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Abstract
Seismic performance is a critical consideration in the design of building structures to maintain its stability and strength. 
One effective approach to enhance this performance is the installation of dampers. However, traditional design methods 
often fail to achieve the optimal arrangement of dampers for improving seismic resilience. This paper presents an optimiza-
tion method for determining the most effective layout of multi-type dampers based on bidirectional evolutionary structural 
optimization (BESO). The optimization objective is to minimize the maximum variance of inter-story drift across all floors, 
given a specified maximum number of each type of damper. To approximate the non-smooth objective function, the Kre-
isselmeier – Steinhauser (KS) function is incorporated. In addition, an efficient algorithm based on the pseudo excitation 
method (PEM) is introduced to calculate the frequency-domain stochastic seismic response of non-proportionally damped 
structures throughout the layout optimization process. Two frame structure examples are presented to illustrate the applica-
tion and effectiveness of the proposed method.

Keywords  Layout optimization · Non-proportional damping · Stochastic seismic excitation · Pseudo excitation method · 
Iteration method

1  Introduction

In civil engineering, it is important to ensure the seismic per-
formance of structures. One effective approach to enhance 
earthquake resistance is by installing damper devices in 
structures (Housner et al. 1997; Soong and Spencer 2002; 
Symans et al. 2008). Using a sufficient number of various 
damper types can reliably meet performance requirements, 
but this solution is not cost-effective. Therefore, when the 
maximum number of each damper type is given, determining 
the optimal layout arrangement of multiple damper types is 
the focus of seismic design research. However, traditional 

design methods often struggle to effectively identify the 
most effective layout of dampers, making it challenging to 
achieve optimal seismic performance.

Topology optimization is an effective method to achieve 
the optimal layout of materials in a specified design domain 
according to certain constraints and objective functions 
(Bendsøe and Kikuchi 1998). In recent years, the topology 
optimization of damper layouts for structures under seis-
mic excitation has emerged as a prominent area of research. 
Lavan and Amir (2014) took the damping coefficient of each 
potential viscous damper as a continuous variable and deter-
mined it through a topology optimization algorithm. Subse-
quently, Pollini et al. (2017) further extended this study to 
the case of nonlinear viscous dampers. Gomez et al. (2021) 
simultaneously optimized the structure layout and damp-
ing coefficient by solving a Lyapunov equation. However, 
incorporating dampers with different damping coefficients 
within the same structure remains a technical issue for engi-
neering applications. Based on the equivalent linearization 
method and the time-domain explicit approach, Su et al. 
(2016) developed an effective time-domain random vibra-
tion analysis method for nonlinear structures subjected to 
non-stationary random excitation, which was subsequently 
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applied to the layout optimization of nonlinear viscous 
dampers in building structures under non-stationary ran-
dom seismic excitation (Su and Xian 2022). It is important 
to note that varying initial layouts can result in substantial 
differences in the final outcomes, making it challenging to 
attain a genuinely optimal damper arrangement.

Although nonlinear considerations are often taken into 
account when designing structures under seismic excita-
tion, in most cases standard design practice assumes that 
the behavior of the structure is linear (Gomez et al. 2021). 
Therefore, in this study, we assume that the structural model 
is linear. In calculating the stationary seismic response of a 
structure, the pseudo excitation method (PEM) is a typical 
frequency-domain analysis method that converts a station-
ary seismic process into a simple harmonic process (Lin 
et al. 2001; Li et al. 2023). However, the addition of dampers 
yields a non-proportionally damped system. For non-propor-
tionally damped system, the damping matrix no longer satis-
fies the modal orthogonal condition. At the same time, atten-
tion should be directed toward structural responses across 
the entire seismic frequency range, rather than concentrating 
on just a particular frequency. The complex mode superposi-
tion method (CMSM) (Traill-Nash 1981) is the most widely 
used technique for analyzing the structural dynamic behav-
ior of non-proportionally damped systems. Indeed, CMSM 
necessitates the availability of all complex modes. Obtaining 
these complex modes is nearly impossible, particularly for 
large-scale problems. As a result, modal truncation must be 
implemented, which can significantly impact the accuracy 
of the results. To overcome the shortcomings of CMSM, a 
hybrid expansion method (HEM) (Liu et al. 1996; Huang 
et al. 1997; Qu 2000; Qu and Selvam 2000; Li et al. 2014, 
2016) based on modal superposition and power series expan-
sion of the dynamic flexible matrix has been proposed. How-
ever, a key question is how many terms of the power series 
expansion need to be retained to achieve the desired level 
of accuracy. In addition, using HEM requires calculations 
at each frequency of interest within the specified frequency 
range.

