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Abstract Accurate parameter identification is criti-

cal for the effective modeling and control of dynamic

systems, especially those exhibiting complex, nonlin-

ear behaviors such as non-smooth gap systems. These

systems, characterized by abrupt changes in dynamics

due to physical constraints, discontinuities, or contact

phenomena, pose significant challenges for traditional

parameter identification methods, often resulting in

inaccurate models and suboptimal system perfor-

mance. To address these challenges, this study intro-

duces the Strong Tracking Square Root Spherical

Simplex-Radial Cubature Quadrature Kalman Filter

(STSR-SSRCQKF), an advanced filtering algorithm

designed to enhance parameter identification accuracy

in non-smooth gap systems. The STSR-SSRCQKF

provides several key benefits, including improved

numerical stability through the adoption of QR

decomposition, which avoids the need for positive-

definite matrices, rapid adaptation to sudden system

changes via strong tracking techniques, increased

accuracy through a two-fold increase in sampling

points, and computational simulations by utilizing

acceleration data for alignment with commonly

available measurements. The effectiveness of this

method is validated on both 1-DoF and 5-DoF non-

smooth systems. Through extensive simulations and

comparisons under varying noise levels, large initial

errors and limited measurement, the proposed

approach demonstrates good performance. The capa-

bility of the STSR-SSRCQKF to accurately identify

unknown switching points and ensure reliable state

tracking in complex, non-smooth systems highlight its

potential for broader applications in structural health

monitoring, robotics, and dynamic system analysis.

Keywords System identification � Gap systems �
Kalman filter � Strong tracking � Non-smooth system �
Geometric nonlinearity

1 Introduction

Parameter identification is essential in the modeling

and control of dynamic systems, especially those with

complex and nonlinear behaviors [1]. Non-smooth gap

systems, which feature abrupt changes in dynamics

due to physical constraints, discontinuities, or contact

phenomena, are particularly challenging to model and
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analyze [2]. These systems are common in engineering

applications, such as dynamics change rapidly upon

contact, robotics with joint friction, and structural

systems subject to sudden load changes [3]. The

inherent non-smoothness of these systems often

complicates the accurate estimation of their parame-

ters, which is essential for precise control and reliable

performance [4]. Moreover, traditional parameter

identification methods frequently struggle to capture

the intricate dynamics of non-smooth gap systems,

resulting in inaccurate models and suboptimal system

performance.

System identification involves developing mathe-

matical models of dynamic systems based on observed

data [5]. Time–frequency methods like the Hilbert-

Huang Transform (HHT) and wavelet transform (WT)

decompose vibration signals into the time–frequency

domain and can yield impressive results [6, 7].

However, these methods are not suitable for online

identification of structural parameters [8, 9]. For

online parameter identification, time-domain methods

are more commonly employed [10, 11]. Traditional

time-domain system identification techniques, such as

least squares estimation, maximum likelihood estima-

tion, and classical Kalman Filter (KF), are well-

established for linear systems, but they encounter

significant challenges when applied to nonlinear and

non-smooth systems [12].

The Extended Kalman Filter (EKF) is a widely used

algorithm that extends the classical KF to handle

nonlinear systems by linearizing the system dynamics

around the current estimate [13, 14]. Li andWang [15]

developed a constrained EKF to accurately estimate

the parameters of the Bouc-Wen hysteretic model.

Zhang et al. [16] introduced a two-stage framework

that combines an adaptive EKF with a recursive least-

squares method to track structural parameters and

restoring forces in cable-bracing inerter systems.

Furthermore, Zhang et al. [17] applied an adaptive

EKF to identify time-variant parameters and mass

distribution from limited observations. A key disad-

vantage of the EKF is its reliance on linearization,

which can lead to inaccuracies and instability in highly

nonlinear systems.

Unscented Kalman Filter (UKF) is another online

nonlinear system identification method [18, 19]. The

EKF linearizes the system around the current estimate,

while the UKF uses a deterministic sampling approach

to capture the nonlinearities [20, 21]. Wang and Lei

[22] developed a UKF designed to handle unknown

inputs for real-time joint input and system identifica-

tion of structural systems, particularly in scenarios

without direct feedthrough and using limited response

measurements. Yu et al. [23] introduced an iterative

augmented UKF for simultaneous estimation of state,

parameters, and inputs, which adheres to Bayes’

theorem without relying on ad hoc procedures, thus

offering theoretical simplicity. Additionally, Yuen

et al. [24] proposed a Bayesian probabilistic algorithm

that integrates UKF for noise covariance estimation,

suitable for nonstationary conditions. The chosen

sigma points may fail to represent system dynamics

accurately, particularly in regions where the system

exhibits discontinuities, which can pose challenges for

both UKF and EKF in handling highly nonlinear or

non-smooth systems.

The Cubature Kalman Filter (CKF) [25, 26] and its

extension, the Cubature Quadrature Kalman Filter

(CQKF), have been developed to address some of

these limitations [27]. These use higher-order statis-

tical moments and cubature integration to provide

more accurate estimates for nonlinear systems. Ghor-

bani and Cha [28] proposed an enhanced UKF that

integrates CKF techniques to improve system identi-

fication performance in systems with significant

degrees of freedom (DoF). Basetti et al. [29] intro-

duced a derivative-free method utilizing Square-Root

CKF (SR-CKF) for tracking power system dynamics

and providing real-time updates on system state

evolution. Mu et al. [30] developed fractional embed-

ded CKF and robust fractional embedded CKF to

estimate states in fractional-order nonlinear discrete

systems. However, in the context of non-smooth gap

systems, even the CQKF can face challenges due to

sudden changes in system dynamics.

With different rules for generating sigma points,

current sigma point sampling strategies mainly

include symmetric sampling, simplex sampling,

third-order moment skewness sampling, and fourth-

order moment symmetric sampling based on Gaussian

distribution, among which symmetric sampling is

commonly used. The UKF is the most widely applied

and features 2nþ 1 sigma points. When performing

parameter identification, the UKF requires some

parameters to be manually defined, which can signif-

icantly influence the identification results. This

method typically achieves third-order accuracy. The

CKF decomposes difficult integrations into surface
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and radial integrals on a sphere, approximated using

the third-order cubature rule. CKF has 2n equally

weighted cubature points (or sigma points) and, unlike

the UKF, does not require additional parameter

definitions, with its weight values only depending on

the dimension of the state vector. This method also

generally provides third-order accuracy [31]. The

Spherical Simplex Radial Cubature Quadrature Kal-

man Filter (SSRCQKF) replaces spherical integration

with spherical simplex radial cubature quadrature,

offering higher accuracy. This paper selects a sam-

pling method with fifth-order accuracy, which results

in 4nþ 4 sigma points for an n-dimensional state

vector. Although this method is more computationally

intensive, it typically yields better identification

performance [32]. Furthermore, traditional KF algo-

rithms typically use Cholesky decomposition to cal-

culate the square root of the covariance matrix during

the recursive process in generating sigma points. This

requires the covariance matrix to be positive definite

[33].

Non-smooth systems are characterized by abrupt

changes in dynamics, often resulting from disconti-

nuities, impacts, or constraints in the system [34, 35].

Research in non-smooth systems has led to the

development of specialized modeling techniques, such

as differential inclusions and complementarity prob-

lems, which are designed to handle discontinuities and

non-differentiable behaviors [36, 37]. However, these

approaches often result in complex models that are

difficult to analyze and simulate, especially when it

comes to parameter identification.

Modeling non-smooth gap systems presents a

significant challenge due to their inherent discontinu-

ities [38, 39]. Traditional parameter identification

methods, typically developed for smooth and contin-

uous systems, often rely on assumptions that fail in

non-smooth contexts. To address these limitations,

several modified methods based on the traditional KF

have been proposed. Chatzis et al. [40] introduced a

discontinuous EKF (DEKF) specifically for non-

smooth dynamic problems, designed to prevent the

temporary divergence and ultimate failure often seen

with standard EKF in accurately identifying system

parameters. Zhou et al. [41] developed a non-smooth

observer that estimates errors in a switched system by

incorporating extended disturbances and carefully

selecting feedback matrices, enabling accurate state

estimation in non-smooth sandwich systems with

hysteresis. Zhu et al. [42] proposed a discontinuous

UKF (DUKF) featuring a dynamic boundary approx-

imation algorithm to identify state transitions and

coupled internal mechanical and geometric parame-

ters. These studies collectively showcase the effec-

tiveness of geometric-based Kalman filtering in

solving challenges posed by nonlinear systems.

