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Abstract

Purpose Physics-informed neural networks (PINNSs), leveraging their exceptional capacity for nonlinear feature learning,
offer a novel approach to solving partial differential equations (PDEs) in structure dynamics. While PINNs have demon-
strated feasibility in analyzing the dynamic response of idealized one-dimensional structures, such as tensioned strings and
beams, their applicability is limited when addressing the vibration PDEs of real-world cables, particularly those with sig-
nificant bending stiffness. To overcome this challenge, this paper presents an enhanced PINN methodology designed for the
accurate and robust solution of free vibration responses in cables incorporating bending stiffness.

Methods Firstly, a preferred hard-soft boundary constraints strategy is introduced to enhance the prediction accuracy of
boundary values. Secondly, a sine activation function is adopted to accelerate network training, replacing conventional
alternatives. Thirdly, a hierarchical gradient loss function, coupled with adaptive weights, is introduced to eliminate manual
parameter tuning. Finally, a coordinate transformation technique is employed to balance the order-of-magnitude of param-
eters in the vibration PDEs of the actual suspension cable.

Results This paper systematically explores training strategies for improved PINNs and verifies their effectiveness in solv-
ing vibration PDEs for cables considering bending stiffness. The proposed approach delivers accurate solutions for the free
vibration of arbitrary cables, providing valuable insights for future research on PINN-based cable vibration analysis.
Conclusion Furthermore, a sensitivity analysis of PDE parameters and network hyperparameters is conducted to examine
the time-accumulative effect of PINN solution errors. Some research should focus on solving cable vibration at any time.

Highlights

e The improved PINN with three improvments achieves solutions of any cables.
e A hard-soft constraint strategy is proposed to improve training accuracies.

e Comparing study from trigonometric-activate function is conducted in detail.
e Hierarchical gradient loss function and adaptive weights are proposed.

Keywords Partial differential equations - Cables considering bending stiffness - Physics-informed neural networks -
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Introduction

The solution of cable dynamic responses, which essentially
solving the vibration partial differential equations (PDEs) of
cables, is of great significance in the design, vibration con-
trol, and operation and maintenance of cable structures [1].
However, due to high-order partial derivatives associated
with bending stiffness and mixed partial derivatives terms
with respect to time stemming from axial force, solving the
vibration PDEs of cables is more challenging than that of
general cable-like structures, such as bending beams and
tensioned strings.

Current methodologies for determining cable dynamic
responses are predominantly categorized as either ana-
lytical or numerical approaches [2]. Analytical approaches
primarily formulate vibration partial differential equations
(PDESs) based on either tensioned string theory or beam the-
ory, subsequently solving these PDEs analytically through
mathematical techniques [3]. However, the inherent bend-
ing stiffness of real-world cables introduces discrepancies
when employing dynamic analysis based solely on ten-
sioned string theory. Therefore, it is necessary to establish
vibration PDEs based on beam theory that additionally con-
siders the effect of bending stiffness. Moreover, analytical
approaches often falter when applied to complex cable con-
figurations, such as those incorporating dampers or inter-
connected multiple cables [4, 5], due to the intractability
of these sophisticated PDEs. To address these limitations,
numerical methods have been developed to approximate
cable dynamic responses. Compared to analytical methods,
numerical techniques, including finite element methods,
finite difference methods, and Galerkin methods [6—8] can
effectively handle the dynamic response of arbitrary com-
plex cable systems. For instance, Abad et al. [9] proposed
novel 3D finite elements tailored for cable analysis to exam-
ine nonlinear behavior under general loading conditions. To
decrease the computational burden, Song et al. utilized a
new surrogate model-assisted differential evolution method
to solve cables dynamics [ 10]. Although these methods have
achieved some success in practice, solving high-dimen-
sional and complexly configured cable systems or achieving
higher accuracy often requires additional interpolation func-
tions or significantly increased mesh density to handle high-
order derivatives and complex boundary conditions. This
not only substantially increases computational complexity
but also potentially leads to numerical error accumulation.

