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Abstract
Purpose  Physics-informed neural networks (PINNs), leveraging their exceptional capacity for nonlinear feature learning, 
offer a novel approach to solving partial differential equations (PDEs) in structure dynamics. While PINNs have demon-
strated feasibility in analyzing the dynamic response of idealized one-dimensional structures, such as tensioned strings and 
beams, their applicability is limited when addressing the vibration PDEs of real-world cables, particularly those with sig-
nificant bending stiffness. To overcome this challenge, this paper presents an enhanced PINN methodology designed for the 
accurate and robust solution of free vibration responses in cables incorporating bending stiffness.
Methods  Firstly, a preferred hard-soft boundary constraints strategy is introduced to enhance the prediction accuracy of 
boundary values. Secondly, a sine activation function is adopted to accelerate network training, replacing conventional 
alternatives. Thirdly, a hierarchical gradient loss function, coupled with adaptive weights, is introduced to eliminate manual 
parameter tuning. Finally, a coordinate transformation technique is employed to balance the order-of-magnitude of param-
eters in the vibration PDEs of the actual suspension cable.
Results  This paper systematically explores training strategies for improved PINNs and verifies their effectiveness in solv-
ing vibration PDEs for cables considering bending stiffness. The proposed approach delivers accurate solutions for the free 
vibration of arbitrary cables, providing valuable insights for future research on PINN-based cable vibration analysis.
Conclusion  Furthermore, a sensitivity analysis of PDE parameters and network hyperparameters is conducted to examine 
the time-accumulative effect of PINN solution errors. Some research should focus on solving cable vibration at any time.

Highlights
	● The improved PINN with three improvments achieves solutions of any cables. 
	● A hard-soft constraint strategy is proposed to improve training accuracies.
	● Comparing study from trigonometric-activate function is conducted in detail.
	● Hierarchical gradient loss function and adaptive weights are proposed.

Keywords  Partial differential equations · Cables considering bending stiffness · Physics-informed neural networks · 
Hard-soft boundary constraints · Adaptive loss function · Coordinate transformation
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Introduction

 The solution of cable dynamic responses, which essentially 
solving the vibration partial differential equations (PDEs) of 
cables, is of great significance in the design, vibration con-
trol, and operation and maintenance of cable structures [1]. 
However, due to high-order partial derivatives associated 
with bending stiffness and mixed partial derivatives terms 
with respect to time stemming from axial force, solving the 
vibration PDEs of cables is more challenging than that of 
general cable-like structures, such as bending beams and 
tensioned strings.

Current methodologies for determining cable dynamic 
responses are predominantly categorized as either ana-
lytical or numerical approaches [2]. Analytical approaches 
primarily formulate vibration partial differential equations 
(PDEs) based on either tensioned string theory or beam the-
ory, subsequently solving these PDEs analytically through 
mathematical techniques [3]. However, the inherent bend-
ing stiffness of real-world cables introduces discrepancies 
when employing dynamic analysis based solely on ten-
sioned string theory. Therefore, it is necessary to establish 
vibration PDEs based on beam theory that additionally con-
siders the effect of bending stiffness. Moreover, analytical 
approaches often falter when applied to complex cable con-
figurations, such as those incorporating dampers or inter-
connected multiple cables [4, 5], due to the intractability 
of these sophisticated PDEs. To address these limitations, 
numerical methods have been developed to approximate 
cable dynamic responses. Compared to analytical methods, 
numerical techniques, including finite element methods, 
finite difference methods, and Galerkin methods [6–8] can 
effectively handle the dynamic response of arbitrary com-
plex cable systems. For instance, Abad et al. [9] proposed 
novel 3D finite elements tailored for cable analysis to exam-
ine nonlinear behavior under general loading conditions. To 
decrease the computational burden, Song et al. utilized a 
new surrogate model-assisted differential evolution method 
to solve cables dynamics [10]. Although these methods have 
achieved some success in practice, solving high-dimen-
sional and complexly configured cable systems or achieving 
higher accuracy often requires additional interpolation func-
tions or significantly increased mesh density to handle high-
order derivatives and complex boundary conditions. This 
not only substantially increases computational complexity 
but also potentially leads to numerical error accumulation.

In recent years, with the widespread application of neural 
networks across diverse domains, including mathematics 
[11], solid mechanics [12] and thermodynamics [13], the 
research on solving PDEs by meshless neural networks has 
garnered significant interest. Berg et al. [14] utilized deep 
neural networks to approximate PDE solutions in complex 

geometries where classical methods based on mesh are 
impractical. Subsequently, Long et al. [15, 16] proposed 
new deep learning networks PDE-Net and PDE-Net 2.0 
to solve PDEs based on observed dynamic data. However, 
the neural networks, mostly applied in a supervised man-
ner [17], require a large amount of data to effectively learn 
underlying mappings. In practical engineering, acquiring 
extensive datasets is often costly and challenging, with data 
acquisition hindered by inaccessible measurement points 
and installation difficulties. Furthermore, data is inevitably 
subject to noise contamination from sensors and environ-
mental noise. To reduce dependence on real-world data, 
PINNs were proposed to solve forward and inverse prob-
lems involving nonlinear PDEs by incorporating underlying 
physical information [18]. PINNs obviate the requirement 
for mesh discretization and extensive datasets, demonstrat-
ing efficacy in resolving complex and high-dimensional 
PDEs. This capability holds the potential to disrupt conven-
tional numerical methodologies for PDE solutions, thereby 
instigating a paradigm shift in numerical simulation tech-
nologies [19].

Recently, Physics-informed neural networks (PINNs) 
have been well applied in solving problems involving PDEs 
in various fields, such as solid mechanics, fluid mechan-
ics, etc [20–22]. Some researchers have also begun apply 
PINNs to solve vibration PDEs of cable-like structures in 
engineering, such as beams and tensioned strings. Yuan et 
al. [23] first demonstrated the potential of PINNs in struc-
tural dynamics by successfully solving the free vibration 
equations of Euler-Bernoulli beams. However, these equa-
tions contain only the fourth-order spatial derivatives and 
second-order time derivatives, with all coefficients artifi-
cially set to 1. Kapoor et al. [24] extended this approach 
to solve the complex partial differential equations (sets) of 
single and double beam systems based on the Euler-Ber-
noulli and Timoshenko beam, which successfully solved the 
dynamic response of a single beam under a moving load 
by using the same network [25]. More recently, Kapoor et 
al. [26] introduced transfer learning into causal PINNs to 
improve long-term solution accuracy for these beams. Cem 
Söyleyici et al. [27] proposed a PINN framework to solve 
the vibrations of traverse beams under different boundary 
conditions, tackling high-frequency equations by utiliz-
ing the Fourier Feature combined with the Neural Tangent 
Kernel method. Notably, these studies omitted the second-
order spatial derivatives of the deflection function in the 
beam vibration equations, thus neglecting the influence of 
axial force on beam dynamic response. Subsequently, Chen 
et al. [28] employed AT-PINN to solve the vibration PDEs 
of tensioned strings, which omits the fourth-order spatial 
derivatives of the deflection function, thereby neglecting 
the effects of bending stiffness. Based on tensioned string 
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theory, PINNs have also been applied to the multi-objective 
prestress optimization of suspension dome structures [29]. 
Additionally, an improved gradient-enhanced physics-
informed neural network (gPINN) has been employed for 
the shape-finding analysis of tensile membrane structures 
(TMS) with different forms and boundary conditions [30]. 
However, in contrast to existing PINN solutions for cable-
like structure responses, the cable vibration PDE consider-
ing bending stiffness incorporates both bending stiffness 
and axial force term. To achieve accurate solutions for the 
dynamic response of actual cables by PINNs, it is necessary 
to incorporate bending stiffness terms for string vibration 
equations or introduce axial force terms for beam vibration 
equations in the PINN framework.

