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Abstract

Seismic performance is a critical consideration in the design of building structures to maintain its stability and strength.
One effective approach to enhance this performance is the installation of dampers. However, traditional design methods
often fail to achieve the optimal arrangement of dampers for improving seismic resilience. This paper presents an optimiza-
tion method for determining the most effective layout of multi-type dampers based on bidirectional evolutionary structural
optimization (BESO). The optimization objective is to minimize the maximum variance of inter-story drift across all floors,
given a specified maximum number of each type of damper. To approximate the non-smooth objective function, the Kre-
isselmeier — Steinhauser (KS) function is incorporated. In addition, an efficient algorithm based on the pseudo excitation
method (PEM) is introduced to calculate the frequency-domain stochastic seismic response of non-proportionally damped
structures throughout the layout optimization process. Two frame structure examples are presented to illustrate the applica-

tion and effectiveness of the proposed method.

Keywords Layout optimization - Non-proportional damping - Stochastic seismic excitation - Pseudo excitation method -

Iteration method

1 Introduction

In civil engineering, it is important to ensure the seismic per-
formance of structures. One effective approach to enhance
earthquake resistance is by installing damper devices in
structures (Housner et al. 1997; Soong and Spencer 2002;
Symans et al. 2008). Using a sufficient number of various
damper types can reliably meet performance requirements,
but this solution is not cost-effective. Therefore, when the
maximum number of each damper type is given, determining
the optimal layout arrangement of multiple damper types is
the focus of seismic design research. However, traditional
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design methods often struggle to effectively identify the
most effective layout of dampers, making it challenging to
achieve optimal seismic performance.

Topology optimization is an effective method to achieve
the optimal layout of materials in a specified design domain
according to certain constraints and objective functions
(Bendsge and Kikuchi 1998). In recent years, the topology
optimization of damper layouts for structures under seis-
mic excitation has emerged as a prominent area of research.
Lavan and Amir (2014) took the damping coefficient of each
potential viscous damper as a continuous variable and deter-
mined it through a topology optimization algorithm. Subse-
quently, Pollini et al. (2017) further extended this study to
the case of nonlinear viscous dampers. Gomez et al. (2021)
simultaneously optimized the structure layout and damp-
ing coefficient by solving a Lyapunov equation. However,
incorporating dampers with different damping coefficients
within the same structure remains a technical issue for engi-
neering applications. Based on the equivalent linearization
method and the time-domain explicit approach, Su et al.
(2016) developed an effective time-domain random vibra-
tion analysis method for nonlinear structures subjected to
non-stationary random excitation, which was subsequently

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s00158-025-04147-z&domain=pdf
http://orcid.org/0000-0003-2386-3821

206 Page2of19

Z.Ouetal.

applied to the layout optimization of nonlinear viscous
dampers in building structures under non-stationary ran-
dom seismic excitation (Su and Xian 2022). It is important
to note that varying initial layouts can result in substantial
differences in the final outcomes, making it challenging to
attain a genuinely optimal damper arrangement.

Although nonlinear considerations are often taken into
account when designing structures under seismic excita-
tion, in most cases standard design practice assumes that
the behavior of the structure is linear (Gomez et al. 2021).
Therefore, in this study, we assume that the structural model
is linear. In calculating the stationary seismic response of a
structure, the pseudo excitation method (PEM) is a typical
frequency-domain analysis method that converts a station-
ary seismic process into a simple harmonic process (Lin
et al. 2001; Li et al. 2023). However, the addition of dampers
yields a non-proportionally damped system. For non-propor-
tionally damped system, the damping matrix no longer satis-
fies the modal orthogonal condition. At the same time, atten-
tion should be directed toward structural responses across
the entire seismic frequency range, rather than concentrating
on just a particular frequency. The complex mode superposi-
tion method (CMSM) (Traill-Nash 1981) is the most widely
used technique for analyzing the structural dynamic behav-
ior of non-proportionally damped systems. Indeed, CMSM
necessitates the availability of all complex modes. Obtaining
these complex modes is nearly impossible, particularly for
large-scale problems. As a result, modal truncation must be
implemented, which can significantly impact the accuracy
of the results. To overcome the shortcomings of CMSM, a
hybrid expansion method (HEM) (Liu et al. 1996; Huang
et al. 1997; Qu 2000; Qu and Selvam 2000; Li et al. 2014,
2016) based on modal superposition and power series expan-
sion of the dynamic flexible matrix has been proposed. How-
ever, a key question is how many terms of the power series
expansion need to be retained to achieve the desired level
of accuracy. In addition, using HEM requires calculations
at each frequency of interest within the specified frequency
range.