In recent years, with the widespread application of neural
networks across diverse domains, including mathematics
[11], solid mechanics [12] and thermodynamics [13], the
research on solving PDEs by meshless neural networks has
garnered significant interest. Berg et al. [14] utilized deep
neural networks to approximate PDE solutions in complex
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geometries where classical methods based on mesh are
impractical. Subsequently, Long et al. [15, 16] proposed
new deep learning networks PDE-Net and PDE-Net 2.0
to solve PDEs based on observed dynamic data. However,
the neural networks, mostly applied in a supervised man-
ner [17], require a large amount of data to effectively learn
underlying mappings. In practical engineering, acquiring
extensive datasets is often costly and challenging, with data
acquisition hindered by inaccessible measurement points
and installation difficulties. Furthermore, data is inevitably
subject to noise contamination from sensors and environ-
mental noise. To reduce dependence on real-world data,
PINNs were proposed to solve forward and inverse prob-
lems involving nonlinear PDEs by incorporating underlying
physical information [18]. PINNs obviate the requirement
for mesh discretization and extensive datasets, demonstrat-
ing efficacy in resolving complex and high-dimensional
PDEs. This capability holds the potential to disrupt conven-
tional numerical methodologies for PDE solutions, thereby
instigating a paradigm shift in numerical simulation tech-
nologies [19].

Recently, Physics-informed neural networks (PINNs)
have been well applied in solving problems involving PDEs
in various fields, such as solid mechanics, fluid mechan-
ics, etc [20-22]. Some researchers have also begun apply
PINNSs to solve vibration PDEs of cable-like structures in
engineering, such as beams and tensioned strings. Yuan et
al. [23] first demonstrated the potential of PINNs in struc-
tural dynamics by successfully solving the free vibration
equations of Euler-Bernoulli beams. However, these equa-
tions contain only the fourth-order spatial derivatives and
second-order time derivatives, with all coefficients artifi-
cially set to 1. Kapoor et al. [24] extended this approach
to solve the complex partial differential equations (sets) of
single and double beam systems based on the Euler-Ber-
noulli and Timoshenko beam, which successfully solved the
dynamic response of a single beam under a moving load
by using the same network [25]. More recently, Kapoor et
al. [26] introduced transfer learning into causal PINNs to
improve long-term solution accuracy for these beams. Cem
Soyleyici et al. [27] proposed a PINN framework to solve
the vibrations of traverse beams under different boundary
conditions, tackling high-frequency equations by utiliz-
ing the Fourier Feature combined with the Neural Tangent
Kernel method. Notably, these studies omitted the second-
order spatial derivatives of the deflection function in the
beam vibration equations, thus neglecting the influence of
axial force on beam dynamic response. Subsequently, Chen
et al. [28] employed AT-PINN to solve the vibration PDEs
of tensioned strings, which omits the fourth-order spatial
derivatives of the deflection function, thereby neglecting
the effects of bending stiffness. Based on tensioned string
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theory, PINNs have also been applied to the multi-objective
prestress optimization of suspension dome structures [29].
Additionally, an improved gradient-enhanced physics-
informed neural network (gPINN) has been employed for
the shape-finding analysis of tensile membrane structures
(TMS) with different forms and boundary conditions [30].
However, in contrast to existing PINN solutions for cable-
like structure responses, the cable vibration PDE consider-
ing bending stiffness incorporates both bending stiffness
and axial force term. To achieve accurate solutions for the
dynamic response of actual cables by PINNS, it is necessary
to incorporate bending stiffness terms for string vibration
equations or introduce axial force terms for beam vibration
equations in the PINN framework.

Given this, this paper investigates the free vibration
response of suspension cables with bending stiffness by for-
mulating the standard vibration PDE based on Euler-Ber-
noulli beam theory. Thus, this paper innovates a synergistic
approach to successfully achieve accurate solutions for the
free vibration response of standard cables (cables consider-
ing bending stiffness and beams considering axial force). To
achieve robust training of boundary and initial conditions,
this paper implements a comprehensive preferred strategy
of hard-soft boundary constraints, ensuring intensive learn-
ing. The PINN, activated by the sine function similar to the
vibration characteristics of cables, significantly accelerates
model convergence. Furthermore, the reconstructed loss
function, equipped with adaptive weights, intelligently dif-
ferentiates and penalizes loss terms, eliminating the need
for complex parameter tuning and markedly improving net-
work generalization.

The remainder of this paper is arranged as follows.
Firstly, this paper presents the general framework of PINN
for solving PDEs and applies a classic PINN for cable-like
structures to solve the vibration response of cables. Then,
an improved PINN with three improvements is introduced
: hard-soft boundary constraints, a selected activation func-
tion and an adaptive loss function, to better solve the cable
vibration response. Subsequently, the cable response with
actual parameters can be solved by the improved PINN,
associated with the coordinate transformation. Finally, the
paper discusses the PDE parameter and the network hyper-
parameter and performs error analysis of the response
solutions.

