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Online Power System Dynamic Security
Assessment: A GNN-FNO Approach Learning

from Multi-Source Spatial-Temporal Data
Genghong Lu, Siqi Bu Senior Member, IEEE

Abstract— Data-driven online dynamic security assess-
ment offers system operators a computationally efficient
approach for monitoring system dynamics. However, the
challenges of processing multi-source spatial-temporal
data from different measurement systems remain unsolved,
thus resulting in potentially biased results. In addition,
most existing data-driven dynamic security assessment
methods that focus on state estimation/prediction over-
look the fault location identification, which is important
to real-time decision-making. To address the above limita-
tions, an advanced online dynamic security assessment,
which learns system dynamics and fault characteristics
from multi-source spatial-temporal data, is developed. Con-
sidering the challenge posed by different sampling rates
and sensor numbers, global and local spatial-temporal data
from various measurement systems are modeled as graphs
with different numbers of nodes and edges. Then, two
different sets of graph neural networks are customized to
learn global and local spatial-temporal features, respec-
tively. With the learned multi-source spatial-temporal fea-
tures, a Fourier Neural Operator-based dynamics trajectory
predictor and a multilayer perceptron-based fault location
identifier are developed for the advanced online dynamic
security assessment. Case studies on IEEE 39 Bus System
and IEEE 118 Bus System validate the effectiveness and
efficiency of the developed online dynamic security assess-
ment.

Index Terms— Dynamics trajectory prediction, fault loca-
tion identification, multi-source spatial-temporal data, on-
line dynamic security assessment

I. INTRODUCTION

Given the increasing penetration of renewable energy re-
sources (RES), which introduces significant uncertainties and
complicates the dynamics of the power system, online dynamic
security assessment (DSA) [1] is pivotal for ensuring the se-
cure operation of the power system. To alarm operators in the
event of an unsafe condition, system dynamics are monitored.
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Model-based approaches [2] (e.g., time-domain simulation and
direct methods) leverage the mathematical models of power
system dynamics to provide accurate results. However, they
are too time-consuming to be applied in a real-time manner
[3]. To further facilitate computational efficiency, data-driven
approaches, such as long short-term memory (LSTM)-based
and graph neural networks (GNN)-based approaches [5]–
[7], are developed. Although data-driven approaches excel at
modeling nonlinear relationships for real-time power system
dynamics prediction, their performance is highly sensitive to
data processing quality. In particular, the efficient extraction
of spatial-temporal features from heterogeneous power system
data significantly influences the learning and modeling of
dynamic behaviors [4]. A matrix mapping operation is adopted
to map the 1-D phasor measurement unit (PMU) data into a 2-
D measurement matrix [6]. Then, a CNN module is designed
to learn the implicit spatial-temporal features. Another solution
is to model a power system with N bus and M transmission
lines as a graph with N nodes and M sets of edges [8]. Then,
GNNs are employed to process the operation and topology
information of the preprocessed graph-structured data.

Although the existing online DSA with spatial-temporal
resolution exhibits superior learning performance, the above-
mentioned approaches only use single-source data as model
inputs. Data from various measurement systems provides more
comprehensive system information, which can enhance the
situation awareness of the power system dynamic security.
However, challenges of implementing multi-source data from
different measurement systems, e.g., supervisory control and
data acquisition (SCADA) system and wide area measurement
system (WAMS), remain unsolved. For example, the SCADA
system provides global system measurements using widely
deployed remote terminal units at a low sampling rate, while
WAMS reports state measurements through PMUs installed on
key substations at a high sampling rate. Therefore, different
sampling rates and installation schemes pose challenges of
integrating and processing hybrid measurements from diverse
sources.

Facing the challenge of different sampling rates, a high
temporal-spatial resolution using graph convolutional networks
(GCNs) is developed [7]. SCADA measurements and PMU
measurements at time t are processed independently by two
distinct GCNs. Then, the learned features are concatenated
to estimate the whole system states at time t. This method
provides an efficient solution to integrating measurements
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collected at different sampling rates, yet it ignores the internal
temporal characteristics of PMU measurements. The dynamic
patterns within PMU measurements are critical for predicting
post-fault dynamic trajectories and exploring fault information.
Therefore, the development of a DSA that can efficiently pro-
cess multi-source spatial-temporal data and concurrently learn
the inherent temporal characteristics of PMU measurements is
crucial for achieving comprehensive DSA outcomes.

In addition to processing multi-source spatial-temporal data,
learning complex nonlinear system dynamics is another chal-
lenge to existing data-driven DSA. An iterative prediction
method using LSTM-based recurrent neural network (RNN)
is developed for predicting post-fault rotor angle trajectories
[5]. This method learns the temporal relationship from the
available information about the post-fault system behavior
within a certain time window. Although it outputs accurate pre-
dictions, the generalization capability of this model is limited.
Upon variations in operating conditions, network topology,
or system stable conditions, the prediction accuracy of this
method diminishes.

Neural operators [9], [10], the powerful learning models that
can approximate complex functions and learn the solutions of
differential equations, have been developed and employed for
power system dynamics trajectory prediction. Deep Operator
Network (DeepONet)-based trajectory prediction methods are
developed to learn the post-contingency dynamic response
of the power grid [11], [12]. A Fourier Neural operator
(FNO)-based approach is developed to learn power system
dynamics from frequency-domain of measurements [13]. The
simulation results show the implementation of neural operators
has markedly enhanced the dynamics learning capability of
data-driven methods. Despite the powerful dynamics learning
capability, these methods can only process single-source data,
which limits their ability to identify fault location and conse-
quently, yields inadequate DSA outcomes.

To solve these problems, this paper develops a novel DSA
that efficiently processes multi-source spatial-temporal data.
Two sets of GNNs are tailored to learn global spatial fea-
tures from SCADA measurements and local spatial-temporal
features from PMU measurements, respectively. The learned
spatial-temporal features are used by an FNO-based trajectory
predictor and a multilayer perceptron (MLP)-based fault loca-
tion identifier to achieve the goal of providing comprehensive
DSA results. The contributions of this paper are as follows.