Given this, this paper investigates the free vibration 
response of suspension cables with bending stiffness by for-
mulating the standard vibration PDE based on Euler-Ber-
noulli beam theory. Thus, this paper innovates a synergistic 
approach to successfully achieve accurate solutions for the 
free vibration response of standard cables (cables consider-
ing bending stiffness and beams considering axial force). To 
achieve robust training of boundary and initial conditions, 
this paper implements a comprehensive preferred strategy 
of hard-soft boundary constraints, ensuring intensive learn-
ing. The PINN, activated by the sine function similar to the 
vibration characteristics of cables, significantly accelerates 
model convergence. Furthermore, the reconstructed loss 
function, equipped with adaptive weights, intelligently dif-
ferentiates and penalizes loss terms, eliminating the need 
for complex parameter tuning and markedly improving net-
work generalization. 

The remainder of this paper is arranged as follows. 
Firstly, this paper presents the general framework of PINN 
for solving PDEs and applies a classic PINN for cable-like 
structures to solve the vibration response of cables. Then, 
an improved PINN with three improvements is introduced 
: hard-soft boundary constraints, a selected activation func-
tion and an adaptive loss function, to better solve the cable 
vibration response. Subsequently, the cable response with 
actual parameters can be solved by the improved PINN, 
associated with the coordinate transformation. Finally, the 
paper discusses the PDE parameter and the network hyper-
parameter and performs error analysis of the response 
solutions. 

Limitations of Classical PINNs Solving PDEs

General Framework

A neural network is a hierarchical structure composed 
of multiple neurons, each of which is interconnected 

through weighted connections, and performs a task by 
learning the mappings between inputs and outputs. Gen-
erally, traditional supervised learning requires a large 
amount of data to achieve accurate predictions. Given 
this, PINNs, a category of methods integrating physical 
knowledge into neural networks, are developed to reduce 
the dependence on data and enhance the modeling and 
simulation of complex physical systems. PINNs are com-
monly used in problems described by PDEs of the fol-
lowing form and are essentially applied to approaching 
their solutions.

Kk (u (x) ; γ) = F (x) , x ∈ Ωk� (1)

Where, k = i, b, p represents the initial conditions, bound-
ary conditions, and PDEs, respectively. Ω ⊆ R is the 
definition domain. x = [x1, . . . . . . xn] denotes the space 
and time variables, and u is the unknown function to be 
solved. K is the differential operator, while γ  is the equa-
tion coefficient.

The classical PINN architecture typically consists of a 
neural network, a physics-informed layer, and a feedback 
mechanism. Common neural network types used in PINNs 
include Fully Connected Neural Networks (FCNNs), Con-
volutional Neural Networks (CNNs), and Recurrent Neural 
Networks (RNNs). FCNNs are preferred in recent studies 
for solving PDEs due to generality, flexibility, and user-
friendliness [24, 25]. Figure 1 illustrates the general frame-
work of a classical PINN for PDEs, featuring an FCNN as 
its core.

The input of the whole network in Fig. 1 is the vector 
a0 = X = (x1, x2, . . . , xn)T . The hidden layers process 
this input through network weighting and activation, ulti-
mately producing the fitted function for the displacement 
U = (u1, u2, . . . , un)T  as the output. The network logic is 
expressed with the formula as shown in Eq. (2).

zl = wl · al−1 + bl, al = f
(
zl

)
� (2)

Where, l = 1, 2, . . . , L is the number of hidden layers, with 
the input layer of the entire network denoted as layer 0. zl is 
the effective input of layer l. ω l and bl are the weight and 
bias vectors from layer l − 1 to layer l, respectively. al−1 
is the activation value vector of layer l − 1, and f (• ) is the 
activation function of the network.

The PINNs involved in this paper are not only a mesh-
free function approximator, but also an unsupervised learn-
ing method, as they do not rely on a data-driven training 
process. Instead, they directly incorporate prior physical 
knowledge into the loss function, so the total loss function 
of the network is represented as,
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θ  reaches its optimal value θ *, leading to optimal-preci-
sion prediction of the model.

PDE Solution for Cable Vibration

This paper extends the existing PINNs framework, origi-
nally used for solving vibration PDEs of cable-like struc-
tures, to the case of standard cables, specifically a simply 
supported suspension cable, as shown in Fig. 2.

Since the suspension cable is oriented vertically, its static 
configuration and sag can be neglected in the analysis of 
transverse vibration. Additionally, given the relatively small 
vibration displacement, the influence of the additional cable 
force induced by the vibration on the dynamic response can 
be disregarded. According to the Euler-Bernoulli beam the-
ory, the free vibration PDE of the cable without damping and 
considering bending stiffness can be obtained as follows [32].

EI
∂4u (x, t)

∂x4 + m
∂2u (x, t)

∂t2 − H
∂2u (x, t)

∂x2 = 0� (5)

Where l is the calculated length, EI the bending stiffness, 
u (x, t) the transverse displacement, H the cable force, x the 
distance to the lower end and m the cable mass per unit length.

L (θ) = ω iLi (θ) + ω bLb (θ) + ωp Lp =
∑

k=i,b,p ωkLk (θ) � (3)

Where θ  represents the parameters in the network  
(including ω 1, ω 2 . . . ω n and b1, b2 . . . bn); ω i, ω b, ω p 
represent the weights corresponding to each 
loss; Li (θ ) , Lb (θ ) , Lp (θ ) denote the loss functions 
for initial conditions, boundary conditions, and the PDE, 
respectively. These loss terms are typically measured by the 
mean squared error (MSE), as expressed below,

Lk (θ) = 1
ℵ k

∑ ℵ k
i=1 ∥Kk (ûθ (xk) ; γ) − Fk (xk)∥2

, (k = i, b, p) � (4)

Where, ℵ  is the number of sampling points for initial, 
boundary conditions and interior of the PDE during train-
ing, x stands for the spatial and temporal variables at each 
sample point, û represents the function predicted by the 
network.