To efficiently analyze the dynamic behavior of non-pro-
portionally damped systems within a frequency range, Wu
et al. (2022) proposed a non-proportionally damped frequency
response method (NPDFRM). The method can adaptively
determine which lower-order mode to calculate, while the
influence of the unknown higher-order modes on the frequency
response is estimated using the partial sum of a convergent
power series. The iterative algorithm is executed only at the
right end of the excitation frequency interval, and the num-
ber of terms in the partial sum can be determined adaptively.
The derived frequency response expression is valid across the
entire range of excitation frequencies. Consequently, by vary-
ing the excitation frequency in the analytical expression, the
response for the entire frequency range can be readily obtained.
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Although the proposed method is grounded in the state space
approach, its implementation is tailored to the original space,
resulting in reduced computational and storage requirements.

Controlling lateral drift in structures is a crucial regula-
tory aspect of seismic design (International Conference of
Building Officials 1997; European Committee for Standardi-
zation 2004; National Standard of the People’s Republic of
China 2010). Minimizing the maximum variance of inter-
story drift across all floors leads to a more uniform distri-
bution of inter-story drift ratios along the building height
(Alavi and Krawinkler 2004). A structure with uniformly
distributed inter-story drift ratios is generally more resilient
to seismic events compared to traditional structures, as it can
reduce localized damage and distribute seismic forces more
evenly (Moghaddam et al. 2005). In this work, an optimiza-
tion method based on BESO is proposed to determine the
layout of multi-type dampers in structures under stationary
seismic excitation. The goal is to minimize the maximum
inter-story drift variance among all floors, given a speci-
fied maximum number of each type of damper. This method
starts with the full layout of dampers as the initial design,
thereby avoiding the issue of different final results caused
by variations in the initial damper layout configuration. This
method combines PEM with NPDFRM to calculate the inter-
story drift variance of a non-proportionally damped struc-
ture, which makes stochastic seismic response more accurate
and the calculation process simpler and more economical. At
the same time, the Kreisselmeier—Steinhauser (KS) function
(Kreisselmeier and Steinhauser 1979) is then employed to
minimize the maximum inter-story drift variance among all
floors to achieve the optimal layout of multi-type dampers.

In what follows, Sect. 2 presents the preparatory work,
which includes PEM and NPDFRM. Section 3 offers com-
prehensive explanation to the layout optimization framework
based on the BESO method. Section 4 provides two exam-
ples of frame structures to demonstrate the effectiveness of
the proposed algorithm, and Sect. 5 concludes with final
remarks.

2 Preparatory work

The dynamic equation of a structure system with Np,p
degrees of freedom under seismic excitation can be
expressed as:

Mx(t) + Cx(t) + Kx(t) = —Mla, (1) 1)

where M € RNoor*Noor is the global mass matrix;
C € RYoor*Noor is the global damping matrix;
K € R¥orXNoor is the global stiffness matrix; x(¢) denotes
an Np,e-dimensional displacement vector and a dot repre-
sents the differentiation with respect to time #; I is an Njp
-dimensional vector whose components are equal to 1 for the
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DOFs corresponding to the main horizontal direction of the
earthquake effect and O for all others; and a, () is the ground
acceleration generated by seismic excitation. In this work,
the floor mass is modeled as a lumped mass and distributed
across all beam-column nodes of the structure (Gao et al.
2022). The mass value of each node is set as m,,.

In Eq. (1), the damping matrix cannot be diagonalized.
To solve this equation, the auxiliary equation Mx — Mx = 0
is introduced to obtain

Ay + By = rag(t) (2a)

where

K 0 cM X —MI
selo Su = [N oe[X] =[] e

Based on PEM (Lin et al. 2001), the ground acceleration
can be expressed as

a,(1) = 1/S (@) @ € [0,y 3

where S, (w) represents the power spectral density (PSD)
function of the seismic excitation. In this paper, the structure
is subjected to a ground motion described by the Clough—
Penzien (C—P) mode (Clough and Penzien 1975) where
S, (w) is given by

2
1+4§§(§)

Sg(co) =S, o ; X Hf(a)),a) € [0, a)max]
()] valz)
(4a)
where
4
Hy(w) = <;> (4b)

1= ()] ~ag(2)

and S, is the spectral intensity coefficients of seismic excita-
tion; &, and w, are the damping ratio and frequency of the
site soil, respectively; and Hy(w) is a low frequency filter in
which &, and w; are the damping ratio and frequency of the
filter, respectively.