1. Considering the single-source data provides limited sys-
tem information, leading to potentially biased DSA results, a
novel online DSA that uses GNNs to learn from multi-source
spatial-temporal data, i.e., SCADA measurements and PMU
measurements, is developed. Comparison results demonstrate
that incorporating multi-source measurements enhances the
precision of DSA results.

2. Facing the challenges arising from the disparities in
sampling rates and sensor numbers across various measure-
ment systems, a novel spatial-temporal resolution is developed.
Various measurement systems are modeled as graphs with
different numbers of nodes and edges, so the multi-source
spatial-temporal features can be learned by GNNs.

3. To learn various system dynamics trajectories across

diverse operating conditions, a novel dynamics trajectory
predicor using FNO, which can learn solutions of differential
equations in frequency domain, is developed.

4. In addition to dynamics trajectory prediction, which is
the focus of most existing data-driven DSAs, the advanced
online DSA developed in this paper can identify fault locations
by learning fault characteristics from multi-source spatial-
temporal features.

II. PROBLEM FORMULATION

A. Power System Dynamics

The power system dynamics can be described as a set of
differential-algebraic equations.{

ẋ = f ξf
(x,y, t, ξp)

0 = gξf
(x,y, t, ξp)

(1)

where f indicates the differential equations and g indicates
the algebraic equations. x and y are dynamic and algebraic
states, respectively. ξp indicates the uncertainties from loads,
RES, and faults, such as different fault locations. ξf indicates
different system dynamics stages, i.e., pre-fault, fault-on, and
post-fault stages.

Large disturbances, such as three-phase-to-ground faults,
can lead to alterations in system dynamics. For instance,
the occurrence of a short circuit on the transmission line
modifies the susceptance and conductance, leading to changes
in the system models across various stages. Apart from the
varying system dynamics across different stages, the increasing
penetration of RES further complicates the power system
dynamics, rendering online DSA a more challenging task.

B. Challenges in Online DSA Application

Although existing DSA methods provide effective solutions,
some research gaps remain facing the arising new challenges.

1. Ability to conduct fast computation for real-time appli-
cation. To respond to unexpected faults in a timely manner,
it is required for DSA methods to track system dynamics as
soon as the fault occurs. Although conventional model-based
methods [14], [15] provide accurate DSA results, they are too
computationally inefficient for real-time application.

2. Ability to provide comprehensive system dynamics and
fault information to support real-time decision-making of oper-
ators. Most existing DL-based DSAs only perform single tasks
such as state estimation [1], [3] or binary security condition
classification [16], [17], providing limited system dynamics
information. Considering that fault information, such as fault
location identification [6], plays an important role in helping
operators take countermeasures against potential risks, a DL-
based multi-tasking DSA is needed to improve the situation
awareness of operators.

3. Ability to predict system dynamics using multi-source
spatial-temporal data. For real applications, the number of
available PMUs is limited, making it difficult to assess the
whole system security situation. To address this issue, spatial-
temporal solutions using SCADA and PMU measurements
have been developed [3], [7]. However, identical graph-based
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Fig. 1. Online DSA framework.

models have been applied to SCADA and PMU data, disre-
garding their inherent divergent spatial-temporal characteris-
tics. In addition, the time-varying nature of PMU measure-
ments during the fault-on stage is overlooked, resulting in
inadequate capture of fault-related spatial-temporal patterns.
Therefore, a method that can extract and utilize the comple-
mentary spatial-temporal features is in press.

C. Developed Online DSA and Learning Problems

In the face of the above challenges, this manuscript develops
a novel online DSA.

1) Framework Overview: Fig.1 illustrates the flowchart of
the online DSA, which adopts SCADA and PMU measure-
ments as model inputs. Considering PMUs have a higher sam-
pling rate, the real-time PMUs are used in event monitoring
to capture the sudden change of power system, i.e., the sudden
change in the measurements yt.

alarm =

{
1, |yt − yt−1| > ε

0, otherwise
(2)

where ε is a pre-defined threshold. Once the alarm is triggered
(e.g., at time ton), the previously collected SCADA measure-
ment yt0 will be used in pre-fault system information, and
PMU measurements {yton−w/2, . . . ,yton+w/2} are taken as
fault-on system information, where w indicates the length
of time window.

In pre-fault system information, pre-fault graph-structured
data is generated using SCADA measurements. Since SCADA
is able to collect global measurements, the pre-fault SCADA
measurements of all buses are collected. In addition, RES
information ξp, such as wind speed, is recorded to calculate
the penetration level of wind generation. Given the power

system topology, the operation and topology information of
the pre-fault system with M buses and L transmission lines
are presented by a graph G = (V, E) having node attributes
hv,hu (node v, u ∈ V) and edge attributes euv (edge (v, u) ∈
E). The pre-fault SCADA measurements (i.e., injected active
and reactive power) of all buses are used as node attributes
hv = {Pv, Qv}. Note that the active power output of the wind
turbine is also recorded in node attributes to incorporate the
uncertainties from RES. The line impedance Yuv, (v, u) ∈ E
is used as the edge attribute euv = Yuv . In this way, the pre-
fault SCADA measurements and uncertainty information are
represented as the graph-structured data G = (V, E).

As for fault-on system information, w number of PMU
measurements after the event triggered are collected and used
for constructing the fault-on graph-structured data. Consider-
ing the scenario where PMUs are installed on N(N < M)
key buses, the PMU measurements are preprocessed as graph-
structured data G′ = (V ′, E ′), consisting of a node (bus)
set V ′ and an edge set E ′. The PMU measurements (i.e.,
injected active and reactive power) of N key buses are used
as node attributes hv′ = {Pv′ , Qv′}, v′ ∈ V ′. Since the
fault location is unknown during the fault-on stage, a fully
connected graph (i.e., all nodes are connected) is used in
learning the relationship of nodes.

SCADA-based graph-structured data focuses on pre-fault
steady-state system information. PMU-based graph-structured
data captures fast-evolving system dynamics during faults.
The hybrid graph fusion combines slow-scale system topology
and fast-scale system dynamics, addressing the multi-timescale
challenge in processing multi-source power system data.