The essence of PINNs lies in transforming the problem of 
directly solving PDEs into an optimization problem of mini-
mizing the loss function [31]. Currently, the L-BFGS and 
Adam optimizers are commonly employed to optimize the 
model parameter θ (ω 1, ω 2 . . . ω n; b1, b2 . . . bn). When 
the loss function given by Eq. (3) is minimized, parameter 

Fig. 1  Classical PINN architecture for solving PDEs
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{
Γ : u (x, 0) = sin (πx/l) , ut (x, 0) = 0

B : u (0, t) = u (l, t) = uxx (0, t) = uxx (l, t) = 0 � (6)

The analytical solution for the vibration response of the real 
suspension cable is shown in Eq. (7) and Fig. 3.

u (x, t) = sinπ xcos
nπ

l

√(
H

m
+ EI

m

(nπ

l

)2
)

t� (7)

Recent studies have revealed that unnormalized coefficients 
can adverse to network convergence [24, 25]. Therefore, 
to calculate the vibration response of cables over the time 
interval t ∈ [0, 1] by the classical PINN, firstly nondimen-
sionalizing Eq. (5) should be required, resulting in,

u
x̃x̃x̃x̃

+ u
t̃̃t

− Hl2

EI
u

x̃x̃
= 0, x ∈ [0, 1] , t ∈

[
0,

√
EI

ml4

]
� (8)

Where 
∼
x= x/l and 

∼
t= t

√
EI
ml4  represent dimensionless 

spatial and temporal coordinates respectively.

To train the neural network, 16,000 training points are 
randomly generated from initial conditions, boundary 
conditions and the interior of the PDE, and distributed as 
ℵ i = 2000, ℵ b = 4000, ℵ p = 10000, the distribution of 
training points shown in Fig. 4. The neural network consists 
of 4 hidden layers, each containing 20 neurons, and employs 
the hyperbolic tangent (Tanh) function as the activation 

To analyze dynamic responses of an actual cable, a sus-
pension cable from an actual engineering is considered [33], 
as shown in Table 1. Where, initial conditions and boundary 
conditions of the simply supported cable are as follows.

Table 1  Parameters of the actual cable used for validation
Mass
m (kg/m)

Length
l ( m)

Elastic Modulus
E (N/m2)

Moment of inertia
I

(
m4

) Cable force
H (N)

14.3 13.5 2 × 1011 2.45 × 10−7 2.63 × 105

Fig. 3  Analytical solution of the real suspension cable

 

Fig. 2  Analytical model of single suspension cable
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PINN designed for dynamic responses of cable-like struc-
tures to solve that of cables. Although the loss function 
decreases significantly and converges, the predictions are 
evidently inaccurate. Specifically, the predicted vibration 
responses fail to meet the boundary and initial conditions, 
and there is no apparent vibration trend over time. Compared 
to the true solution shown in Fig. 3, there are significant 
errors in solving the vibration response of the cable by the 
classical PINN. This indicates that the PINN for elementary 

function. The loss function is composed of loss terms from 
the initial conditions, boundary conditions, and the PDE, 
regularized by adjusting the weight of the PDE loss term 
[34]. The loss function is shown in Eq. (3) and minimized 
by the most common L-BFGS optimizer [13] with the learn-
ing rate lr = 0.1. After 15,000 training epochs, the results 
are shown in Fig. 5.

Figure 5 shows the loss function changes and predicted 
vibration responses of the cable when using the classical 

Fig. 5  Cable vibration response by the classic PINN: (a) Loss function; (b) Predicted vibration response

 

Fig. 4  Distribution of training points
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establishes the preferred strategy of hard-soft boundary 
constraints. Simultaneously, complementary improvements 
are applied to the existing PINNs, including modifying the 
activation function, refining the loss function, and adopting 
adaptive weight to collectively address the challenges posed 
by vibration PDEs of cables considering bending stiffness.

This paper follows the basic network parameters of the 
PINN framework for cable-like structures in Sect. General 
framework. However, the Adam optimization algorithm is 
employed as the optimizer for the network parameters, with 
the Cosine Annealing LR algorithm employed to dynami-
cally adjust the learning rate. To train the neural network 
efficiently, mini-batch sampling is utilized to accelerate the 
training process, with resampling every 100 epochs. Each 
sampling generates 600 random training points, distributed 
as ℵ i = 100, ℵ b = 200 and ℵ p = 300, where 100,000 
training epochs are performed and the distribution of sam-
pling points for a single epoch is shown in Fig. 6. Based on 
this network configuration, this paper improves the PINN-
solving process as follows.

Preferred Strategy of Hard-Soft Boundary 
Constraints

In the existing PINN framework, boundary conditions 
are typically enforced through optimization with the soft 
boundary constraint, where penalties are imposed by set-
ting the weights of the boundary loss term. The soft bound-
ary constraints emphasize three contributing components in 

beams is inadequate for capturing the vibration response of 
cables, and its network lacks generalization. Therefore, it is 
necessary to improve and innovate the existing network in 
order to solve the cable vibration PDE.

The inapplicability of the classical PINN mainly stems 
from the fact that the vibration PDEs of cables simultane-
ously involve both second-order and fourth-order partial 
derivatives with respect to coordinates, compared with that 
of beams, i.e., considering the influence of axial force and 
bending stiffness on the vibration response. Thus, it is dif-
ficult to simultaneously normalize the equation coefficients 
through dimensionless equations.

In addition, even though some methods consider tension 
forces in PINN models, such as AT-PINN [28], they ignore 
the influence of bending stiffiness on vibration. It is still 
challenging to directly apply them to solve vibration PDEs 
of the aforementioned standard cable structures.

In view of this, this paper addresses the limitations of two 
existing PINNs mentioned above and proposes an improved 
PINN tailored for solving the vibration of cables consider-
ing bending stiffness and beams considering axial force.

The Improved PINN

This paper improves the classical PINN frameworks of 
cable-like structures and develops an architecture suitable 
for solving the dynamic response of cables. To improve the 
training process for arbitrary boundary conditions, this paper 

Fig. 6  Distribution of sampling points
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This paper proposes the loss function of the improved 
soft boundary constraint PINN, which additionally adds 
the contribution of the boundary/initial points to the PDE 
loss compared to the loss function of the existing PINN, 
to strengthen the PDE learning. Thus, Lp (θ ) in Eq. (4) is 
rewritten Lpall (θ ) as follows.