To efficiently analyze the dynamic behavior of non-pro-
portionally damped systems within a frequency range, Wu 
et al. (2022) proposed a non-proportionally damped frequency 
response method (NPDFRM). The method can adaptively 
determine which lower-order mode to calculate, while the 
influence of the unknown higher-order modes on the frequency 
response is estimated using the partial sum of a convergent 
power series. The iterative algorithm is executed only at the 
right end of the excitation frequency interval, and the num-
ber of terms in the partial sum can be determined adaptively. 
The derived frequency response expression is valid across the 
entire range of excitation frequencies. Consequently, by vary-
ing the excitation frequency in the analytical expression, the 
response for the entire frequency range can be readily obtained. 

Although the proposed method is grounded in the state space 
approach, its implementation is tailored to the original space, 
resulting in reduced computational and storage requirements.

Controlling lateral drift in structures is a crucial regula-
tory aspect of seismic design (International Conference of 
Building Officials 1997; European Committee for Standardi-
zation 2004; National Standard of the People’s Republic of 
China 2010). Minimizing the maximum variance of inter-
story drift across all floors leads to a more uniform distri-
bution of inter-story drift ratios along the building height 
(Alavi and Krawinkler 2004). A structure with uniformly 
distributed inter-story drift ratios is generally more resilient 
to seismic events compared to traditional structures, as it can 
reduce localized damage and distribute seismic forces more 
evenly (Moghaddam et al. 2005). In this work, an optimiza-
tion method based on BESO is proposed to determine the 
layout of multi-type dampers in structures under stationary 
seismic excitation. The goal is to minimize the maximum 
inter-story drift variance among all floors, given a speci-
fied maximum number of each type of damper. This method 
starts with the full layout of dampers as the initial design, 
thereby avoiding the issue of different final results caused 
by variations in the initial damper layout configuration. This 
method combines PEM with NPDFRM to calculate the inter-
story drift variance of a non-proportionally damped struc-
ture, which makes stochastic seismic response more accurate 
and the calculation process simpler and more economical. At 
the same time, the Kreisselmeier‒Steinhauser (KS) function 
(Kreisselmeier and Steinhauser 1979) is then employed to 
minimize the maximum inter-story drift variance among all 
floors to achieve the optimal layout of multi-type dampers.

In what follows, Sect. 2 presents the preparatory work, 
which includes PEM and NPDFRM. Section 3 offers com-
prehensive explanation to the layout optimization framework 
based on the BESO method. Section 4 provides two exam-
ples of frame structures to demonstrate the effectiveness of 
the proposed algorithm, and Sect. 5 concludes with final 
remarks.

2 � Preparatory work

The dynamic equation of a structure system with NDOF 
degrees of freedom under seismic excitation can be 
expressed as:

where � ∈ ℝ
NDOF×NDOF  is the global mass matrix; 

� ∈ ℝ
NDOF×NDOF  i s  the  global  damping matr ix ; 

� ∈ ℝ
NDOF×NDOF is the global stiffness matrix; �(t) denotes 

an NDOF-dimensional displacement vector and a dot repre-
sents the differentiation with respect to time t; � is an NDOF

-dimensional vector whose components are equal to 1 for the 

(1)𝐌𝐱̈(t) + 𝐂𝐱̇(t) +𝐊𝐱(t) = −𝐌𝐈ag(t)



Layout optimization of multi‑type dampers in structures under seismic excitation﻿	 Page 3 of 19  206

DOFs corresponding to the main horizontal direction of the 
earthquake effect and 0 for all others; and ag(t) is the ground 
acceleration generated by seismic excitation. In this work, 
the floor mass is modeled as a lumped mass and distributed 
across all beam-column nodes of the structure (Gao et al. 
2022). The mass value of each node is set as mn.

