, our proposed strategy can guarantee both the
reachability and safety of actions for DDNR and is
computationally viable for large-scale PDNss.

B. GRU-based Sequential Masking Process

The proposed method for flexibly generating network
configurations employs a sequence of sub-actions made in an
action step of DDNR, which can be described by a probability
chain rule below.

p(Cpr = C'%|s) = [IyE, p(CF|CE, MF Y s, (10)

where C, is a set of the current status of RCSs, CF is a set of
intermediate status of RCSs for calculation, a, directly applies
the last configuration C,'* after a sequence of sub-actions
delinking the edges from an initial configuration C?, where all
the lines are assumed to be connected. Note that CF is just a
feature 1in calculation and does not require actual
implementation in the PDN, which will be detailed in Section
III-C. Then, we demonstrate how an RNN-based agent can be
constructed accordingly to generate a sequence of sub-policy
distributions conditioned on the current state s, and the
previous intermediate configuration CF~*.

Recurrent neural networks (RNNs) are known for their
efficiency in sequential modeling. For instance, an RNN-based
seq-to-seq framework is used in Pointer Network [27] to solve
combinatorial optimization problems. In this paper, GRU, as a
widely used variant of RNNs, is employed to generate a
sequence of conditional probabilities defined in Eq. (10). The
calculation in a GRU cell can be briefly described by:

e = oW, - [hye—1, x5 ]7)

z = o(W, - [hy-1, xk]T)

~ ~ T
h’k = tanh (Wh . [T'k ® hk_l,xk] )’
he=(1—-2)Qh_y+hy ®z,

where & denotes element-wise product, 73, and z; serve as the
reset and update gates at the k" step, respectively, to control

(11)
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information flows delivered by input x;, and memory h,_,, and
W,, W,, and W), are optimizable parameters. A GRU cell
outputs h, for the next GRU cell and downstream neural
network (NN) modules. The calculation is simplified as h;, =
GRU(hy_4,x;). By conditioning h, on s;, h;, can be used to
pass state information for subsequent decisions. The
configuration Cf~* can be used as the input x;. Accordingly,
the function pg (CX|C¥™, s;; 0) can be parameterized by:

CF = g(GRU(hy_,, CE71), METD), (12)

where g(-) denotes a series of operations to convert the GRU
output hy, into the next C/ using the mask M}~*.

The sequential masking process is illustrated in Fig. 3. The
truncation of the probability distribution for infeasible
immediate configurations can be described as follows:

po(CE|CE™, MET, s) = Softmax (I + T(ME™)), (13)

where [¥ € RI®s! denote the logits output by the last layer of
NN at the current step k (assume NN to be stacked on GRUs),
and T'(MF~1) sets the invalid logits (corresponding to an
infeasible sub-action) in ¥ into extremely negative values
while valid logits remain unchanged. Given the truncated policy
distribution via Softmax, a sampling policy can then be applied
to pick a safe configuration, guaranteeing the flexibility of
action to reach any feasible C;,; in the one-step decision
regardless of the current configuration C;.

C. Off-policy DRL for Configuration Generation.

DRL algorithms used for solving DDNR problems are
mostly model-free and off-policy algorithms. These methods
can be majorly categorized into value-based (e.g., DQN [12])
and actor-critic-based DRLs (e.g., SAC [3]). We develop an
SAC-based neural agent for the proposed sequential masking
strategy considering that: 1) a policy-based agent that outputs
policy distribution is naturally more suitable for the proposed
sequential masking strategy than a value-based agent; 2) SAC
with entropy regularization for balancing exploration and
exploitation can be advantageous in algorithmic performance
and convergence stability for DDNR problems [11]; 3) oft-
policy SAC has a better sample efficiency than on-policy
algorithms that can also be adapted to the strategy, such as
proximal policy optimization.

Following soft policy iteration, SAC aims to simultaneously
maximize the entropy of the policy @ and the reward r, =
R(s;, a;) as follows:

max J(@) = Yier EBspapmry [R(se a) + aH (n(- Isp)], (14)

where 7—[(7'[(- |st)) = — Y, m(acls,) logm(a.|s,) calculates
the entropy of m given s;, 7,; denotes the trajectory generated
by m, and « adjusts the weight of the entropy. The soft policy
iteration of SAC can be described by:

Qr(span) « 1+ IEst+1~T,TV71:(St+1)
Vn:(st) < IEat~T,-, [Qn(st' at) + a?—[(n(- |St))]’
where V,; and Q,; are the state and state-action value functions,

respectively. Let the critic @, be parameterized by ¢ and
denoted as @y, and let the actor w be parameterized by 6 and

(15)
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Fig. 4. The actor-critic neural structure of the SAC agent for generating
arbitrary feasible configurations via a sequential masking process.

denoted as . SAC trains the critic using a time-difference (TD)
loss and the actor using policy gradients as follows [28]:

Voo (@) = V[ — Qup (seoap)|’i € (1,2}

. » (16)
Yye=nty min (Q&;i(stﬂ' Ary1) + a}[(ﬂe(' |St+1)))

Von(8) = —VoaH (s (- 5))=Va,Qp, (5, a) Voo (arlsy), (17)

where y, is the TD target. J, adopts a double DQN (DDQN)-
style TD loss by maintaining two delayed updated critics

{Q$i|i € {1,2}} to suppress value over-estimation, J, passes

policy gradients from the critic Qg, into the actor 7,.