L (θ) = ω iLi (θ) + ω bLb (θ) + ωpallLpall (θ)
Lpall (θ) = 1

ℵ p

∑ℵ p

i=1 ∥Kp (ûθ (xp) ; γ) − Fp (xp)∥2

+ 1
ℵ b

∑ℵ B
i=1 ∥Kp (ûθ (xb) ; γ) − Fp (xb)∥2

+ 1
ℵ i

∑ ℵ i
i=1 ∥Kp (ûθ (xi) ; γ) − Fp (xi)∥2

� (9)

Where the second and third terms of the right-hand side of 
the Lpall (θ ) represent the contributions of boundary and 
initial conditions points to the PDE loss term, as previously 
mentioned.

For the Dirichlet boundary conditions of cables, this 
paper constructs the hard boundary function as follows to 
ensure that the network output directly satisfies boundary 
conditions and initial conditions.

ûb (x, t, θ ) = t · û (x, t, θ ) (x − xmin) (xmax − x) + u (x, tmin) � (10)

Where, û (x, t, θ ) is the original output of the network 
training, ûb (x, t, θ ) is the function that satisfies the hard 
boundary constraint, u (x, tmin) is initial displacement 
function, xmin and xmax are the left and right boundaries 
of the spatial variables, and tmin is the initial time. When 
the network performes Eq. (10), ûb is forced to align with 
the boundary and initial displacement function, i.e., when 
x = xmin or x = xmax, ûb (x, t, θ ) = 0; when t = tmin, 
ûb (x, t, θ ) = u (x, tmin). Hence, the loss function can be 
simplified as follows,

L (θ) = wpLp� (11)

constructing the loss function, where the initial and bound-
ary condition loss guarantees training points to satisfy the 
initial and boundary conditions, and the PDE loss guaran-
tees training points of the entire definition domain to satisfy 
the PED. However, due to the PDE loss trained on random 
sampling throughout the entire domain, the probability that 
sampling points accurately fall on the initial/boundary con-
ditions is very small, so it cannot be fully guaranteed that 
the initial/boundary points meet the PDE while satisfying 
the initial/boundary conditions.

In contrast, PINNs with hard boundary constraints 
(hPINNs) can improve the learning effect of the boundary 
points, which involve boundary conditions in neural net-
works. Compared to the soft boundary constraint PINN, 
hPINNs can ensure that the network output automatically 
meets the boundary conditions [35]. However, for cases 
where the boundary conditions cannot be expressed in ana-
lytic form, and where the analytic boundary conditions con-
tain derivative terms, hPINNs fails due to the inability to 
construct a hard boundary function.

To address the limitations of the two cases described 
above, this paper proposes a comprehensive preferred strat-
egy of hard-soft boundary constraints to reinforce bound-
ary conditions, which establishes the selection criteria by 
identifying whether the hard boundary function can be 
expressed analytically. If an analytical expression is not fea-
sible, an improved soft boundary constraint PINN should be 
employed, which incorporates additional terms into the loss 
function to ensure that boundary sampling points meet the 
PDEs. Conversely, when analytical boundary functions are 
available, a hard boundary constraint PINN is prior to be 
selected to ensure that the network solution satisfies bound-
ary conditions, thereby reducing the difficulty of optimizing 
the loss function. The PINN with this optimization strategy 
is shown in Fig. 7.

Fig. 7  PINNs for solving cable dynamic response
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Where the initial condition is 
u (x, 0) = sin (π x) , ut (x, 0) = 0, the boundary condi-
tion is u (0, t) = u (1, t) = uxx (0, t) = uxx (1, t) = 0, and 

the true solution is u (x, t) = sinπ xcosnπ

√
1 + (nπ )2

t, 
as shown in Fig. 8.

From Fig. 9, the training results of the improved soft 
boundary constraint PINN can be observed. Figure 9(a) 
shows that the loss function basically converges after 
training 100,000 epochs, although there is a trend of fur-
ther decreasing and converging. From Fig. 9(b), predicted 
responses of the network are largely consistent with the 
true solution of the PDE, with its absolute errors remain-
ing below 0.0042. Figure 9 illustrates that the improved soft 
boundary constraint PINN can accurately catch dynamic 
response of the cable by effectively solving the PDE.

When solving the PDEs of the general cables, either Eq. (9) or 
Eq. (11) should be selected as the loss function to enhance the 
training of the boundary conditions, according to the selection 
criteria of hard-soft boundary constraints established above.

In order to illustrate the validity of the optimization strat-
egy, this paper specifically designs the PDE case shown in 
Eq. (12), which models the free vibration of a simplified 
parameter cable that can be suitable for the two-types con-
strains PINNs. In this case, all cable parameters are set to 
1. The training has been carried out by the aforementioned 
PINN parameters in Sect. The improved PINN, and the cal-
culations are shown in Figs. 9 and 10, respectively. For ease 
of comparison, the analytical solution of Eq. (12) is pro-
vided as shown in Fig. 8.

uxxxx + utt − uxx = 0, x ∈ [0, 1] , t ∈ [0, 1]� (12)

Fig. 9  Solution of the improved soft boundary constraint PINN: (a) Loss function; (b) Absolute errors of predicted responses

 

Fig. 8  True vibration response of the simplified cable
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error sum of the improved soft boundary constraint PINN 
with that of the hard boundary constraint PINN, it is revealed 
that the latter exhibits errors approximately half those of 
the former within the same training epochs. Although both 
PINNs can accurately solve the cable vibration with similar 
approximation, the hard boundary constraint PINN is more 
efficient in training and should be prioritized. However, 
if the hard boundary function is difficult to be expressed 
analytically, the improved soft boundary constraint PINN 
remains an effective alternative for solving such PDEs. 
Therefore, the comprehensive preferred strategy of hard-
soft boundary constraint PINNs proposed in this paper can 
enhance boundary training in solving vibration responses of 
arbitrary cables, and improve the generality of PINNs while 
conserving computational resources.

Activation Function

The activation function can introduce nonlinear factors into 
neurons, enabling the neural network to arbitrarily approxi-
mate any nonlinear function, so that the neural network 
expression ability is more powerful. Different activation 
functions employ distinct approximation methods and oper-
ate within specific activation domains. Currently, the com-
mon activation functions include the Sigmoid function, Tanh 
function, and ReLU function, where Tanh function is one of 
the most commonly used activation functions in PINNs for 
solving PDEs due to its continuous differentiability.

Chen et al. [28] mentioned that choosing activation func-
tions that have the same form as the solution of the PDE 
can improve network training efficiency. In this paper, the 
vibration responses of the cables generally consist of trigo-
nometric and hyperbolic functions. Theoretically, employ-
ing these two functions as activation functions can more 

The training results of hard boundary constraint PINN in 
Fig. 10 show that predicted values highly match true val-
ues. It can be seen from these figures that the hard boundary 
constraint PINN can effectively solve vibration PDEs of the 
standard cable. In addition, the presence of the hard bound-
ary constraint makes the boundary loss zero at floating-point 
precision, which reduces the workload of network optimiza-
tion to a certain extent. As seen in Fig. 10 (b), the absolute 
errors of the hard boundary constraint PINN are less than 
0.0014, with its relative errors below 0.14%, whereas the 
improved soft boundary constraint PINN needs more train-
ing epochs to achieve comparable error levels.