Finally, the SCADA data and PMU data will be used by the
trained model to output DSA results, including the predicted
dynamics trajectories and the fault location. To determine the
system security status, the transient stability index (TSI) is
calculated using the predicted rotor angle trajectories.

TSI = 100× (360−∆δmax)/(360 + ∆δmax) (3)

where ∆δmax is the maximum rotor angle difference between
any two generators. If TSI > 0, the system is transient stable;
if TSI < 0, the system is transient unstable.

2) Learning Problems: Two major DSA tasks are dynamics
trajectories prediction and fault location identification. The
corresponding learning problems are described as follows.

Dynamics Trajectory Prediction: Most DL-based trajec-
tory predictions assume the states to be predicted are ob-
servable. Iteration prediction strategy is commonly adopted
to learn temporal relationships from the initial trajectories and
predict the future states using a rolling window. However, the
complexity of prediction tasks significantly increases when
utilizing measurements to forecast unobservable states. This
is due to the potential mismatch between the temporal charac-
teristics observed in measurements and those inherent in the
states.

Therefore, the learning problem focused in this paper is
to predict the trajectories of states xt0,...,tend

using the pre-
fault system information [yt0 , ξp] and PMU measurements
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yton−w/2,...,ton+w/2. The learning problem is given by

xt0,...,tend
= GΦ,Ψ,ϕ(yt0 , ξp,yton−w/2,...,ton+w/2). (4)

The goal is to learn the mapping G from the input space to
output states. To solve this problem, this paper designs a novel
neural network GΦ,Ψ,ϕ, parameterized by Φ,Ψ and ϕ. Graph
neural networks GΦ,Ψ are developed to learn the spatial-
temporal representation of hybrid inputs. Then, a Fourier
neural operator Gϕ is customized to learn the temporal re-
lationship in the frequency domain. Parameters Φ and ϕ are
determined by the model structure and the detailed model
introduction is given in Section III. A and B.

Fault Location Identification: Given that various fault
locations result in distinct deviations in the measurements
y, fault information can be anticipated through analyzing
distinct spatial-temporal patterns observed in y. Therefore, the
learning problem of locating faulted line is described as

P (linei) = GΦ,Ψ,θ(yt0 , ξp,yton−w/2,...,ton+w/2). (5)

The goal of this problem is to learn the mapping G from
the pre-fault system information [yt0 , ξp] and PMU mea-
surements yton−w/2,...,ton+w/2 to the probability of faulted
lines P (linei). The spatial-temporal features learned by GNNs
GΦ,Ψ are used as inputs of classifier Gθ. A detailed model
introduction is given in Section III.C. The line with the highest
failure probability is identified as the faulted line i∗.

i∗ = argmax
i

P (linei) (6)

III. METHODOLOGY

A. GNNs for Spatial-Temporal Representation Learning
To handle hybrid measurements and incorporate diverse

system information into the model inputs, two GNNs are
constructed to learn distinct spatial-temporal representations.
GNN GΦ is developed to learn features from SCADA mea-
surements, while GNN GΨ learns features from PMU mea-
surements, as shown in Fig.2.

1) GNN GΦ for SCADA measurements: Given the pre-fault
SCADA measurements yt0 of all buses, the system uncertainty
ξp, and the system topology, a pre-fault graph-structured data
G = (V, E) with node features hv,hu (node v, u ∈ V) and
edge features euv (edge (v, u) ∈ E) is constructed. Each node
represents the bus. The injected active and reactive power of
the buses are taken as node features hv = {Pv, Qv}. Each line
represents the transmission line. Line impedance Yuv, (v, u) ∈
E is used as the edge features euv = Yuv .

To deal with pre-fault graph-structured data G = (V, E),
the GNN consisting of a graph transformer and a graph
isomorphism network is developed. For graph transformer
layer [20], source node feature hv and distant node feature
hu are transformed to query vector Qv and key vector Ku:

Qv = WQhv + bQ (7)

Ku = WKhu + bK . (8)

To take the edge feature euv, (u, v) ∈ E into consideration,
the key vector K̂uv can be calculated as

K̂uv = Ku +WEeuv + bE . (9)

The value vector V̂ u integrates the distant node feature and
edge feature:

V̂ u = V u +WEeuv + bE (10)

where
V u = WV hu + bV . (11)

Hence, the single-attention function is defined as

hv = Σusoftmax(QT
v K̂uv/

√
d)V̂ u (12)

where d is the dimension of keys. The multi-head attention
mechanism can be expressed as the concatenation of the
outputs from individual attention function:

hv = ∥Cc=1

(
Σusoftmax(QT

c,vK̂c,uv/
√
d)V̂ c,u

)
(13)

where ∥(·) is the concatenate operator for C head attention.
Qc,v, K̂c,uv, V̂ c,u are query vector, kecy vector and value
vector of the cth head, respectively.

The layer normalization [21] and ReLU function are imple-
mented after the graph transformer layer.

hv = ReLU (LayerNorm (hv)) (14)

A graph isomorphism network including edge features
(GINE) [22] is adopted after the graph transformer layers.
GINE updates node representations as follows.

hv = MLP ((1 + ϵ)hv +ΣuReLU(hu + euv)) (15)

where MLP indicates multi-layer perceptron. Then, a global
mean pooling layer is used to get the graph-level features.

xΦ = 1/MΣhv (16)

where M is the number of nodes. xΦ indicates the output
feature of GNN GΦ, i.e., xΦ = GΦ(yt0 , ξp).

2) GNN GΨ for PMU measurements: Given the fault-on
PMU data {yton−w/2, . . . ,yton+w/2}, measurements at each
time point yt are processed as a graph-structured data, G′

t =
(V ′

t, E ′). Each node represents the PMU and the corresponding
PMU measurements are taken as node features, i.e., hv′ =
{Pv′ , Qv′} (node v′ ∈ V ′). Considering the fault location is
unknown during fault-on stage, it is assumed that all nodes are
connected and the edge features are identical, i.e., eu′v′ = 1.
Node features are used in the message aggregation of the
topology adaptive graph convolutional network (TAGConv)
[23]. GNN GΨ consists of two TAGConv layers, each of which
performs convolution by adopting a set of size-1 up to size-D
filters.

hv′ = σ(ΣD
d=1gf,dA

dhv′ + bf ) (17)

where σ is a nonlinear operation, e.g., rectified linear unit
(ReLU). bf is a learnable bias, gf,d is the graph filter poly-
nomial coefficients of f -th filter with size d, and A is the
normalized adjacency matrix of graph.

