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Abstract Accurate parameter identification is criti-
cal for the effective modeling and control of dynamic
systems, especially those exhibiting complex, nonlin-
ear behaviors such as non-smooth gap systems. These
systems, characterized by abrupt changes in dynamics
due to physical constraints, discontinuities, or contact
phenomena, pose significant challenges for traditional
parameter identification methods, often resulting in
inaccurate models and suboptimal system perfor-
mance. To address these challenges, this study intro-
duces the Strong Tracking Square Root Spherical
Simplex-Radial Cubature Quadrature Kalman Filter
(STSR-SSRCQKF), an advanced filtering algorithm
designed to enhance parameter identification accuracy
in non-smooth gap systems. The STSR-SSRCQKF
provides several key benefits, including improved
numerical stability through the adoption of QR
decomposition, which avoids the need for positive-
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definite matrices, rapid adaptation to sudden system
changes via strong tracking techniques, increased
accuracy through a two-fold increase in sampling
points, and computational simulations by utilizing
acceleration data for alignment with commonly
available measurements. The effectiveness of this
method is validated on both 1-DoF and 5-DoF non-
smooth systems. Through extensive simulations and
comparisons under varying noise levels, large initial
errors and limited measurement, the proposed
approach demonstrates good performance. The capa-
bility of the STSR-SSRCQKEF to accurately identify
unknown switching points and ensure reliable state
tracking in complex, non-smooth systems highlight its
potential for broader applications in structural health
monitoring, robotics, and dynamic system analysis.

Keywords System identification - Gap systems -
Kalman filter - Strong tracking - Non-smooth system -
Geometric nonlinearity

1 Introduction

Parameter identification is essential in the modeling
and control of dynamic systems, especially those with
complex and nonlinear behaviors [1]. Non-smooth gap
systems, which feature abrupt changes in dynamics
due to physical constraints, discontinuities, or contact
phenomena, are particularly challenging to model and
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analyze [2]. These systems are common in engineering
applications, such as dynamics change rapidly upon
contact, robotics with joint friction, and structural
systems subject to sudden load changes [3]. The
inherent non-smoothness of these systems often
complicates the accurate estimation of their parame-
ters, which is essential for precise control and reliable
performance [4]. Moreover, traditional parameter
identification methods frequently struggle to capture
the intricate dynamics of non-smooth gap systems,
resulting in inaccurate models and suboptimal system
performance.

System identification involves developing mathe-
matical models of dynamic systems based on observed
data [5]. Time—frequency methods like the Hilbert-
Huang Transform (HHT) and wavelet transform (WT)
decompose vibration signals into the time—frequency
domain and can yield impressive results [6, 7].
However, these methods are not suitable for online
identification of structural parameters [8, 9]. For
online parameter identification, time-domain methods
are more commonly employed [10, 11]. Traditional
time-domain system identification techniques, such as
least squares estimation, maximum likelihood estima-
tion, and classical Kalman Filter (KF), are well-
established for linear systems, but they encounter
significant challenges when applied to nonlinear and
non-smooth systems [12].

The Extended Kalman Filter (EKF) is a widely used
algorithm that extends the classical KF to handle
nonlinear systems by linearizing the system dynamics
around the current estimate [13, 14]. Li and Wang [15]
developed a constrained EKF to accurately estimate
the parameters of the Bouc-Wen hysteretic model.
Zhang et al. [16] introduced a two-stage framework
that combines an adaptive EKF with a recursive least-
squares method to track structural parameters and
restoring forces in cable-bracing inerter systems.
Furthermore, Zhang et al. [17] applied an adaptive
EKF to identify time-variant parameters and mass
distribution from limited observations. A key disad-
vantage of the EKF is its reliance on linearization,
which can lead to inaccuracies and instability in highly
nonlinear systems.

Unscented Kalman Filter (UKF) is another online
nonlinear system identification method [18, 19]. The
EKF linearizes the system around the current estimate,
while the UKF uses a deterministic sampling approach
to capture the nonlinearities [20, 21]. Wang and Lei
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[22] developed a UKF designed to handle unknown
inputs for real-time joint input and system identifica-
tion of structural systems, particularly in scenarios
without direct feedthrough and using limited response
measurements. Yu et al. [23] introduced an iterative
augmented UKF for simultaneous estimation of state,
parameters, and inputs, which adheres to Bayes’
theorem without relying on ad hoc procedures, thus
offering theoretical simplicity. Additionally, Yuen
et al. [24] proposed a Bayesian probabilistic algorithm
that integrates UKF for noise covariance estimation,
suitable for nonstationary conditions. The chosen
sigma points may fail to represent system dynamics
accurately, particularly in regions where the system
exhibits discontinuities, which can pose challenges for
both UKF and EKF in handling highly nonlinear or
non-smooth systems.

The Cubature Kalman Filter (CKF) [25, 26] and its
extension, the Cubature Quadrature Kalman Filter
(CQKF), have been developed to address some of
these limitations [27]. These use higher-order statis-
tical moments and cubature integration to provide
more accurate estimates for nonlinear systems. Ghor-
bani and Cha [28] proposed an enhanced UKF that
integrates CKF techniques to improve system identi-
fication performance in systems with significant
degrees of freedom (DoF). Basetti et al. [29] intro-
duced a derivative-free method utilizing Square-Root
CKF (SR-CKF) for tracking power system dynamics
and providing real-time updates on system state
evolution. Mu et al. [30] developed fractional embed-
ded CKF and robust fractional embedded CKF to
estimate states in fractional-order nonlinear discrete
systems. However, in the context of non-smooth gap
systems, even the CQKF can face challenges due to
sudden changes in system dynamics.

With different rules for generating sigma points,
current sigma point sampling strategies mainly
include symmetric sampling, simplex sampling,
third-order moment skewness sampling, and fourth-
order moment symmetric sampling based on Gaussian
distribution, among which symmetric sampling is
commonly used. The UKF is the most widely applied
and features 2n + 1 sigma points. When performing
parameter identification, the UKF requires some
parameters to be manually defined, which can signif-
icantly influence the identification results. This
method typically achieves third-order accuracy. The
CKF decomposes difficult integrations into surface
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and radial integrals on a sphere, approximated using
the third-order cubature rule. CKF has 2n equally
weighted cubature points (or sigma points) and, unlike
the UKF, does not require additional parameter
definitions, with its weight values only depending on
the dimension of the state vector. This method also
generally provides third-order accuracy [31]. The
Spherical Simplex Radial Cubature Quadrature Kal-
man Filter (SSRCQKEF) replaces spherical integration
with spherical simplex radial cubature quadrature,
offering higher accuracy. This paper selects a sam-
pling method with fifth-order accuracy, which results
in 4n + 4 sigma points for an n-dimensional state
vector. Although this method is more computationally
intensive, it typically yields better identification
performance [32]. Furthermore, traditional KF algo-
rithms typically use Cholesky decomposition to cal-
culate the square root of the covariance matrix during
the recursive process in generating sigma points. This
requires the covariance matrix to be positive definite
[33].

Non-smooth systems are characterized by abrupt
changes in dynamics, often resulting from disconti-
nuities, impacts, or constraints in the system [34, 35].
Research in non-smooth systems has led to the
development of specialized modeling techniques, such
as differential inclusions and complementarity prob-
lems, which are designed to handle discontinuities and
non-differentiable behaviors [36, 37]. However, these
approaches often result in complex models that are
difficult to analyze and simulate, especially when it
comes to parameter identification.