Limitations of Classical PINNs Solving PDEs

General Framework

A neural network is a hierarchical structure composed
of multiple neurons, each of which is interconnected

through weighted connections, and performs a task by
learning the mappings between inputs and outputs. Gen-
erally, traditional supervised learning requires a large
amount of data to achieve accurate predictions. Given
this, PINNs, a category of methods integrating physical
knowledge into neural networks, are developed to reduce
the dependence on data and enhance the modeling and
simulation of complex physical systems. PINNs are com-
monly used in problems described by PDEs of the fol-
lowing form and are essentially applied to approaching
their solutions.

Ky (u(z);y) =F(z),z € (1)

Where, k = 1,b, p represents the initial conditions, bound-
ary conditions, and PDEs, respectively. 2 C R is the
definition domain. x = [z1,... ... x,] denotes the space
and time variables, and w is the unknown function to be
solved. K is the differential operator, while  is the equa-
tion coefficient.

The classical PINN architecture typically consists of a
neural network, a physics-informed layer, and a feedback
mechanism. Common neural network types used in PINNs
include Fully Connected Neural Networks (FCNNs), Con-
volutional Neural Networks (CNNs), and Recurrent Neural
Networks (RNNs). FCNNs are preferred in recent studies
for solving PDEs due to generality, flexibility, and user-
friendliness [24, 25]. Figure 1 illustrates the general frame-
work of a classical PINN for PDEs, featuring an FCNN as
its core.

The input of the whole network in Fig. 1 is the vector

0 _ —
a —X—(.’I}l,l‘g,...

,xn)T. The hidden layers process
this input through network weighting and activation, ulti-
mately producing the fitted function for the displacement
U = (u1,us,. .. 7un)T as the output. The network logic is

expressed with the formula as shown in Eq. (2).

d=wh-adTt b d = f (zl) )

Where, [ = 1,2,..., Listhe number of hidden layers, with
the input layer of the entire network denoted as layer 0. z' is
the effective input of layer [. w ! and b are the weight and
bias vectors from layer I — 1 to layer I, respectively. a'!~!
is the activation value vector of layer | — 1, and f (e ) is the
activation function of the network.

The PINNSs involved in this paper are not only a mesh-
free function approximator, but also an unsupervised learn-
ing method, as they do not rely on a data-driven training
process. Instead, they directly incorporate prior physical
knowledge into the loss function, so the total loss function
of the network is represented as,
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Fig. 1 Classical PINN architecture for solving PDEs

L) =wiL;(0)+wply(0) + wp ,Cp = Zk::i,b,p wi Ly (0)

(€)

Where 6 represents the parameters in the network
(includingw 1, wa... w, and bi,ba... by);wi,wWp,wWp
represent  the  weights corresponding to  each
loss; £;(0),L,(0),L,(8) denote the loss functions
for initial conditions, boundary conditions, and the PDE,
respectively. These loss terms are typically measured by the
mean squared error (MSE), as expressed below,

Lic(0) = g 3 24 1Kk (@ (24)57) = Fic (@)lI s (k = ,b,p)

(4)

Where, XN is the number of sampling points for initial,
boundary conditions and interior of the PDE during train-
ing, x stands for the spatial and temporal variables at each
sample point, 4 represents the function predicted by the
network.

The essence of PINNS lies in transforming the problem of
directly solving PDEs into an optimization problem of mini-
mizing the loss function [31]. Currently, the L-BFGS and
Adam optimizers are commonly employed to optimize the
model parameter 6 (wi,wa... wyn;b1,02... by). When
the loss function given by Eq. (3) is minimized, parameter
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f reaches its optimal value 6 5 leading to optimal-preci-
sion prediction of the model.

PDE Solution for Cable Vibration

This paper extends the existing PINNs framework, origi-
nally used for solving vibration PDEs of cable-like struc-
tures, to the case of standard cables, specifically a simply
supported suspension cable, as shown in Fig. 2.

Since the suspension cable is oriented vertically, its static
configuration and sag can be neglected in the analysis of
transverse vibration. Additionally, given the relatively small
vibration displacement, the influence of the additional cable
force induced by the vibration on the dynamic response can
be disregarded. According to the Euler-Bernoulli beam the-
ory, the free vibration PDE of the cable without damping and
considering bending stiffness can be obtained as follows [32].

0?u (z,t)
ot?