While modified methods have made some strides in

addressing the challenges of parameter identification

in non-smooth gap systems, these approaches still face

limitations, particularly in accuracy and application

[43]. The consequences of inaccurate parameter

identification in non-smooth gap systems are signif-

icant. Inaccurate models can lead to control strategies

that are either too conservative, failing to fully exploit

the system’s capabilities, or too aggressive, leading to

instability or failure. In safety–critical applications,

such as aerospace, automotive, or structural engineer-

ing, the failure to accurately model and control a non-

smooth gap system can have catastrophic

consequences.

To address the challenges posed by non-smooth gap

systems, advanced filtering algorithms have been

developed. Among them, the Strong Tracking Square

Root Spherical Simplex-Radial Cubature Quadrature

Kalman Filter (STSR-SSRCQKF) stands out for its

robustness and accuracy in parameter identification.

This method offers several key advantages: 1) This

study addresses limitations of the traditional Square

Root Unscented Kalman Filter (SR-UKF), which

relies on Cholesky decomposition and imposes strict

positive-definiteness constraints, risking numerical

instability in highly nonlinear or discontinuous sys-

tems. By employing QR decomposition for covariance

matrix updates, the proposed method removes the

dependency on positive definiteness while maintain-

ing high precision. Additionally, the SSRCQKF

framework resolves challenges of negative weights

in high-dimensional systems by ensuring strictly

positive weights and using increased sigma points

for improved parameter identification accuracy. 2)

The proposed integration of strong tracking factors

(STFs) is tailored for state estimation in systems with

abrupt geometric nonlinearities. Unlike traditional

methods, the STFs is selectively triggered during the

first state transition of the system, overcoming the gap

value recognition error caused by system discretiza-

tion and providing more accurate initial values for

subsequent Kalman filtering algorithms.
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The study is structured as follows: Sect. 2 provides

an overview of the state equation of non-smooth gap

systems. Section 3 introduces the theory of the

proposed STSR-SSRCQKF method in details. Sec-

tion 4 investigates the performance of the STSR-

SSRCQKF algorithm for parameter identification in a

simple non-smooth gap system with 1-DoF. Section 5

further validates the effectiveness of this approach in

accurately capturing the dynamic behavior of more

complex system with 5-DoF, even in the presence of

abrupt changes and discontinuities. Through detailed

simulations and analysis, the research conclusions are

summarized in Sect. 6.

2 State equation of non-smooth gap systems

In a non-smooth gap system, as shown in Fig. 1, the

motion of the system is governed by different equa-

tions depending on the displacement x of the system

relative to predefined thresholds e1 and e2. These

thresholds define regions where the system transitions

between different states due to the presence of gaps or

clearances. The equation can be expressed in Eq. (1).

The non-smooth nature of these systems poses chal-

lenges for analysis and control, as traditional linear

methods may not apply. Understanding and modeling

these transitions accurately is crucial for predicting the

system’s response and ensuring stability and perfor-

mance in practical applications.

State 2 m€xþc1 _xþk1 xþe1ð Þ¼F when x\�e1
State 1 m€x¼F when �e1\x\e2
State 3 m€xþc2 _xþk2 x�e2ð Þ¼F when x[e2

ð1Þ

where m represents the mass of the system. c is the

damping coefficient. k represents the stiffness of the

system. x _x and €x represent the displacement, velocity,

and acceleration of the system, respectively. F repre-

sents the external force applied to the system. e1 and e2
represent the thresholds defining the boundaries

between different states.

In State 1, the displacement x is within the gap

defined by�e1 and e1. The system behaves as if it is in

free motion, meaning there is no contact between the

components, and thus no restoring force or damping

force is acting on the system. The equation simplifies

to a basic force balance where the external force F

directly influences the acceleration €x of the system.

This state represents the free travel of the system

within the gap.

When the displacement x exceeds the threshold

�e1, the system transitions to State 2. The system

comes into contact with a boundary or another

component, resulting in an additional restoring force

and a damping force. The restoring force is propor-

tional to the displacement xþ e1ð Þ, reflecting the

system’s attempt to return to equilibrium. The damp-

ing term c _x accounts for energy dissipation due to the

relative motion between the contacting surfaces. This

state models the behavior of the system when it is in

contact on the left side of the gap.

State 3 is analogous to State 2 but occurs when the

displacement x exceeds the threshold e2, indicating

contact on the right side of the gap. Similar to State 2,

the system experiences a restoring force proportional

to the displacement x� e2ð Þ and a damping force c _x.

This state captures the system’s dynamics when it

interacts with the boundary on the right side of the gap.

This set of equations is typically used to model

systems where physical constraints or gaps lead to

piecewise linear behavior. Examples include mechan-

ical systems with clearances, impact phenomena, and

other cases where the system’s response changes

abruptly depending on the position of its components.

3 STSR-SSRCQKF algorithm

3.1 Standard SSRCQKF algorithm

Consider the following nonlinear dynamic system

model, which is characterized by a state equation and a

measurement equation:

Fig. 1 Schematic diagram of a single degree of freedom system
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Xkþ1 ¼ f Xk; ukð Þ þ wk

Zkþ1 ¼ h Xkþ1ð Þ þ vkþ1

�
ð2Þ

In this model, Xkþ1 denotes the state vector of the

system at the subsequent time stepk þ 1. The state

vector encapsulates the essential internal variables that

describe the system’s current condition, which could

include variables such as position, velocity, or other

quantities pertinent to the specific application. The

evolution of the state vector is governed by the

nonlinear functionf ðÞ, which defines the system’s

dynamics. This function models how the current

stateXk, influenced by the system inputuk, transitions

to the next stateXkþ1. Here, uk represents the s-

dimensional input vector, which accounts for external

controls or forces applied to the system. wk represents

the process noise. Zkþ1 represents the measurement

vector at time stepk þ 1. hðÞ represents the measure-

ment function. vkþ1 represents the measurement noise.

The uncorrelated zero-mean Gaussian white noise

processes are as follows:

EðwkÞ ¼ 0; covðwk;wjÞ ¼ Qkdkj ð3Þ

EðvkÞ ¼ 0; covðvkþ1; vjÞ ¼ Rkdkj ð4Þ

covðwk; vjÞ ¼ 0 ð5Þ

where, Qk is the covariance matrix of the process

noise, which quantifies the extent of uncertainty

present in the system’s dynamics at time step k. The

Kronecker delta function dkj indicates that the process

noise is uncorrelated over time, meaning that the noise

at any time step k is independent of the noise at any

other time step j. Rk represents the covariance matrix

of the measurement noise, which captures the level of

uncertainty in the system’s observations at time step k.

Spherical simplex-radial cubature quadrature Kal-

man filter (SSRCQKF) algorithm decomposes the

Gaussian probability weighted integral of nonlinear

functions into spherical integral and radial integral,

and approximates them using spherical simplex

volume rule and arbitrary order Gaussian Laguerre

integration rule, respectively, to obtain a new spherical

simplex radial volume integration rule. Based on the

Bayesian filtering framework, the general and specific

forms of SSRCQKF are proposed. This algorithm has

4nþ 4 (n is the dimension of the state vector) Sigma

sampling points, which has higher filtering accuracy

(Compared with the traditional UKF algorithm, the

UKF algorithm has 2n ? 1 Sigma points), but also

means that the calculation is more time-consuming.

The standard SSRCQKF algorithm is as follows:

(1) Initialization.

The process begins with the initialization of the

state estimate and covariance matrix. The initial

estimate of the state vector is the expected value of

the state. The covariance matrix represents the uncer-

tainty in the initial state estimate. The initialization

step provides the baseline from which all subsequent

updates are performed.