Modeling non-smooth gap systems presents a
significant challenge due to their inherent discontinu-
ities [38, 39]. Traditional parameter identification
methods, typically developed for smooth and contin-
uous systems, often rely on assumptions that fail in
non-smooth contexts. To address these limitations,
several modified methods based on the traditional KF
have been proposed. Chatzis et al. [40] introduced a
discontinuous EKF (DEKF) specifically for non-
smooth dynamic problems, designed to prevent the
temporary divergence and ultimate failure often seen
with standard EKF in accurately identifying system
parameters. Zhou et al. [41] developed a non-smooth
observer that estimates errors in a switched system by
incorporating extended disturbances and carefully
selecting feedback matrices, enabling accurate state
estimation in non-smooth sandwich systems with

hysteresis. Zhu et al. [42] proposed a discontinuous
UKF (DUKEF) featuring a dynamic boundary approx-
imation algorithm to identify state transitions and
coupled internal mechanical and geometric parame-
ters. These studies collectively showcase the effec-
tiveness of geometric-based Kalman filtering in
solving challenges posed by nonlinear systems.

While modified methods have made some strides in
addressing the challenges of parameter identification
in non-smooth gap systems, these approaches still face
limitations, particularly in accuracy and application
[43]. The consequences of inaccurate parameter
identification in non-smooth gap systems are signif-
icant. Inaccurate models can lead to control strategies
that are either too conservative, failing to fully exploit
the system’s capabilities, or too aggressive, leading to
instability or failure. In safety—critical applications,
such as aerospace, automotive, or structural engineer-
ing, the failure to accurately model and control a non-
smooth gap system can have catastrophic
consequences.

To address the challenges posed by non-smooth gap
systems, advanced filtering algorithms have been
developed. Among them, the Strong Tracking Square
Root Spherical Simplex-Radial Cubature Quadrature
Kalman Filter (STSR-SSRCQKF) stands out for its
robustness and accuracy in parameter identification.
This method offers several key advantages: 1) This
study addresses limitations of the traditional Square
Root Unscented Kalman Filter (SR-UKF), which
relies on Cholesky decomposition and imposes strict
positive-definiteness constraints, risking numerical
instability in highly nonlinear or discontinuous sys-
tems. By employing QR decomposition for covariance
matrix updates, the proposed method removes the
dependency on positive definiteness while maintain-
ing high precision. Additionally, the SSRCQKF
framework resolves challenges of negative weights
in high-dimensional systems by ensuring strictly
positive weights and using increased sigma points
for improved parameter identification accuracy. 2)
The proposed integration of strong tracking factors
(STFs) is tailored for state estimation in systems with
abrupt geometric nonlinearities. Unlike traditional
methods, the STFs is selectively triggered during the
first state transition of the system, overcoming the gap
value recognition error caused by system discretiza-
tion and providing more accurate initial values for
subsequent Kalman filtering algorithms.
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The study is structured as follows: Sect. 2 provides
an overview of the state equation of non-smooth gap
systems. Section 3 introduces the theory of the
proposed STSR-SSRCQKF method in details. Sec-
tion 4 investigates the performance of the STSR-
SSRCQKEF algorithm for parameter identification in a
simple non-smooth gap system with 1-DoF. Section 5
further validates the effectiveness of this approach in
accurately capturing the dynamic behavior of more
complex system with 5-DoF, even in the presence of
abrupt changes and discontinuities. Through detailed
simulations and analysis, the research conclusions are
summarized in Sect. 6.

2 State equation of non-smooth gap systems

In a non-smooth gap system, as shown in Fig. 1, the
motion of the system is governed by different equa-
tions depending on the displacement x of the system
relative to predefined thresholds e; and e,. These
thresholds define regions where the system transitions
between different states due to the presence of gaps or
clearances. The equation can be expressed in Eq. (1).
The non-smooth nature of these systems poses chal-
lenges for analysis and control, as traditional linear
methods may not apply. Understanding and modeling
these transitions accurately is crucial for predicting the
system’s response and ensuring stability and perfor-
mance in practical applications.

State2 mi+cix+ki(x+e)=F whenx< —e;
State 1 mx=F when —e; <x<e;
State 3 mi+cx+ky(x—ey)=F whenx > e,

(1)

where m represents the mass of the system. c is the
damping coefficient. k represents the stiffness of the

State 2 State 1 State 3
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Fig. 1 Schematic diagram of a single degree of freedom system
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system. x X and X represent the displacement, velocity,
and acceleration of the system, respectively. F repre-
sents the external force applied to the system. e; and e,
represent the thresholds defining the boundaries
between different states.

In State 1, the displacement x is within the gap
defined by —e; and e;. The system behaves as if it is in
free motion, meaning there is no contact between the
components, and thus no restoring force or damping
force is acting on the system. The equation simplifies
to a basic force balance where the external force F
directly influences the acceleration x of the system.
This state represents the free travel of the system
within the gap.

When the displacement x exceeds the threshold
—ej, the system transitions to State 2. The system
comes into contact with a boundary or another
component, resulting in an additional restoring force
and a damping force. The restoring force is propor-
tional to the displacement (x + e;), reflecting the
system’s attempt to return to equilibrium. The damp-
ing term cx accounts for energy dissipation due to the
relative motion between the contacting surfaces. This
state models the behavior of the system when it is in
contact on the left side of the gap.

State 3 is analogous to State 2 but occurs when the
displacement x exceeds the threshold e;, indicating
contact on the right side of the gap. Similar to State 2,
the system experiences a restoring force proportional
to the displacement (x — e;) and a damping force cx.
This state captures the system’s dynamics when it
interacts with the boundary on the right side of the gap.

This set of equations is typically used to model
systems where physical constraints or gaps lead to
piecewise linear behavior. Examples include mechan-
ical systems with clearances, impact phenomena, and
other cases where the system’s response changes
abruptly depending on the position of its components.

3 STSR-SSRCQKF algorithm
3.1 Standard SSRCQKF algorithm
Consider the following nonlinear dynamic system

model, which is characterized by a state equation and a
measurement equation:
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Xk+l :f(Xkauk) + Wi (2)
Ziy1 = h(Xiq1) + Vi

In this model, X}, denotes the state vector of the
system at the subsequent time stepk + 1. The state
vector encapsulates the essential internal variables that
describe the system’s current condition, which could
include variables such as position, velocity, or other
quantities pertinent to the specific application. The
evolution of the state vector is governed by the
nonlinear functionf(), which defines the system’s
dynamics. This function models how the current
stateXy, influenced by the system inputu;, transitions
to the next stateX;,;. Here, u; represents the s-
dimensional input vector, which accounts for external
controls or forces applied to the system. wy represents
the process noise. Z;, | represents the measurement
vector at time stepk + 1. /() represents the measure-
ment function. vi | represents the measurement noise.

The uncorrelated zero-mean Gaussian white noise
processes are as follows:

E(wx) =0, cov(we,w;) = Qb (3)
E(vy) =0, COV(Vk+1,Vj) = R0y (4)
cov(wi,vj) =0 (5)

where, O, is the covariance matrix of the process
noise, which quantifies the extent of uncertainty
present in the system’s dynamics at time step k. The
Kronecker delta function éy; indicates that the process

i
ke =

X'k|k—|—\/(n+2—|—\/2n—|—4)Pk[a, —al,i=1,2,--,2n+2
X'k‘k—k \/(n—|—2 —V2n+4)Pla, —al,_,, ,i=2n+3,-- 4n+4

volume rule and arbitrary order Gaussian Laguerre
integration rule, respectively, to obtain a new spherical
simplex radial volume integration rule. Based on the
Bayesian filtering framework, the general and specific
forms of SSRCQKEF are proposed. This algorithm has
4n + 4 (n is the dimension of the state vector) Sigma
sampling points, which has higher filtering accuracy
(Compared with the traditional UKF algorithm, the
UKEF algorithm has 2n 4+ 1 Sigma points), but also
means that the calculation is more time-consuming.
The standard SSRCQKEF algorithm is as follows:

(1) Initialization.