2
7H5' u (z,t) _o

O*u (z,t)
EI :
* Ox?

ozt

©)

Where [ is the calculated length, EI the bending stiffness,
u (x, t) the transverse displacement, H the cable force, x the
distance to the lower end and m the cable mass per unit length.
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/ u(z,t)

HY

Fig. 2 Analytical model of single suspension cable

To analyze dynamic responses of an actual cable, a sus-
pension cable from an actual engineering is considered [33],
as shown in Table 1. Where, initial conditions and boundary
conditions of the simply supported cable are as follows.

Table 1 Parameters of the actual cable used for validation

T': w(x,0)=sin (rx/l), us (x,0) =0
{ B: u(o,t)(=12(z,t) =(um/(%,t)=(um)(l7t)=0 (6)

The analytical solution for the vibration response of the real
suspension cable is shown in Eq. (7) and Fig. 3.

) nm H EI /nm\?2
u(x,t) = sinm xcosl\/<m + o (T) )t @)

Recent studies have revealed that unnormalized coefficients
can adverse to network convergence [24, 25]. Therefore,
to calculate the vibration response of cables over the time
interval ¢ € [0,1] by the classical PINN, firstly nondimen-
sionalizing Eq. (5) should be required, resulting in,

F EI

ml

U‘D.L‘L‘L—’—u,{tv_ ﬁu’;{:o, T e [0,1},t€ 07

®)

Where 7=/l and t=ty/ZL represent dimensionless

spatial and temporal coordinates respectively.

To train the neural network, 16,000 training points are
randomly generated from initial conditions, boundary
conditions and the interior of the PDE, and distributed as
N; = 2000, R = 4000, N, = 10000, the distribution of
training points shown in Fig. 4. The neural network consists
of 4 hidden layers, each containing 20 neurons, and employs
the hyperbolic tangent (Tanh) function as the activation

Mass Length Elastic Modulus Moment of inertia Cable force
m (kg/m) 1(m) E (N/m?) 1 (m*) H (N)
14.3 13.5 2 x 10 2.45 x 1077 2.63 x 10°

x 10

0.0

Fig. 3 Analytical solution of the real suspension cable
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Fig. 4 Distribution of training points

function. The loss function is composed of loss terms from
the initial conditions, boundary conditions, and the PDE,
regularized by adjusting the weight of the PDE loss term
[34]. The loss function is shown in Eq. (3) and minimized
by the most common L-BFGS optimizer [13] with the learn-
ing rate [, = 0.1. After 15,000 training epochs, the results
are shown in Fig. 5.

Figure 5 shows the loss function changes and predicted
vibration responses of the cable when using the classical

(a)

10°

10*

Loss

10°

107

10000 15000

Epoch

5000
Fig.5 Cable vibration response by the classic PINN: (a) Loss function;
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PINN designed for dynamic responses of cable-like struc-
tures to solve that of cables. Although the loss function
decreases significantly and converges, the predictions are
evidently inaccurate. Specifically, the predicted vibration
responses fail to meet the boundary and initial conditions,
and there is no apparent vibration trend over time. Compared
to the true solution shown in Fig. 3, there are significant
errors in solving the vibration response of the cable by the
classical PINN. This indicates that the PINN for elementary

(b)

1.0 0.64
0.56
0.8 0.48
£ 0.40
NO"S H0.32
0.4 H0.24
L £0.16
02 0.08
0.00

0.0 -0.08

(b) Predicted vibration response
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beams is inadequate for capturing the vibration response of
cables, and its network lacks generalization. Therefore, it is
necessary to improve and innovate the existing network in
order to solve the cable vibration PDE.

The inapplicability of the classical PINN mainly stems
from the fact that the vibration PDEs of cables simultane-
ously involve both second-order and fourth-order partial
derivatives with respect to coordinates, compared with that
of beams, i.e., considering the influence of axial force and
bending stiffness on the vibration response. Thus, it is dif-
ficult to simultaneously normalize the equation coefficients
through dimensionless equations.

In addition, even though some methods consider tension
forces in PINN models, such as AT-PINN [28], they ignore
the influence of bending stiffiness on vibration. It is still
challenging to directly apply them to solve vibration PDEs
of the aforementioned standard cable structures.

In view of this, this paper addresses the limitations of two
existing PINNs mentioned above and proposes an improved
PINN tailored for solving the vibration of cables consider-
ing bending stiffness and beams considering axial force.