Setting y(r) = Ye'® in Egs. (2a), (2b) and (3) yields

A +ioB)Y =R € [0,0,,], R= [—MI Sg(a))]

0
(%)
The process of NPDFRM for solving Eq. (5) is briefly
reviewed herein, we refer readers to (Wu et al. 2022) for
details. According to NPDFRM (Wu et al. 2022), we define
the following interval

0.,] = [0. 00/ ] ©

where 6 is an optional positive parameter (< 1). Using NPD-
FRM (Wu et al. 2022) can compute the required the low-
order modes ¥, = [ll!l, Yo, ..o s ql,] where the corresponding
frequencies fall within the interval specified in Eq. (6).

According to CMSM, the solution Y(w) in Eq. (5) can be
written as

Y(w) =¥, e, (0) + Ulw) @)
where  €,(@) = (¢,@). (@), . @), e (@) = L~
(s =1,2,...,0) and U(w) is the contribution from the uncal-

culated high-order modes. The unknown part U(w) can be
solved by using the following iterative formula

U =G@)U, +b, Uy =0,k=0,1,2,.., @ € [0, w,]

®)

where

G@) = —ioA™' |[B—BY, (BY,)"|, b= A" (R - BY,¥[R)
®

It should be emphasized that the spectral radius r(w) of
matrix G(w) is smaller than 6, so the iteration in Eq. (8)

converges.
Equation (8) can be rewritten as

k

Uk+1(w) = Zajpj’ a= w/wmax7 o€ [0’ wmax] (10)
Jj=0

and the vectors py, p;, -, P, are determined by using the
following recurrence relation

Ap, =R -B¥, ¥R

. . (11a)
Ap; = —iw,, [B-BY, BY) |p,_;, j=12,...
The stopping criterion of the algorithm is
[,
— <4
j " (11b)
2P,
q=0 2

where 6, is the preset tolerance. For details, please refer to
Wau et al. (2022).
To enhance the efficiency of solving Eq. (11a), NPDFRM

converts the solution from state space to primal space as fol-

]
lows withp; = | 4
p;

Kp, | _ [B - BY,(BY,)] N P
_ij2 = max JACES) pjg_l » J=12, ...
(12)
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Equation (12) can be further partitioned into the follow- $,(@) = (Xy(@) — X,_, (w))* (X(@) = X, (@)
ing two uncoupled systems _ ( X(@) - X7, (a))) ( X(@) - X,_, (a)))
1 . . Ve _Y*
K, = _éwma.x(cg‘ +Me) ,j=12,... (13) _Xk(cf)xk(w) X (@1 (@) (18b)
P; = 1058, - X,_ (@)X (0) + X (0)X,_(®)
= Sxkxk (a)) - Sxkxk—l (a)) - Sxk—]xk (a))
where
1 +8, (@), (k=2,3,...,N;)
¥
¥, = [‘FIIL\L ], ‘I’I = [‘PiT Ap \PiT]’ where X, (w) is the lateral displacement of the structure
L

1 2
h2 ij—l

f W (W!Th )+ WA, (P! Th
|:1:| Z‘FL\I‘EBpj—IZ[ L( L 1) L L( L 2) :|’

> WAL (YLh)) + WAL (Y Thy)

g1 — p/!_] - f1
2 pjz_l - f2
Solving the systems above separately yields the solution

to Eq. (12).
The approximation to Eq. (7) can be written as

Y¢(0) ~ ¥ e (0) + Pz(w), ® € [0, 0] (14)
where

T
P=py.p;. .0 2w) = (1,a,d°, -+ ,d") (15)

The relative error (RE)

X*(@) - X (@),

RO = N,

(16)

is employed to evaluate the accuracy of the approximated
seismic response X¢ (the top half of Y?), where X is the
seismic response calculated by using the direct method
(DM) to solve the following system

(K+ i€ - o®M)X = —MI}/S(@),0 € [0,0,,] (17)

Using the solution to Eq. (5), we get the PSD function of
the k-th story drift (Lin et al. 2001; Liu and Paavola 2015)

S (@) = Xy (@)X, (@) (k = 1) (18a)

@ Springer

boundary columns relative to the ground at the k-th floor,
X (w) is the complex conjugate of X (w), and N, is the total
number of floors in the structure.