The proposed strategy based on SAC is illustrated in Fig. 4,
where the state s; is first extracted by the fully connected
networks (FCNs) and then fed into the actor and critic,
respectively. During calculation, the current configuration C; is
defined as a binary vector [bi]-,t|ij € SS]T, the intermediate
configuration CF is a binary vector [1 - bikj_t|ij € SS]T to
represent the status of RCSs, and the initial configuration C? is
avector [1— bf} .|bj; = 1,ij € SS]T with all zeros to represent
a completely connected graph of a PDN at the outset. Such an
arrangement allows us to represent the sub-action af as a one-
hot vector, which is important for subsequent operations. The
one in af indicates which RCS is the next to open based on
Ck~'. Hence, once a sub-action af is obtained, the next
intermediate configuration CF is calculated by:

Ck = k1 + ak.

(18)

The simple additive operation allows gradients to be propagated
through forward calculation flows in agents. The final DDNR

action, i.e., the configuration CtN t_ can be obtained by summing
up all the sub-actions:

N, N,
at=Ct ts — ts .k

k=1%¢ -

(19)
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Algorithm Sequential-masking SAC for DDNR problems
Parameter:

N, — number of episodes, Ny — number of gradient steps,
N,s —number of tie switches, p — Polyak averaging factor,
7g> N> Ne — learning rates, 4 — annealing rate.

Input: 6 and {¢i, (f)l—|i € {1,2}} — parameters of the agent.
Output: m, for online execution.

Initialize replay buffer D « @ and target critics ¢; < ¢;.
forn < 1to N, do

1

2

3 Reset DDNR environment and obtain s;.

4 fort « 1to |T| do

5: Construct C? and calculate h? from s,.

6: for k < 1to N;s do

7 Construct sub-mask M¥.

8 Calculate (I¥, h¥) « mg(hk=1, Ck1).

9: Sample sub-action af « GumbelSoftmax(l¥ + logM¥).
10: Construct configuration Cf « CF™t + ak.
11: end

12: Obtain action a, « Y3 a¥.

13: Execute 5.1 « P(sy, ap) and 1, « R(s;, ap).
14 Save transition by D « (s, a;, 13, S¢41) U D.
15: end

16: for i < 1to Ng do

17: Sample mini-batch B~Uniform(D).

18: Update critics by ¢; < ¢; — %lvd,ijQ (¢p0).

19: Update target critics by ¢; < p; + (1 — p)@;.
20: Update actor by 6 « 6 — %”lvgj,,(e).

21: Update @ by a « a—%va]a(a).

22: end

23: Anneal target H by H « - H.

24: end

One can simply use C;,; = 1 — a; to implement a,. With this
differentiable masking process, the GRU-based agent can
explore the complex action space safely and scalably and can
be optimized efficiently by back-propagation algorithms.

There are two adaptations of SAC to the designed learning
framework. First, SAC was originally proposed for continuous
actions [28], whereas the agent in Fig. 4 features a discrete and
one-hot action representation. Hence, a re-parameterization
trick called Gumbel softmax [29] is adopted to build a discrete
and stochastic policy for the actor and approximate policy
gradients delivered from the critic. The mask-truncated Gumbel
softmax distribution is formulated as follows:

pe (CK|CE™) = softmax ((l{‘ +T(MF) +€) - T‘q_l)

, (20
€ = —log(—logu), u~Uniform(0,1)

where [ is output from the last layer of NNs stacked on the
GRUs, as shown in Fig.4., € is the sampled value from the
Gumbel distribution, and 7, is the temperature coefficient.
Gumbel softmax operation proves to be equal to sampling from
the corresponding softmax distribution, but the operation is
differentiable. A straight-through conversion [29] can be used
to generate actions in one-hot representation by:

af = const (z — pg (CE|CE)) + po(CE[CE™. 21
where const(+) cuts off gradient passing, and z represents the

one-hot vector obtained by z = argmax (pg (Ctk|Ctk+1)) .

With the conversion, a differentiable binary-vector operation in
Egs. (18) and (19) can be realized.

— Switchable o Bus

Renewable Dynamic
line ® generation v

demand

i (D Transformer

Fig. 5. A modified IEEE 33-bus PDN for the DDNR problem.
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Fig. 6. Daily variation patterns of different data sources.

Second, the entropy evaluation should be adapted to the
framework accordingly. Theoretically, given the action
probability pg(a;ls,) = [T pe(CE|CE), the entropy is
evaluated to be —E, .. logpg(als,) , which may be
numerically unstable due to the long probability chain. Also, it
is inconvenient to calculate the theoretical maximum
entropy to facilitate a more tunable entropy regularization
(i.e., H=1log|A| and |A| counts the total number of
infeasible actions of DDNR). It is common to set a certain

. : . 3t (m("Ise))
entropy ratio for discrete policy, e.g., H—O.98 [30].