The process begins with the initialization of the
state estimate and covariance matrix. The initial
estimate of the state vector is the expected value of
the state. The covariance matrix represents the uncer-
tainty in the initial state estimate. The initialization
step provides the baseline from which all subsequent
updates are performed.

Xo = E[Xo] (6)
Py = E[(Xo - Xo) (Xo — Xo)'| ™)

where X, represents the initial value of the state vector,
Py is the initial error covariance matrix, and the
superscript T represents the transpose of the matrix.
(2) Sigma points generation.
In SSRCQKEF, the sigma points (x;'{‘ ) are generated
as shown in Eq. (8).

noise is uncorrelated over time, meaning that the noise
at any time step k is independent of the noise at any
other time step j. R; represents the covariance matrix
of the measurement noise, which captures the level of
uncertainty in the system’s observations at time step k.

Spherical simplex-radial cubature quadrature Kal-
man filter (SSRCQKF) algorithm decomposes the
Gaussian probability weighted integral of nonlinear
functions into spherical integral and radial integral,
and approximates them using spherical simplex

where the subscript i in [@, —a]; represents the i-th
column of the matrix. The elements a;; in the matrix a
are calculated as shown in Eq. (9), and in the formula,
i=12,---,n+ 1.

_\/ n+1 e
nn—j+2)(n—j+1) J .
aij = 9 =t (9)

\/(n—t—l)(n—i—kl)’ i

nin—i+2)
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(3) Time update.

The sigma points generated in the previous step are
propagated through the system’s nonlinear dynamics
to predict the state at the next step. Equation (10)
represents the propagation of each sigma point
through the system dynamics f(). In Eq. (11), the

predicted state X &+ 1% 18 computed as a weighted sum

of the propagated sigma points. Equation (12) updates
the covariance based on the propagated sigma points
and includes the process noise Q.

XA’;;+1\k :f(quk) (i=1,---,4n+4) (10)
~ n 2n+2 N
X = X
ki 4(n+1)(n+2+\/2n+4); kel
n 4n+4 .
+ X
An+1)(n+2—2n+4) ,-:;3 kLl
(11)
P - n
T A+ ) (2 + Vi + 4)
2n+2 y R Ny R T
Z (Xk+1|k - XkH\k) (Xk+uk - Xk+1|k)
- .
4n+1)(n+2—+2n+4)
4n+4

.. N .. . T
Z (X;<+l|k - XkH\k) (X5<+1|k - Xk+1\k) +0

i=2n+3

(12)

where P refers to the state prediction error
covariance matrix from time step k to k+ 1. The
subscript k + 1|k explicitly indicates the time progres-
sion from k to k + 1. indicates the specific time step.

(4) New sigma points generation.

Following the time update, a new set of sigma
points is generated based on the updated state estimate
and covariance matrix:

Xy + \/(” +2+V2n+4)Py il a,

i _
Tkt1k =

Xkﬂ\k + \/(n +2—=V2n+4)Ppla, —al_y, 5, i=2n+3,--- 4n+4

(5) Measurement prediction.

The sigma points are transformed through the
model to predict the measurement. Each sigma point is
passed through the measurement function A() to
generate predicted measurements. The predicted mea-
surement Z k+1)x s computed as a weighted sum of the
predicted sigma points with Eq. (15). Equation (16)
updates the measurement covariance matrix P ;.
The cross covariance P, ;| between the state and

measuremeZ}, k= h(;g;C +1|k)nt is computed based

on the spread of the predicted measurement sigma
points, as shown in Eq. (17).

Zi+1K = h(Li1e) (14)
R n 2n+2 "
Zionp = 7
T A+ ) (n+ 2+ V2n + 4) ; kil
n 4n+4 .
+ VA
4n+1)(n+2—2n+4) i:%; kil
(15)
P o n
T4+ )+ 2+ v2n 1 4)
2n+-2 . R . . T
>, (Z;<+1\k - Zk+1\k> (Z;<+1\k - Zk+1\k)
i=1
+ n
4n+1)(n+2—V2n+4)
4n+4 . R . R T
> (Z;m\k - Zk+1\k) (ZZ+1|/< - Zk+1\k) +Rpr1
i=2n+3
(16)
—a]i=1,2,-,2n+2
(13)
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n

4n+1)(n+2+V2n+4)
2n+2 . ) N R T
Z (X;(Hlk - Xk+l\k) (Z;<+l|k - Zk+1\k)

B n (17)
Jr4(n+ D(n+2—+2n+4)

4n+4

A N A ~ T
> <X5<+1|k - Xk+1\k) (me\k - Zk+l\k)

i=2n+3

sz,k+1 =

where, P ;.| represents the output prediction self-
covariance matrix at time step k+ 1. Here, the
subscript zz specifies that it is a self-covariance matrix,
while k + 1 indicates the specific time step. Py k1
denotes the output prediction cross-covariance matrix
attime step k + 1. Here, the subscript xz highlights that
it is a cross-covariance matrix, and k + 1 again marks
the corresponding time step.

(6) Measurement update.

Finally, the filter updates the state estimate and
covariance based on the new measurement. The
Kalman gain K, ;.| determines the weight given to
the measurement residual (Z;.; — Z k+1]k) in updating
the state estimate. The state estimate is updated using
the Kalman gain and the difference between the actual
and predicted measurements with Eq. (19). The
covariance matrix Pp, 4 is similarly updated to
reflect the reduction in uncertainty following the

incorporation of the new measurement, as shown in
Eq. (20).

Kopi1 = sz,k+lP;z,lk+1 (18)
Xiit = Xepip + Kot (Zest — Zigae) (19)
Pk = Pryg — Kg,k+1Pzz,k+1K;k+l (20)

The SSRCQKEF process iterates through these steps,
updating the state and covariance estimates at each
time step based on the system dynamics and
measurements.

3.2 Improved SR-SSRCQF algorithm

The Improved Square Root Spherical simplex-radial
cubature quadrature Kalman filter (SR-SSRCQKF)
algorithm addresses a critical issue encountered in the
traditional Cholesky decomposition method used for
calculating the square root of the error covariance

matrix, as shown in Egs. (8) and (13) with the
recursive process. Specifically, the Cholesky decom-
position requires the covariance matrix to be positive
definite. However, due to the influence of computer
rounding errors during numerical computations, the
positive definiteness of the covariance matrix may not
always be guaranteed. To overcome this limitation, the
SR-SSRCQF algorithm leverages QR decomposition,
providing a more robust solution for computing the
square root of the matrix.

(1) QR decomposition-based covariance matrix
calculation.

In the SR-SSRCQF algorithm, the error covariance
matrix at the prediction step, denoted as Py k> can be
expressed as:

P = Sk1peSisie (21)

where, S, represents the square root of the
covariance matrix. To compute this square root, QR
decomposition is applied.

By expressing SLuk as the product of an orthog-

onal matrix ¢ and an upper triangular matrix r:
Sk = ar (22)

The square root of the covariance matrix can be
redefined in Eq. (23). This alternative expression
ensures that the square root of the covariance matrix
is computed more reliably, even in cases where the
traditional Cholesky decomposition may fail due to
numerical inaccuracies.

Sk+1\k :rT (23)

(2) Derivation of the covariance matrix square root.

From the QR decomposition, the following expres-
sion for the square root of the covariance matrix is
derived:

~ T
[V (](Xllcfl;ﬁ Xk+1\k>< k+l\k Xk+1|k) )
— N T
re=qr \/w—(.z<Xii+lfk.4n+4 Xk+1\k) (X]%Tl‘%kat»zﬂ X}(ﬂ){)7
T
(24)
where, qr() represents QR

o'l = n W = n .
4(n+1) (n+2-+v2n+4)’ 4(n+1) (n+2—v2n+4)
The new form of the square root of the covariance
matrix is then given in Eq. (25). This formulation
allows the covariance matrix to be computed

decomposition,
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accurately, even in the presence of potential numerical
instabilities.