A = D−1/2ĀD−1/2 (18)

where Ā is the weighted adjacency matrix, D = diag[d] with
i-th component being d(i) = ΣjA

3
i,j . A layer normalization is

adopted between the two TAGConv layers. For a set of PMU
measurements with w instances, i.e., yton−w/2,...,ton+w/2,
the features learned from GNN GΨ is denoted as xΨ =
GΨ(yton−w/2,...,ton+w/2).
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Fig. 2. The architecture of the developed model.

3) Spatial-temporal feature concatenation: As illustrated in
the upper part of Fig.2, GNN GΦ takes the node features
hv and edge features euv as inputs and learns the graph-
level feature xΦ. GNN GΨ uses node features hv′ and
outputs the node-level feature xΨ. In this way, the graph-
level feature xΦ captures the global pre-fault system in-
formation while the node-level feature xΨ learns the local
fault-on system information. Finally, the graph-level feature
xΦ is reshaped and concatenated with the node-level fea-
tures xΨ. The spatial-temporal feature xΦ,Ψ = [xΨ;xΦ] =
GΦ,Ψ(yt0 , ξp,yton−w/2,...,ton+w/2) is used as the inputs of
FNO and the classifier.

B. FNO for System Dynamics Learning
FNO [24], a powerful neural network capable of learning

mappings between infinite function spaces, exhibits excep-
tional performance in learning operator solutions for partial
differential equations, thereby making it suitable for learning
and predicting power system dynamics.

An FNO layer transforms the inputted time-domain data
into the frequency domain via Fourier Transform F , applies a
linear transform R on the lower frequency modes and filters
out the higher modes, then recovers the time-domain data
using inverse transform F−1. To compensate for truncated
high-frequency information, a residual connection applies a
linear operator W directly on the time-domain data preserving
local details. By combining frequency-domain processing (for
global low-frequency patterns) and time-domain residuals (for
high-frequency details), each FNO layer hierarchically learns
multiscale features. In each FNO layer, the update to the
representation vi(x) 7→ vi+1(x) is calculated as

vi+1(x) = σ(Wvi(x) + F−1(R · F(vi))(x)), (19)

where σ is the activation function, i.e., GeLU. W and R are
linear transforms. F denotes Fourier transform and F−1 is

inverse Fourier transform.

(Fv)(k) =

∫
v(x)e−2iπ<x,k>dx, (20)

(F−1v)(x) =

∫
v(k)e2iπ<x,k>dk, (21)

where i =
√
−1 is the imaginary unit, k is frequency

mode, and < ·, · > denotes the inner product. Fast Fourier
Transform (FFT) [10] are utilized to compute Eqs.(20) and
(21). Typically, 4 FNO layers are adopted.

To predict the system states, the time indexes t, t ∈
[t0, . . . , tend] are encoded into the learned features xt =
[xΦ,Ψ; t]. Therefore, the inputs of FNO is denoted as v0 =
X = {xt0 , . . . , xtend

}, X ∈ RN×H×T×(w+2), as shown in
Fig.2. N is the number of PMU nodes, H is the number of
hidden features, and T = tend − t0 is the number of encoded
time stamps. In each FNO layer, the FFT F and its inverse
F−1 are calculated as

(Fv)kn,kh,kt,l(k) =

ΣN−1
n=0 Σ

H−1
h=0 Σ

T−1
t=0 v(n, h, t, l)e−2iπ(nkn

N +
hkh
H +

tkt
T ),

(22)

(F−1v)n,h,t,l(x) =

ΣknΣkh
Σktv(kn, kh, kt, l)e

2iπ(nkn
N +

hkh
H +

tkt
T ).

(23)

To enhance implementation efficiency, the Fourier series is
truncated at a predefined maximum number of modes kmax.
Therefore, the weight tensor R ∈ RN×H×T×(w+2)×(w+2) is
used to truncate the higher modes.

(R · (Fv))kn,kh,kt,l = Σw+2
j=1 Rkn,kh,kt,l,j(Fv)kn,kh,kt,j

(24)
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Therefore, the inverse Fourier transform F−1(R ·F(v))(x) is
calculated as

F−1(R · F(v))n,h,t,l(x) =

Σkmax

kn=0Σ
kmax

kh=0Σ
kmax

kt=0 (R · (Fv))kn,kh,kt,le
2iπ(nkn

N +
hkh
H +

tkt
T ).
(25)

After four FNO layers, the output feature v4 ∈
RN×H×T×(w+2) will be sent to two projection layers. Projec-
tion layer 1 is designed to aggregate w+2 temporal features,
which consist of features learned from w PMU measurements,
1 pre-fault instance, and 1 encoded time stamp. Two fully
connected (FC) layers followed by activation functions (i.e.,
GeLU) are used. After the projection layer 1, the feature
v4 ∈ RN×H×T×(w+2) becomes v5 ∈ RN×H×T×1.

Since the goal is to predict the state, the dimension of hidden
feature, i.e., H , is different from the dimension of states. After
reshaping the feature, three FC layers are used to learn the
mapping: RN×T×H → RN×T×2. As a result, the output is the
post-fault system state xout

n,t = {δ, ω}n,t of nth(n = 1, . . . , N)
generator at time t.

To train the GNN-FNO model GΦ,Ψ,ϕ, the mean squared
error loss is adopted. Given that S sets of trajectories are used
for training, the loss is computed as below.

LGΦ,Ψ,ϕ
=

1

S ×N × T × 2
ΣS×N×T×2

i=1 (xout
i − xreal

i )2 (26)

where xout
i and xreal

i are predicted and real states, respectively.