Hence, we approximate the entropy ratio using the sum of
entropies of each sub-action by:

Nes }[<p9(ctklctk_1)>

at~Tg Hk=1

~—E , (22)

x| T

Eslyrk
Nis-log Zlizsll Mt,i

where H, denotes the approximated entropy normalized into
[0,1] using the single-step maximum entropy (log Zlisll Mgfi).
One can maintain a certain entropy level for SAC by
dynamically adjusting the weight a to balance exploration

and exploitation as follows [31]:
H ~
V(@) = Vaa (% - H),

where H is the target entropy ratio for the agent to track. With
these adaptations, SAC can be trained stably for DDNR to
generate configurations flexibly and safely.

D. Pseudo-codes of the Proposed Method

(23)

The detailed implementation of the proposed DRL method
for the DDNR problem is summarized in Algorithm.

V. CASE STUDY

The section examines the proposed method in various cases
with different system scales and uncertainty levels and
compares it with typical benchmarks and action strategies in
terms of performance and behavior patterns.
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A. Environmental Settings

The proposed method is first tested on the IEEE 33-bus PDN
[7], which is modified to enable DDNR, as illustrated in Fig. 5.
Five tie lines (i.e., N;; = 5) equipped with tie switches are
added to the network, connecting buses 25-28, 17-30, 7-22, 8-
13, and 11-33. Ten lines are chosen to be equipped with
sectionalizing switches, including lines 6-7, 7-8, 9-10, 11-12,
14-15, 19-20, 23-24, 26-27, 28-29, and 30-31. The PDN is
assumed to operate at a low-voltage level of 15kV. For
modelling the real dynamics and uncertainty in practice, the
real-world power demand data is adopted to simulate power
dynamics at buses from 2 to 33, referring to [25]. To tackle
operation challenges in the presence of high-penetration RESs,
DDNR is applied to wind power (WP)-dominated and
photovoltaics (PV)-dominated PDNSs, respectively, which is
realized by real-world time series of WP [32] and PV [25]. The
patterns of these time series are presented in Fig. 6. RESs are
assumed to be installed at buses 14, 18, 21, 25, and 29, with a
rated capacity of Sig = 2000 kW. Maximum loads of each bus
are increased by 1.5 and 2 times for wind and solar power-
dominated PDNs, respectively. For the reward, C, and C, are
set as 0.13$/kWh and 1$/switching, respectively, referring to
[3]. With voltages in p.u., C, is set as 10 to penalize excess
voltage deviations. To balance the multiple goals, k,, and k,
are set as 1 and 0.023, respectively. 7. is set as 100 to
penalize the actions violating (4). The decision interval is set
as 1 hour, and an episode has 24 decision steps in a day. During
training, the one-year time series of renewables and demands
are used to simulate PDNs, and one hundred episodes simulated
by the next-year data are used for evaluation. In each episode,
PDNs start to operate with tie switches opened and
sectionalizing switches closed [3].

B. Settings of the Proposed Method and Benchmarks

Various benchmarks are employed to demonstrate the
advantages of the proposed method. Given the discrete action
space, the value-based DDQN [12], [23], [16] is used for
comparison with the actor-critic-based SAC [3], [33], [11].
Programming methods [7], [3] are also used to calibrate the
relative performance of DRLs. They are given as follows.

SAC-S (Ours): It denotes the proposed sequential masking-
based SAC algorithm.

SAC-V & DDQN-V: They sample actions from a valid
action set that encodes all the feasible actions according to [13].
In this case, the total number of feasible actions is 609,
compared to its original vast action space of 2%/ = 32768

with || = 15, leading to a rate of feasible actions of 1.86%

at a decision step.

SAC-E & DDQN-E: Their action space is restricted by the
rule of “exchanging the status of a pair of RCSs” with a size of
|E1% — |E| + 1 = 226. At each step, they utilize a mask to
avoid the violation of the radial constraint in Eq. (4). The total
number of links via “status exchange” between any two
feasible configurations amounts to 6182, leading to a rate of
feasible actions of 9.43% on average at a decision step.

SAC-R: It adapts a reward-based approach to address
infeasible actions. A large penalty will be returned if the

TABLE I: CRITICAL HYPERPARAMETERS FOR TRAINING DRLS

Hyper-parameter Value Hyper-parameter Value
Batch size | B| 32 Number of episodes N, le5
Replay buffer size |D|  3e5 Number of gradient steps Ny 10
Discount factor y 0.96 Polyak averaging factor p le-3
Learning rates 1, 1o le-4 Annealing rate 1-5e-5
Learning rate 1, le-3 Decay rate of DDQN 1-5e-5

Initial entropy target H  0.98

constraint in Eq. (4) is violated, after which an episode is
terminated. As the agent may frequently sample infeasible
actions, the action space of SAC-R is encoded in the same way
as SAC-E with a higher action feasibility rate, referring to [12].
Since the €-greedy exploration strategy of DDQN induces
frequent violations that diverge the learning process, DDQN is
not adopted for comparison.

SSO: With the complete and accurate parameters of a PDN,
the MIP model can be used to implement single-step
optimization (SSO) of DDNR, referring to the model described
in Appendix [7], [34]. Therefore, MIP is used to demonstrate
the gaps between model-free DRL methods and the traditional
model-based benchmark.