3 Layout optimization process

The multi-material BESO approach is a topology optimiza-
tion method that iteratively removes and adds elements to
achieve an optimal structural design. Compared with other
methods, the BESO approach starts with a complete layout
of dampers as the initial design, avoiding the problem of
different final results due to the change of the initial damper
layout configuration. This characteristic makes it particularly
suitable for optimizing the layout of dampers in building
structures, as explored in this paper. In combination with the
random response algorithm of non-proportionally damped
structures under seismic excitation discussed in the previ-
ous section, we use the multi-material optimization method
based on BESO (Huang and Xie 2009) to determine the
layout of multi-type dampers in structures subjected to a
specified maximum number of each type of damper. In this
paper, the KS function (Kreisselmeier and Steinhauser 1979)
is utilized to minimize the maximum inter-story drift vari-
ance among all floors:

Min J=Jf1+1m %J(%‘l)
=1J, ” ,

J, = 2/ Sy(w)dw, (k =12,... ’Nf) (19)
0

st 8(py) = D Py <My (j=1.2,....N,~ 1)
e=1

pej € {pmin’ 1}

where p,; represents the density of damper e with the j-th
damping parameter; p.;, = 0.001 is the lower boundary of
p,ji Jo is an arbitrary scalar that satisfies J, > max (J, ); y is
a positive weight factor; N, represents the total number of
floors; J, and S (w) are the variance (Wirsching et al. 2006)
and PSD function of the k-th story drift, respectively; n, is
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the total number of dampers; g,(pe,) is the total number of
the j-th type of dampers installed; M; represents the maxi-
mum number of the j-th type of dampers and N, denotes the
number of types of dampers.

The subinterval subdivision technique (Liu et al. 2015),
along with the Gauss—Legendre integration method with 8
Gaussian points, is used to calculate the integral in Eq. (19).
In the N, types of dampers case and the corresponding damp-
ing coefficients are ¢; > ¢, > -+ > ¢y . The damping inter-
polation functions between two adjacent damper types are
as follows (Huang and Xie 2009)

C(pq) ppc +( —Pp> j+1, (j=1,2,...,N[—]) (2())

where p is the penalty factor.

We assume that the design variable p,; changes from 1
to pin continuously. The derivative of the objective func-
tion in Eq. (19) is calculate by using the adjoint variable
method (Haftka and Giirdal 1992; Yan and Cheng 2018;
Zhao et al. 2021, 2022; Pozo et al. 2023; Ou et al. 2025):

oJ oJ .

3= 30,3 —£, (j=12..N,—1) Q@D
pej k pq

where

oJ e}/<%_1)

57 T T 22
aJk Z]vf ey(j—f‘]’—l) ( a)

k=1

oJ Dmax 9§ max aSX x ( )
Tk _ 2/ k(w) dow = 2/ [ Kk
apej 0 apej 0 apej

_aSkakfl(w) _ 08y, (@) anklxkl(w)]da)
P, 0P, 0P,
(22b)
95, @) _ /w [X*(w) Kk @ | k(w)] ’
0P, 0 k 0P, X 0p,;
(22¢)
0Xy(@) _ | 19X(@) _ s 98 S 9 X ()= — ﬁ X(@)
ape} ¢ apq apq pej
(22d)
oS . -
=i o (€= ¢1): (22¢)

0p,;

in which L; is a column vector of 1 at the term s and O else-
where, where s represents the lateral displacement freedom
of the boundary column at the k — th floor of the structure;
S = K + iwC — »*M denotes the dynamic stiffness matrix; A
satisfies SA;, = L, and can be calculated by using NPDFRM
introduced in Sect. 2; and ¢ and Citp denote the elemental
damping matrices calculated using the damping coefficients

¢; and ¢; 4, respectively. Other derivatives in Eq. (22b) can
be obtained in a similar way to Egs. (22¢), (22d) and (22e).

The sensitivity number used in the BESO method can be
defined by the relative ranking of the sensitivity of an indi-
vidual element as (Huang and Xie 2009)

o _ 1o ’
Wy PPy @

To ensure the stability of the iterative process, the sensitiv-
ity information from the previous two iterations is added to
the sensitivity of the current g-th iteration (Huang and Xie
2009), denoted as:

- - 2
OJ (@) a_J(q)+ o] (g )+ o] (g2 on
dpej ~3 9p, 0p,; 0p,;

The evolution of the number of dampers at each iteration is
defined as (Chen et al. 2023)

NtV = N9(1 - ER) (25)

where Nf,q) represents the total number of dampers at the g-th
iteration, and ER is the evolutionary ratio.