C. Classifier for Fault Location Identification
To identify fault location, a classifier consisting of three

FC layers is developed, as shown in Fig.2. The spatial-
temporal features xΦ,Ψ learned from two GNNs are used as
inputs of the classifier. Since the fault location is treated as
a multi-classification problem, cross entropy loss is used for
optimizing the classifier parameters θ.

LGθ
= −1/SΣS

i=1Σ
M
m=1(p

real
i,m log(pouti,m)) (27)

where pouti,m is the predicted probability that fault of the ith
sample occurs at transmission line m (m = 1, . . . ,M ). preali,m

denotes the real probability and is calculated using the real
label lreali,m :

preali,m = exp(lreali,m )/ΣM
m=1 exp(l

real
i,m ). (28)

If the fault of the ith sample occurs at transmission line m,
lreali,m = 1; otherwise, lreali,m = 0.

IV. CASE STUDY

A. Simulation and Hyper-Parameter Setup
1) Test System and Dataset: The developed online DSA is

tested on IEEE 39 Bus System. Synchronous generators 5, 7,
and 8 are replaced by wind generators. Five penetration levels
(i.e., 10%, 20%, 30%, 40%, and 50%) are used to simulate
the renewable energy uncertainties. For load uncertainty, it
is assumed that the active power load of each bus follows
a normal distribution N (1, 0.12) (i.e., mean is 1 and standard
deviation is 0.1) of the base case, and the reactive power
load is calculated by multiplying the active power load with

a factor uniformly drawn from the range [0.25, 0.55]. For N-1
contingency, it is assumed that 16 lines (i.e., Line 04 - 05,
Line 06 - 11, Line 10 - 13, Line 16 - 19, Line 16 - 24, Line
26 - 29, Line 23 - 24, Line 21 - 22, Line 08 - 09, Line 02
- 25, Line 25 - 26, Line 26 - 27, Line 16 - 17, Line 14 -
15, Line 03 - 04, Line 01 - 39) have been randomly tripped.
After 0.1s, the fault is cleared by tripping the line according
to protection schedule.

SCADA measurements include the active power and reac-
tive power of each bus. 6 PMUs are deployed on the bus
directly connected to generators (i.e., Bus 30, Bus 32, Bus
33, Bus 35, Bus 38, Bus 39). It is assumed that fault occurs
at ton = 0.1s. SCADA measurements collected at t = 0
and PMU measurements collected from t ∈ [0.05, 0.15] are
used (w = 10 data points are collected during 0.1s). A
total number of 3482 samples (70% for training and 30%
for testing) are generated, each of which contains SCADA
measurements [P,Q]39×2, PMU measurements [P,Q]6×2×10,
the system transient dynamics trajectories to be predicted
[δ, ω]6×2×300, and the fault location.

2) Hyper-parameter Setup: The developed model architec-
ture is shown in Fig.2. (input size, output size) of GNN model
components are as follows. GΦ: graph transformer (2,8),
GINEConve (8,8). GΨ:TAGConv (2,8) → TAGConv (8,8).
MLP-based fault location identification: MLP (64→64→16).
FNO-based dynamics trajectory prediction: kn = 7, kh = 9,
kt = 13, and 4 FNO layers. In the training, 3-fold cross-
validation is adopted. The batch size and learning rate are 128,
and 0.01, respectively. We use Pytorch and a single Nvidia
GeForce RTX 3090 GPU with 24GB memory.

B. Ablation Study

In this part, ablation studies are designed to compare the
impact of graph structure and feature selection strategies on
model performance. In comparison, the mean squared error
(MSE) and mean absolute percentage error (MAPE) is used
to assess the prediction performance over the period K:

MAPE = 100%× 1/KΣK
k=0(|xtrue

k − xpred
k |)/max(1, xtrue

k )
(29)

where xtrue
k and xpred

k are the true and predicted value.
The developed method GΦ-GΨ-FNO(4) using a GNN GΦ, a

GNN GΨ, and an FNO block with 4 layers. The inputs of GΦ

are SCADA measurements and the graph structure is designed
based on power system topology. The inputs of GΨ are PMU
measurements and a fully connected graph is adopted to model
the spatial relationship between PMU nodes. To explore the
impacts of SCADA measurements on DSA, GΨ-FNO(4) is
used for comparison. It can be observed that the trajectory
prediction error increase and the fault location classification
accuracy decreases when only PMU measurements are used.

Then, GΦ- GΨ-FNO(6), GΦ-GΨ-FNO(2), and GΦ-GΨ-WT-
CNN are designed to compare the impacts of frequency-
domain feature selection on model performance. GΦ-GΨ-
FNO(6) and GΦ-GΨ-FNO(2) represent the developed method
with 6 FNO layers and 2 FNO layers, respectively. The
comparison between GΦ-GΨ-FNO(4) and GΦ-GΨ-FNO(2)
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indicates that 2 FNO layers are insufficient to capture com-
plex features, thus leading to degraded model performance.
Although GΦ-GΨ-FNO(6) outperforms GΦ-GΨ-FNO(2), its
dynamics prediction performance is not improved compared to
GΦ-GΨ-FNO(4). Therefore, a 4-layer FNO block is adopted in
the developed method. For GΦ-GΨ-WT-CNN, the FNO block
is replaced by a Wavelet Transform and a CNN module [25].
It can be seen that the 2-layer FNO module performs better
than using Wavelet Transform, which indicates the superior
frequency-domain learning capability of FNO layers.

The impacts of different graph structures are compared,
as illustrated in the last two rows of TABLE I. ‘G, G′: All
connected’ indicates that the fully connected graphs are used
in modeling both SCADA measurements and PMU measure-
ments. ‘G, G′: Physical topology’ indicates that the nodes in
SCADA measurements and PMU measurements are connected
following the power system topology. It can be observed that
when PMU measurements are modeled using physical topol-
ogy, the classification performance has an obvious degradation.
Therefore, when the available PMU nodes are limited, a fully
connected graph has better capability to capture hidden spatial-
temporal features compared to using physical topology.