X̂0 ¼ E½X0� ð6Þ

P0 ¼ E X0 � X̂0

� �
ðX0 � X̂0ÞT

h i
ð7Þ

where X̂0 represents the initial value of the state vector,

P0 is the initial error covariance matrix, and the

superscript T represents the transpose of the matrix.

(2) Sigma points generation.

In SSRCQKF, the sigma points (vikjk) are generated

as shown in Eq. (8).

where the subscript i in a; �a½ �i represents the i-th
column of the matrix. The elements ai;j in the matrix a

are calculated as shown in Eq. (9), and in the formula,

i ¼ 1,2; � � � ; nþ 1.

ai;j ¼

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nþ 1

n n� jþ 2ð Þ n� jþ 1ð Þ

r
; j\i

0; j[ iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nþ 1ð Þ n� iþ 1ð Þ
n n� iþ 2ð Þ

s
; i ¼ j

8>>>>><
>>>>>:

ð9Þ

vikjk ¼
X̂kjk þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nþ 2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ 4

p� �
Pk

q
a; �a½ �i; i ¼ 1; 2; � � � ; 2nþ 2

X̂kjk þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nþ 2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ 4

p� �
Pk

q
a; �a½ �i�2n�2; i ¼ 2nþ 3; � � � ; 4nþ 4

8<
: ð8Þ
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(3) Time update.

The sigma points generated in the previous step are

propagated through the system’s nonlinear dynamics

to predict the state at the next step. Equation (10)

represents the propagation of each sigma point

through the system dynamics f ðÞ. In Eq. (11), the

predicted state bXkþ1jk is computed as a weighted sum

of the propagated sigma points. Equation (12) updates

the covariance based on the propagated sigma points

and includes the process noise Qk.

X̂i
kþ1jk ¼ f vikjk

� �
i ¼ 1; � � � ; 4nþ 4ð Þ ð10Þ

X̂kþ1jk ¼
n

4 nþ 1ð Þ nþ 2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ 4

p� �X2nþ2

i¼1

X̂i
kþ1jk

þ n

4 nþ 1ð Þ nþ 2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ 4

p� � X4nþ4

i¼2nþ3

X̂i
kþ1jk

ð11Þ

Pkþ1jk ¼
n

4 nþ 1ð Þ nþ 2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ 4

p� �
X2nþ2

i¼1

X̂i
kþ1jk � X̂kþ1jk

� �
X̂i
kþ1jk � X̂kþ1jk

� �T

þ n

4 nþ 1ð Þ nþ 2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ 4

p� �
X4nþ4

i¼2nþ3

X̂i
kþ1jk � X̂kþ1jk

� �
X̂i
kþ1jk � X̂kþ1jk

� �T

þQk

ð12Þ

where Pkþ1jk refers to the state prediction error

covariance matrix from time step k to k þ 1. The

subscript k þ 1jk explicitly indicates the time progres-

sion from k to k þ 1. indicates the specific time step.

(4) New sigma points generation.

Following the time update, a new set of sigma

points is generated based on the updated state estimate

and covariance matrix:

(5) Measurement prediction.

The sigma points are transformed through the

model to predict the measurement. Each sigma point is

passed through the measurement function hðÞ to

generate predicted measurements. The predicted mea-

surement bZkþ1jk is computed as a weighted sum of the

predicted sigma points with Eq. (15). Equation (16)

updates the measurement covariance matrix Pzz;kþ1.

The cross covariance Pxz;kþ1 between the state and

measuremeẐi
kþ1jk ¼ h vikþ1jk

� �
nt is computed based

on the spread of the predicted measurement sigma

points, as shown in Eq. (17).

Ẑi
kþ1K ¼ h vikþ1k

� �
ð14Þ

Ẑkþ1jk ¼
n

4 nþ 1ð Þ nþ 2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ 4

p� �X2nþ2

i¼1

Ẑi
kþ1jk

þ n

4 nþ 1ð Þ nþ 2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ 4

p� � X4nþ4

i¼2nþ3

Ẑi
kþ1jk

ð15Þ

Pzz;kþ1 ¼
n

4 nþ 1ð Þ nþ 2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ 4

p� �
X2nþ2

i¼1

Ẑi
kþ1jk � Ẑkþ1jk

� �
Ẑi
kþ1jk � Ẑkþ1jk

� �T

þ n

4 nþ 1ð Þ nþ 2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ 4

p� �
X4nþ4

i¼2nþ3

Ẑi
kþ1jk � Ẑkþ1jk

� �
Ẑi
kþ1jk � Ẑkþ1jk

� �T

þRkþ1

ð16Þ

vikþ1jk ¼
X̂kþ1jk þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nþ 2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ 4

p� �
Pkþ1jk

q
a; �a½ �i; i ¼ 1; 2; � � � ; 2nþ 2

X̂kþ1jk þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nþ 2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ 4

p� �
Pkþ1jk

q
a; �a½ �i�2n�2; i ¼ 2nþ 3; � � � ; 4nþ 4

8<
: ð13Þ
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Pxz;kþ1 ¼
n

4 nþ 1ð Þ nþ 2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ 4

p� �
X2nþ2

i¼1

X̂i
kþ1jk � X̂kþ1jk

� �
Ẑi
kþ1jk � Ẑkþ1jk

� �T

þ n

4 nþ 1ð Þ nþ 2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ 4

p� �
X4nþ4

i¼2nþ3

X̂i
kþ1jk � X̂kþ1jk

� �
Ẑi
kþ1jk � Ẑkþ1jk

� �T

ð17Þ

where, Pzz;kþ1 represents the output prediction self-

covariance matrix at time step k þ 1. Here, the

subscript zz specifies that it is a self-covariance matrix,

while k þ 1 indicates the specific time step. Pxz;kþ1

denotes the output prediction cross-covariance matrix

at time step k þ 1. Here, the subscript xz highlights that

it is a cross-covariance matrix, and k þ 1 again marks

the corresponding time step.

(6) Measurement update.

Finally, the filter updates the state estimate and

covariance based on the new measurement. The

Kalman gain Kg;kþ1 determines the weight given to

the measurement residual ðZkþ1 � bZkþ1jkÞ in updating
the state estimate. The state estimate is updated using

the Kalman gain and the difference between the actual

and predicted measurements with Eq. (19). The

covariance matrix Pkþ1jkþ1 is similarly updated to

reflect the reduction in uncertainty following the

incorporation of the new measurement, as shown in

Eq. (20).

Kg;kþ1 ¼ Pxz;kþ1P
�1
zz;kþ1 ð18Þ

X̂kþ1 ¼ X̂kþ1jk þ Kg;kþ1 Zkþ1 � Ẑkþ1jk
� �

ð19Þ

Pkþ1jkþ1 ¼ Pkþ1jk � Kg;kþ1Pzz;kþ1K
T
g;kþ1 ð20Þ

The SSRCQKF process iterates through these steps,

updating the state and covariance estimates at each

time step based on the system dynamics and

measurements.

3.2 Improved SR-SSRCQF algorithm

The Improved Square Root Spherical simplex-radial

cubature quadrature Kalman filter (SR-SSRCQKF)

algorithm addresses a critical issue encountered in the

traditional Cholesky decomposition method used for

calculating the square root of the error covariance

matrix, as shown in Eqs. (8) and (13) with the

recursive process. Specifically, the Cholesky decom-

position requires the covariance matrix to be positive

definite. However, due to the influence of computer

rounding errors during numerical computations, the

positive definiteness of the covariance matrix may not

always be guaranteed. To overcome this limitation, the

SR-SSRCQF algorithm leverages QR decomposition,

providing a more robust solution for computing the

square root of the matrix.

(1) QR decomposition-based covariance matrix

calculation.

In the SR-SSRCQF algorithm, the error covariance

matrix at the prediction step, denoted as Pkþ1jk, can be

expressed as:

Pkþ1jk ¼ Skþ1jkS
T
kþ1jk ð21Þ

where, Skþ1jk represents the square root of the

covariance matrix. To compute this square root, QR

decomposition is applied.