The optimization process terminates when the constraint
function and the convergence criteria are satisfied. The con-
vergence criterion is (Huang and Xie 2009)

—(g—i+1) (q —M—i+1)

ZJ Z

—(q i+1)

<7 (26)

xJ

where g represents the current number of iterations, and M
is an integer. Normally, M is set to 5, which means that the
change in average objective function over the last 10 itera-
tions is small enough; # is the default tolerance. For more
information on the BESO approach, readers may refer to
Huang and Xie (2009). The flowchart of the optimization
process is presented in Fig. 1.

When the initial design incorporates all dampers, the non-
convexity of the optimization problem enables BESO to con-
verge to a local optimum solution. Therefore, we introduce a
diversified design technique based on the random coefficient
penalty method of element sensitivity (Xie 2025) to make the
optimization result closer to the global optimum solution. The
diversified design technique can be expressed as follows
()0_] =5eﬂ,5e €[l—g1+¢],

Py C0p, @7)
(e =1,2,---,n,;j=12,-,N, — 1)
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where :JY is the penalized sensitivity; % is the original sen-
sitivity a/nd is calculated using Eq. (23/); o, is the penalty
coefficient of damper e, randomly selected from the range
[1 —&,1+ e]and € is set to 0.15 (Xie 2025). Initialize boundary conditions, material
Note that the penalization of element sensitivities is propertics, and apply excitation loads
conducted at each iteration. As a result, the ranking of ele- ;
ments based on their sensitivities is altered, influencing the
removal or addition of ‘marginal’ elements with initially Finite Element simulation
low sensitivities, while elements with higher sensitivities 1. Solve the cigenproblem <

are more likely to be retained in the final design (Xie 2025).
Due to the random nature of the penalization, this increases
the likelihood that the final result will get closer to the global
optimum solution.

4 Numerical examples

In this section, two examples are utilized to illustrate the
effectiveness of the proposed approach. A workstation
equipped with an Intel CPU i9-12900K and 64 GB of
RAM performs calculations, and the code is written using
MATLAB version: 9.7.0 (R2019b). Both the mass and stiff-
ness matrices are represented in sparse matrix format. In
the following examples, we define the random response
tolerance of the non-proportionally damped structure as
8,, = 107, and set the optional parameter 6 = 0.5. For C-P
model, we set @, =20 Hz, S, = 0.0068m?/ s>, £, = 0.6,
w, =8rrad/s, & = 0.6 and @, = 1.5rad/s. For the steel
frame structure, we set the material parameters of Poisson’s
ratio v = 0.3, mass density p = 7800kg/m?, Young’s modu-
lus E = 210 x 10° Pa. The mass value m, of each node is
considered in three cases: 600 kg, 2200 kg and 3000 kg,
corresponding to real-world timber floors, steel sheeting
and concrete floors, and reinforced concrete floors, respec-
tively (D’Amico and Pomponi 2020). The Rayleigh damp-
ing model of the frame structure is adopted with a damp-
ing ratio §, = 0.02 (Chopra 1995). For layout optimization,
the parameter J;, is set as the maximum value of J; in each
step, and the parameter y starts with a value of one and it is
updated one unit each 25 iterations (Pozo et al. 2023). The
convergence criterion tolerance is set as 7 = 107>, the pen-
alty factor is set as p = 3, and the evolutionary ratios is set
as ER = 2% (Chen et al. 2023).

4.1 Example 1: 2D frame structure

In this example, we consider a 2D 10-bay, 30-story steel
frame structure, as shown in Fig. 2. In Fig. 2a, the frame
structure is depicted without dampers, while Fig. 2b shows
the structure equipped with full dampers. Each horizontal
and vertical black line shown in Fig. 2 represents a beam
with a length of 3 m. The cross-section of the beam is

@ Springer
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2. Compute the stochastic seismic response
3. Compute the objective function value

.