To compare the calculation results of soft boundary 
PINN and hard boundary PINN, the absolute errors from 
the calculations of both networks are spatially aggregated 
to evaluate the temporal variation of error, as illustrated in 
Fig. 11.

From Fig. 11, it can be seen that the absolute error sum 
increases over time for both PINNs. Comparing absolute 

Fig. 11  Absolute error sum with respect to time

 

Fig. 10  Solution of the hard boundary constraint PINN: (a) Loss function; (b) Absolute errors of predicted responses
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standard cable structure in PINN, choosing the Sin func-
tion as the activation function can lead to higher training 
efficiency and more accurate solutions than the Tanh func-
tion. Thus, the Sin function is more suitable to serve as the 
activation function and is recommended to be chosen for 
solving vibration responses of cables in PINNs.

Adaptive Loss Function

Hierarchical Gradient Loss Function

The essence of solving PDEs by PINNs is the optimization 
problem of the loss function, and the loss function in the 
classical PINN is mainly the weighted sum of the loss terms 
of initial conditions, boundary conditions, and the PDE, 
as shown in Eq. (3). By setting the weights of each loss 
to adjust the influence of these components on the model 
training, their interactions can be balanced for more stable 
convergence. For the vibration PDEs of the cable structure, 

quickly approximate the PDE solution. However, the func-
tion selected as the activation function and its derivatives 
should be within a suitable interval, neither excessively 
large nor too small, as this affect the training efficiency and 
stability. Obviously, hyperbolic functions are not suitable, 
which often yield extreme values. Therefore, this paper 
selects the trigonometric function sine (Sin) as the activa-
tion function for the network.

To illustrate the effectiveness of the activation function, 
this paper compares the solutions using a hard boundary 
constraint PINN activated by different functions. The previ-
ous solution in Fig. 10 has been realized by the Tanh-acti-
vated PINN, and under the same conditions as that case, the 
activation function Tanh is replaced by the Sin function in 
hard boundary constraint PINN. The results solved by Sin-
activated PINN are shown in Fig. 12.

From Fig. 12, it can be seen that the Sin-activated PINN 
demonstrates greater accuracy in solving the vibration PEDs 
of the standard cable structure, with the absolute errors 
between the predicted and the true solutions being less than 
0.0008. Comparing with the solutions of the Tanh-activated 
PINN in Fig. 10, it can be seen that, although they can accu-
rately solve such PDEs, the loss of the Sin-activated PINN 
is significantly smaller within the same training epochs, 
with errors approximately half those of the Tanh-activated 
PINN. As can be seen in Fig. 13, the absolute error sum 
in the Sin-activated PINN is smaller and exhibits a distinct 
periodicity compared with that of the Tan-activated PINN. 
Moreover, compared to the divergence of the absolute errors 
in the Tanh-activated PINN, the absolute errors in the Sin-
activated PINN are mostly concentrated at points where the 
true values are larger, further reducing the relative errors, 
the variation of which has the same periodicity as cable 
vibration. Therefore, when solving vibration PDEs of the 

Fig. 13  Absolute error sum with respect to time

 

Fig. 12  Solution of Sin-activated PINN: (a) Loss function; (b) Absolute errors of predicted responses
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loss is much faster than the fitting of the boundary and initial 
conditions, and calculating the Jacobi matrix in the tangent 
kernel idea greatly increases the computational cost. How-
ever, for solving the vibration PDEs of cables, the fitting of 
the boundary and initial conditions is far outpacing the con-
vergence of the PDE. If a hard boundary function is applied, 
it can further accelerate the convergence in the loss of the 
boundary and initial conditions. From this, it can be seen 
that setting weights from the tangent kernel idea is not suit-
able for the vibration PDE of cables.

Therefore, this paper proposes an adaptive weight crite-
rion for each loss from its values and decrease rates. Under 
this approach, loss terms with relatively larger values and 
slower decline rates should be assigned greater penalty 
weights. This adaptive balancing approach can accelerate 
the optimization of the loss function, which is conducive 
to the network to find the global optimum and improve the 
generalization. The adaptive weights for each loss term are 
as follows,

ωi=
L′

i

min(L′
i)

·

max

(∣∣∣∣
L′′

i − L′
i

L′′
i

∣∣∣∣
)

∣∣∣∣
L′′

i − L′
i

Li′

∣∣∣∣
� (16)

Where i denotes the various components of the loss func-
tion, min(·) denotes the minimum value among all loss 
terms from the previous training epoch, max(·) denotes the 
maximum decline rate across all loss terms, Li

′  and L′ ′
i  

denote the loss terms from the previous two training epochs, 
respectively.

To verify the effectiveness of the reconstructed loss func-
tion, adaptive weights are employed to adaptively balance 
the loss function during solving PDEs by improved soft 
boundary constraint PINNs. Figure 14 compares the PINN 
solutions obtained with the classical loss function and the 
reconstructed loss function.

As can be seen from Fig. 14, the adaptive weights adjust 
in real-time in response to changes in each loss term. Both 
PINNs guided by the classical loss function and the hier-
archical gradient loss function with adaptive weights can 
accurately solve vibration responses of the cable, achiev-
ing maximum absolute errors on the order of 10−3. How-
ever, comparing the absolute errors computed by the two 
loss function networks in Fig. 14 (e) and (f), it is evident 
that the errors under the hierarchical gradient loss func-
tion are significantly smaller. The main reason is that the 
reconstructed loss function can make the weights penalize 
the inside of each loss, preventing mutual interference and 
overshadowing among the components, thereby promoting 
overall optimization of the loss function and improving the 
solution accuracy. Comparing the convergence of the loss 

the boundary and initial conditions contain displacements 
and their various derivatives, leading to significant gradi-
ent disparities. This gradient disparity makes it challenging 
to adequately penalize the internal components of the loss 
through weight adjustments alone, thereby hindering the 
optimization process. Therefore, to address this challenge 
and accurately penalize each component of the loss in Eq. 
(3), this paper proposes the hierarchical gradient loss func-
tion according to the partial derivatives order.

L (θ ) = ω uLu (θ ) + ω ut
Lut

(θ ) + ω uxx
Luxx

(θ ) + ω pLpall (θ ) � (13)

Where, Lpall (θ ) as shown in Eq. (8) is the PDE loss, with 
training points derived from the initial conditions, boundary 
conditions, and the interior of the PDE. Lu (θ ) and ω u are 
the loss term and weight corresponding to the function in the 
initial and boundary conditions. Lut

(θ ) and ω ut are the 
loss term and weight corresponding to the first-order time 
gradient of the function in the initial conditions. Luxx

(θ ) 
and ω uxx  are the loss term and weight corresponding to the 
second-order spatial gradient of the function in the bound-
ary conditions. The specific expressions for each loss term 
are as follows.