By expressing STkþ1jk as the product of an orthog-

onal matrix q and an upper triangular matrix r:

STkþ1jk ¼ qr ð22Þ

The square root of the covariance matrix can be

redefined in Eq. (23). This alternative expression

ensures that the square root of the covariance matrix

is computed more reliably, even in cases where the

traditional Cholesky decomposition may fail due to

numerical inaccuracies.

Skþ1jk ¼ rT ð23Þ

(2) Derivation of the covariance matrix square root.

From the QR decomposition, the following expres-

sion for the square root of the covariance matrix is

derived:

r1 ¼ qr

½
ffiffiffiffiffiffiffi
xc1

p
X̂1:2nþ2
kþ1jk � X̂kþ1jk

� �
X̂1:2nþ2
kþ1jk � X̂kþ1jk

� �T

;

ffiffiffiffiffiffiffi
xc2

p
X̂2nþ3:4nþ4
kþ1jk � X̂kþ1jk

� �
X̂2nþ3:4nþ4
kþ1jk � X̂kþ1jk

� �T

;ffiffiffiffiffiffi
Qk

p
�T

0
BBB@

1
CCCA

ð24Þ

where, qrðÞ represents QR decomposition,

xc1 ¼ n
4 nþ1ð Þ nþ2þ

ffiffiffiffiffiffiffiffi
2nþ4

pð Þ, x
c2 ¼ n

4 nþ1ð Þ nþ2�
ffiffiffiffiffiffiffiffi
2nþ4

pð Þ.

The new form of the square root of the covariance

matrix is then given in Eq. (25). This formulation

allows the covariance matrix to be computed
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accurately, even in the presence of potential numerical

instabilities.

Skþ1jk ¼ rT1 ð25Þ

(3) Measurement update and Kalman gain.

The Kalman gain Kg;kþ1 can be updated using the

square root forms of the covariance matrices. Specif-

ically, the Kalman gain is computed as:

Kg;kþ1 ¼ Pxz;kþ1= Szz;kþ1S
T
zz;kþ1

� �
ð26Þ

where Szz;kþ1 represents the square root of the

measurement covariance matrix.

According to the definition of covariance of state

estimation error:

Pkþ1jkþ1 ¼ covðXkþ1 � X̂kþ1jkþ1Þ
¼ covðXkþ1

� X̂kþ1jk þ Kkþ1 Zkþ1 � Zkþ1jk
� �� �

Þ
ð27Þ

This simplifies to:

Pkþ1jkþ1 ¼ covððI � Kg;kþ1Hkþ1ÞðXkþ1 � bXkþ1jkÞÞ
þ covðKkþ1Vkþ1Þ

¼ ðI � Kkþ1Hkþ1ÞcovðXkþ1 � bXkþ1jkÞðI
� Kg;kþ1Hkþ1ÞT þ Kkþ1covðVkþ1ÞKT

kþ1

¼ ðI � Kg;kþ1Hkþ1ÞPkþ1jkðI � Kg;kþ1Hkþ1ÞT

þ Kg;kþ1Rkþ1K
T
g;kþ1

¼ ðI � Kg;kþ1Hkþ1ÞSkþ1jkS
T
kþ1jkðI

� Kg;kþ1Hkþ1ÞT

þ Kg;kþ1

ffiffiffiffiffiffiffiffiffiffi
Rkþ1

p ffiffiffiffiffiffiffiffiffiffi
Rkþ1

p T
KT

g;kþ1

ð28Þ

whereHkþ1 is the Jacobian matrix of the measurement

function at time k þ 1, I is the unit matrix.

(4) Final covariance matrix square root update.

The final step involves applying QR decomposition

to update the square root of the covariance matrix:

r2 ¼ qrð I � Kg;kþ1Hkþ1

� �
Skþ1jk;Kg;kþ1

ffiffiffiffiffiffiffiffiffiffi
Rkþ1

p
�T

h �

ð29Þ

The square root of the updated covariance matrix is

then obtained as:

Skþ1jkþ1 ¼ rT2 ð30Þ

(5) Computation of the measurement matrix.

For complex nonlinear structures, if there is a

nonlinear relationship between the observation vector

and the state vector, the equivalent form of the

measurement matrix can be used to avoid calculating

the Jacobian matrix.

According to the definition, the state prediction self

covariance matrix Pkþ1jk, the output prediction self

covariance matrix Pzz;kþ1, and the output prediction

cross covariance matrix .Pxz;kþ1. can be written in the

form of Eqs. (31) ,(32) and (33).

Pkþ1jk ¼ E½ Xkþ1 � X̂kþ1jk
� �

Xkþ1 � X̂kþ1jkÞT
� i

ð31Þ

Pzz;kþ1 ¼ E½ Zkþ1 � Ẑkþ1jk
� �

ðZkþ1 � Ẑkþ1jkÞT�

¼ Hg;kþ1E½ Xkþ1 � X̂kþ1jk
� �

Xkþ1 � X̂kþ1jkÞT
� i

HT
g;kþ1 ¼ Hg;kþ1Pkþ1jkH

T
g;kþ1

ð32Þ

Pxz;kþ1 ¼ E½ Xkþ1 � X̂kþ1jk
� �

Zkþ1 � Ẑkþ1jkÞT
� i

¼ E½ Xkþ1 � X̂kþ1jk
� �

Xkþ1 � X̂kþ1jkÞT
� i

Hg;kþ1

¼ Pkþ1jkH
T
g;kþ1

ð33Þ

The equivalent form of the measurement matrix can

be obtained as:

Hkþ1 ¼ ½ðPkþ1jkÞ�1Pxz;kþ1�T ¼ ðPxz;kþ1ÞTðPkþ1jkÞ�1

¼ ðPxz;kþ1ÞTðSkþ1jkS
T
kþ1jkÞ

�1

ð34Þ

The improved SR-SSRCQF algorithm, by employ-

ing QR decomposition instead of Cholesky decompo-

sition, provides a more stable and reliable method for

updating the square root of the covariance matrix. This

approach mitigates the issues arising from numerical

errors, ensuring the positive definiteness of the

covariance matrix and enhancing the overall perfor-

mance of the filter in nonlinear state estimation

problems.

3.3 Strong tracking factor

In the context of parameter identification and state

estimation for intermittent systems, one of the primary

challenges is accurately determining the system’s

operating state, particularly when the system
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undergoes state transitions. Intermittent systems are

characterized by abrupt shifts between distinct states,

which can cause significant discrepancies between

observed and predicted quantities if the state predic-

tion equations are not promptly adjusted. This issue is

particularly pronounced during the first transition from

one state to another, such as from State 1 to State 2 or

State 3. To address this challenge, a strong tracking

factor is introduced, which helps to identify state

transitions by leveraging the sudden changes in

residual information.

The strong tracking factor, denoted as lkþ1, is a key

element in detecting state transitions in intermittent

systems. This factor is designed to adaptively adjust

the filtering process in response to changes in the

system’s state, ensuring that the filter remains accurate

even when the system transitions between different

operating modes. The strong tracking factor is partic-

ularly useful during the first entry into a new state,

where the discrepancy between predicted and

observed quantities is likely to be most pronounced.

The strong tracking factor lkþ1 is computed using

the following equations:

lkþ1 ¼
lk lkþ1 � 1

1 lkþ1\1

�
ð35Þ

lkþ1 ¼
tr½Nkþ1�
tr½Mkþ1�

ð36Þ

Nkþ1 ¼ Ckþ1 �Hkþ1Qkþ1H
T
kþ1 � lRkþ1 ð37Þ

Mkþ1 ¼ Hkþ1Ukþ1jkPkþ1jkU
T
kþ1jk

¼ Hkþ1 Pkþ1jk � Qkþ1

� 	
HT

kþ1

¼ Hkþ1 Skþ1jkS
T
kþ1jk � Qkþ1

h i
HT

kþ1 ð38Þ

where, tr½� denotes the trace of a matrix, which is the

sum of the diagonal elements and provides a scalar

representation of the matrix’s characteristics, l� 1, is

a weakening factor, and Ukþ1jk is the state transition

matrix, which only appears as a process variable and is

not included in the final result.