Compute the sensitivities of objective value

v

Average the histonical filtered sensitivities

v

Update the design variables

Is constraint

unction satistied’

No

Postprocess results

Fig. 1 Flowchart of the optimization process

shown in Fig. 2¢c. Each red line in Fig. 2b represents a vis-
cous damper with damping parameterc; = 1 X 10°N - s/m.
In this structure, the dampers with a vertical span of one
floor and a horizontal span of one bay are installed. The
number of full dampers in the structure is 600. The finite
element model based on Timoshenko beam elements of the
structure has 1023 DOFs. In this example, we consider the
layout optimization of the structure containing a single type
of damper. The number of dampers used is constrained to
less than 10% of the number of full dampers, and the seis-
mic excitation is along the X-axis. The proposed method
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Symmetry axis Symmetry axis

Fig.2 Schematic of a 2D

structure N e
L 10 mm
—
g O |
=
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o o
o
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(e8]
—— !
=200 mm—|
(c) Cross-section of beam
Y 1 Y a1
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(a) Frame structure (b) Frame structure with full
dampers
Y A A A A A A A AALAA Y A A A A A AAAAAA Y A A A A A A AAALAL
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(@) m, =600kg (b) m, =2200kg (¢) m,=3000kg

Fig.3 Optimal damper layouts in the 2D frame structure with different floor masses in Example 1
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Table 1 Details of layout optimization with different floor masses in
Example 1

Mass value of ~ Converged Iteration steps CPU time (s)
each node objective value

600 kg 9.4674x107° 163 12,245.04
2200 kg 4.8291x 107 157 15,758.24
3000 kg 7.0402% 107 161 18,679.42

is employed to optimize the layout of diagonally braced
dampers in the 2D frame structure, aiming to minimize the
maximum inter-story drift variance across all floors of the
boundary columns. In order to ensure the aesthetics of the
structure, bilateral symmetry constraints (Xie et al. 2020)
will be added to the optimization process of this example,

-6
1092 , : 100
9 —&—Objective function
—O—Number of dampers
(5] 1 80 =
= =
= S
; 60 é
3 =
K 140 ¢
3 =
2 =]
' E]
8 log &
3 0
0 50 100 150 200

Iteration steps

(@) m, =600kg

and the symmetry axis is shown in Fig. 2. It is worth noting
that the accuracy and efficiency of the NPDFRM algorithm
have been demonstrated in Wu et al. (2022), and will not be
repeated in this paper.

Under the specified maximum number of dampers, the
optimal damper layouts of the 2D structure with different
floor masses are shown in Fig. 3. It can be observed that,
under the same seismic excitation, the layout optimization
results for structures with different floor masses are very
similar. The mass of the floor has little effect on the layout
optimization results. The detailed computing performance
is illustrated in Table 1. The change history of the objective
function and the number of dampers is shown in Fig. 4. It
can be seen that with the increase of floor mass, the influence
of seismic excitation also increases, resulting in the increase
of the objective function values. Meanwhile, additional time

6a . . — 100

—&—bjective function
—O—Number of dampers

80

[ ~
2 S
S4f 1
g 60 2
5 )
53 <
2 40 ¢
2, 2
oy £ =
Cot 20 Z.
0
0 50 100 150

Iteration steps

(b) m, =2200kg

5

910 100

8 —&— Objective function

7 —O— Number of dampers
3 80 =
=6 )
£s 60 &
2 3
5 3
‘o4 5
2 40 5
o 4 Sl
=3 5
C 20 <

2 : : : 0

0 50 100 150 200

Iteration steps

(¢) m, =3000kg

Fig.4 Optimization history of the objective function and the number of dampers in Example 1
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30 y
_m”=600kg
..... m"=2200kg

28— ,;1":30()0kg 1

24

22 : : :
0 50 100 150 200

[teration steps

Fig.5 Optimization history of the floor location of maximum drift
variance in Example 1

is required to compute more lower-order modes, increasing
the CPU time required for layout optimization. The change
history of the floor where the maximum inter-story drift
variance is located is shown in Fig. 5. As shown in Figs. 4

and 35, there is a difference in the maximum inter-story drift
variance and its specific floor location in structures with
different floor masses. This difference is also reflected in
the final results.