MPC: Considering the dynamic-programming nature of
DDNR, we also provide the solutions produced by a model
predictive control (MPC)-like benchmark, referring to [3],
which optimizes multiple future decision steps at a time and just
implements the solution to the current decision. Instead of using
predicted parameters, our implementation directly incorporates
the accurate future parameters, so as to present “almost optimal
solutions” for calibrating the performance of other methods.
Four future steps are considered in this case, given its
computational burden.

MPC-E: It is MPC constrained by the same restricted action
space as that of SAC-E, in order to present the “almost actual”
performance gap incurred by the action strategy of SAC-E.

DRL methods use consistent hyper-parameters for a fair
comparison, and the critical ones are provided in Table I. The
DDQN agents (Q networks) and critics in all the SAC agents
are built by 100x4 FCNs. For the actors in SAC agents, SAC-E
and SAC-R employ 100x4 FCNs, and the proposed SAC-S
encodes state features by using 100x2 FCNs and then generates
sub-actions by stacking a 100x1 GRU and 100x2 FCNs. Three-
step historical features (|73,;5:| = 3) are used for learning. FCNs
use the ReLU to introduce non-linearity.

In the case study, we emphasize comparing different DRL
action strategies to promote our proposed strategy for various
data-driven applications based on DDNR. Comparisons
between DRL and model-based methods are majorly used to
provide approximate optimality gaps (e.g., MPC/MPC-E) and
comparative insights (e.g., SSO). In practice, comparisons
between model-based and model-free methods rely on various
settings, such as the sufficiency of system observation [18], the
accuracy of state estimation [3], and the costs of switching [11].
This paper assumes complete and accurate observations with
proper switching costs [3] for model-based benchmarks,
showing theoretical gaps for various methods. The performance
and scalability comparison of model-free methods with various
action strategies is of higher importance in the following
subsections.
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Fig. 7. Learning curves of different DRL methods on 33-bus PDNs.

TABLE II: EVALUATION ON PV-DOMINATED PDN (LOW UNCERTAINTY)

Peost Acost V, R,; Ga

Method - 10 0h) 8) NoT)  (5) G o S (%I)J
NoDDNR | 2450 3184 - - 457 37.04 -57.1 2487
MPC | 1780 2314 177 177 293 429 -164 0
MPC-E | 1828 2377 163 163 301 471 -17.0 36
$SO 1836 2387 190 191 3.11 621 -182 108
DDQN-E | 1894 2462 216 216 326 667 -19.1 168
DDQN-V | 1941 2523 759 759 325 533 -201 229
SAC-R | 2218 2884 122 122 336 1258 -23.0 403
SAC-E | 1806 2347 123 123 3.1 483 -174 6.1
SAC-V | 1793 2332 204 204 300 446 -169 3.0
SAC-S (Ours)| 1800 2341 260 260 301 446 -17.1 45

Note: Score is the average accumulated reward Y,.c7 13, NoT is the number
of times of switching, R,;,; is the average rate of voltage violation, Gap is the
performance gap with the best Score.

TABLE III: EVALUATION ON WP-DOMINATED PDN (HIGH UNCERTAINTY)

Peost Acost V, Ry; Ga

Method o S o) 8) o) () SO )
NoDDNR | 3523 4580 - - 473 4054 653 3939
MPC | 2224 2892 287 287 210 212 -132 0
MPC-E | 2200 2977 238 238 221 333 -144 87
SSO | 2344 3047 309 309 248 396 -159 20.6
DDON-E | 2613 3398 413 413 283 838 -206 559
DDON-V | 2680 3484 780 780 285 688 -210 58.7
SACR | 2688 3495 56 56 310 11.62 237 794
SAC-E | 2464 3203 153 153 268 621 -180 364
SAC.V | 2383 3097 312 312 257 433 -164 240
SAC-S (Ours)| 2323 3020 394 394 255 388 -163 23.1

C. Learning Curves of DRL Methods

The learning curves of DRL methods are illustrated in Fig. 7.
The major observations are given as follows. 1) The learning
curves of the PV-dominated PDN feature noticeably lower
variance, and their Scores (accumulated rewards) are closer
than that of the WP-dominated PDN due to much lower
uncertainty of PV as shown in Fig. 6. 2) Most DRLs can
converge stably except SAC-R, demonstrating that frequent
large penalty is prone to result in learning inefficiency and
hinder performance. 3) SACs learn better than DDQNs likely
due to their policy-based exploration strategy and entropy
regularization. 4) SAC-S presents a close learning curve to the
best-performing SAC-V, showing that it allows the agent to
reach any feasible configuration freely like SAC-V. Also, SAC-
S can outperform SAC-E to prove that the action space
reduction does restrict optimality.
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Fig. 8. Typical operation patterns of the PV-dominated PDN.
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Fig. 10. Daily number of times (NoT) of switching on average

D. Comparative Analysis of Different DDNR Methods

The evaluation results averaged over one hundred episodes
are presented in Tables II and III. Regulation dynamics are
visualized in Figs. 8 and 9. Without DDNR, the PV-dominated
PDN has a severe voltage violation rate due to the concurrent
PV generation from 10 am to 2 pm and heavy power demand
after 8 pm, as illustrated in Fig. 8. Likewise, concurrent WP
generation can also insecure PDN and cause over-voltage issues.
The difference is that the timings of concurrent WP generation
are irregular and hardly predictable compared to PV generation.
For instance, in Fig. 9, WP can even lead to voltage-violated
durations twice a day, i.e., before 6 am and around 2 pm. Such
an uncertainty of WP inevitably makes the problem challenging.