Seaip =11 (25)

(3) Measurement update and Kalman gain.

The Kalman gain K, ;; can be updated using the
square root forms of the covariance matrices. Specif-
ically, the Kalman gain is computed as:

Kg,k+l = sz.k+1/ (Szz,kJrlS;k_;_]) (26)

where S i1 represents the square root of the
measurement covariance matrix.

According to the definition of covariance of state
estimation error:

Piiijirr = cov(Xirt — Xiijir)
= COV(Xk+1
= (X1 + Kii1 (Zisr — Ziiap)))
(27)

This simplifies to:

Pyt = cov((I — Kg g Hir 1) (Xi1 — )Afkﬂ\k))
+ cov(Ki11Vis1)
= (I — K1 Hig1)eov (X1 — X)) (I
~ Ky piHin)" + Kiicov(Vis)Ky,
= (I = Kgp1Hi1)Pro o (I — KypoHi)'
+Kg,k+le+1K:;k+1
= (I = Kgar tHir 1) Sk oS (1
- Kg7k+1Hk+l)T

T
+ Kg i1 V/Rii1 v/ Rici K;kﬂ
(28)

where H | is the Jacobian matrix of the measurement
function at time k + 1, I is the unit matrix.
(4) Final covariance matrix square root update.
The final step involves applying QR decomposition
to update the square root of the covariance matrix:

ry = qr( {(1 - Kg,k+1Hk+1)Sk+1|k7Kg,k+1\/Rk+1]T)
(29)

The square root of the updated covariance matrix is
then obtained as:

Seitkst =13 (30)

@ Springer

(5) Computation of the measurement matrix.

For complex nonlinear structures, if there is a
nonlinear relationship between the observation vector
and the state vector, the equivalent form of the
measurement matrix can be used to avoid calculating
the Jacobian matrix.

According to the definition, the state prediction self
covariance matrix Py, the output prediction self
covariance matrix P, 1, and the output prediction
cross covariance matrix .Py; 1. can be written in the
form of Egs. (31) ,(32) and (33).

P = E[(Xir — Xk+1|k) (Xk+l — Xk+1\k)T} (31)

Pyt = E[(Zin1 — Zigap) (Zior — Zipap)']
= Hy 1 B[(Xir1 — X1 (Xk-H - Xk+1\k)T:|
H;k_'_] = Hg,k+1Pk+1\kH;k+1
(32)

Poii1 = EB[(Xes1 — Xeip) (Zk+1 - ZAkJrl\k)T}

= E[(Xxr1 — Xi1pe) (Xk+1 - Yk+1\k)T}Hg.k+1
=PrpHy

(33)

The equivalent form of the measurement matrix can
be obtained as:

Hipt = [(Peip) ' Prgat]’ = Paegst) (Prcip) ™!
T -1
= (Peii1) (Sks1iSpiip)

(34)

The improved SR-SSRCQF algorithm, by employ-
ing QR decomposition instead of Cholesky decompo-
sition, provides a more stable and reliable method for
updating the square root of the covariance matrix. This
approach mitigates the issues arising from numerical
errors, ensuring the positive definiteness of the
covariance matrix and enhancing the overall perfor-
mance of the filter in nonlinear state estimation
problems.

3.3 Strong tracking factor

In the context of parameter identification and state
estimation for intermittent systems, one of the primary
challenges is accurately determining the system’s
operating state, particularly when the system
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undergoes state transitions. Intermittent systems are
characterized by abrupt shifts between distinct states,
which can cause significant discrepancies between
observed and predicted quantities if the state predic-
tion equations are not promptly adjusted. This issue is
particularly pronounced during the first transition from
one state to another, such as from State 1 to State 2 or
State 3. To address this challenge, a strong tracking
factor is introduced, which helps to identify state
transitions by leveraging the sudden changes in
residual information.

The strong tracking factor, denoted as ;. |, is akey
element in detecting state transitions in intermittent
systems. This factor is designed to adaptively adjust
the filtering process in response to changes in the
system’s state, ensuring that the filter remains accurate
even when the system transitions between different
operating modes. The strong tracking factor is partic-
ularly useful during the first entry into a new state,
where the discrepancy between predicted and
observed quantities is likely to be most pronounced.

The strong tracking factor p . is computed using
the following equations:

e =1

M1 = { 1 :uk+1<1 (35)
tr[Ni1]

_ 36
Hie+1 tr[MkH] ( )
Nigt = Ty — Hi @ Hy — IRy (37)
M1 = Hip @iy Py 1o @y

=Hi [P — Qv [Hy

=Hj [Sk-s-l\kszﬂ\k - Qk-H}HEH (38)

where, tr[] denotes the trace of a matrix, which is the
sum of the diagonal elements and provides a scalar
representation of the matrix’s characteristics, [ > 1, is
a weakening factor, and @, is the state transition
matrix, which only appears as a process variable and is
not included in the final result.

The output residual sequence &, defined as the
difference between the observed measurement Z; and
the predicted measurement Zy, is a crucial component
in determining the strong tracking factor:

& =2 —Zi (39)

The actual output residual sequence I’y is calcu-
lated as follows:

&l k=1
i =S plk+ a8 p>2 (40)
I+p -

where, 0 < p <1 is a weighting factor that controls the
influence of past residuals on the current estimate.
This study adopts p = 0.95 to ensure consistency and
comparability with previous works [44, 45]. The
sequence @'y, represents the accumulated residual
information, which is used to adjust the filter’s
sensitivity to state changes.

The strong tracking factor p,, is essential for
maintaining the accuracy of state estimation in
intermittent systems. For example, when the system
transitions from state 1 to state 2, there is a significant
difference between the observed values estimated by
the physical model of state 1 and the actual observed
values. At this time, the calculated strong tracking
factor will also have a large amplitude jump. Then,
based on the given velocity sign, current displacement
state, and other conditions, it is determined whether a
state transition is necessary. Therefore, by dynami-
cally adjusting the filtering process based on residual
information, the strong tracking factor enables the
system to quickly and accurately detect state transi-
tions, minimizing errors between predicted and
observed quantities. This is particularly important in
systems where state transitions are infrequent but have
a significant impact on system behavior.

3.4 Overall system identification flowchart

The flowchart presented in Fig. 2 illustrates the algo-
rithmic procedure of the STSR-SSRCQKF used for state
estimation in non-smooth gap systems. The process
begins with initialization, where the initial state,
covariance matrices, and system parameters are estab-
lished. Following this, the algorithm enters the status
judgment phase, where it assesses the current state of the
system to determine the need for further updates.
Subsequently, the algorithm proceeds to the gener-
ation of sigma points, a critical step in the unscented
transform process, which is carried out twice-once
after a predetermined time update and again after a
measurement update. The sigma points are used to
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displacement at that moment closely approxi-
mates the true gap value, but due to the system’s
( Initialization ) discrete sampling, it is unlikely to exactly match
the actual gap value.

i e— 2)  The SR-SSRCQKF algorithm can more accu-
rately identify the gap value, making it a more
reliable criterion for determining state transi-

( Time up date genirates Sigma points J tions during subsequent recursive processes.
( Lt ke J 3)  The strong tracking factor is triggered only once
) on each side of the system, improving the
( Measurement up date generates Sigma points J stability of the recursive process and preventing
Y the system from repeatedly jumping at the gap

( Measuremm;t prediction J k=k+1 edge due to noise interference.