The output residual sequence ek, defined as the

difference between the observed measurement Zk and

the predicted measurement Ẑk, is a crucial component

in determining the strong tracking factor:

ek ¼ Zk � Ẑk ð39Þ

The actual output residual sequence Ckþ1 is calcu-

lated as follows:

Ckþ1 ¼
e1e

T
1 k ¼ 1

qCk þ ekþ1e
T
kþ1

1þ q
k� 2

8<
: ð40Þ

where, 0\q� 1 is a weighting factor that controls the

influence of past residuals on the current estimate.

This study adopts q ¼ 0:95 to ensure consistency and

comparability with previous works [44, 45]. The

sequence Ckþ1 represents the accumulated residual

information, which is used to adjust the filter’s

sensitivity to state changes.

The strong tracking factor lkþ1 is essential for

maintaining the accuracy of state estimation in

intermittent systems. For example, when the system

transitions from state 1 to state 2, there is a significant

difference between the observed values estimated by

the physical model of state 1 and the actual observed

values. At this time, the calculated strong tracking

factor will also have a large amplitude jump. Then,

based on the given velocity sign, current displacement

state, and other conditions, it is determined whether a

state transition is necessary. Therefore, by dynami-

cally adjusting the filtering process based on residual

information, the strong tracking factor enables the

system to quickly and accurately detect state transi-

tions, minimizing errors between predicted and

observed quantities. This is particularly important in

systems where state transitions are infrequent but have

a significant impact on system behavior.

3.4 Overall system identification flowchart

The flowchart presented in Fig. 2 illustrates the algo-

rithmic procedure of theSTSR-SSRCQKFused for state

estimation in non-smooth gap systems. The process

begins with initialization, where the initial state,

covariance matrices, and system parameters are estab-

lished. Following this, the algorithm enters the status

judgment phase,where it assesses the current state of the

system to determine the need for further updates.

Subsequently, the algorithm proceeds to the gener-

ation of sigma points, a critical step in the unscented

transform process, which is carried out twice-once

after a predetermined time update and again after a

measurement update. The sigma points are used to
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predict the system’s measurements based on the

current state estimates.

The core of the algorithm is the calculation of the

strong tracking coefficient, highlighted in green,

which ensures the filter’s robustness to sudden

changes in the system dynamics. This coefficient

dynamically adjusts the Kalman gain, allowing the

filter to ‘‘strongly track’’ the true state of the system,

particularly in the presence of non-smooth transitions.

It is important to note that the strong tracking factor

proposed in this study is triggered only under specific

conditions. When the strong tracking factor exceeds

the predefined threshold and the initial gap value on

one side is still zero, the displacement at that moment

is taken as the first identified gap value on that side.

Subsequently, the system transitions into a new state,

where the SR-SSRCQKF algorithm is used for precise

gap identification. Future state transitions are deter-

mined based on the previously identified gap value.

The reasoning behind this approach is as follows:

1) When the system transitions from state 1 to

other states for the first time, there is a

significant change in the strong tracking factor,

making this state jump easier to capture. The

displacement at that moment closely approxi-

mates the true gap value, but due to the system’s

discrete sampling, it is unlikely to exactly match

the actual gap value.

2) The SR-SSRCQKF algorithm can more accu-

rately identify the gap value, making it a more

reliable criterion for determining state transi-

tions during subsequent recursive processes.

3) The strong tracking factor is triggered only once

on each side of the system, improving the

stability of the recursive process and preventing

the system from repeatedly jumping at the gap

edge due to noise interference.

After the state transition, where the system evolves

according to its underlying dynamic model, the

measurement update phase follows. Here, the pre-

dicted measurements are compared against the actual

sensor readings, and the state estimates are updated

accordingly. This process is iterative, with the index

k incrementing until the algorithm reaches the prede-

fined end condition.

The proposed method is particularly well-suited for

real-time implementation due to its practical use of

acceleration data as input. Unlike traditional

approaches that often require velocity or displacement

measurements—data that can be more challenging to

obtain or less reliable in dynamic environments—this

method focuses on acceleration data, which is more

readily available and typically less prone to noise in

many engineering applications.

4 Simulation of single-degree-of-freedom non-

smooth gap systems

4.1 DoF non-smooth gap System descriptions

The proposed method’s effectiveness is firstly vali-

dated using a one-dimensional nonlinear system, as

depicted in Fig. 1. The system’s actual parameters are

defined as follows: mass m ¼ 1kg, damping coeffi-

cients c1 ¼ 1N � s/m and c2 ¼ 1N � s/m, stiffness con-

stants k1 ¼ 100N/m and k2 ¼ 150N/m. The external

load applied to the system is a sine wave given by

F tð Þ ¼ � sinð0:1ptÞ, with a sampling frequency of

500 Hz. The fourth-order Runge Kutta method is used

to discretize the transition and measurement

Fig. 2 Process diagram for gap system state estimation and

parameter identification
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equations, and assuming the input is known, the

observed value is acceleration.

The system is composed of three distinct states.

State 1 occurs when the mass is positioned between

two gaps, where the state vector includes only two

variables: displacement and velocity. When the mass

crosses the left gap, the system transitions into State 2,

and the augmented state vector then includes dis-

placement, velocity, stiffness k1, damping coefficient

c1, and gap value e1; Similarly, when the mass crosses

the right gap, the system enters State 3, and the

augmented state vector comprises displacement,

velocity, stiffness k2, damping coefficient c2, and

gap value.

The initial conditions for the three state vectors are

defined as follows: XState1;t¼0 ¼ x; _x½ � ¼ 0; 0½ �,
XState2;t¼0 ¼ x; _x; k1; c1; e1½ � ¼ 0; 0; 70; 0:7; 0½ �,
XState3;t¼0 ¼ x; _x; k2; c2; e2½ � ¼ 0; 0; 105; 0:7; 0½ �e2.

The initial state error covariance matrices are

specified as follows: PState1;t¼0 ¼ diag r2x ; r
2
_x

� 	
¼

diag 1� 10�1; 1� 10�2½ �, PState2;t¼0 ¼ diag r2x
�

; r2_x ; r
2
k1
; r2c1 ;r

2
e1
; � ¼ diag 1�½ 10�1; 1� 10�2; 1�

103; 1� 10�1; 1� 10�2�, PState3;t¼0 ¼ diag r2x ; r
2
_x

�
; r2k2 ; r

2
c2
; r2e2 ; � ¼ diag 1�½ 10�1; 1� 10�2; 1� 103;

1� 10�1; 1� 10�2�.
Additionally, the covariance matrices for the initial

system process noise are defined as: QState1;t¼0

¼ diag r2x ; r
2
_x

� 	
¼ diag 1� 10�10; 1� 10�10½ �,

QState2;t¼0 ¼ diag r2x ; r
2
_x ; r

2
k1
;

h
r2c1 ; r

2
e1
; � ¼ diag 1�½

10�10; 1� 10�10; 1� 10�8; 1� 10�8; 1� 10�10�,
QState3;t¼0 ¼ diag r2x ; r

2
_x ; r

2
k2
; r2c2 ;

h
r2e2 ; � ¼ diag 1�½

10�10; 1� 10�10; 1� 10�8 ; 1� 10�8; 1� 10�10�. In
this manuscript, the covariance matrix of process noise

and observation noise is initialized based on experi-

ence. The main summary of this experience is that the

more accurate the physical model, the smaller the

covariance matrix Q of process noise, and its specific

value is also related to the corresponding parameter

order. For example, for physical quantities such as

displacement and velocity that describe the system’s

motion state, the usual value is 10-2 * 10-4, and for

the parameters to be identified, the usual value is

10–8 * 10-12. For the covariance matrix R of obser-

vation noise, when the error of the observation is large,

the value of R increases accordingly, and its value is

usually between 100 and 10–3.