In Eq. (1), the damping matrix cannot be diagonalized. 
To solve this equation, the auxiliary equation 𝐌𝐱̇ −𝐌𝐱̇ = 0 
is introduced to obtain

where

Based on PEM (Lin et al. 2001), the ground acceleration 
can be expressed as

where Sg(�) represents the power spectral density (PSD) 
function of the seismic excitation. In this paper, the structure 
is subjected to a ground motion described by the Clough‒
Penzien (C‒P) mode (Clough and Penzien 1975) where 
Sg(�) is given by

where

and S0 is the spectral intensity coefficients of seismic excita-
tion; �g and �g are the damping ratio and frequency of the 
site soil, respectively; and Hf (�) is a low frequency filter in 
which �f  and �f  are the damping ratio and frequency of the 
filter, respectively.

Setting �(t) = �ei�t in Eqs. (2a), (2b) and (3) yields

The process of NPDFRM for solving Eq. (5) is briefly 
reviewed herein, we refer readers to (Wu et al. 2022) for 
details. According to NPDFRM (Wu et al. 2022), we define 
the following interval

(2a)𝐀𝐲 + 𝐁𝐲̇ = 𝐫ag(t)

(2b)�=

[
K �

� −M

]
, � =

[
� �

� �

]
, �=

[
�

�̇

]
, � =

[
−��

�

]

(3)ag(t) =
√

Sg(�)e
i�t,� ∈

[
0,�max

]

(4a)

Sg(�) = S0

1 + 4�2
g

(
�

�g

)2

[
1 −

(
�

�g

)2
]2

+ 4�2
g

(
�

�g

)2
× Hf (�),� ∈

[
0,�max

]

(4b)Hf (�) =

(
�

�f

)4

[
1 −

(
�

�f

)2
]2

+ 4�2
f

(
�

�f

)2

(5)

(� + i��)� = �,� ∈
�
0,�max

�
, � =

�
−��

√
Sg(�)

�

�

where � is an optional positive parameter (< 1). Using NPD-
FRM (Wu et al. 2022) can compute the required the low-
order modes �L =

[
�1,�2,… ,�l

]
 where the corresponding 

frequencies fall within the interval specified in Eq. (6).
According to CMSM, the solution Y(ω) in Eq. (5) can be 

written as

where  �L(�) =
(
e1(�), e2(�),⋯ , el(�)

)
 ,  es(�) =

�T
s
�

i�−�s
 

(s = 1, 2,… , l) and �(�) is the contribution from the uncal-
culated high-order modes. The unknown part �(�) can be 
solved by using the following iterative formula

where

It should be emphasized that the spectral radius �(�) of 
matrix �(�) is smaller than θ, so the iteration in Eq.  (8) 
converges.

Equation (8) can be rewritten as

and the vectors �0, �1,⋯ , �k are determined by using the 
following recurrence relation

The stopping criterion of the algorithm is

where �m is the preset tolerance. For details, please refer to 
Wu et al. (2022).

To enhance the efficiency of solving Eq. (11a), NPDFRM 

converts the solution from state space to primal space as fol-

lows with �j =

[
�1
j

�2
j

]

(6)
[
0, �r

]
=
[
0,�max∕�

]

(7)�(�) = �L�L(�) + �(�)

(8)
�k+1 = �(�)�k + �, �0 = 0, k = 0, 1, 2, ..., � ∈

[
0,�max

]

(9)
�(�) = −i��−1

[
� − ��L

(
��L

)T]
, � = �−1

(
� − ��L�

T
L
�
)

(10)�k+1(�) =

k∑
j=0

aj�j, a = �∕�max, � ∈
[
0,�max

]

(11a)
��0 = � − ��L�

T
L
�

��j = −i�max

[
� − ��L(��L)

T
]
�j−1, j = 1, 2,…

(11b)

����j
���2

�����
j∑

q=0

�q

�����2

< 𝛿m

(12)

[
��1

j

−��2
j

]
= −i�max

[
� − ��L(��L)

T
][ �1

j−1

�2
j−1

]
, j = 1, 2,…
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Equation (12) can be further partitioned into the follow-
ing two uncoupled systems

where

Solving the systems above separately yields the solution 
to Eq. (12).

The approximation to Eq. (7) can be written as

where

The relative error (RE)

is employed to evaluate the accuracy of the approximated 
seismic response �a (the top half of �a ), where �f  is the 
seismic response calculated by using the direct method 
(DM) to solve the following system

Using the solution to Eq. (5), we get the PSD function of 
the k-th story drift (Lin et al. 2001; Liu and Paavola 2015)

(13)

{
K�1

j
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(
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= i�max�1
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=
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.