C. Trajectory Prediction Performance Validation

To validate the trajectory prediction performance of the
developed method, different models, including LSTM-RNN
[5], FNO [13], and structure-informed graph learning [4] are
utilized for comparison. The structure-informed graph learning
adopts a GNN to process spatial data and a gated-recurrent
unit to predict system trajectories. TABLE II illustrates the
comparison results. It can be observed that the FNO-based
methods (i.e., GΦ-GΨ-FNO(4) and FNO) outperform the other
two trajectory prediction methods. This validates the effec-
tiveness of FNO learning complex power system dynamics.
By comparing the model performance of GΦ-GΨ-FNO(4) and
FNO, it can be found that the utilization of GNNs (i.e., GΦ and
GΨ) can further reduce the prediction errors (e.g., MAPE(ω)
is reduced from 0.22% to 0.18%). This is because the multi-
source spatial-temporal features learned by GΦ and GΨ enrich
the inputs of FNO to help it learn the complex nonlinear
system dynamics.

D. Fault Location Identification Performance Validation

To validate the fault location identification performance
of the developed method, decision tree (DT) [26], support
vector machine (SVM) [27], LSTM with self-attention mech-
anism (LSTM-SAF) [28], and CNN-LSTM [6] are used for
comparison. PMU measurements are used as inputs of DT,
SVM, and LSTM-SAF. CNN-LSTM adopts matrix mapping
to extract spatial relationship of PMU data and use CNN
to learn spatial features. The developed methods use GNNs
(i.e., GΦ and GΨ) to learn the multi-source spatial-temporal
features. The comparison results are shown in TABLE III. It
can be observed that methods that learn spatial features (i.e.,
GΦ-GΨ-FNO(4) and CNN-LSTM) outperform the other three
methods. In addition, among 5 learning models, the developed

<33>

G1

<39>

G10
<30>

<2>

<1>

<9>
<8>

<5>

<4>

<7>

<3>

<25> <37>

<18>

G2

<31>

<26>

<17>

<14>

<12>

<11>
<10>

<32>
G3

<13>

<27>

<16>

<15>

<20>

<28>

<34>

G4

<21>

<24>

<19>

<23>

<36>

<22>

G6

<35>

G9

<38>

<29>

<6>

Area 3

Area 2

G Generator
BusWind generator PMU(Centralized deployment)

Area 1

PMU(Distributed deployment)

Fig. 3. IEEE 39-Bus System with 3 areas.

method achieves the highest fault location identification accu-
racy. These experimental findings demonstrate that explicitly
modeling spatial-temporal features improves neural network
performance in power system data analytics.

E. Discussion on Different PMU Deployments

In real applications, the system configurations (e.g., the
deployment of PMUs and the number of available PMUs) can
be diverse. In the previous demonstrations, it is assumed that
PMUs are distributed throughout the system, i.e., installed on
generator buses (Bus 30, 32, 33, 35, 38, 39). For comparison,
a more centralized distribution is adopted in the IEEE 39-Bus
System with 3 areas (see Fig.3). PMUs are installed in Area
1 (Bus 4, 6, 9, 10, 12, 14). Considering the scenario where
the number of available PMUs is reduced due to economic
reasons or unexpected events, measurements from 3 PMUs are
input to the developed DSA to predict the dynamics trajectory
of 6 generators and identify fault locations. For distributed
deployment, measurements from Bus 30, Bus 32, and Bus
33 are used. For centralized deployment, it is assumed that
available PMUs are on Bus 4, Bus 9, and Bus 14.

1) Dynamics Trajectory Prediction: Prediction errors for ro-
tor angle prediction and rotor speed prediction are shown in
Fig.4 and Fig.5. The average MAPEs of 6 generators are given
in the 3rd and 4th columns in TABLE IV. By comparing the
prediction results of distributed deployment and centralized
deployment, e.g., the 2nd and 4th rows of TABLE IV, the
developed DSA demonstrates comparable trajectory prediction
performance (i.e., the MAPE(δ) of the 4th row is slightly
higher than that of the 2nd row). However, with the reduction
of available PMU numbers, the MAPEs have larger increases.
For example, the average MAPE(δ) of distributed deployment
with 3 PMUs is twice the average MAPE(δ) of distributed
deployment with 6 PMUs.

It can be concluded that the developed online DSA is robust
to different deployment patterns, but the prediction accuracy
decreases with the reduction of available PMU numbers.

2) Fault Location Identification: The fault location identifi-
cation results are illustrated in the 5th to 8th columns of
TABLE IV. The average accuracy of the four deployments is
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TABLE I
DSA RESULTS FOR DIFFERENT GRAPH STRUCTURES AND LEARNING MODEL STRUCTURES

Graph structure Methods Dynamics trajectory prediction Fault location identification
MAPE(δ) MAPE(ω) MSE(δ) MSE(ω) F1 Precision Recall Acc

G: Physical topology
G′: All conecteed

GΦ- GΨ-FNO(4) 10.68% 0.18% 0.0377 2.07e − 5 0.98 0.98 0.98 0.98
GΦ-FNO(4) 16.54% 0.25% 0.0795 4.12e − 5 0.79 0.85 0.82 0.82

GΦ- GΨ-FNO(6) 11.29% 0.22% 0.0394 3.22e − 5 0.94 0.95 0.94 0.94
GΦ- GΨ-FNO(2) 12.95% 0.21% 0.0500 2.08e − 5 0.87 0.89 0.87 0.87
GΦ- GΨ-WT-CNN 16.94% 0.26% 0.0728 4.16e − 5 − − − −

G, G′: All connecteed
GΦ- GΨ-FNO(4) 11.10% 0.20% 0.0380 2.22e − 5 0.94 0.95 0.94 0.94

G, G′: Physical topology 11.39% 0.18% 0.0402 1.77e − 5 0.87 0.90 0.87 0.87

TABLE II
DYNAMICS TRAJECTORY PREDICTION PERFORMANCE COMPARISON

Methods Dynamics trajectory prediction
MAPE(δ) MAPE(ω) MSE(δ) MSE(ω)