( Calculate the strong tracking coefficient J After the state transition, where the system evolves
according to its underlying dynamic model, the
measurement update phase follows. Here, the pre-
No dicted measurements are compared against the actual
sensor readings, and the state estimates are updated

( Measurement update}

v
( k=end )

Fig. 2 Process diagram for gap system state estimation and
parameter identification

predict the system’s measurements based on the
current state estimates.

The core of the algorithm is the calculation of the
strong tracking coefficient, highlighted in green,
which ensures the filter’s robustness to sudden
changes in the system dynamics. This coefficient
dynamically adjusts the Kalman gain, allowing the
filter to “strongly track” the true state of the system,
particularly in the presence of non-smooth transitions.

It is important to note that the strong tracking factor
proposed in this study is triggered only under specific
conditions. When the strong tracking factor exceeds
the predefined threshold and the initial gap value on
one side is still zero, the displacement at that moment
is taken as the first identified gap value on that side.
Subsequently, the system transitions into a new state,
where the SR-SSRCQKF algorithm is used for precise
gap identification. Future state transitions are deter-
mined based on the previously identified gap value.
The reasoning behind this approach is as follows:

1)  When the system transitions from state 1 to
other states for the first time, there is a
significant change in the strong tracking factor,
making this state jump easier to capture. The
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accordingly. This process is iterative, with the index
k incrementing until the algorithm reaches the prede-
fined end condition.

The proposed method is particularly well-suited for
real-time implementation due to its practical use of
acceleration data as input. Unlike traditional
approaches that often require velocity or displacement
measurements—data that can be more challenging to
obtain or less reliable in dynamic environments—this
method focuses on acceleration data, which is more
readily available and typically less prone to noise in
many engineering applications.

4 Simulation of single-degree-of-freedom non-
smooth gap systems

4.1 DoF non-smooth gap System descriptions

The proposed method’s effectiveness is firstly vali-
dated using a one-dimensional nonlinear system, as
depicted in Fig. 1. The system’s actual parameters are
defined as follows: mass m = lkg, damping coeffi-
cients ¢c; = IN - s/m and ¢, = 1N - s/m, stiffness con-
stants k; = 100N/m and k, = 150N/m. The external
load applied to the system is a sine wave given by
F(t) = —sin(0.1nr), with a sampling frequency of
500 Hz. The fourth-order Runge Kutta method is used
to discretize the transition and measurement
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equations, and assuming the input is known, the
observed value is acceleration.

The system is composed of three distinct states.
State 1 occurs when the mass is positioned between
two gaps, where the state vector includes only two
variables: displacement and velocity. When the mass
crosses the left gap, the system transitions into State 2,
and the augmented state vector then includes dis-
placement, velocity, stiffness k;, damping coefficient
c1, and gap value e;; Similarly, when the mass crosses
the right gap, the system enters State 3, and the
augmented state vector comprises displacement,
velocity, stiffness k;, damping coefficient ¢, and
gap value.

The initial conditions for the three state vectors are
defined as follows: Xsueer—0 = [x,X] = [0,0],
XStateZ,t:O = [x,x', kl ,C1,y 81} = [O, 0, 70, 0.7, O],
XState3,t:0 = [x,x', kz, C2, 62} = [O, 0, 105, 0.7, 0}62.

The initial state error covariance matrices are

specified as follows: Pser—0 = diag[aﬁ,aﬁ]
diag[1 x 1071, 1 x 1072, Psiaer,— = diag[o?

, 02, 01%1’031’631’] = diag[1x 1071, 1 x 1072, I x
15,1 x 10,1 x 1072),  Pgiyes, o = diag[o?, 0
L0, 00,00, ] =diag[lx 107, 1 x 10721 x 10,

1 x10711 x 10*2].
Additionally, the covariance matrices for the initial
system process noise are defined as: Qger—o

= diag[o?, 02] = diag[l x 107'°,1 x 107'9],

QState27t:O = dlag |:O—)2c7 0—)2('7 O—%l ) 0—31 ) 0—31 ) ] = dlag[l X
107190 1x 10719 1 x107%,1x 1078, 1x 10719,
QStale3.t:0 = diag |:O-)267 0)25> 0-1%27 0(2‘,27 0-32’] = diag[l X

Fig. 3 Schematic diagram
of 1-DoF state transition and
variable transfer

State2

T ki ¢y e

A \

if e, =0 & p = Threshold

Tp Tr €

if 2, <

Ty ir'/,

107191x 107191 x 1078 |1 x 107%,1x 10719, In
this manuscript, the covariance matrix of process noise
and observation noise is initialized based on experi-
ence. The main summary of this experience is that the
more accurate the physical model, the smaller the
covariance matrix Q of process noise, and its specific
value is also related to the corresponding parameter
order. For example, for physical quantities such as
displacement and velocity that describe the system’s
motion state, the usual value is 1072 ~ 10™*, and for
the parameters to be identified, the usual value is
10 ~ 102 For the covariance matrix R of obser-
vation noise, when the error of the observation is large,
the value of R increases accordingly, and its value is
usually between 10° and 107

Figure 4 represents different aspects of the sys-
tem’s response and state transitions in a 1-DoF non-
smooth gap system. Figure 4 a shows the displace-
ment response of the system over time across the three
different states (State 1, State 2, and State 3), while
Fig. 4 b compares the estimated total displacement
against the real total displacement within the three
states.

Figure 3 illustrates the state transition and param-
eter identification process in a non-smooth gap system.
When conducting parameter identification and state
estimation, the strong tracking factor is calculated
from the second time step onward. If this factor
exceeds a predefined threshold for the first time and
the velocity of the mass block is negative, the system
transitions from State 1 to State 2. During this
transition, the displacement and velocity values from
State 1 at the current time step are transferred to State
2, and the gap value in State 2 is updated to e; = xj. At

Ty i‘k

€ if T, < e

Statel State3

Ty ik k2 Co €9
A

Ty, .LA

if e, =0 & p; = Threshold

T Ty T € = i

e if 2, = ey

T T
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Fig. 4 Displacement responses in the 1-DoF non-smooth gap system

this point, the strong tracking factor on the left
becomes ineffective. In future operations, the transi-
tion from State 1 to State 2 depends on the gap value e,
identified in State 2. Subsequent transitions between
State 1 and State 2 involve only the displacement and
velocity values, without transferring the gap value e;.
In this example, the threshold for the strong tracking
factor is set to 10. The transition process and
parameter transfer between State 1 and State 3 follow
the same logic.

4.2 Performance of the proposed method

The displacement responses of the system under the
specified sine-wave load are illustrated in Fig. 4. The
system starts in State 1, where the mass is moving
within the range without crossing any gaps. The
displacement is relatively low, as shown in Fig. 4 a.
When the mass crosses the left gap, the system
transitions into State 2, leading to a sharp increase in
displacement. This state is marked by higher displace-
ment values. As the system continues, it crosses the
right gap, transitioning into State 3. The displacement
again changes and the behavior reflects the dynamics
within this new state. Figure 4 b shows a close match
between the estimated and real displacements, indi-
cating the effectiveness of the proposed method in
accurately estimating the displacement throughout the
transitions, particularly in handling non-linearities and
abrupt changes in the system’s behavior.

Figure 5 illustrate the parameter identification
results, and each subplot compares the estimated
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parameter values (blue line) with their true values (red
dashed line) over time. When the system transits from
State 1 to State 2 and State 3, the method accurately
and rapidly identifies the stiffness and gaps in these
states (ki, k», e1, and e;). Damping ratios could be
accurately identified in the later moments. The close
alignment between the estimated and true values
across different parameters confirms the reliability of
the proposed STSR-SSRCQKF method.