Figure 4 represents different aspects of the sys-

tem’s response and state transitions in a 1-DoF non-

smooth gap system. Figure 4 a shows the displace-

ment response of the system over time across the three

different states (State 1, State 2, and State 3), while

Fig. 4 b compares the estimated total displacement

against the real total displacement within the three

states.

Figure 3 illustrates the state transition and param-

eter identification process in a non-smooth gap system.

When conducting parameter identification and state

estimation, the strong tracking factor is calculated

from the second time step onward. If this factor

exceeds a predefined threshold for the first time and

the velocity of the mass block is negative, the system

transitions from State 1 to State 2. During this

transition, the displacement and velocity values from

State 1 at the current time step are transferred to State

2, and the gap value in State 2 is updated to e1 ¼ xk. At

Fig. 3 Schematic diagram

of 1-DoF state transition and

variable transfer
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this point, the strong tracking factor on the left

becomes ineffective. In future operations, the transi-

tion from State 1 to State 2 depends on the gap value e1
identified in State 2. Subsequent transitions between

State 1 and State 2 involve only the displacement and

velocity values, without transferring the gap value e1.

In this example, the threshold for the strong tracking

factor is set to 10. The transition process and

parameter transfer between State 1 and State 3 follow

the same logic.

4.2 Performance of the proposed method

The displacement responses of the system under the

specified sine-wave load are illustrated in Fig. 4. The

system starts in State 1, where the mass is moving

within the range without crossing any gaps. The

displacement is relatively low, as shown in Fig. 4 a.

When the mass crosses the left gap, the system

transitions into State 2, leading to a sharp increase in

displacement. This state is marked by higher displace-

ment values. As the system continues, it crosses the

right gap, transitioning into State 3. The displacement

again changes and the behavior reflects the dynamics

within this new state. Figure 4 b shows a close match

between the estimated and real displacements, indi-

cating the effectiveness of the proposed method in

accurately estimating the displacement throughout the

transitions, particularly in handling non-linearities and

abrupt changes in the system’s behavior.

Figure 5 illustrate the parameter identification

results, and each subplot compares the estimated

parameter values (blue line) with their true values (red

dashed line) over time. When the system transits from

State 1 to State 2 and State 3, the method accurately

and rapidly identifies the stiffness and gaps in these

states (k1, k2, e1, and e2). Damping ratios could be

accurately identified in the later moments. The close

alignment between the estimated and true values

across different parameters confirms the reliability of

the proposed STSR-SSRCQKF method.

As shown in Fig. 5 a and Fig. 5 d, the system

transitions from state 2 to state 1 at 1.432 s, allowing

stiffness parameter k1 to be identified first. At

11.672 s, the system transitions from state 2 to state

3, and only then does the identification of stiffness

parameter k2 begin, with its value rapidly converging

to the true value. Figure 5 b illustrates that the

damping parameter c1 experiences significant fluctu-

ations during the state transition. Once the system

transitions back from state 2 to state 1, c1 is no longer

identified, and its value remains constant until the final

seconds, when the system re-enters state 2, and c1
gradually converges to its true value. Figure 5 c and

Fig. 5 f demonstrate that the strong tracking factor

proposed in this paper can accurately detect the

system’s first state transition, with the initial gap

value being very close to the true value. The SR-

SSRCQKF algorithm further refines this to obtain an

accurate gap value.

Furthermore, Fig. 6 depicts the matching of state

transitions with strong tracking factors. Figure 6 b

shows that the strong tracking factors spike at specific

times, corresponding to the moments when the system

Fig. 4 Displacement responses in the 1-DoF non-smooth gap system
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transitions between states (as depicted in Fig. 6 a).

These spikes ensure that the method quickly adjusts to

the new state, maintaining accurate tracking despite

the non-smooth nature of the transitions. The syn-

chronization between state tracking and strong track-

ing factors underscores the method’s ability to adapt to

sudden changes in the system, ensuring continuous

and accurate state estimation.

In Fig. 6 b, multiple peaks appear. As previously

mentioned, the strong tracking factor is triggered only

under specific conditions, enabling the system’s first

state transition either to the left or right. This approach

not only ensures the algorithm’s identification accu-

racy but also improves its stability when recognizing

the gap system. As a result, the strong tracking factor is

only activated twice, as indicated at t ¼ 1:428s and

Fig. 5 Parameter identification results of the 1-DoF non-smooth gap system

Fig. 6 Matching of state transitions and strong tracking factors in the 1-DoF non-smooth gap system
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t ¼ 11:668s. The other peaks in the figure also corre-

spond to system state transitions, but if the system

tracks the states well, these peaks may not exceed the

set threshold. During the first state transition, however,

the strong tracking factor shows a significant change.

To simulate the interference of noise in actual

observations and verify the robustness of the proposed

method, white Gaussian noise was added to the

measurements. The performance of the parameter

identification approach under varying noise levels is

summarized in Table 1. The table provides a compar-

ison between the true, initial, and estimated values of

the parameters k1, k2, c1, c2, e1, e2 under noise free and

3% RMS(root mean square) white Gaussian noise

conditions. The results show that the proposed method

accurately identifies the system parameters with

minimal error, particularly when dealing with real-

world conditions characterized by noise and abrupt

transitions between states.

5 Computational simulations of a 5-DoF dual gap

system

5.1 5-DoF dual gap system descriptions

To further validate the effectiveness of the proposed

method, a 5-DoF dual gap system was used for

verification. This complex system is shown in Fig. 7.

The system also includes three states, and its dynamic

equation is shown in Eq. (41).

State2 M €X ¼ F� C _X � K1X � DKp1 when Dx\� e1

State1
Ms1

€Xs1 ¼ Fs1 � Ks1Xs1

Ms2
€Xs2 ¼ Fs2 � Ks2Xs2

�
when � e1\Dx\e2

State3 M €X ¼ F� C _X � K1X � DKp2 when Dx[ e2

ð41Þ

Table 1 Parameter identifications under different noise levels in the 1-DoF non-smooth gap system

Parameter True value Initial value Noise free 3% noise

Estimated value Error (%) Estimated value Error (%)

k1 100 0.7 k1 100.0 0.0 100.0 0.0

k2 150 0.7 k2 150.7 0.5 150.7 0.5

c1 1.0 0.7 c1 0.99856 - 0.1 0.99856 - 0.1

c2 1.0 0.7 c2 0.98801 - 1.2 0.98801 - 1.2

e1 0.15 0 0.1497 - 0.2 0.1497 - 0.2

e2 0.10 0 0.1001 0.1 0.1001 0.1

Fig. 7 Non-smooth gap system with 5-DoF
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0 Ms2
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C ¼
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0
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Xs2
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Fs1 ¼

0

0


 �
Fs2 ¼

0

0

F tð Þ

2
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3
75 F ¼

Fs1

Fs2


 �

_Xs1 ¼
_x1
_x2


 �
_Xs2 ¼

_x3
_x4
_x5

2
4

3
5 _X ¼

_Xs1
_Xs2


 �
ð42Þ

The state space equations and observation equa-

tions for states 1, 2, and 3 are as follows:

_X1 ¼ f Xk; ukð Þ ¼

_X
M�1

s1 Fs1 � Ks1Xs1ð Þ
M�1

s2 Fs2 � Ks2Xs2ð Þ
03�1

2
664

3
775 ð43Þ

_X2 ¼ f Xk; ukð Þ ¼
_X

M�1 F� C _X � K1X � DKp1

� �
04�1

2
4

3
5

ð44Þ

_X3 ¼ f Xk; ukð Þ ¼
_X

M�1 F� C _X � K1X � DKp2

� �
04�1

2
4

3
5

ð45Þ

Z1 ¼ h Xkþ1ð Þ ¼ M�1
s1 Fs1 � Ks1Xs1ð Þ

M�1
s2 Fs2 � Ks2Xs2ð Þ


 �
ð46Þ

Z2 ¼ h Xkþ1ð Þ ¼ M�1 F� C _X � K1X � DKp1

� �� 	
ð47Þ

Z3 ¼ h Xkþ1ð Þ ¼ M�1 F � C _X � K1X � DKp2

� �� 	
ð48Þ

Figure 8 represents the state transitions and param-

eter identification process in a 5-DoF dual-gap system.