GΦ- GΨ-FNO(4) 10.68% 0.18% 0.0377 2.07e − 5
Structure-informed

graph learning 13.32% 0.28% 0.0546 6.70e − 5

FNO 11.35% 0.22% 0.0418 2.75e − 5
LSTM-RNN 22.59% 0.30% 0.1351 8.52e − 5

TABLE III
FAULT LOCATION IDENTIFICATION COMPARISON

Methods Weighted average metrics AccF1 Precision Recall
GΦ- GΨ-FNO(4) 0.98 0.98 0.98 0.98

DT 0.90 0.92 0.90 0.90
SVM 0.89 0.90 0.91 0.91

LSTM-SAF 0.84 0.86 0.85 0.85
CNN-LSTM 0.93 0.94 0.93 0.93
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Fig. 4. Boxplots for rotor angle trajectory prediction error of (a) Dis-
tributed deployment-6 PMUs; (b) Centralized deployment-6 PMUs; (c)
Distributed deployment-3 PMUs; (d) Centralized deployment-3 PMUs.

0.96. It demonstrates the superior fault location identification
performance of the developed DSA under different deploy-
ments. Among the four deployments, the developed DSA
with distributed deployment using 3 PMUs has the poorest
performance. 44 samples belonging to the fault location 5
(Line 16 - 24) are misclassified as the fault location 13 (Line
16 - 17). This is because fault locations 5 and 13 are very
close, i.e., both lines are connected to Bus 16, thus making
fault location identification a more difficult task.
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Fig. 5. Boxplots for rotor speed trajectory prediction error of (a) Dis-
tributed deployment-6 PMUs; (b) Centralized deployment-6 PMUs; (c)
Distributed deployment-3 PMUs; (d) Centralized deployment-3 PMUs.
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Fig. 6. Comparative assessment of model robustness to noise and
missing data. (a) Prediction error MAPE(δ);(b) Prediction error
MAPE(ω); (c) Fault location classification accuracy.

F. Discussion on Model Robustness

This part considers the data imperfection scenarios and the
system malfunction scenario. For data imperfection scenarios,
different levels (10%, 30%, and 50%) of data are randomly
missing and White Gaussian Noise (60 dB, 50 dB, 40 dB,
and 30 dB) is added to the original data. The level of noise
is indicated by signal-to-noise ratio (SNR). The compara-
tive assessment of model robustness to different noises and
missing data are illustrated in Fig. 6. It can be observed
that the transient dynamics trajectory prediction performance
has little deviation (∆MAPE(δ) = |maxMAPE(δ) −
minMAPE(δ)| = 1.97%, ∆MAPE(ω) = 0.02%) with the
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TABLE IV
DSA RESULTS FOR DIFFERENT PMU DEPLOYMENTS

Deployment pattern PMU number Dynamics trajectory prediction Fault location identification
MAPE(δ) MAPE(ω) MSE(δ) MSE(ω) F1 Precision Recall Acc

Distributed deployment 6 (Bus 30,32,33,35,38,39) 10.68% 0.18% 0.0377 2.07e − 5 0.98 0.98 0.98 0.98
3 (Bus 30,32,33) 28.52% 0.28% 0.1592 6.18e − 5 0.89 0.92 0.90 0.90

Centralized deployment 6 (Bus 4,6,9,10,12,14) 13.02% 0.23% 0.0507 4.18e − 5 0.97 0.98 0.97 0.97
3 (Bus 4,9,14) 26.79% 0.29% 0.1668 6.74e − 5 0.98 0.98 0.98 0.98

TABLE V
MODEL PERFORMANCE UNDER SYSTEM MALFUNCTION SCENARIOS

MAPE(δ) MAPE(ω) MSE(δ) MSE(ω)
13.10% 0.24% 0.0560 3.83e − 5

F1 Precision Recall Acc
0.92 0.92 0.92 0.92

increase of noise and missing data. This is thanks to the strong
learning capability of FNO, which can learn in frequency
domain to obtain global frequency patterns rather than learning
from individual points, thus enabling robust predictions with
imperfect data. When the range of SNR values of noise is
60dB–40dB, which is a reasonable range in the practical PMU
data [5], the fault location accuracy is above 0.85 even when
50% of data is missing, which indicates the robustness of the
developed model under data imperfection scenarios.

To simulate the scenario where system topology change
is caused by system malfunction, one line (Line 17 − 18)
is tripped in addition to N-1 contingency. A total number
of 751 samples are generated. 651 samples are used for
training and 100 samples for testing. The model performance
under system malfunction scenarios is shown in TABLE V.
Compared to baseline scenario, the model performance has a
little degradation. For example, MAPE(δ) is increased from
10.68% to 13.10% and accuracy is decreased from 0.98 to
0.92. However, it is comparable to other methods employed
in baseline scenario, such as structure-informed graph learning
(MAPE(δ) = 13.32% in TABLE II ) and SVM (Acc = 0.91
in TABLE III).

G. Model Scalability Demonstration

To validate the model scalability, the IEEE 118 Bus System,
which represents an approximation of the American Electric
Power System (in the U.S. Midwest), is adopted. Synchronous
generators 10, 69, and 80 are replaced by wind generators. Five
penetration levels are used to simulate the RES uncertainties.
For load uncertainty, the active power load of each bus follows
a normal distribution N (1, 0.12) of the base case, and the
reactive power load is calculated by multiplying the active
power load with a factor uniformly drawn from the range
[0.25, 0.55]. For N-1 contingency, 16 lines (i.e., Line 12-117,
Line 23-32, Line 34-43, Line 45-49, Line 83-85, Line 51-58,
Line 60-62, Line 100-106, Line 70-75, Line 80-99, Line 92-
102, Line 105-108, Line 5-11, Line 27-115, Line 47-69, Line
68-116) have been randomly tripped. After 0.1s, the fault is
cleared.

Two PMU deployment patterns are considered. For dis-
tributed deployment, 6 PMUs are deployed on the bus directly
connected to generators (i.e., Bus 12, Bus 31, Bus 59, Bus

65, Bus 87, Bus 111). The transient dynamics trajectories of
these 6 generators are predicted using the developed method.
For centralized deployment, 6 PMUs are deployed on Bus 75,
Bus 79, Bus 85, Bus 98, Bus 103, and Bus 108.