(14)�a(�) ≈ �L�L(�) + ��(�), � ∈
[
0,�max

]

(15)� =
[
�0, �1,⋯ , �k

]
, �(�) =

(
1, a, a2,⋯ , ak

)T

(16)RE(�) =
‖‖�a(�) − �f (�)‖‖2

‖‖�f (�)‖‖2

(17)
(
� + i�� − �2�

)
�f = −��

√
Sg(�),� ∈

[
0,�max

]

(18a)S1(�) = X1(�)
∗X1(�) (k = 1)

where Xk(�) is the lateral displacement of the structure 
boundary columns relative to the ground at the k-th floor, 
X∗
k
(�) is the complex conjugate of Xk(�) , and Nf  is the total 

number of floors in the structure.

3 � Layout optimization process

The multi-material BESO approach is a topology optimiza-
tion method that iteratively removes and adds elements to 
achieve an optimal structural design. Compared with other 
methods, the BESO approach starts with a complete layout 
of dampers as the initial design, avoiding the problem of 
different final results due to the change of the initial damper 
layout configuration. This characteristic makes it particularly 
suitable for optimizing the layout of dampers in building 
structures, as explored in this paper. In combination with the 
random response algorithm of non-proportionally damped 
structures under seismic excitation discussed in the previ-
ous section, we use the multi-material optimization method 
based on BESO (Huang and Xie 2009) to determine the 
layout of multi-type dampers in structures subjected to a 
specified maximum number of each type of damper. In this 
paper, the KS function (Kreisselmeier and Steinhauser 1979) 
is utilized to minimize the maximum inter-story drift vari-
ance among all floors:

where �ej represents the density of damper e with the j-th 
damping parameter; �min = 0.001 is the lower boundary of 
�ej ; J0 is an arbitrary scalar that satisfies J0 ≥ max

(
Jk
)
 ; � is 

a positive weight factor; Nf  represents the total number of 
floors; Jk and Sk(�) are the variance (Wirsching et al. 2006) 
and PSD function of the k-th story drift, respectively; ne is 

(18b)

Sk(�) =
(
Xk(�) − Xk−1(�)

)∗(
Xk(�) − Xk−1(�)

)
=
(
X∗
k
(�) − X∗

k−1
(�)

)(
Xk(�) − Xk−1(�)

)
= X∗

k
(�)Xk(�) − X∗

k
(�)Xk−1(�)

− X∗
k−1

(�)Xk(�) + X∗
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(�)Xk−1(�)

= Sxkxk (�) − Sxkxk−1(�) − Sxk−1xk (�)

+ Sxk−1xk−1(�),
(
k = 2, 3,… ,Nf

)

(19)
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=
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the total number of dampers; gj
(
�ej

)
 is the total number of 

the j-th type of dampers installed; Mj represents the maxi-
mum number of the j-th type of dampers; and Nt denotes the 
number of types of dampers.

The subinterval subdivision technique (Liu et al. 2015), 
along with the Gauss‒Legendre integration method with 8 
Gaussian points, is used to calculate the integral in Eq. (19). 
In the Nt types of dampers case and the corresponding damp-
ing coefficients are c1 > c2 > ⋯ > cNt

 . The damping inter-
polation functions between two adjacent damper types are 
as follows (Huang and Xie 2009)

where p is the penalty factor.
We assume that the design variable �ej changes from 1 

to �min continuously. The derivative of the objective func-
tion in Eq. (19) is calculate by using the adjoint variable 
method (Haftka and Gürdal 1992; Yan and Cheng 2018; 
Zhao et al. 2021, 2022; Pozo et al. 2023; Ou et al. 2025):

where

in which �k is a column vector of 1 at the term s and 0 else-
where, where s represents the lateral displacement freedom 
of the boundary column at the k − th floor of the structure; 
� = � + i�� − �2� denotes the dynamic stiffness matrix; � 
satisfies ��k = �k and can be calculated by using NPDFRM 
introduced in Sect. 2; and �j and �j+1 denote the elemental 
damping matrices calculated using the damping coefficients 

(20)c
(
�ej

)
= �

p

ej
cj +

(
1 − �

p

ej

)
cj+1,

(
j = 1, 2,… ,Nt − 1

)

(21)�J

��ej
=

Nf∑
k=1

�J

�Jk

�Jk

��ej
,
(
j = 1, 2…Nt − 1

)

(22a)
�J

�Jk
=

e
�

�
Jk

J0
−1

�

∑Nf

k=1
e
�

�
Jk

J0
−1

�

(22b)