As shown in Fig. 5 a and Fig. 5 d, the system
transitions from state 2 to state 1 at 1.432 s, allowing
stiffness parameter k; to be identified first. At
11.672 s, the system transitions from state 2 to state
3, and only then does the identification of stiffness
parameter k, begin, with its value rapidly converging
to the true value. Figure 5 b illustrates that the
damping parameter c; experiences significant fluctu-
ations during the state transition. Once the system
transitions back from state 2 to state 1, ¢; is no longer
identified, and its value remains constant until the final
seconds, when the system re-enters state 2, and c;
gradually converges to its true value. Figure 5 ¢ and
Fig. 5 f demonstrate that the strong tracking factor
proposed in this paper can accurately detect the
system’s first state transition, with the initial gap
value being very close to the true value. The SR-
SSRCQKEF algorithm further refines this to obtain an
accurate gap value.

Furthermore, Fig. 6 depicts the matching of state
transitions with strong tracking factors. Figure 6 b
shows that the strong tracking factors spike at specific
times, corresponding to the moments when the system
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Fig. 5 Parameter identification results of the 1-DoF non-smooth gap system
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Fig. 6 Matching of state transitions and strong tracking factors in the 1-DoF non-smooth gap system

transitions between states (as depicted in Fig. 6 a).
These spikes ensure that the method quickly adjusts to
the new state, maintaining accurate tracking despite
the non-smooth nature of the transitions. The syn-
chronization between state tracking and strong track-
ing factors underscores the method’s ability to adapt to
sudden changes in the system, ensuring continuous
and accurate state estimation.

In Fig. 6 b, multiple peaks appear. As previously
mentioned, the strong tracking factor is triggered only
under specific conditions, enabling the system’s first
state transition either to the left or right. This approach
not only ensures the algorithm’s identification accu-
racy but also improves its stability when recognizing
the gap system. As a result, the strong tracking factor is
only activated twice, as indicated at r = 1.428s and
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t = 11.668s. The other peaks in the figure also corre-
spond to system state transitions, but if the system
tracks the states well, these peaks may not exceed the
set threshold. During the first state transition, however,
the strong tracking factor shows a significant change.

To simulate the interference of noise in actual
observations and verify the robustness of the proposed
method, white Gaussian noise was added to the
measurements. The performance of the parameter
identification approach under varying noise levels is
summarized in Table 1. The table provides a compar-
ison between the true, initial, and estimated values of
the parameters k1, k>, c1, ¢2, €1, € under noise free and
3% RMS(root mean square) white Gaussian noise

5 Computational simulations of a 5-DoF dual gap
system

5.1 5-DoF dual gap system descriptions

To further validate the effectiveness of the proposed
method, a 5-DoF dual gap system was used for
verification. This complex system is shown in Fig. 7.
The system also includes three states, and its dynamic
equation is shown in Eq. (41).

State2 MX = F — CX — K;X — AK,
Statel {MSIXSI =Fg — KSIXSI

when Ax< — e;
" when —e; <Ax<e;
MS2XSZ = F52 - KSZXSZ

State3 MX =F — CX — K\ X — AK,» when Ax > e;

conditions. The results show that the proposed method (41)
accurately identifies the system parameters with
minimal error, particularly when dealing with real-
world conditions characterized by noise and abrupt
transitions between states.
Table 1 Parameter identifications under different noise levels in the 1-DoF non-smooth gap system
Parameter True value Initial value Noise free 3% noise
Estimated value Error (%) Estimated value Error (%)
ky 100 0.7 ky 100.0 0.0 100.0 0.0
ko 150 0.7 kp 150.7 0.5 150.7 0.5
c 1.0 0.7 ¢; 0.99856 - 0.1 0.99856 - 0.1
) 1.0 0.7 ¢ 0.98801 - 12 0.98801 - 1.2
e 0.15 0 0.1497 - 02 0.1497 - 02
e 0.10 0 0.1001 0.1 0.1001 0.1
State 2 State 1 State 3
1 Il l
I T T
k P k
kl kl
) S
m ) ¢ F
1] il
m;

: ! : ka r kT

| @ | | @ 2 | o

— —

Fig. 7 Non-smooth gap system with 5-DoF
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(my 0 0 X
m 0 ( — = -1 — — —
M, = [ ] Mo=|0 m 0 X3 =f(Xp,ux) = | M~ (F - CX - KX — AK)
0 m 041
L0 0 m (45)
[Msl 0 [ 2k —k y )
M = K = _ _ | Mg (Fs — Kg Xy
0 My i —ky ky Z = h(XkJrl) - M;zl (Fsg — K52X52> (46)
ke =k 0 Zo = h(Xe1) = [M7'(F — CX — K\ X — AKpy )]
Ko=|—-ki 2k —k (47)
0 —ki Kk _ .
k i Zy =h(Xir1) = [M'(F — CX — Ki1X — AK,»)]
2k —k 0 (48)
—k k+k —k
! th Figure 8 represents the state transitions and param-
K, = -k k+k =k eter identification process in a 5-DoF dual-gap system.
k. 2%k —k Here, the parameters and variables are shown at time
step k. The displacement vector is defined as
L O —ki Kk X; = [x1,x2,%x3,x4,x5], the velocity vector is
_ _ _ _ X = [¥1,%2,%3,%4,Xs5], and the relative displacement
0 0 0 00 0 between masses 3 and 2 is Ax; = x3 — x».
0 ¢ — 0 0 —ke, During the parameter identification and state esti-
B mation process, the strong tracking factor is computed
C=10 —c ¢ 0 0AKy =] ke from the second time step. When this factor exceeds a
0 0 0 00 0 predefined threshold for the first time and the relative
00 0 00 0 displacement between Mass 3 and Mass 2 is negative,
- - - - the system transitions from State 1 to State 2. At this
0 transition, the displacement and velocity values from
Xg = Mx o {X“'} Fy = [O] Fo=1 0 F = [F"‘] State 1 are transferred to State 2, and the gap value in
X2 XSZ 0 F F%Z

. X3
. xl . .
Xa=|. Xo=|X
XZ xS s2

X= [il] (42)

The state space equations and observation equa-
tions for states 1, 2, and 3 are as follows:

X
_ | MNFg — KgXq)
Xl _f(Xkauk) - M:ZI (F52 _KSZXSZ) (43)
03x1
[ X
Xo =f(Xe,w) = | M~ (F — CX— K\ X — AK,))
L 04xl
(44)

State 2 is updated as e; = Axy. In this configuration,
the strong tracking factor on the left side becomes
ineffective. For following transitions, the system’s
switch from State 1 to State 2 is governed by the gap
value e; identified in State 2.

In this case, each of the three states includes the
stiffness parameter k;. Therefore, during transitions
between State 1 and State 2, both the displacement and
velocity values, as well as the stiffness parameter ki,
are transferred, differing from a 1-DoF system and
related to the integration method of the system’s
stiffness matrix. The threshold for the strong tracking
factor in this example is set to 10. The transition
process and parameter transfer between State 1 and
State 3 follow the same principles.

The initial values of the three state vectors are
defined as  follows:  Xsuer—0 = [X1,%2,%3,%
4,Xs5,X1, X2, X3 ,X4,%s,k1] = [0,0,0,0,0,0,0,0,
0,0,2.7 x 104, Xstate2.=0 = [X1,X2,X3, X4
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Fig. 8 Schematic diagram kce kce,y
of 5-DoF system state ﬁ
transition and parameter . -
transfer Ty Ty by T, Ty by
if ,=—e if z,<e,
State2 Statel State3
Ty Zi:,': kl 5 @ @1 7 fbk kl Iy ik kl kc €9
A \
if e,=0 & p; = Threshold| |if e;=0 & u; = Threshold
T, T kg = Ay T, T by e = Axy;
if Aﬂf}; < — €1 if Aa:k = €o
z, Ty, by z, T, by
,XS,)él7)52,)é3 axjv)éS;klvkafvel] = [07070,0,0707 7= [xl X X X X T (49)
0,0,0,0,2.7 x 10%,0.7 x 10 ,0.07,0],X5tate37,:0 = 2

(X1, x0,x3,X4,X5,  Xi,X2,X3,%4,  Xs,kp,k,c,ex] =
[0,0,0,0,0,0,0,0,0,0,2.7 x 10%,0.7 x 10*,0.07,0].