It is assumed that fault occurs at ton = 0.1s. SCADA
measurements collected at t = 0 and PMU measurements
collected from t ∈ [0.05, 0.15] are used. A total number of
1236 samples (70% for training and 30% for testing) are
generated, each of which contains SCADA measurements
[P,Q]118×2, PMU measurements [P,Q]6×2×10, the system
transient dynamics trajectories to be predicted [δ, ω]6×2×300,
and the fault location.

To validate model performance, learning models that per-
formed well in the IEEE 39 bus system are used as com-
parison models for the IEEE 118 bus system test. For tran-
sient dynamics trajectory perdition, FNO is adopted. For
fault location identification, CNN-LSTM is utilized for com-
parison. The comparison results are illustrated in TABLE
VI. Compared to FNO and CNN-LSTM, the developed
method has the lowest prediction errors and the highest fault
location identification accuracy when applied to distributed
deployment with 6 PMUs, demonstrating the model scalability
to larger systems. In addition, it can be observed that all
methods show better performance when applied distributed
deployment with 6 PMUs. For example, MSE(δ) of the
developed method has increased from 0.0561 to 0.0881when
it is applied to centralized deployment with 6 PMUs. When
using 3 PMUs, MAPE(δ) of the developed method doubles
for both distributed and centralized deployments. A similar
situation occurs in the comparison method FNO. Compared
to transient dynamics trajectory prediction, the impact of
changes in deployment patterns on fault location identifi-
cation is more pronounced. For example, the accuracy of
the developed method is higher than 0.83 when applied to
distributed deployment, but lower than 0.8 when applied to
centralized deployment. For the comparison method CNN-
LSTM, the accuracy in all deployment patterns is lower than
0.8. Based on the above analysis, we found that the prediction
accuracy of centralized deployment is lower than distributed
deployment, so when conducting DSA for large-size systems,
we recommend using distributed distribution and the number
of PMUs should not be too small.

V. CONCLUSION

This paper develops an advanced online DSA, which is
capable of processing multi-source spatial-temporal data and
generating comprehensive DSA results, i.e., transient dynam-
ics trajectory prediction and fault location identification. The
SCADA and PMU data are modeled as different graphs,
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TABLE VI
DSA RESULTS FOR DIFFERENT PMU DEPLOYMENTS

Deployment
pattern PMU number Methods Transient Dynamics trajectory prediction Fault location identification

MAPE(δ) MAPE(ω) MSE(δ) MSE(ω) F1 Precision Recall Acc

Distributed
deployment

6
(Bus 12,31,59,65,87,111)

GΦ- GΨ-FNO(4) 7.23% 0.16% 0.0561 5.60e − 5 0.98 0.99 0.98 0.98
FNO 7.76% 0.19% 0.0842 6.36e − 5 - - - -

CNN-LSTM - - - - 0.77 0.78 0.77 0.77

3
(Bus 31,59,87)

GΦ- GΨ-FNO(4) 13.51% 0.16% 0.0712 6.08e − 5 0.81 0.82 0.83 0.83
FNO 16.14% 0.21% 0.1034 7.40e − 5 - - - -

CNN-LSTM - - - - 0.61 0.63 0.61 0.61

Centralized
deployment

6
(Bus 75,79,85,98,103,108)

GΦ- GΨ-FNO(4) 7.26% 0.16% 0.0881 5.00e − 5 0.71 0.70 0.73 0.73
FNO 9.41% 0.16 0.1207 4.95e − 5 - - - -

CNN-LSTM - - - - 0.64 0.66 0.64 0.64

3
(Bus 75,79,103)

GΦ- GΨ-FNO(4) 14.47% 0.15% 0.0683 5.51e − 5 0.78 0.78 0.80 0.80
FNO 14.63% 0.28% 0.0984 1.08e − 5 - - - -

CNN-LSTM - - - - 0.57 0.59 0.58 0.58

which are processed by two GNNs to extract distinct spatial-
temporal features. Then, an FNO-based transient dynamics
trajectory predictor and an MLP-based fault location identifier
are developed to learn system dynamics and fault patterns from
spatial-temporal features, respectively.

Case studies on the IEEE 39 Bus System and IEEE 118
Bus System considering uncertainties from RES, loads, and
unexpected faults validate the effectiveness of the developed
online DSA. Comparisons of the developed model, LSTM-
RNN, FNO, and structure-informed graph learning, reveals
that the developed online DSA exhibits superior transient dy-
namics trajectory performance, characterized by the minimum
prediction errors. Another comparison demonstrates that the
developed method outperforms DT, SVM, LSTM-SAF, and
CNN-LSTM in terms of f1-score, recall, and accuracy, thereby
validating its superior fault location identification capabil-
ity. Considering different system configurations exist in real
applications, the developed method is tested using different
deployment distributions and available PMU numbers. The
results show that the developed model is robust to different
PMU deployments. Data imprecation scenarios have been
simulated to test the model robustness. The results show that
transient dynamics trajectory performance has little deviation
(e.g., ∆MAPE(δ) = 1.97%) under data missing and noise
scenarios. Model scalability has been validated using IEEE
118 Bus System.

While the developed method demonstrates promising per-
formance in baseline scenarios, two key limitations are identi-
fied through case studies: (1) Performance degradation under
high-noise conditions (e.g., about 20% fault location identifi-
cation accuracy drop at SNR = 30 dB) due to error propagation
in spatial-temporal feature extraction; (2) Sensitivity to PMU
numbers, with transient dynamics trajectory prediction errors
increasing by 17.8% when 3 PMU utilized. Additionally, the
current framework does not account for cybersecurity threats
inherent to power system, such as adversarial data manip-
ulation. Future research will focus on integrating physics-
informed noise filters to enhance robustness, developing
topology-aware data augmentation for sparse PMU scenarios,
and embedding graph-based anomaly detection modules to
mitigate cyber-physical attack risks.
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