�Jk

��ej
= 2∫

�max

0

�Sk(�)

��ej
d� = 2∫

�max

0

[
�Sxkxk (�)

��ej

−
�Sxkxk−1(�)

��ej
−

�Sxk−1xk (�)

��ej
+

�Sxk−1xk−1(�)

��ej

]
d�

(22c)

�Sxkxk−1(�)

��ej
= ∫

�max

0

[
X∗
k
(�)

�Xk−1(�)

��ej
+ X∗

k−1
(�)

�Xk(�)

��ej

]
d�

(22d)

�Xk(�)

��ej
= �T

k

��(�)

��ej
= −�T

k
�−1

��

��ej
�(�)= − �T

k

��

��ej
�(�)

(22e)
��

��ej
= i� ⋅ p�

p−1

ej

(
�j − �j+1

)
;

cj and cj+1 , respectively. Other derivatives in Eq. (22b) can 
be obtained in a similar way to Eqs. (22c), (22d) and (22e).

The sensitivity number used in the BESO method can be 
defined by the relative ranking of the sensitivity of an indi-
vidual element as (Huang and Xie 2009)

To ensure the stability of the iterative process, the sensitiv-
ity information from the previous two iterations is added to 
the sensitivity of the current q-th iteration (Huang and Xie 
2009), denoted as:

The evolution of the number of dampers at each iteration is 
defined as (Chen et al. 2023)

where N(q)
e  represents the total number of dampers at the q-th 

iteration, and ER is the evolutionary ratio.
The optimization process terminates when the constraint 

function and the convergence criteria are satisfied. The con-
vergence criterion is (Huang and Xie 2009)

where q represents the current number of iterations, and M 
is an integer. Normally, M is set to 5, which means that the 
change in average objective function over the last 10 itera-
tions is small enough; � is the default tolerance. For more 
information on the BESO approach, readers may refer to 
Huang and Xie (2009). The flowchart of the optimization 
process is presented in Fig. 1.

When the initial design incorporates all dampers, the non-
convexity of the optimization problem enables BESO to con-
verge to a local optimum solution. Therefore, we introduce a 
diversified design technique based on the random coefficient 
penalty method of element sensitivity (Xie 2025) to make the 
optimization result closer to the global optimum solution. The 
diversified design technique can be expressed as follows

(23)
�J

��ej
= −

1

p

�J

��ej

(24)
�J

��ej

(q)

=
1

3

(
�J

��ej

(q)

+
�J

��ej

(q−1)

+
�J

��ej

(q−2)
)

(25)N(q+1)
e

= N(q)
e
(1 − ER)

(26)

M∑
i=1

J
(q−i+1)

−
M∑
i=1

J
(q−M−i+1)

M∑
i=1

J
(q−i+1)

≤ �

(27)
𝜕J̃

𝜕𝜌ej
= 𝛿e

𝜕J

𝜕𝜌ej
, 𝛿e ∈ [1 − 𝜀, 1 + 𝜀],

(
e = 1, 2,⋯ , ne; j = 1, 2,⋯ ,Nt − 1

)
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where 𝜕J̃
𝜕𝜌ej

 is the penalized sensitivity; �J
��ej

 is the original sen-

sitivity and is calculated using Eq. (23); �e is the penalty 
coefficient of damper e, randomly selected from the range 
[1 − �, 1 + �] and � is set to 0.15 (Xie 2025).

Note that the penalization of element sensitivities is 
conducted at each iteration. As a result, the ranking of ele-
ments based on their sensitivities is altered, influencing the 
removal or addition of ‘marginal’ elements with initially 
low sensitivities, while elements with higher sensitivities 
are more likely to be retained in the final design (Xie 2025). 
Due to the random nature of the penalization, this increases 
the likelihood that the final result will get closer to the global 
optimum solution.