Lu (θ) = 1
ℵ b

∑ℵ b

i=1 ∥û (0, t, θ) − u (0, t)∥2 +
1

ℵ b

∑ℵ b

i=1 ∥û (l, t, θ) − u (l, t)∥2 +
1

ℵ i

∑ℵ i

i=1 ∥û (xi, 0, θ) − u (x, 0)∥2

Lut = 1
ℵ i

∑ℵ i

i=1 ∥ût (xi, 0, θ) − ut (x, 0)∥2

Luxx = 1
ℵ i

∑ℵ b

i=1 ∥ûxx (0, t, θ) − uxx (0, t)∥2 +
1

ℵ b

∑ℵ b

i=1 ∥ûxx (l, t, θ) − uxx (l, t)∥2

� (14)

When a hard boundary function is used in the network, 
Lu (θ ) remains consistently zero. Therefore, in the hard 
boundary constraint PINN, Eq. (12) can be simplified 
according to the hard boundary function as follows,

L (θ ) = ω ut
Lut

(θ ) + ω uxx
Luxx

(θ ) + ω pLp (θ )� (15)

Adaptive Weights

Adjusting the weight of each loss term can further activate 
the optimizer and accelerate the optimization of the loss 
function. Concerning the selection of appropriate weight 
hyperparameters, Kapoor et al. [24] solved vibration 
responses of beams by directly s assigning a weight of 0.1 
to the PDE loss. However, such weight settings are often 
problem-specific, which significantly limits the generaliza-
tion of the network. Therefore, Wang et al. [36] theoretically 
provided the principles and derivations of weighting from 
the tangent kernel perspective. However, this approach pri-
marily addresses the issue that the convergence of the PDE 

1 3

  587   Page 12 of 21



Journal of Vibration Engineering & Technologies          (2025) 13:587 

Fig. 14  Solution of adaptive weight PINN: (a) Each loss in the classic 
loss function; (b) Adaptive weights in the classic loss function; (c) 
Each loss in the reconstructed loss function; (d) Adaptive weights in 

the reconstructed loss function; (e) Absolute errors guided by classi-
cal loss function; (f) Absolute errors guided by the reconstructed loss 
function

 

1 3

Page 13 of 21    587 



Journal of Vibration Engineering & Technologies          (2025) 13:587 

mainly due to the significant differences from the order-
of-magnitude of physical parameters in the vibration PDE 
of actual cables. To address the challenges during training, 
this paper balances the unevenness of coefficients through 
coordinate transformation, which can convert each coeffi-
cient to 1.

In the new coordinate system, 
∼
x= x/L,

∼
t= x/T , then 

uxx = u∼
x

∼
x
/L2, uxxxx = u∼

x
∼
x

∼
x

∼
x
/L4, utt = u∼

t
∼
t
/T 2, sub-

stituting them into Eq. (5) yields,

u
x̃x̃x̃x̃

+ mL4

EIT 2 u
t̃̃t

− HL2

EI u
x̃x̃

= 0, x̃ ∈
[
0, l

L

]
, t̃ ∈

[
0, 1

T

]
� (17)

When the coefficients in the aforementioned equation are 

normalized to 1, we can obtain L =
√

EI
H , T =

√
mEI
H2 . 

Therefore, the relationship between the new coordinates and 
the original coordinates can be expressed as follows,



x̃ = x
√

H
EI

t̃ = t
√

H2

mEI

� (18)

Through utilizing Eq. (17), the vibration PDE of the actual 
cables will become Eq. (18) as follows.

u
x̃x̃x̃x̃

+ u
t̃̃t

− u
x̃x̃

= 0, x̃ ∈
[
0, l

√
H
EI

]
, t̃ ∈

[
0,

√
H2

mEI

]
� (19)

Similarly, the initial conditions under the new coordinate 
system can be transformed as,

u (x̃, 0) = sin

(
πx̃

√
EI
H

l

)
, u

t̃
(x̃, 0) = 0� (20)

The boundary conditions are expressed in the new coordi-
nate system as,

u
(
0, t̃

)
= u

(
l
√

H
EI , t̃

)
= u

x̃x̃

(
0, t̃

)
= u

x̃x̃

(
l
√

H
EI , t̃

)
= 0 � (21)

Substituting Eq. (19) and Eq. (20) into Eq. (9) yields the 
hard boundary function under the new coordinate system 
as follows.

ûb

(
x̃, t̃, θ

)
= t̃ · û

(
x̃, t̃, θ

)
(x̃ − 0)

(
l
√

H
EI − x̃

)
+ sin

(
πx̃

√
EI
H l

)
� (22)

For comparative analysis, the analytical solution of Eq. (18) 
in the new coordinate system is given as follows, shown in 
Fig. 3 above in the original coordinate system.

u
(
x̃, t̃

)
= sin

(
π x̃

√
EI
Hl2

)
cos

(
π

√
EI
Hl2

√(
1 + π 2 EI

Hl2

)
t̃
)

� (23)

function adaptively weighted in Fig. 14 (a) and the loss 
function manually weighted in Fig. 8 (a) under the same 
training conditions, Fig. 14 (a) shows a much faster conver-
gence than Fig. 9 (a). The main reason is that the adaptive 
weights can penalize and balance each loss component in 
real-time, facilitating the network to efficiently search for 
the global optimum. At the same time, it can also avoid the 
work of manually adjusting parameters and improve the 
generalization and usability of the network, as shown in 
Fig. 14 (b) and (d), where the weights are able to change 
in real-time with training. From the weight variation, it can 
be observed that the weights corresponding to larger loss 
or smaller loss reduction rates are also larger. For example, 
the adaptive weight corresponding to the lossis greater than 
those of others in Fig. 14(a). As the reduction rate of loss 
decreases in the later stages, the corresponding weight adap-
tively increases.

Additionally, it is necessary to further compare the 
additional computational cost before and after the net-
work incorporates adaptive weights. In this paper, the 
network training was conducted 100,000 epochs using an 
Intel(R) Core (TM) i7-8700 CPU @ 3.20 GHz proces-
sor, keeping network parameters consistent both before 
and after introducing adaptive weights. The training times 
for the network with manually adjusted weights and adap-
tive weights were 5856.45 s and 5840.49 s, respectively, 
indicating a negligible time difference. However, the 
time consumed in manually selecting weight parameters 
far exceeds that of the adaptive weight network. The pri-
mary reason is that manual weight parameter selection 
requires continuous adjustment of weights during the 
training process to select the most suitable parameters, 
and the parameter selection varies depending on the prob-
lem, invisibly increasing the time required for successful 
training. In contrast, the introduction of adaptive weights 
reduces this time cost. Furthermore, the adaptive weight 
calculation in this paper introduces no additional train-
ing parameters or selection time to the network structure. 
The values required for adaptive weight computation 
are derived from intermediate values generated during 
the network training process, requiring only storage and 
simple dynamic calculations to obtain, without incurring 
significant additional time costs.