The Improved PINN

This paper improves the classical PINN frameworks of
cable-like structures and develops an architecture suitable
for solving the dynamic response of cables. To improve the
training process for arbitrary boundary conditions, this paper

establishes the preferred strategy of hard-soft boundary
constraints. Simultaneously, complementary improvements
are applied to the existing PINNs, including modifying the
activation function, refining the loss function, and adopting
adaptive weight to collectively address the challenges posed
by vibration PDEs of cables considering bending stiffness.

This paper follows the basic network parameters of the
PINN framework for cable-like structures in Sect. General
framework. However, the Adam optimization algorithm is
employed as the optimizer for the network parameters, with
the Cosine Annealing LR algorithm employed to dynami-
cally adjust the learning rate. To train the neural network
efficiently, mini-batch sampling is utilized to accelerate the
training process, with resampling every 100 epochs. Each
sampling generates 600 random training points, distributed
as N; =100,83 =200 and R, = 300, where 100,000
training epochs are performed and the distribution of sam-
pling points for a single epoch is shown in Fig. 6. Based on
this network configuration, this paper improves the PINN-
solving process as follows.

Preferred Strategy of Hard-Soft Boundary
Constraints

In the existing PINN framework, boundary conditions
are typically enforced through optimization with the soft
boundary constraint, where penalties are imposed by set-
ting the weights of the boundary loss term. The soft bound-
ary constraints emphasize three contributing components in
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constructing the loss function, where the initial and bound-
ary condition loss guarantees training points to satisfy the
initial and boundary conditions, and the PDE loss guaran-
tees training points of the entire definition domain to satisfy
the PED. However, due to the PDE loss trained on random
sampling throughout the entire domain, the probability that
sampling points accurately fall on the initial/boundary con-
ditions is very small, so it cannot be fully guaranteed that
the initial/boundary points meet the PDE while satisfying
the initial/boundary conditions.

In contrast, PINNs with hard boundary constraints
(hPINNs) can improve the learning effect of the boundary
points, which involve boundary conditions in neural net-
works. Compared to the soft boundary constraint PINN,
hPINNs can ensure that the network output automatically
meets the boundary conditions [35]. However, for cases
where the boundary conditions cannot be expressed in ana-
lytic form, and where the analytic boundary conditions con-
tain derivative terms, hPINNs fails due to the inability to
construct a hard boundary function.

To address the limitations of the two cases described
above, this paper proposes a comprehensive preferred strat-
egy of hard-soft boundary constraints to reinforce bound-
ary conditions, which establishes the selection criteria by
identifying whether the hard boundary function can be
expressed analytically. If an analytical expression is not fea-
sible, an improved soft boundary constraint PINN should be
employed, which incorporates additional terms into the loss
function to ensure that boundary sampling points meet the
PDEs. Conversely, when analytical boundary functions are
available, a hard boundary constraint PINN is prior to be
selected to ensure that the network solution satisfies bound-
ary conditions, thereby reducing the difficulty of optimizing
the loss function. The PINN with this optimization strategy

This paper proposes the loss function of the improved
soft boundary constraint PINN, which additionally adds
the contribution of the boundary/initial points to the PDE
loss compared to the loss function of the existing PINN,
to strengthen the PDE learning. Thus, £, (6 ) in Eq. (4) is
rewritten Lp,q (6) as follows.

L (0) =w zﬁz (g) +w h['b (9) + wpa”llpa” (9) )
Lpan (0) = 53224 1o (o (25)57) = Fp ()]
0 K (T () 59) = F ()|

+
s 2 Ky (@ (w0)17) = Fp ()

)

Where the second and third terms of the right-hand side of
the Ly (0) represent the contributions of boundary and
initial conditions points to the PDE loss term, as previously
mentioned.

For the Dirichlet boundary conditions of cables, this
paper constructs the hard boundary function as follows to
ensure that the network output directly satisfies boundary
conditions and initial conditions.

Up (z,t,0) =t 0 (z,t,0) (2 — Tmin) (Tmaz — ) + (T, tmin) (10)
Where, @ (z,t,6) is the original output of the network
training, up (z,t,6) is the function that satisfies the hard
boundary constraint, u (z,tmin) is initial displacement
function, Ty, and Tpy.x are the left and right boundaries
of the spatial variables, and %, is the initial time. When
the network performes Eq. (10), u, is forced to align with
the boundary and initial displacement function, i.e., when
T = Tmin OF T = Tmax, Up (2, t,0) =0; when ¢ = tyip,
Up (z,t,0 ) = u(x, tmin). Hence, the loss function can be
simplified as follows,

is shown in Fig. 7. L(0) =wpLy (1)
Neural network Physics informed loss function
Input Hidden layers Output
al bt I
@ e~ Wll‘ls s 0 @ @ Hard No Soft boundary constraint
...... & > © boundary LEO) B w, Ly hw, (L, bw, L hw/Lou
/A R
...... A\ Yes Hard boundary constraint
...... » +x @ @ L0 sw. (L, b, L) bwL,