Here, the parameters and variables are shown at time

step k. The displacement vector is defined as

xk ¼ x1; x2; x3; x4; x5½ �, the velocity vector is

_xk ¼ _x1; _x2; _x3; _x4; _x5½ �, and the relative displacement

between masses 3 and 2 is Dxk ¼ x3 � x2.

During the parameter identification and state esti-

mation process, the strong tracking factor is computed

from the second time step. When this factor exceeds a

predefined threshold for the first time and the relative

displacement between Mass 3 and Mass 2 is negative,

the system transitions from State 1 to State 2. At this

transition, the displacement and velocity values from

State 1 are transferred to State 2, and the gap value in

State 2 is updated as e1 ¼ Dxk. In this configuration,

the strong tracking factor on the left side becomes

ineffective. For following transitions, the system’s

switch from State 1 to State 2 is governed by the gap

value e1 identified in State 2.

In this case, each of the three states includes the

stiffness parameter k1. Therefore, during transitions

between State 1 and State 2, both the displacement and

velocity values, as well as the stiffness parameter k1,

are transferred, differing from a 1-DoF system and

related to the integration method of the system’s

stiffness matrix. The threshold for the strong tracking

factor in this example is set to 10. The transition

process and parameter transfer between State 1 and

State 3 follow the same principles.

The initial values of the three state vectors are

defined as follows: XState1;t¼0 ¼ x1; x2; x3; x½
4; x5; _x1; _x2; _x3 ; _x4; _x5; k1� ¼ 0; 0; 0; 0; 0; 0; 0; 0;½
0; 0; 2:7� 104�, XState2;t¼0 ¼ x1; x2; x3; x4½
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; x5; _x1; _x2; _x3 ; _x4; _x5; k1; k; c; e1� ¼ 0; 0; 0; 0; 0; 0;½
0; 0; 0; 0; 2:7� 104; 0:7� 104; 0:07; 0�;XState3;t¼0 ¼
x1; x2; x3; x4; x5;½ _x1; _x2; _x3; _x4; _x5; k2; k; c; e2� ¼
0; 0; 0; 0;½ 0; 0; 0; 0; 0; 0; 2:7� 104; 0:7� 104; 0:07; 0�:
Given that k1 is included in the augmented state

vector during the State 1 stage, this implies that

parameter k1 is also estimated during the state

estimation process at this stage. Consequently, the

initial error covariance associated with k1 in State 1 is

relatively large, whereas it is smaller in State 2 and

State 3.

The initial state error covariance matrices are

defined as follows: PState1;t¼0 ¼ diag r2x1 ; r
2
x2
; r2x3 ;

h
r2x4 ; r

2
x5
; r2_x1 ; r

2
_x2
; r2_x3 ; r

2
_x4
; r2_x5 ; r

2
k1
; � ¼ diag 1� 10�4�½

ones 1; 10ð Þ; 1� 108�, PState2;t¼0 ¼ diag r2x1 ; r
2
x2
; r2x3 ;

h
r2x4 ; r

2
x5
; r2_x1 ; r

2
_x2
; r2_x3 ; r

2
_x4
; r2_x5 ; r

2
k1
; r2k ; r

2
c ; r

2
e1
; � ¼ diag

1� 10�4 � ones 1; 10ð Þ; 1� 104; 1� 106; 1� 10�4;
�
1� 10�4�, PState3;t¼0 ¼ diag r2x1

h
; r2x2 ; r

2
x3
; r2x4 ; r

2
x5
;

r2_x1 ; r
2
_x2
; r2_x3 ; r

2
_x4
; r2_x5 ; r

2
k1
; r2k ; r

2
c ; r

2
e2
; � ¼ diag 1½ �10�4

�ones 1; 10ð Þ; 1� 104; 1� 106; 1� 10�4; 1� 10�4�.
The process noise covariance matrices are defined as

follows: QState1;t¼0 ¼ diag 1� 10�4 � ones 1; 10ð Þ;½
1� 10�8�, QState2;t¼0 ¼ diag 1� 10�4�½ ones 1; 10ð Þ;
1� 10�8; 1� 10�8; 1� 10�10; 1� 10�12�, QState3;t¼0

¼ diag 1� 10�4½ �ones 1; 10ð Þ; 1� 10�8; 1� 10�8; 1

�10�10; 1� 10�12�.
Since the proposed STSR-SSRCQKF method can

utilize accelerometer data as input in practical appli-

cations, the acceleration response for the 5-DoF

system is taken as the observation, as shown below:

z ¼ €x1 €x
2

€x3 €x4 €x5
h iT

ð49Þ

5.2 Performance of the proposed method

Figure 9 presents the acceleration responses of a 5-

DoF system under various dynamic conditions. The

plots depict the time histories of the acceleration

responses for each DoF, denoted as €x1 through €x5,

under different states labeled as State1, State2, and

State3. The results highlight the model’s robustness in

capturing the dynamic characteristics of the system

across all DoFs under varying conditions. The close

alignment between the actual and estimated responses

across all DoFs suggests that the model effectively

accounts for the inherent dynamics and the noise

present in the system.

Figure 10 illustrates the time history of estimated

parameters for this 5-DoF non-smooth gap system. In

the Fig. 10 a–c, the parameter k1 is shown to quickly

converge to its true value, demonstrating the robust-

ness of the algorithm in accurately estimating this

parameter. Similarly, the Fig. 10 d and g illustrates the

time history for k, where the estimated values stabilize

around the true value. The damping coefficient c

exhibits a more gradual convergence, while the gap

parameters e1 and e2 also show rapid convergence to

their true values, with minimal error, indicating the

effectiveness of the estimation method. This robust-

ness across different parameters highlights the poten-

tial applicability of the method to complex, non-

smooth dynamic systems.

Fig. 8 Schematic diagram

of 5-DoF system state

transition and parameter

transfer
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Fig. 9 Displacements of degrees of freedom in 5-DoF non-smooth gap system

Fig. 10 Parameter identification results of the 5 DoF non-smooth gap system
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Figure 11 presents the tracking performance and

accuracy of state identification for the complex non-

smooth gap system. Figure 11a demonstrates that the

estimated states closely follow the true states with

minimal lag, highlighting the accuracy of the estima-

tion process. The green arrows illustrate the first state

transition from State 1 to others. Figure 11b shows the

identified state switching points and time. It demon-

strates the capability of the proposed method to

accurately track system states and identify switching

points in a complex non-smooth gap system, even in

the presence of multiple dynamic changes and

uncertainties.

Table 2 presents the results of parameter identifi-

cation for the 5-DoF non-smooth gap system under

varying levels of measurement noise, specifically

noise free and 3%RMS noise. The initial values are set

to 70% of the true values for k1, k, and c, and zero for

e1 and e2. For both k1 and k, the estimated values

closely match the true values with negligible error

(0.0%) under both conditions, demonstrating the

robustness of the identification process for these

parameters. The damping coefficient c was estimated

with a small negative error of approximately-6.1% at

0% noise and -6.2% at 3% noise, indicating a slight

underestimation. The gap sizes e1 and e2 were

accurately identified in both noise conditions. These

results suggest that the proposed method for parameter

identification is highly accurate, particularly for

stiffness and gap size parameters, even in the presence

of noise. The slight deviation observed in the estima-

tion of the damping coefficient underlines the influ-

ence of noise on this specific parameter, but the overall

accuracy remains acceptable.