Given that k; is included in the augmented state
vector during the State 1 stage, this implies that
parameter k; is also estimated during the state
estimation process at this stage. Consequently, the
initial error covariance associated with k; in State 1 is
relatively large, whereas it is smaller in State 2 and
State 3.

The initial state error covariance matrices are

. T 2 2 2
defined as follows: Pgger—0 = diag [oxl,axz,am,

2 2 2 2 2 2 2 2 1_ g1 —4
prUx;vUx,aaxpgxyaxuaxyaklv} = diag[l x 107*x

ones(1,10),1 x 10%], Psper,—0 = diag [aﬁl,az a2

X2 U x3?
2 2 2 2 2 2 2 2 2 2 2 — i
GX47 O—xs’()—x]’ O_x'27JX37J)54’6)5570_](170—](’0—("0—617} = dlag

[1x107* x ones(1,10),1 x 10%,1 x 105, 1 x 107,
2 2 2 2

—4 _ 4 2
1 x 1077, Psmteg,,zo—dlag[axI 102y Oy Oy O
2 2 2 2 2 2 2 2 2 7_ i -4
03 0%, 05 0%, O Ok, 5 Oy O, 0, | = diag[1 x10

xones (1,10),1 x 10,1 x 10,1 x 1074, 1 x 1074].
The process noise covariance matrices are defined as
follows:  Qgyeer -0 = diag[l x 107 x ones(1, 10),
1 x 1078, Qguaen—o = diag[l x 107*x ones(1, 10),
1x 10781 x 1078, 1 x 107191 x 10712], Ostate3 =0
= diag[l x 107* xones(1,10),1 x 107%,1 x 10781
x10710.1 x 10712

Since the proposed STSR-SSRCQKF method can
utilize accelerometer data as input in practical appli-
cations, the acceleration response for the 5-DoF
system is taken as the observation, as shown below:
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5.2 Performance of the proposed method

Figure 9 presents the acceleration responses of a 5-
DoF system under various dynamic conditions. The
plots depict the time histories of the acceleration
responses for each DoF, denoted as x; through X,
under different states labeled as Statel, State2, and
State3. The results highlight the model’s robustness in
capturing the dynamic characteristics of the system
across all DoFs under varying conditions. The close
alignment between the actual and estimated responses
across all DoFs suggests that the model effectively
accounts for the inherent dynamics and the noise
present in the system.

Figure 10 illustrates the time history of estimated
parameters for this 5-DoF non-smooth gap system. In
the Fig. 10 a—c, the parameter k; is shown to quickly
converge to its true value, demonstrating the robust-
ness of the algorithm in accurately estimating this
parameter. Similarly, the Fig. 10 d and g illustrates the
time history for k, where the estimated values stabilize
around the true value. The damping coefficient ¢
exhibits a more gradual convergence, while the gap
parameters e; and e, also show rapid convergence to
their true values, with minimal error, indicating the
effectiveness of the estimation method. This robust-
ness across different parameters highlights the poten-
tial applicability of the method to complex, non-
smooth dynamic systems.
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Fig. 10 Parameter identification results of the 5 DoF non-smooth gap system
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Fig. 11 Matching of state transitions and strong tracking factors in the 5 DoF non-smooth gap system

Figure 11 presents the tracking performance and
accuracy of state identification for the complex non-
smooth gap system. Figure 11a demonstrates that the
estimated states closely follow the true states with
minimal lag, highlighting the accuracy of the estima-
tion process. The green arrows illustrate the first state
transition from State 1 to others. Figure 11b shows the
identified state switching points and time. It demon-
strates the capability of the proposed method to
accurately track system states and identify switching
points in a complex non-smooth gap system, even in
the presence of multiple dynamic changes and
uncertainties.

Table 2 presents the results of parameter identifi-
cation for the 5-DoF non-smooth gap system under
varying levels of measurement noise, specifically
noise free and 3% RMS noise. The initial values are set
to 70% of the true values for &y, k, and ¢, and zero for
e; and e,. For both k; and k, the estimated values
closely match the true values with negligible error

(0.0%) under both conditions, demonstrating the
robustness of the identification process for these
parameters. The damping coefficient ¢ was estimated
with a small negative error of approximately —6.1% at
0% noise and —6.2% at 3% noise, indicating a slight
underestimation. The gap sizes e; and e, were
accurately identified in both noise conditions. These
results suggest that the proposed method for parameter
identification is highly accurate, particularly for
stiffness and gap size parameters, even in the presence
of noise. The slight deviation observed in the estima-
tion of the damping coefficient underlines the influ-
ence of noise on this specific parameter, but the overall
accuracy remains acceptable.

5.3 Comparison with traditional methods
To further demonstrate the effectiveness of the

proposed method, this study conducted a comparative
analysis with the traditional UKF algorithm(Using

Table 2 Parameter identifications of 5-DoF non-smooth gap system under different noise levels

Parameter True value Initial value Noise free 3% noise
Estimated value Error (%) Estimated value Error (%)
ky 30,000 0.7 ky 30,010.2 0.0 30,010.0 0.0
k 10,000 0.7 k 9999.3 0.0 9999.8 0.0
c 0.1 0.7 ¢ 0.09387 — 6.1 0.09381 - 6.2
e 0.05 0 0.0500 0.0 0.0500 0.0
e 0.05 0 0.0500 0.0 0.0500 0.0
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Fig. 12 Comparison of two methods for parameter identification in the 5-DoF non-smooth gap system

singular value decomposition to calculate the square
root of the covariance matrix). Figure 12 shows the
comparison of STSR-SSRCQKF and UKEF for 5-DoF
non-smooth gap system in parameter identification. In
several subplots, the traditional UKF method demon-
strates poor performance, struggling to track the true
values accurately, especially when non-smooth
dynamics and sudden transitions occur. Significant
deviations, delays, and oscillations are visible, indi-
cating its inability to handle abrupt parameter changes
effectively. In contrast, the proposed method exhibits
superior accuracy and robustness, as the identified
parameters closely align with the true values, even
during sharp transitions. This highlights the proposed
STSR-SSRCQKF approach outperforms the tradi-
tional method in capturing the complex behavior of
non-smooth gap systems.

Figure 13 shows the displacement response recon-
struction in the 5-DoF non-smooth gap system by
UKEF. Each subplot corresponds to one DoF, where the
blue curves represent the true displacements, and the
red curves depict the UKF-based reconstructed dis-
placements. In the first two DoFs, the displacements
exhibit oscillatory behavior with minor deviations
between the true and reconstructed values. However,
for the remaining DoFs, the system demonstrates
strong non-smooth dynamics characterized by sudden
jumps and impacts, typical of gap systems. The UKF
struggles to accurately follow these abrupt transitions,
resulting in notable discrepancies between the true
displacements and the reconstructed displacements.
This highlights the limitations of the UKF in handling
highly non-smooth behaviors, compared with the
proposed STSR-SSRCQKF in Fig. 9.
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Fig. 14 Matching of state transitions in the 5-DoF non-smooth
gap system by UKF

Figure 14 illustrates the matching of state transi-
tions in the 5-DoF non-smooth gap system, where the
UKF fails to precisely identify the second state
transition. At the first state transition, the UKF
successfully tracks the system’s jump to the correct
state; however, in the subsequent recursive process,
the UKF algorithm experienced significant state
estimation errors, resulting in erroneous state transi-
tions and filter divergence. The inability of the UKF to

@ Springer

capture the precise timing and magnitude of the state
transition highlights its limitations in handling sudden
non-smooth behaviors in gap systems, which require
more advanced filters, such as the proposed STSR-
SSRCQKEF, for accurate tracking.