4 � Numerical examples

In this section, two examples are utilized to illustrate the 
effectiveness of the proposed approach. A workstation 
equipped with an Intel CPU i9-12900K and 64  GB of 
RAM performs calculations, and the code is written using 
MATLAB version: 9.7.0 (R2019b). Both the mass and stiff-
ness matrices are represented in sparse matrix format. In 
the following examples, we define the random response 
tolerance of the non-proportionally damped structure as 
�m = 10−6 , and set the optional parameter � = 0.5 . For C-P 
model, we set �max = 20 Hz, S0 = 0.0068m2

/
s3 , �g = 0.6 , 

�g = 8� rad∕ s , �f = 0.6 and �f = 1.5 rad∕ s . For the steel 
frame structure, we set the material parameters of Poisson’s 
ratio v = 0.3 , mass density � = 7800 kg∕m3 , Young’s modu-
lus E = 210 × 109 Pa . The mass value mn of each node is 
considered in three cases: 600 kg, 2200 kg and 3000 kg, 
corresponding to real-world timber floors, steel sheeting 
and concrete floors, and reinforced concrete floors, respec-
tively (D’Amico and Pomponi 2020). The Rayleigh damp-
ing model of the frame structure is adopted with a damp-
ing ratio �c = 0.02 (Chopra 1995). For layout optimization, 
the parameter J0 is set as the maximum value of Jk in each 
step, and the parameter � starts with a value of one and it is 
updated one unit each 25 iterations (Pozo et al. 2023). The 
convergence criterion tolerance is set as � = 10−5 , the pen-
alty factor is set as p = 3 , and the evolutionary ratios is set 
as ER = 2% (Chen et al. 2023).

4.1 � Example 1: 2D frame structure

In this example, we consider a 2D 10-bay, 30-story steel 
frame structure, as shown in Fig. 2. In Fig. 2a, the frame 
structure is depicted without dampers, while Fig. 2b shows 
the structure equipped with full dampers. Each horizontal 
and vertical black line shown in Fig. 2 represents a beam 
with a length of 3 m. The cross-section of the beam is 

shown in Fig. 2c. Each red line in Fig. 2b represents a vis-
cous damper with damping parameter c1 = 1 × 106 N ⋅ s∕m . 
In this structure, the dampers with a vertical span of one 
floor and a horizontal span of one bay are installed. The 
number of full dampers in the structure is 600. The finite 
element model based on Timoshenko beam elements of the 
structure has 1023 DOFs. In this example, we consider the 
layout optimization of the structure containing a single type 
of damper. The number of dampers used is constrained to 
less than 10% of the number of full dampers, and the seis-
mic excitation is along the X-axis. The proposed method 

Fig. 1   Flowchart of the optimization process
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Fig. 2   Schematic of a 2D 
structure

Fig. 3   Optimal damper layouts in the 2D frame structure with different floor masses in Example 1
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is employed to optimize the layout of diagonally braced 
dampers in the 2D frame structure, aiming to minimize the 
maximum inter-story drift variance across all floors of the 
boundary columns. In order to ensure the aesthetics of the 
structure, bilateral symmetry constraints (Xie et al. 2020) 
will be added to the optimization process of this example, 

and the symmetry axis is shown in Fig. 2. It is worth noting 
that the accuracy and efficiency of the NPDFRM algorithm 
have been demonstrated in Wu et al. (2022), and will not be 
repeated in this paper.

Under the specified maximum number of dampers, the 
optimal damper layouts of the 2D structure with different 
floor masses are shown in Fig. 3. It can be observed that, 
under the same seismic excitation, the layout optimization 
results for structures with different floor masses are very 
similar. The mass of the floor has little effect on the layout 
optimization results. The detailed computing performance 
is illustrated in Table 1. The change history of the objective 
function and the number of dampers is shown in Fig. 4. It 
can be seen that with the increase of floor mass, the influence 
of seismic excitation also increases, resulting in the increase 
of the objective function values. Meanwhile, additional time 

Table 1   Details of layout optimization with different floor masses in 
Example 1

Mass value of 
each node

Converged 
objective value

Iteration steps CPU time (s)

600 kg 9.4674 × 10–6 163 12,245.04
2200 kg 4.8291 × 10–5 157 15,758.24
3000 kg 7.0402 × 10–5 161 18,679.42

Fig. 4   Optimization history of the objective function and the number of dampers in Example 1
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is required to compute more lower-order modes, increasing 
the CPU time required for layout optimization. The change 
history of the floor where the maximum inter-story drift 
variance is located is shown in Fig. 5. As shown in Figs. 4 

and 5, there is a difference in the maximum inter-story drift 
variance and its specific floor location in structures with 
different floor masses. This difference is also reflected in 
the final results.