It is undoubtful that PDNs with an effective DDNR can
operate more securely and economically. Among these methods,
MPC incorporates accurate future parameters to eliminate
uncertainty to outperform others easily. Calibrated by the Score
of MPC, the Gap of Scores is used to evaluate the relative
performance of other methods, as shown in Tables II and III.
We offer the following conclusions in terms of comprehensive
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Fig. 11. Distribution of visited configurations on PV-dominated PDN.

performance. 1) The increased uncertainty of WP causes a
considerable Gap (over 20%) between MPC and the remaining
methods due to larger prediction errors than in the cases with
PV generation (they have smaller Gaps less than 10%). 2) SAC-
V and SAC-S have similar Scores, verifying the effectiveness
of the sequential masking strategy to address the DDNR action
space. 3) SAC-S/V can perform better than SAC-E consistently
on both PDNs (e.g., the WP case shows a Gap of around 10%),
proving that the reduced action space of SAC-E does restrict
performance. 4) The Gap incurred by the “-E” constraint can
also be reflected by comparing MPC and MPC-E, which is
enlarged by an increased uncertainty from 3.6% with PV to 8.7%
with WP. MPC-E outperforms SAC-S/V in the WP case,
reflecting the potential of SAC-E. However, the larger
uncertainty entails frequent configuration changes and reduces
predictability for dynamics, making it more challenging for
SAC-E to plan for a configuration in advance. 5) DDQNs
deliver poorer policies than their SAC counterparts, and
interestingly, DDQN cannot handle the valid action set
sufficiently, leading to a poorer Score of DDQN-V than that of
DDQN-E in both cases. DDQN-V with the € -greedy
exploration may have a higher possibility to sample
unfavorable configurations than DDQN-E to reduce its learning
efficiency, as indicated by the lower curves of DDQN-V
throughout training in Fig. 7. 6) SAC-S is 5% better than the
model-based SSO in the PV case, whereas they have similar
results in the WP case. It shows that DRLs can be more
advantageous when PDN dynamics are more predictable, so
that DRLs can make more preventive decisions considering
future scenarios. Note that a higher action cost can further
enlarge gaps between SSO and DRLs [11]. 7) SAC-R cannot
deliver sound solutions to DDNR with frequent penalties.

As for voltage regulation (a security range between 0.95 p.u.
and 1.05 p.u.), PDNs suffer voltage violations in around 40%
of operation time without DDNR. In contrast, an effective
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Fig. 12. Distribution of visited configurations on WP-dominated PDN.

DDNR can significantly reduce the violation rate to less than
5%. Average voltage deviations (V) are generally consistent
with their Scores. In the PV-dominated case, the voltage
profiles are quite similar due to less uncertainty, as shown in
Fig. 8. In contrast, they have distinct voltage dynamics in the
WP-dominated case. For instance, SAC-E, which cannot switch
to an ideal configuration in one step, is likely to infringe the
security code (e.g., at 1 am and 4 pm in Fig. 9). In contrast,
SAC-S, closely approximating SAC-V, has lower risk of
violations to show that its action strategy can definitely benefit
DDNR problems.

DDNR achieves around 50$ and 1008 savings (P,os: + Acost)
per day in PV and WP-dominated cases, respectively. There is
no significant difference in power loss optimization among
these methods except SAC-R, as power losses are less sensitive
to topological changes. On the contrary, they present
inconsistent NoTs of switching due to adopting different action
strategies as will be analyzed in Section IV-E.

E. Action Pattern Comparison and Analysis

The NoTs of switching are illustrated in Fig. 10. We give the
following observations: 1) The NoT of switching grows fast
when dynamics change significantly. Switching actions
increase fast in two stages in the PV case, i.e., the initial stage
with a default configuration at 0 am and the stage of varying PV
and demand between 8 am and 7 pm. In the WP case, however,
WP varies intermittently throughout the day, leading to evenly
implemented switching actions after the initial stage. 2) Owing
to the action space reduction, SAC-E and SAC-R act less
frequently than others in both cases, restricting their optimality.
3) Exploring in the same action space, SAC-S generally acts
more frequently than SAC-V. The increased switching may
result from the recurrent calculation of sub-actions in SAC-S,
where a long probability chain may preferably generate more
diverse configurations between successive states than SAC-V.
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Fig. 13. Number of actions for SAC-E to jump between four major
configurations exploited by MPC in the PV-dominated case.

Nevertheless, SAC-S can still deliver competitive results like
SAC-V but has better scalability than SAC-V.