Next, we consider the layout optimization problem
for two types of dampers as shown in Fig. 2, with damp-
ing coefficients of ¢, = 1 X 10N -s/m (red line) and
¢, = 1 X 103N - s/m (blue line). The quantities of ¢, and ¢,
dampers used are limited to 4% and 6% of the total number
of dampers, respectively. The optimal layout of two types of
dampers for 2D structures with different floor masses, within
the specified maximum number of each type of damper, is
shown in Fig. 6. Compared with the optimized layout of one
type of damper, the optimized layouts of the two types of
dampers remain similar. The detailed computational perfor-
mance is presented in Table 2. In Fig. 7, the evolution of the
objective function and the number of dampers over time are
illustrated. A comparison of Tables 1 and 2 reveals that the
convergence objective function value in Table 2 is higher
than that in Table 1. This increase occurs because more
dampers with ¢, = 1 X 10° N - s/m are used, while fewer
dampers with ¢, = 1 x 10° N - s/m are installed. Although
this reduces the seismic resistance of the building structure,
it also reduces its cost.

'Y A A A lLlllll A A A A

X

(@) m, =600kg

\f1 thlhnjllj

(b) m, =2200kg

L A A A A

Y A & A Illblli A A A A
X

(¢) m, =3000kg

Fig.6 Optimal layouts of two damper types in the 2D frame structure with different floor masses in Example 1
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Table 2 Details of layout optimization with different floor masses in
Example 1

Mass value of ~ Converged Iteration steps CPU time (s)
each node objective value

600 kg 1.5636x 107 186 13,199.54
2200 kg 7.3705% 107 187 17,711.70
3000 kg 1.0440x 107 188 22,073.66

Subsequently, we apply the diversified design technique
(Xie 2025) to the aforementioned 2D structure with two
damper types and m, = 600 kg. The results of three ran-
dom experiments on the optimal layout of dampers are
shown in Fig. 8. By comparing the layouts of Figs. 6a

2 100
—&— Objective function
15 —o—Number of ¢, dampers
E —o— Number of ¢, dampers 80
& 1 60
3]
3
2 40
51
(]
= 0.5
© 20
F 0
0 50 100 150 200

Iteration steps

(a) m, =600kg

Number of dampers (%)

and 8, it can be seen that under the same initial layout,
their optimal designs are similar. These results indicate
the convex-like behavior of this layout optimization prob-
lem. Table 3 presents detailed computational performance.
Figure 9 illustrates the variation history of the objective
function and the number of dampers in the three random
experiments. By comparing their convergence objective
function values, it can be seen that two of the random
experiment results have smaller convergence objective
function values. Therefore, the diversified design tech-
nique can generate results that are closer to the global
optimum solution.

9 100
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Fig. 7 Optimization history of the objective function and the number of two damper types in Example 1

@ Springer



Layout optimization of multi-type dampers in structures under seismic excitation

Page 110f 19 206

Yt A A A A A AAALLLALA

(1

YL‘_E A A A A A
his
)

4

L A A A A

Y1 A A A A A A AAALAL

3)

Fig.8 Three random experiment results for optimal damper layouts in the 2D structure with two damper types and m, = 600 kg in Example 1

4.2 Example 2: 3D frame structure

In the second example, a 3D steel frame structure with 4
bays on one side and 6 bays on the other, consisting of 20
story floors as depicted in Fig. 10, is investigated. Each black
line in Fig. 10a—d represents a beam. Figure 10e shows the
cross-section of the beam. Initially, dampers are installed
on the front and rear surfaces of the structure (surfaces 1
and 5 in Fig. 10d) in two groups of 240 each. Here, damp-
ers with a vertical span of one floor and a horizontal span
of one bay are installed. In Fig. 10a—d, every red line rep-
resents a damper, and the damping coefficient is set as
¢; = 1 x 105N - s/m. The finite element model of the struc-
ture consists of 4410 DOFs. In this example, the seismic

Table 3 Details of three random experiments on the optimal layout of
dampers for the 2D structure with two damper types and m, = 600 kg
in Example 1

Random Converged objec- Iteration steps CPU time (s)
experiment tive value

(€8] 1.5620% 107 185 12,635.74
) 1.5625% 107 182 12,558.45
3) 1.6105%x 107 174 12,000.64

excitation is eccentric, at an angle of 30 degrees to the
X-axis and 60 degrees to the Y-axis. We consider the opti-
mization problem of damper arrangement in the 3D structure
containing three types of dampers, aiming to minimize the
maximum inter-story drift variance among all floors of the
middle column on the right side. The damping coefficients
of the dampers used are ¢; = 1 x 10N - s/m (red line),
¢, = 5x10°N - s/m (blue line) and c; = 1 X 10°N - s/m
(green line). The number of ¢, ¢, and ¢; dampers used is
limited to 4%, 3% and 3% of the total number of dampers,
respectively. The layout optimization in this example will
add the quarter-periodic symmetry constraints (Huang and
Xie 2008) to preserve the aesthetics of the structure, with
the symmetry axes shown in Fig. 10b, c.