Next, we consider the layout optimization problem 
for two types of dampers as shown in Fig. 2, with damp-
ing coefficients of c1 = 1 × 106 N ⋅ s∕m (red line) and 
c2 = 1 × 105 N ⋅ s∕m (blue line). The quantities of c1 and c2 
dampers used are limited to 4% and 6% of the total number 
of dampers, respectively. The optimal layout of two types of 
dampers for 2D structures with different floor masses, within 
the specified maximum number of each type of damper, is 
shown in Fig. 6. Compared with the optimized layout of one 
type of damper, the optimized layouts of the two types of 
dampers remain similar. The detailed computational perfor-
mance is presented in Table 2. In Fig. 7, the evolution of the 
objective function and the number of dampers over time are 
illustrated. A comparison of Tables 1 and 2 reveals that the 
convergence objective function value in Table 2 is higher 
than that in Table 1. This increase occurs because more 
dampers with c2 = 1 × 105 N ⋅ s∕m are used, while fewer 
dampers with c1 = 1 × 106 N ⋅ s∕m are installed. Although 
this reduces the seismic resistance of the building structure, 
it also reduces its cost.

Fig. 5   Optimization history of the floor location of maximum drift 
variance in Example 1

Fig. 6   Optimal layouts of two damper types in the 2D frame structure with different floor masses in Example 1
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Subsequently, we apply the diversified design technique 
(Xie 2025) to the aforementioned 2D structure with two 
damper types and mn = 600 kg. The results of three ran-
dom experiments on the optimal layout of dampers are 
shown in Fig. 8. By comparing the layouts of Figs. 6a 

and 8, it can be seen that under the same initial layout, 
their optimal designs are similar. These results indicate 
the convex-like behavior of this layout optimization prob-
lem. Table 3 presents detailed computational performance. 
Figure 9 illustrates the variation history of the objective 
function and the number of dampers in the three random 
experiments. By comparing their convergence objective 
function values, it can be seen that two of the random 
experiment results have smaller convergence objective 
function values. Therefore, the diversified design tech-
nique can generate results that are closer to the global 
optimum solution.

Table 2   Details of layout optimization with different floor masses in 
Example 1

Mass value of 
each node

Converged 
objective value

Iteration steps CPU time (s)

600 kg 1.5636 × 10–5 186 13,199.54
2200 kg 7.3705 × 10–5 187 17,711.70
3000 kg 1.0440 × 10–4 188 22,073.66

Fig. 7   Optimization history of the objective function and the number of two damper types in Example 1
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4.2 � Example 2: 3D frame structure

In the second example, a 3D steel frame structure with 4 
bays on one side and 6 bays on the other, consisting of 20 
story floors as depicted in Fig. 10, is investigated. Each black 
line in Fig. 10a–d represents a beam. Figure 10e shows the 
cross-section of the beam. Initially, dampers are installed 
on the front and rear surfaces of the structure (surfaces 1 
and 5 in Fig. 10d) in two groups of 240 each. Here, damp-
ers with a vertical span of one floor and a horizontal span 
of one bay are installed. In Fig. 10a‒d, every red line rep-
resents a damper, and the damping coefficient is set as 
c1 = 1 × 106 N ⋅ s∕m . The finite element model of the struc-
ture consists of 4410 DOFs. In this example, the seismic 

excitation is eccentric, at an angle of 30 degrees to the 
X-axis and 60 degrees to the Y-axis. We consider the opti-
mization problem of damper arrangement in the 3D structure 
containing three types of dampers, aiming to minimize the 
maximum inter-story drift variance among all floors of the 
middle column on the right side. The damping coefficients 
of the dampers used are c1 = 1 × 106N ⋅ s∕m (red line), 
c2 = 5 × 105 N ⋅ s∕m (blue line) and c3 = 1 × 105 N ⋅ s∕m 
(green line). The number of c1, c2 and c3 dampers used is 
limited to 4%, 3% and 3% of the total number of dampers, 
respectively. The layout optimization in this example will 
add the quarter-periodic symmetry constraints (Huang and 
Xie 2008) to preserve the aesthetics of the structure, with 
the symmetry axes shown in Fig. 10b, c.