Response Solution for Cables with Actual 
Parameters

Coordinate Transformation

As mentioned above, PINNs designed for cable-like struc-
tures failed to solve the vibration responses of cables, 

1 3

  587   Page 14 of 21



Journal of Vibration Engineering & Technologies          (2025) 13:587 

optimize the loss function, leading to rapid convergence of 
the loss function and avoiding parameter adjustment.

From Fig. 16, it can be observed that the improved PINN 
accurately solves the free vibration response of the actual 
cable, and the solution is essentially consistent with the 
analytical solution in Fig. 3. Figure 16 (b) represents that 
the absolute errors between the predictions and true values 
are small, with the maximum absolute error being less than 
0.0048. To observe the local fitting ability of the PINN, the 
variations of vibration response with respect to spatial and 
temporal variables are presented as shown in Fig. 16(c) and 
(d). When t = 0.5, the variation of the predicted responses 
in space coincides almost with the true solution. Similarly, 
when x = 0.5l, the change of the predicted responses in time is 
completely close to the true solution. These results indicate 
that the improved PINN can accurately capture the vibration 
response of the actual cable. Therefore, the improved PINN 
in this paper can accurately solve the vibration response of 
actual cables and has a certain degree of generalization.

Discussion

Discussion of Parameters

Tension-bending Ratio

While exploring the PINN solution for the vibration response 
of actual cables, it is found that the PINNs designed for 
solving the response of cable-like structures are not suitable 
for solving that of cable structures. Therefore, comparing 
the vibration PDEs of cable-like structures and cable struc-
tures, it can be seen from the dimensionless process that the 

Response Solution

After the coordinate transformation, the definition domains 
of the vibration PDE are scaled in the new coordinate sys-
tem. Therefore, it is necessary to normalize the inputs uni-
formly within the network, while the subsequent network 
can continue to track the normalization process without 
additional transformations during differentiation, improv-
ing the training efficiency and stability of the network. By 
adopting the improved PINN in Sect. The improved PINN, 
Eq. (16) is solved in the new coordinate system. Since the 
hard boundary function can be expressed as Eq. (21), the 
hard boundary constraint PINN is preferred to solve the 
vibration response of cables with actual parameters. The 
loss function is determined by Eq. (12), while the weights 
are adjusted by the adaptive weight in Eq. (15). Taking the 
actual suspension cable in Sect. PDE solution for cable 
vibration as an example validates the accuracy and stability 
of the improved PINN, whose vibration response is firstly 
predicted under the new coordinate system, then the pre-
dicted vibration response in the original coordinate system 
can be obtained through the inverse coordinate transforma-
tion. The results are shown in Figs. 15 and 16.

Figure 15 shows changes of the loss function and adap-
tive weight during solving the vibration response of the 
actual cable by the improved PINN, where each loss rap-
idly converges and weights change in real-time to adjust the 
network. From the figures, it can be seen that due to the 
hard boundary constraint, the loss term corresponding to the 
hard boundary function remains zero at floating-point pre-
cision. Additionally, the adaptive weights proposed in this 
paper can be suitable for solving the vibration response of 
the actual cable, which can stimulate the network to further 

Fig. 15  Changes of loss function and weights during training: (a) Changes of each loss; (b) Weight changes
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that based on the tensioned string theory, indicating that 
the bending stiffness of the cable can be disregarded. For 
this reason, this article only needs to consider the case 
ξ < 210 when analyzing cables considering bending stiff-
ness. Hence, this paper adjusts the cable force to make 
ξ ∈ (0, 300), and the effect of ξ  on the PINN solution 
can be observed from the error changes with respect to ξ . 
To intuitively understand the results, this paper introduces 
the relative L2-norm error R and calculates its variation, as 
shown in Fig. 17.

R =
∥upre − u∥2

∥u∥2
=

√∑
(upre − u)2

√∑
u2

� (24)

Where, upre is the response displacement predicted by the 
PINN, u is the true solution while 

∑
 is the sum of the 

entire solution domains.

primary distinction lies in the tension-bending ratio coeffi-

cient ξ =
√

Hl2/EI , which is a dimensionless parameter 
proposed by Irvine [37] to describe the characteristics of 
cables. When ξ → 0, it represents the single beam model 
of the cable-like structure. When ξ → ∞ , it represents the 
cable solution based on tensioned string theory. However, 
actual cables considering bending stiffness lies between 
these two. Therefore, it is necessary to further discuss the 
impact of ξ  on network training.

For the same cable, the length l and bending stiffness 
EI  remain constant, so the parameter ξ  can be changed 
by varying the cable force, as the larger cable force pro-
duces the greater ξ . Therefore, this paper changes param-
eter ξ  by varying the cable force of the actual suspension 
cable in Sect. PDE solution for cable vibration. According 
to the literature [38], when ξ > 210, the response solution 
derived from the Euler-Bernoulli beam theory is similar to 

Fig. 16  Vibration responses of the actual cable: (a) Predicted vibration responses; (b) Absolute errors of predicted responses; (c) Response at 
t = 0.5; (d) Responses at x = 0.5l
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Learning Rate

The learning rate is a crucial hyperparameter in neural net-
works, primarily responsible for controlling the step size of 
weight updates, determining the motion speed of the model 
through the parameter space. An excessively large learning 
rate may cause the model to diverge or oscillate around a 
local minimum, while an overly small learning rate may lead 
to slow convergence or even overfitting. Therefore, select-
ing an appropriate learning rate is essential for the success-
ful training and generalization of neural networks [39]. This 
article adopts the Adam adaptive learning rate algorithm, 
which dynamically adjusts the learning rate according to 
the gradient and second-order moment estimation of each 
parameter. However, the initial learning rate needs to be 
adjusted to determine the optimal one. Therefore, this paper 
employs the Cosine Annealing LR algorithm to specifically 
adjust the initial learning rate of the optimizer, which con-
tributes to enhancing the efficiency and generalization of the 
model. For PINNs solving the dynamic response of cables, 
this paper has found that the initial learning rate directly 
affects the solution precision. Therefore, the paper investi-
gates the effects of different initial learning rates on PINN 
solutions, as shown in Fig. 18.