The optimal layout of three types of dampers is shown
in Fig. 11. Since the 3D structure in this example is sym-
metrical from front to back, only the main view of the layout
optimization result is illustrated. Under the same seismic
excitation, the optimal layouts of the three types of damp-
ers are similar across structures with different floor masses.
Table 4 lists the detailed calculation performance. As the
floor mass increases, more low-order modes need to be cal-
culated, thereby increasing the CPU time required for layout
optimization. The variation history of the objective function
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Fig. 9 Optimization history of the objective function and the number of dampers in the three random experiments for the 2D structure with two

damper types and m,, = 600 kg in Example 1

value and the number of dampers is shown in Fig. 12. In
addition, Fig. 13 shows the history of the floor where the
maximum drift variance is located. In this example, it is evi-
dent that the optimization histories for the floors exhibiting
the maximum inter-story drift variance are similar.
Similarly, we explore the diversified design tech-
nique for the 3D structure with three damper types and
m, = 600 kg. Figure 14 displays the results of three ran-
dom experiments on the optimal layout of dampers. By
comparing Fig. 11a with Fig. 14, it can be observed that
their optimal layouts are similar under the same initial lay-
out. These results also point out the convex-like behavior

@ Springer

of this layout optimization problem. Table 5 presents
detailed computational performance. Figure 15 illustrates
the variation history of the objective function and the num-
ber of dampers in the three random experiments. By com-
paring their converged objective function values, we can
see that in this example, the converged objective function
value of the original example is smaller and closer to the
global optimum solution. It is worth noting that, because
the diversified design technique involves randomness, run-
ning multiple calculations may yield an even lower objec-
tive function value.
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Fig. 10 Schematic of a 3D frame structure

5 Conclusion

A new BESO-based optimization method is introduced to
determine the layout of multi-type dampers in structures
subjected to seismic excitation, with a constraint on the
maximum number of each type of dampers. This approach
integrates PEM with NPDFRM to adaptively calculate the
inter-story drift variance across all floors of non-propor-
tionally damped structures, ensuring both accuracy and
efficiency in assessing the stochastic seismic response.
In addition, the KS function is utilized to minimize the
maximum inter-story drift variance among the bound-
ary columns, facilitating the determination of the opti-
mal layout of multi-type dampers. The proposed method
is validated through two numerical examples involving

Y @ ‘
X A B €

(d) Top view of the structure

r 20 mm

§ ‘
=
g
=
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(e) Cross-section of beam

2D and 3D frame structures. The results demonstrate that
this method effectively determines the optimal layout
of multi-type dampers for structures with varying floor
masses while adhering to the maximum limits for each
type of damper. This approach can also serve as a practical
tool for optimizing damper layouts in earthquake-prone
regions. The present study has focused on the layout opti-
mization problem of multi-type linear viscous dampers.
As the number of damper types increases, this approach
can effectively achieve simultaneous optimization of both
damper parameters and layouts. Future research will inves-
tigate the generalization of the proposed method for non-
stationary random responses.
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Fig. 11 Optimal layouts of three damper types in the 3D structure with different floor masses in Example 2

Table 4 Details of layout optimization with different floor masses in

Example 2

Mass value of ~ Converged Iteration steps CPU time (s)
each node objective value

600 kg 5.8932x 107 208 25,417.16
2200 kg 1.7481x 1075 173 62,536.47
3000 kg 2.4962x 107 150 83,693.92
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Fig. 12 Optimization history of the objective function and the number of dampers in Example 2
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)

@ Springer



Layout optimization of multi-type dampers in structures under seismic excitation Page 170f 19 206

Table 5 Details of three random experiments on the optimal layout
of dampers in the 3D structure with three damper types and m, = 600

kg in Example 2
Random Converged objec- Iteration steps CPU time (s)
experiment tive value
1) 6.2906x 107 147 21,085.34
2) 6.0506x 107 191 24,825.23
3) 6.0983x 107 162 23,807.16
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Fig. 15 Optimization history of the objective function and the number of dampers in the three random experiments for the 3D structure with
three damper types and m,, = 600 kg in Example 2
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