The optimal layout of three types of dampers is shown 
in Fig. 11. Since the 3D structure in this example is sym-
metrical from front to back, only the main view of the layout 
optimization result is illustrated. Under the same seismic 
excitation, the optimal layouts of the three types of damp-
ers are similar across structures with different floor masses. 
Table 4 lists the detailed calculation performance. As the 
floor mass increases, more low-order modes need to be cal-
culated, thereby increasing the CPU time required for layout 
optimization. The variation history of the objective function 

Fig. 8   Three random experiment results for optimal damper layouts in the 2D structure with two damper types and mn = 600 kg in Example 1

Table 3   Details of three random experiments on the optimal layout of 
dampers for the 2D structure with two damper types and mn = 600 kg 
in Example 1

Random 
experiment

Converged objec-
tive value

Iteration steps CPU time (s)

(1) 1.5620 × 10–5 185 12,635.74
(2) 1.5625 × 10–5 182 12,558.45
(3) 1.6105 × 10–5 174 12,000.64
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value and the number of dampers is shown in Fig. 12. In 
addition, Fig. 13 shows the history of the floor where the 
maximum drift variance is located. In this example, it is evi-
dent that the optimization histories for the floors exhibiting 
the maximum inter-story drift variance are similar.

Similarly, we explore the diversified design tech-
nique for the 3D structure with three damper types and 
mn = 600 kg. Figure 14 displays the results of three ran-
dom experiments on the optimal layout of dampers. By 
comparing Fig. 11a with Fig. 14, it can be observed that 
their optimal layouts are similar under the same initial lay-
out. These results also point out the convex-like behavior 

of this layout optimization problem. Table  5 presents 
detailed computational performance. Figure 15 illustrates 
the variation history of the objective function and the num-
ber of dampers in the three random experiments. By com-
paring their converged objective function values, we can 
see that in this example, the converged objective function 
value of the original example is smaller and closer to the 
global optimum solution. It is worth noting that, because 
the diversified design technique involves randomness, run-
ning multiple calculations may yield an even lower objec-
tive function value.

Fig. 9   Optimization history of the objective function and the number of dampers in the three random experiments for the 2D structure with two 
damper types and mn = 600 kg in Example 1
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5 � Conclusion

A new BESO-based optimization method is introduced to 
determine the layout of multi-type dampers in structures 
subjected to seismic excitation, with a constraint on the 
maximum number of each type of dampers. This approach 
integrates PEM with NPDFRM to adaptively calculate the 
inter-story drift variance across all floors of non-propor-
tionally damped structures, ensuring both accuracy and 
efficiency in assessing the stochastic seismic response. 
In addition, the KS function is utilized to minimize the 
maximum inter-story drift variance among the bound-
ary columns, facilitating the determination of the opti-
mal layout of multi-type dampers. The proposed method 
is validated through two numerical examples involving 

2D and 3D frame structures. The results demonstrate that 
this method effectively determines the optimal layout 
of multi-type dampers for structures with varying floor 
masses while adhering to the maximum limits for each 
type of damper. This approach can also serve as a practical 
tool for optimizing damper layouts in earthquake-prone 
regions. The present study has focused on the layout opti-
mization problem of multi-type linear viscous dampers. 
As the number of damper types increases, this approach 
can effectively achieve simultaneous optimization of both 
damper parameters and layouts. Future research will inves-
tigate the generalization of the proposed method for non-
stationary random responses.

Fig. 10   Schematic of a 3D frame structure
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Fig. 11   Optimal layouts of three damper types in the 3D structure with different floor masses in Example 2

Table 4   Details of layout optimization with different floor masses in 
Example 2

Mass value of 
each node

Converged 
objective value

Iteration steps CPU time (s)

600 kg 5.8932 × 10–6 208 25,417.16
2200 kg 1.7481 × 10–5 173 62,536.47
3000 kg 2.4962 × 10–5 150 83,693.92
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Fig. 12   Optimization history of the objective function and the number of dampers in Example 2
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Fig. 13   Optimization history of the floor location of maximum drift 
variance in Example 2

Fig. 14   Three random experiment results for optimal damper layouts in the 3D structure with three damper types and mn = 600 kg in Example 2
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Table 5   Details of three random experiments on the optimal layout 
of dampers in the 3D structure with three damper types and mn = 600 
kg in Example 2

Random 
experiment

Converged objec-
tive value

Iteration steps CPU time (s)

(1) 6.2906 × 10–6 147 21,085.34
(2) 6.0506 × 10–6 191 24,825.23
(3) 6.0983 × 10–6 162 23,807.16

Fig. 15   Optimization history of the objective function and the number of dampers in the three random experiments for the 3D structure with 
three damper types and mn = 600 kg in Example 2
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