The distributions of visited configurations are illustrated in
Figs. 11 and 12, where the x-axis is the configuration number
(a total of 609 in the cases) in an arbitrary order, and diversity
means how many different configurations are visited. In the
PV-dominated case, the configuration diversity is low since the
PDN has regular dynamic patterns. Four critical configurations
(ID and the on/off status of fifteen RCSs) identified by MPC
are 247 (011001111101101), 341 (111001101011110), 352
(011001111011101), and 569 (011011111101001) in Fig. 11. It
can be found that SAC-E fails to identify configuration 341 in
Fig. 11, which requires at least two decision steps (i.e., the “E”
action) for SAC-E to reach it from the other three configurations,
as illustrated by Fig. 13. It reveals the difficulty for SAC-E to
learn the optimal solutions. The same may apply to a harder task
in Fig. 12, where optimal solutions frequently jump among
distinct configurations due to fast-varying states, making it
more challenging for SAC-E to approach optimality. The
comparison between MPC and MPC-E reveals that though
MPC-E can effectively identify the configuration 341 missed
by SAC-E, its visitation distribution is proportionally different
from that of MPC due to the “-E” constraint due to using more
intermediate configurations to reach configuration 341. In
contrast, SAC-S and SAC-V capably identify the four
configurations, though their proportions may slightly deviate
from that of MPC. Tasks become challenging in WP cases, as
stochastic WP generation produces various operation dynamics.
It can be reflected by the significantly increased diversity of
MPC actions. Due to the dimensionality curse, it is always
challenging for DRLs with finite sampling times to search for
the best configurations. Hence, DRLs tend to exploit tens of
configurations to tackle the complexity, whereas the model-
based methods can directly calculate the best solution to their
linearized model. Interestingly, SAC-E presents a greater
diversity than SAC-V and SAC-S, likely because SAC-E has to
visit more temporary configurations to reach expected
configurations in the fast-varying dynamics.

F. Hyperparameter Sensitivity and Training Stability

DRL is often sensitive to hyperparameters and may converge
unstably during training. This section presents the
hyperparameter sensitivity of our method (SAC-S) by
comparing it against its strong competitor, SAC-E, and
illustrates its learning stability under different hyperparameter
settings. Five critical hyperparameters are selected from Table
L, ie., the discount factor y, learning rate 17, /1q, number of

‘WP-dominated PDN

o
Original settings § —45 4
7:0.96 — 0.98 2]
/Mg :0.0001 — 0.0005
N;:10—15 —60 4
£:0.001 - 0.005
:0.9999 — 0.9995

PV-dominated PDN

T =75 T T T
100k 0 25k 50k 75k

Episodes

0 25k S0k 75k 100k
Episodes

Fig. 14. Training stability of our method with different hyperparameters.

TABLE 1V: HYPERPARAMETER SENSITIVITY EVALUATION ON PV- AND WP-
DOMINATED PDNs

PV-domin. PDN WP-domin. PDN
Hyperparameters Explanation (low uncertainty) (high uncertainty)
Ours SAC-E  Ours SAC-E
Original settings - -17.1 -17.4 -16.3 -18.0
y:0.96 = 0.98 Longer sighted | -16.9 -17.6  -16.6 -17.8
Ne/Nq: le-4 > Se-4| Larger grad. step | -17.0 -17.2 -16.5 -17.8
Ng: 10— 15 More grad. steps | -17.7  -17.8 -16.3 -18.1
p: le-3 - 5e-3  |Less delayed critic| -16.9  -17.3 -16.3 -17.7
u: 1-1e-4 - 1-5e-4| Less exploration | -17.3  -18.0  -16.5 -18.8
Average Score -172 -17.6 -16.4 -18.0
Average Gap (%) 0 2.3 0 9.8

gradient steps N;, averaging factor p, and annealing rate y.
Each one is moderately modified to form a new set of
hyperparameters for evaluation.

The training curves of SAC-S are presented in Fig. 14, and
numerical results compared with SAC-E are given in Table IV.
The converged training curves in Fig. 14 have small variances
after sufficient training rounds, showcasing that our method can
learn efficiently and stably for the DDNR problem with proper
hyperparameters and under typical reward shaping [3], [25].
Table IV validates that the evaluation performance of SAC-S is
less sensitive to proper hyperparameters, though reducing the
exploration rate ( u ) unsurprisingly compromises the
performance of both SAC-S and SAC-E. Results reveal that
SAC-S can consistently outperform the SAC-E even in the low-
uncertainty case (i.e., a small but valid average gap of 2.3%),
and the restricted action space does limit the performance of
SAC-E, especially when facing high uncertainty in PDNs (i.e.,
an average gap of 9.8%).

G. Evaluation on Large Power Distribution Network

We also evaluate the proposed method on a larger IEEE 118-
bus PDN [3], as demonstrated in Fig. 15, to present the
scalability of the proposed method. In this case, fifteen tie lines
(red dotted lines) are assumed (i.e., N,z = 15), and twenty
normally connected lines (red solid lines) are selected for
DDNR. The system is assumed to operate at 10 kV. Both PV
and WP generation are considered in the PDN. Six PV and WP
plants with a rated capacity S/ of 3000kW are assumed to be
distributed in the PDN. As power loss increases by around three
times, k, is set as one-third of the one used in the 33-bus PDN,
and C, is assumed to be 2$/switching. Hyperparameters are
consistent as before, except that hidden layers are increased
from 100 to 200 for every agent, and MPC solves three-step
decisions considering the increased problem scale.
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Fig. 15. A modified IEEE 118-bus PDN for the DDNR problem.