5.4 Performance under large initial errors
and limited measurement

In parameter identification, the initial value settings
can significantly influence model performance. Since
the true values of each parameter are unknown, this
study compares state estimation and parameter iden-
tification results with initial errors of 50% and 70% for
the stiffness and damping parameters. Table 3 shows
the parameter identifications of 5-DoF non-smooth
gap system under different initial values with 3%
noise. The results demonstrate that even with an initial
error as large as 70%, the proposed algorithm effec-
tively estimates the system’s state. The error in
stiffness parameter identification remains below
0.31%, though the damping parameter identification
exhibits relatively larger errors.

In practical applications, not all degrees of freedom
can be fully measured, or some accelerometers may
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malfunction. To evaluate the proposed method’s
performance under limited measurements, the initial
values were set to 0.5 times the true values, and only
acceleration measurements from 3-DoF (DoF 1, 3, and
5) were used. Table 4 shows the results of parameter
identifications of 5-DoF non-smooth gap system with
3 observations under 3% noise level. The results
confirm that the proposed algorithm still accurately
estimates the system’s state, with the stiffness param-
eter identification error remaining below 0.11%.
However, the damping parameter identification con-
tinues to show larger errors.

It is a common phenomenon in structural parameter
identification via Kalman filtering that the accuracy of
stiffness estimation is generally higher than that of
damping estimation. This discrepancy arises from
differences in the sensitivity of system dynamic
responses to stiffness and damping variations, as well
as practical measurement limitations.

In terms of time calculation cost, for a single degree
of freedom system, the method proposed in this
manuscript takes approximately 52.72 s, while the
traditional UKF takes approximately 28.53 s. For a
five degree of freedom system, the proposed method
takes approximately 2508.78 s, while traditional UKF

manuscript generates 4n + 4 Sigma points per time
step, while the traditional UKF algorithm generates
2n + 1 Sigma points. Therefore, the computational
time cost of the algorithm proposed in this article is
approximately twice that of the traditional UKF
method, but it has higher recognition accuracy and
convergence stability. The main factors affecting
computational efficiency are the dimensionality of
the state vector and observation vector, both of which
have a cubic relationship; When the observed quan-
tities are the same, the computational efficiency is
mainly affected by the dimensionality of the state
vector. The algorithm proposed in this paper uses more
Sigma points, thus requiring more floating-point
calculations..

6 Conclusions

This study has presented a novel approach for
accurately identifying parameters and tracking states
in non-smooth gap systems using an advanced filtering
technique, the Strong Tracking Square Root Spherical
Simplex-Radial Cubature Quadrature Kalman Filter
(STSR-SSRCQKF). The method has demonstrated

requires 1081.82 s. The method proposed in this significant advantages over traditional filtering
Table 3 Parameter identifications of 5-DoF non-smooth gap system with different initial values under 3% noise
Parameter True value Initial value Estimated value Error (%) Initial value Estimated value Error (%)
ki 30,000 0.5 k; 30,034.1 0.11 0.3 k; 29,906.5 — 0.31
k 10,000 0.5 k 9998.3 —0.02 0.3 k 10,002.8 0.03
c 0.1 0.5 ¢ 0.0620 — 37.96 03¢ — 0.1897 — 289.68
e 0.05 0 0.0500 0.00 0 0.0501 0.18
e 0.05 0 0.0500 0.00 0 0.0500 0.00
Table 4 Parameter Parameter True value Initial value Estimated value Error (%)
identifications of 5-DoF
ngn-smooth gap system ky 30,000 0.5 k; 30,009.2 0.03
with 3.0bservat10ns under k 10,000 05 k 9989 1 T
3% noise level
c 0.1 0.5 ¢ — 0.0698 — 169.81
e 0.05 0 0.0503 0.59
e 0.05 0 0.0499 —0.16
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techniques, including improved numerical stability,
rapid adaptation and enhanced accuracy. Key conclu-
sions are as follows:

(1) The proposed method employs QR decompo-
sition instead of Cholesky decomposition,
eliminating the need for a positive-definite
matrix, which is crucial in handling the
discontinuities found in non-smooth gap sys-
tems, and ensuring unconditional numerical
stability throughout the recursive process. The
method uses 4n + 4 sigma points to improve
filtering accuracy, but this enhancement also
leads to higher computational costs.

(2) The incorporation of strong tracking tech-
niques allows the filter to dynamically adjust to
sudden changes in the system’s state. The first-
time strong tracking factors is triggered the
states 1s transit, as shown in case studies. It
enhances the accurate and imperative state
estimation even in the presence of abrupt
transitions.

(3) The proposed method utilizes acceleration
data as input, which makes it highly suitable for
real-time implementation. This practical
approach enhances the STSR-SSRCQKF’s
appeal for real-world applications, particularly
in systems that require continuous monitoring
and immediate response.

(4) Through extensive simulations and compar-
isons under varying noise levels, large initial
errors and limited measurement, the proposed
approach demonstrates good performance.
The ability to accurately identify unknown
switching points and maintain reliable state
tracking in complex, nonlinear, and non-
smooth systems underscores the potential of
this technique for broader applications in
structural health monitoring and dynamic
system analysis.

The proposed method demonstrates effectiveness
in identifying damping parameters and has potential
applications in structural health monitoring. It should
be emphasized that the results presented in this paper
are obtained entirely from numerical simulations, and

@ Springer

practical experimental validation has not yet been
conducted. Future work will focus on implementing
laboratory and field experiments to further validate the
applicability of the proposed approach.
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¢ Initialization
X, = E[X,]
So=1/Po = [E[(Xo — Xo)(Xo — Xo)"]
for k=1:end
e Status judgment
try
if Condition 1
state=1
end
if Condition 2
state=2
end
end
¢ Sigma points generation

) X+ [(n+2+V2n+4)Sila —al;,i=12,2n+2
)(;qk =
X+ [(n+2=Van+4)Sila —alipppi=2n+3,An+4

¢ Time update

2}(+1\k = f[l;qk]
2L
Xk+1\k = z Wikn\k
i=0

o1 o o1 o T
Vo (XE22 = Xiepape) REIE = Xewape)
o o o3 N T
T1=arfy mcz(xi1;?k4n+4 - Xk+1|k)(XﬁZ(TI\31£4n+4 - Xk+1\k) )
Jau"
Stk = T

¢ New sigma points generation

; X + J(n+ 2+ V20 + 9)Sppqple —alyi=12,2n+2
x§c+1\k =
X + J(n+ 2 =Von+ 4)Sqpla @iz pi=2n+3, 4n+4

¢ Measurement prediction

Za = 1 (Hherr)
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Zop = ————— > %
T D+ 2+ Van a) & T
an+4
3 3
4+ Dn+2-Van+a) L ktilk
2n+2
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4n+4
e — Z (x:
4+ Dn+2-Van+4) L ketalk
e Strong tracking factor
ey = tr[ Nyyq]
T [ M)
try
if Condition 1
e;=The displacement corresponding to the system
end
if Condition 2
e;=The displacement corresponding to the system
end
end

¢ Measurement update

Kg,k+1 = sz,k+1Pz_zl,k+1
X1 = Xk+1|k + K ie+1(Zrsr — 2k+1|k)
r, =qr([( - Kg,k+1Hk+1)sk+1|k' Kg i1/ Rk+1]T)

— T
Skt1jk+1 = T2

end
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