From Fig. 18, it can be observed that using different 
initial learning rates in the network yields varying com-
putational effects. However, as the initial learning rate 
decreases, the relative L2-norm error of solutions can-
not consistently decrease. When the initial learning rate is 
greater than 0.001, the relative error decreases as the initial 
learning rate decreases. This indicates that as the step size of 
parameter updates decreases, it is beneficial for the model to 
move towards a more optimal gradient descent path during 

Figure 17 illustrates the variation of the relative L2-
norm error between the PINN solution and the true solution 
under different tension-bending ratios. As the param-
eter increases, the relative L2-norm error also increases. 
Although the error in solving cable vibration has increased, 
it remains within an acceptable range, with the maximum 
of the relative L2-norm error less than 10−2, which dem-
onstrates high accuracy in engineering applications. From 
Fig. 17, it is seen that the improved PINN can obtain highly 
accurate solutions for the free vibration response of any 
cables with the tension-bending ratio ranging from 0 to 
300. This also proves that the improved PINN in this paper 
can achieve the robust solution of actual cables with high 
generalization.

Moreover, the decrease in the in tension-bending ratio 
ξ  is equivalent to an increase in the stiffness of the cable 
itself, corresponding to a structure with high-frequency 
vibrations. Even for such high-frequency structures, the 
improved PINN can accurately solve the vibration response. 
Conversely, the increase in the tension-bending ratio corre-
sponds to the increase of the cable force for the same cable, 
which means the relative L2-norm error increases with the 
increase of cable force. However, fundamentally, all coef-
ficients of PDEs are normalized to 1 after the coordinate 
transformation, and the mathematical forms of PDEs are the 
same. Therefore, the parameter changes reflect the range 
changes of definition domains in new coordinates. With the 
increase of the parameter, the definition domains increases 
in the new coordinates accordingly. Therefore, the calcula-
tion errors of the vibration response predicted by the PINN 
gradually accumulate with the expansion of the definition 
domains.

Fig. 18  Change of the relative L2-norm error with initial learning rate

 

Fig. 17  Change of the relative L2-norm error with the tension-bending 
ratio
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transformation is required, which normalizes the PDE 
coefficients at the cost of expanding the time domain. 
Therefore, it is necessary to divide the time in the new 
coordinate system to ensure training accuracy and avoid 
error accumulation over time. Some previous studies have 
implemented certain improvements for the error accu-
mulation effect in PINNs. Chen et al. [28] divided the 
entire time domain and employed transfer learning, which 
solved structural vibration over a long time by AT-PINN. 
The latest study [40] proposed CEENs that divide the 
time domain into non-overlapping subintervals and assign 
neural networks for them to obtain long-time solutions. 
However, these time divisions mainly rely on empirical 
judgment. Comparing the vibration phenomenon of the 
absolute error sum and the actual cable vibration men-
tioned above, it can be obtained that the vibration period 
of the error is consistent with that of the cable. Therefore, 
while segmenting time in PINNs, the vibration period of 
the cable should also be considered. Certainly, the under-
lying principles governing this relationship warrant fur-
ther investigation.

Conclusion

Due to the differences in dynamic analysis between cable-
like structures and standard cable, as well as the limitations 
of networks, existing PINNs designed for cable-like struc-
tures are not directly applicable to general cable vibration 
problems. This paper systematically analyzes the key chal-
lenges in extending traditional PINNs to real cables through 
case studies. An improved PINN framework, incorporat-
ing optimized training strategies, is proposed to accurately 
capture the free vibration response of arbitrary cables with 
enhanced generalization. The key findings are presented 
below.

(1)	 This paper proposes a comprehensive preferred strat-
egy of hard-soft boundary constraints for reinforc-
ing boundary conditions, ensuring accurate vibration 
response solutions for cables using both improved soft 
boundary constraint PINNs and hard boundary PINNs. 
When the hard boundary function can be constructed, 
hard boundary constraint PINNs are preferred for solv-
ing the PDEs. In cases where such a function is infeasi-
ble, the improved soft boundary constraint PINNs serve 
as a robust alternative.

(2)	 The study shows that the Sin function is more suitable as 
the activation function for PINNs in solving the vibra-
tion PDEs of cables. Compared with the Tanh-activated 
PINN, the periodicity of the Sin function enables the 

training, avoiding rapid jumps over local optima or oscilla-
tions, thereby enabling the model to converge faster to the 
global optimum. However, when the initial learning rate is 
less than 0.001, the relative error will increase instead as 
the initial learning rate decreases. This is mainly because 
excessively reducing the step size of parameter updates can 
lead to the model getting stuck in local optima while finely 
adjusting the network parameters. When the initial learning 
rate is 0.001, the relative error is minimized and the solution 
accuracy is optimal, which is adopted in this paper. There-
fore, for PINNs solving the cable vibration responses, the 
initial learning rate between 0.0005 and 0.002 can ensure the 
network optimal fitting performance and stability. At pres-
ent, setting initial learning rates relies heavily on manually 
adjusting parameters, so it is necessary to further research 
for setting the initial learning rate of the network based on 
specific problem characteristics in an informed and system-
atic manner.

Analysis of the Accuracy

With the introduction of the improved PINN, it can be seen 
from its error diagrams of solving the vibration PDEs that 
the absolute errors accumulate with the increase of time. As 
shown in the aforementioned Figs. 11 and 13, the absolute 
error sum in the spatial domain increases as time marches. 
To understand the variation of the errors with time, this 
paper solves the free vibration response of the actual cable 
in Sect. PDE solution for cable vibration during different 
times by the hard boundary constraint PINN. The changes 
of the error over time are shown in Fig. 19.

Figure 19 represents that the improved PINN solves the 
vibration response of the cable at different time thresholds, 
where Fig. 19 (a)-(e) show the varying curves of predicted 
responses at x = 0.5l within 1 s ~ 5 s, and Fig. 19 (f) illus-
trates the variation of the relative L2-norm error between 
network predictions and true solutions with time. From Fig. 
19 (a)-(c), it can be observed that the deviation between pre-
dicted and true values grows with time increasing, although 
the predictions still maintain a certain accuracy. However, 
as time marches for t >4 s, as shown in Fig. 19 (d) and (e), 
the deviation between predicted and true values becomes 
significant and cannot be ignored. Moreover, it is clear from 
Fig. 19 (e) that the fitting performance of the network deteri-
orates over time, even at the training beginning. In addition, 
it is observed from Fig. 19 (f) that the relative L2-norm error 
increases with time and sharply escalates after 4 s, where the 
network will fail. Therefore, computational errors in the net-
work accumulate and even lead to network failure, as time 
progresses.

In this paper, when PINNs solve the vibration response 
of actual cables, the pre-processing of coordinate 
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Fig. 19  Vibration responses at different times: (a) Vibration responses within 1 s; (b) Vibration responses within 2 s; (c) Vibration responses within 
3 s; (d) Vibration responses within 4 s; (e) Vibration responses within 5 s; (f) Change of the relative L2-norm error with time
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