TABLE V: EVALUATION ON 118-BUS PDN WITH MIXED RENEWABLES

Peost Acost V. Ry; Ga,
Method 1 S Mo 8 () () S )
No DDNR | 11371 14783 - - 5.85 6192 -93.5 4715

MPC 7260 9438 450 899 271 287 -164 0

MPC-E 7428 965.6 358 71.6 286 292 -172 5.1
SSO 7641 9933 425 851 3.03 421 -188 15.1
SAC-R 8144 1058.8 104 20.8 390 20.08 -334 104.1
SAC-E 7551 981.6 28.0 560 3.09 358 -18.6 13.5

SAC-V - - - - - - - -
SAC-S (Ours)| 7434 966.5 682 1364 292 3.00 -18.0 10.1

With such a setting, even with an action feasibility rate of
0.01%, the number of feasible configurations can be more than
one million (235 x 0.01%), making SAC-V inapplicable to the
problem. The evaluation results averaging over one hundred
episodes are given in Table V. SAC-R can learn even worse
policy on the large-scale PDN with a Gap of more than 100%.
In the problem scale, while SAC-E is more computationally
scalable than SAC-S (heavy calculation of RNN recurrence and
masking operations), SAC-E is more inflexible in the aspect
that it has to take more steps to reach an optimal configuration
(the number of steps is fifteen at most between two
configurations compared to just five in the 33-bus case).
Combining these pros and cons, SAC-S can still deliver a better
result than SAC-E and SSO, showing its greater potential to
benefit PDN operators as a data-driven and model-free
alternative to traditional methods. Note that RNNs may suffer a
gradient vanishment problem once the recurrent gradient path
is too long. Hence, there is definitely some room for
performance enhancement using more advanced neural
structures, such as attention mechanisms [35]. The proposed
strategy can be compatible with such improvements, inspiring
others to strengthen data-driven solutions.

H. Comparison with A Different Sub-Action Strategy

Another feasible way to implement our learning framework
is to use “exchanging the status of a pair of RCSs” as a sub-

TABLE VI: COMPARISON WITH A DIFFERENT SUB-ACTION STRATEGY

Peost Acost V, Ry Gaq,
Method iy ® en G G o S )
PV-Dominated PDN (low uncertainty)
SAC-S (Ours) | 1800 234.1 26.0 260 3.01 446 -17.1 0
SAC-SE-Stat. | 1802 2342 206 20.6 3.05 463 -172 09
SAC-SE-Dyn. | 1911 2485 142 142 3.11 625 -179 47
WP-Dominated PDN (high uncertainty)
SAC-S (Ours) | 2323 302.0 394 394 255 3.88 -163 0
SAC-SE-Stat. | 2407 3129 225 225 262 504 -167 28
SAC-SE-Dyn. | 2468 3208 16.0 160 263 546 -17.2 55

action since it takes at most N, steps to reach an arbitrary
configuration. Two major modifications are made to adapt our
learning framework to the sub-action strategy: 1) Since sub-
actions have a variable number of decision steps, we add a
“Stop” option in the sub-action space for DRL to make no
configuration change and stop selecting the next sub-action.
Also, the number of sub-actions will be capped by N;. 2) As
these new sub-actions have no additive relation in Eq. (19), we
concatenate and feed them into the critic network. For those
numbers of sub-actions less than N;;, we pad the rest of the
action vector with one-hot vectors that select the “Stop”
option.

There are two different ways for DRL to learn the new sub-
action strategy. A natural choice is to let DRL generate sub-
actions starting from the current configuration C;, which is
dynamic in the learning process. In contrast, it is also possible
to always start with a static initial configuration C, since the
PDN only implements the final configuration constructed by all
the sub-actions. The latter one is similar to the proposed SAC-
S. Hence, two benchmarks based on the sequential-masking
learning framework and “exchanging-status” sub-actions are
named SAC-SE-Dynamic and SAC-SE-Static for comparison.

The numerical results of cases with different uncertainty are
presented in Table VI. It can be found that: 1) SAC-SE-
Dynamic delivers poorer Scores in both cases, revealing that
dynamic initial configurations may lead to higher learning
difficulty for DRL. A reason may be that DRL has to learn more
transitions from a given configuration C, to a target
configuration C;, ;. Specifically, if there are n configurations to
be frequently visited, there will be at most n(n — 1) transitions
of configurations for DRL to explore, in order to jump between
any two of these configurations. In contrast, DRL can only
exploit at least n transitions from a static initial configuration
C, to the target configuration C,. 2) SAC-SE-Static shows a
close performance to SAC-S, showing the potential of
integrating other sub-action strategies into our learning
framework. SAC-SE-Static falls slightly behind SAC-S in the
high-uncertainty case, probably due to their nuances in the sub-
action behavior (e.g., an extra “Stop” option) and sub-action
space (e.g., different dimension and sparsity). 3) Their Scores
are noticeably better than the Score of SAC-E (i.e., -18.0) in the
high-uncertainty case, demonstrating the effectiveness of action
space decomposition in tackling the complex action space of
DDNR. 4) SAC-SEs present less action cost than SAC-S, as the
“Stop” option of SAC-SEs may result in more actions with
fewer NoT of switching than SAC-S during exploration.
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VI. CONCLUSION