5.3 Comparison with traditional methods

To further demonstrate the effectiveness of the

proposed method, this study conducted a comparative

analysis with the traditional UKF algorithm(Using

Fig. 11 Matching of state transitions and strong tracking factors in the 5 DoF non-smooth gap system

Table 2 Parameter identifications of 5-DoF non-smooth gap system under different noise levels

Parameter True value Initial value Noise free 3% noise

Estimated value Error (%) Estimated value Error (%)

k1 30,000 0.7 k1 30,010.2 0.0 30,010.0 0.0

k 10,000 0.7 k 9999.3 0.0 9999.8 0.0

c 0.1 0.7 c 0.09387 - 6.1 0.09381 - 6.2

e1 0.05 0 0.0500 0.0 0.0500 0.0

e2 0.05 0 0.0500 0.0 0.0500 0.0
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singular value decomposition to calculate the square

root of the covariance matrix). Figure 12 shows the

comparison of STSR-SSRCQKF and UKF for 5-DoF

non-smooth gap system in parameter identification. In

several subplots, the traditional UKF method demon-

strates poor performance, struggling to track the true

values accurately, especially when non-smooth

dynamics and sudden transitions occur. Significant

deviations, delays, and oscillations are visible, indi-

cating its inability to handle abrupt parameter changes

effectively. In contrast, the proposed method exhibits

superior accuracy and robustness, as the identified

parameters closely align with the true values, even

during sharp transitions. This highlights the proposed

STSR-SSRCQKF approach outperforms the tradi-

tional method in capturing the complex behavior of

non-smooth gap systems.

Figure 13 shows the displacement response recon-

struction in the 5-DoF non-smooth gap system by

UKF. Each subplot corresponds to one DoF, where the

blue curves represent the true displacements, and the

red curves depict the UKF-based reconstructed dis-

placements. In the first two DoFs, the displacements

exhibit oscillatory behavior with minor deviations

between the true and reconstructed values. However,

for the remaining DoFs, the system demonstrates

strong non-smooth dynamics characterized by sudden

jumps and impacts, typical of gap systems. The UKF

struggles to accurately follow these abrupt transitions,

resulting in notable discrepancies between the true

displacements and the reconstructed displacements.

This highlights the limitations of the UKF in handling

highly non-smooth behaviors, compared with the

proposed STSR-SSRCQKF in Fig. 9.

Fig. 12 Comparison of two methods for parameter identification in the 5-DoF non-smooth gap system
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Figure 14 illustrates the matching of state transi-

tions in the 5-DoF non-smooth gap system, where the

UKF fails to precisely identify the second state

transition. At the first state transition, the UKF

successfully tracks the system’s jump to the correct

state; however, in the subsequent recursive process,

the UKF algorithm experienced significant state

estimation errors, resulting in erroneous state transi-

tions and filter divergence. The inability of the UKF to

capture the precise timing and magnitude of the state

transition highlights its limitations in handling sudden

non-smooth behaviors in gap systems, which require

more advanced filters, such as the proposed STSR-

SSRCQKF, for accurate tracking.

5.4 Performance under large initial errors

and limited measurement

In parameter identification, the initial value settings

can significantly influence model performance. Since

the true values of each parameter are unknown, this

study compares state estimation and parameter iden-

tification results with initial errors of 50% and 70% for

the stiffness and damping parameters. Table 3 shows

the parameter identifications of 5-DoF non-smooth

gap system under different initial values with 3%

noise. The results demonstrate that even with an initial

error as large as 70%, the proposed algorithm effec-

tively estimates the system’s state. The error in

stiffness parameter identification remains below

0.31%, though the damping parameter identification

exhibits relatively larger errors.

In practical applications, not all degrees of freedom

can be fully measured, or some accelerometers may

Fig. 14 Matching of state transitions in the 5-DoF non-smooth

gap system by UKF

Fig. 13 Displacement reconstruction in the 5-DoF non-smooth gap system by UKF
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malfunction. To evaluate the proposed method’s

performance under limited measurements, the initial

values were set to 0.5 times the true values, and only

acceleration measurements from 3-DoF (DoF 1, 3, and

5) were used. Table 4 shows the results of parameter

identifications of 5-DoF non-smooth gap system with

3 observations under 3% noise level. The results

confirm that the proposed algorithm still accurately

estimates the system’s state, with the stiffness param-

eter identification error remaining below 0.11%.

However, the damping parameter identification con-

tinues to show larger errors.

It is a common phenomenon in structural parameter

identification via Kalman filtering that the accuracy of

stiffness estimation is generally higher than that of

damping estimation. This discrepancy arises from

differences in the sensitivity of system dynamic

responses to stiffness and damping variations, as well

as practical measurement limitations.

In terms of time calculation cost, for a single degree

of freedom system, the method proposed in this

manuscript takes approximately 52.72 s, while the

traditional UKF takes approximately 28.53 s. For a

five degree of freedom system, the proposed method

takes approximately 2508.78 s, while traditional UKF

requires 1081.82 s. The method proposed in this

manuscript generates 4n ? 4 Sigma points per time

step, while the traditional UKF algorithm generates

2n ? 1 Sigma points. Therefore, the computational

time cost of the algorithm proposed in this article is

approximately twice that of the traditional UKF

method, but it has higher recognition accuracy and

convergence stability. The main factors affecting

computational efficiency are the dimensionality of

the state vector and observation vector, both of which

have a cubic relationship; When the observed quan-

tities are the same, the computational efficiency is

mainly affected by the dimensionality of the state

vector. The algorithm proposed in this paper uses more

Sigma points, thus requiring more floating-point

calculations..

6 Conclusions

This study has presented a novel approach for

accurately identifying parameters and tracking states

in non-smooth gap systems using an advanced filtering

technique, the Strong Tracking Square Root Spherical

Simplex-Radial Cubature Quadrature Kalman Filter

(STSR-SSRCQKF). The method has demonstrated

significant advantages over traditional filtering

Table 3 Parameter identifications of 5-DoF non-smooth gap system with different initial values under 3% noise

Parameter True value Initial value Estimated value Error (%) Initial value Estimated value Error (%)

k1 30,000 0.5 k1 30,034.1 0.11 0.3 k1 29,906.5 - 0.31

k 10,000 0.5 k 9998.3 - 0.02 0.3 k 10,002.8 0.03

c 0.1 0.5 c 0.0620 - 37.96 0.3 c - 0.1897 - 289.68

e1 0.05 0 0.0500 0.00 0 0.0501 0.18

e2 0.05 0 0.0500 0.00 0 0.0500 0.00

Table 4 Parameter

identifications of 5-DoF

non-smooth gap system

with 3 observations under

3% noise level

Parameter True value Initial value Estimated value Error (%)

k1 30,000 0.5 k1 30,009.2 0.03

k 10,000 0.5 k 9989.1 - 0.11

c 0.1 0.5 c - 0.0698 - 169.81

e1 0.05 0 0.0503 0.59

e2 0.05 0 0.0499 - 0.16
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techniques, including improved numerical stability,

rapid adaptation and enhanced accuracy. Key conclu-

sions are as follows:

(1) The proposed method employs QR decompo-

sition instead of Cholesky decomposition,

eliminating the need for a positive-definite

matrix, which is crucial in handling the

discontinuities found in non-smooth gap sys-

tems, and ensuring unconditional numerical

stability throughout the recursive process. The

method uses 4nþ 4 sigma points to improve

filtering accuracy, but this enhancement also

leads to higher computational costs.

(2) The incorporation of strong tracking tech-

niques allows the filter to dynamically adjust to

sudden changes in the system’s state. The first-

time strong tracking factors is triggered the

states is transit, as shown in case studies. It

enhances the accurate and imperative state

estimation even in the presence of abrupt

transitions.

(3) The proposed method utilizes acceleration

data as input, whichmakes it highly suitable for

real-time implementation. This practical

approach enhances the STSR-SSRCQKF’s

appeal for real-world applications, particularly

in systems that require continuous monitoring

and immediate response.

(4) Through extensive simulations and compar-

isons under varying noise levels, large initial

errors and limited measurement, the proposed

approach demonstrates good performance.

The ability to accurately identify unknown

switching points and maintain reliable state

tracking in complex, nonlinear, and non-

smooth systems underscores the potential of

this technique for broader applications in

structural health monitoring and dynamic

system analysis.

The proposed method demonstrates effectiveness

in identifying damping parameters and has potential

applications in structural health monitoring. It should

be emphasized that the results presented in this paper

are obtained entirely from numerical simulations, and

practical experimental validation has not yet been

conducted. Future work will focus on implementing

laboratory and field experiments to further validate the

applicability of the proposed approach.
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