This paper proposes a sequential masking strategy to
effectively address the vast and constrained action space of the
DDNR problem. A GRU-based SAC algorithm with scalable
and data-efficient features is designed for the proposed strategy.
Three types of typical DRL methods for DDNR are reviewed
and compared to demonstrate the motivation and advantage of
the proposed strategy. Comparative case studies are conducted
with various benchmarks, and the results conclude that:

1) Compared with other DRL benchmarks, the proposed
method (SAC-S) can

* significantly outperform SAC-R with a gap of 34.5%,
45.4%, and 85.6% in cases with different uncertainties and
system scales, showing that “penalizing infeasible action
in the reward” is not a proper solution for DDNR.

* consistently outperform SAC-E in various cases with a
large gap of 10.4% in the high-uncertainty case while a
small gap of only 1.7% in the low-uncertainty case,
revealing that SAC-E with a restricted action space can
only be a good choice for scenarios where system
dynamics vary slowly and deterministically.

* be more scalable than SAC-R in the large-system case
despite similar performance in small-system cases, as the
neural agent is highly inefficient in training with millions
of feasible configurations as its output layer.

2) DRLs can achieve a minimum optimality gap of 4.5% with
the approximated optimum (MPC) in the low-uncertainty case,
in which the proposed method can surpass the model-based
SSO. In contrast, the gap is larger with 23.1% in the high-
uncertainty case, showing that uncertainty is a key factor to
impact relative performance of DRL in DDNR.

3) DRLs tend to exploit around 5 to 10 times less diverse
configurations than model-based approaches, especially in the
high-uncertainty case. This reflects a generalization challenge
of DRLs trained by finite sampling times in handling a vast
combinatorial action space.

The proposed method further strengthens the data-driven
solution to DDNR, serving as a valuable model-free option to
operate PDNs more securely and economically.

Finally, it is worth noting that in this study GRU is used to
build the agent due to its structural suitability for modeling the
probability chain of decomposed sub-actions and its
computational simplicity compared with LSTM and attention
modeling. This allows us to focus on the actual performance
enhanced by the proposed action strategy. Besides, SAC is
adopted for algorithmic optimization thanks to its higher data
efficiency as an off-policy algorithm than on-policy
counterparts like REINFORCE and PPO and its greater
performance than Q-learning algorithms like DDQN. In the
future, one may equip the proposed strategy with more
advanced NN structures like graph NNs (GNNs) and
Transformers for further improvement. Moreover, some DRL
techniques like imitation learning that incorporates expert
knowledge or advanced exploration strategy may also be
instrumental in searching for promising solutions to tackle the
challenge posed by the constrained and vast action space of
DDNR.

APPENDIX

The mathematical formulation of the DDNR problem for
MIP is given as follows.

min ka€U+k CPL+CA
{bijc|lt € Ss,tET]; vit e(CoP WAt) 24)

subject to

Vie = Vie < (1= bijc )M + Rijpijc + Xijije,

Vi,j €N, Vij €E (243)
Vie =Vje 2 (bij,t - 1)M + RijDije + Xijijes
Vi,jEN,VijEE
Yjea@ Pijt = Pii - Pi‘,it, VieN (24b)
Yjcaw dije = Q@ — Q. VIEN
Bijt + Bjit = bij¢, Vij € E
Yjeaw Bije = LVIEN (24c)
Boje = 0,Vj € Q(0)
v 2
=) 24d
V=V, —1,VieN (24d)
V> 11—V, ViEN
Pt = Yijee Rij(pfie + air) (24e)
Ar = Yijes Aijr
Aije 2 bije = bije—1, Vi € E (24f)

@ije = byjeq — byj, Vij €EE

Constraints (24a) are the linearized DistFlow model [34] that
approximates line flow equations in Eq. (1), where a big M
constant is used to introduce the binary switching variable b;; ,,
and R;; and X;; are line resistance and reactance, respectively.
Constraints (24b) are power balance equations at each node.
Constraints (24c) are the spanning tree constraints [7] to
guarantee a radial topology of PDN, where Q(i) is a set of
adjacent nodes to the node i, f3; ; is the binary variable, and i =
0 means the root node (a substation) of a PDN. Constraints (24d)
define the voltage penalty V2’ for the maximum voltage
deviation V™, normalized by a security margin Vg . The
constraint (24e) defines the total power loss P{. The constraints
(24f) define the total NoT of switching A,, where a;; , counts
the status change of an RCS.

For the consistency with the bowl-shaped voltage reward in
Eq. (7), V4" is then modified as follows.

VSV —IM
Ve 2 V(¢
VPV~
Vtv 2 0 (25)
vE\° AL
Ve = (=) +C,—
= (1) +ap

where { is a binary variable, and variables V; and V¥ are
defined as safe and violated voltage deviations, respectively.
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