Dynamic optimizer
0*=arg mionﬁ )

W

{ W Adaptive weights J

Feedback mechanism

Fig. 7 PINNSs for solving cable dynamic response
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Fig. 8 True vibration response of the simplified cable
When solving the PDEs of the general cables, either Eq. (9)or ~ Where the initial condition is

Eq. (11) should be selected as the loss function to enhance the
training of the boundary conditions, according to the selection
criteria of hard-soft boundary constraints established above.

In order to illustrate the validity of the optimization strat-
egy, this paper specifically designs the PDE case shown in
Eq. (12), which models the free vibration of a simplified
parameter cable that can be suitable for the two-types con-
strains PINNSs. In this case, all cable parameters are set to
1. The training has been carried out by the aforementioned
PINN parameters in Sect. The improved PINN, and the cal-
culations are shown in Figs. 9 and 10, respectively. For ease
of comparison, the analytical solution of Eq. (12) is pro-
vided as shown in Fig. 8.

Ugzee + Ut — Uge = 0,2 € [07 1] RS [07 1] (12)

(@)

107}

10°f

10'f

Loss

10 '}

10
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Epoch

u(z,0) =sin(rz), u(r,0) =0, the boundary condi-
tion isw (0,¢) = w (1,t) = ugy (0,8) = gy (1,¢) =0, and

1+ (nm)’t,

the true solution isw (x,t) = sinmw zcosnm
as shown in Fig. 8.

From Fig. 9, the training results of the improved soft
boundary constraint PINN can be observed. Figure 9(a)
shows that the loss function basically converges after
training 100,000 epochs, although there is a trend of fur-
ther decreasing and converging. From Fig. 9(b), predicted
responses of the network are largely consistent with the
true solution of the PDE, with its absolute errors remain-
ing below 0.0042. Figure 9 illustrates that the improved soft
boundary constraint PINN can accurately catch dynamic
response of the cable by effectively solving the PDE.

®,
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Fig.9 Solution of the improved soft boundary constraint PINN: (a) Loss function; (b) Absolute errors of predicted responses
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Fig. 10 Solution of the hard boundary constraint PINN: (a) Loss function; (b) Absolute errors of predicted responses

2.0
Soft boundary constraint PINN
—— Hard boundary constraint PINN
1.5
g
E
e
3
5
o 1.0
5
Ei
°
<
0.5
0.0

0.0 0.2 0.4 0.6 0.8 1.0
t

Fig. 11 Absolute error sum with respect to time

The training results of hard boundary constraint PINN in
Fig. 10 show that predicted values highly match true val-
ues. It can be seen from these figures that the hard boundary
constraint PINN can effectively solve vibration PDEs of the
standard cable. In addition, the presence of the hard bound-
ary constraint makes the boundary loss zero at floating-point
precision, which reduces the workload of network optimiza-
tion to a certain extent. As seen in Fig. 10 (b), the absolute
errors of the hard boundary constraint PINN are less than
0.0014, with its relative errors below 0.14%, whereas the
improved soft boundary constraint PINN needs more train-
ing epochs to achieve comparable error levels.

To compare the calculation results of soft boundary
PINN and hard boundary PINN, the absolute errors from
the calculations of both networks are spatially aggregated
to evaluate the temporal variation of error, as illustrated in
Fig. 11.

From Fig. 11, it can be seen that the absolute error sum
increases over time for both PINNs. Comparing absolute
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error sum of the improved soft boundary constraint PINN
with that of the hard boundary constraint PINN, it is revealed
that the latter exhibits errors approximately half those of
the former within the same training epochs. Although both
PINNSs can accurately solve the cable vibration with similar
approximation, the hard boundary constraint PINN is more
efficient in training and should be prioritized. However,
if the hard boundary function is difficult to be expressed
analytically, the improved soft boundary constraint PINN
remains an effective alternative for solving such PDEs.
Therefore, the comprehensive preferred strategy of hard-
soft boundary constraint PINNs proposed in this paper can
enhance boundary training in solving vibration responses of
arbitrary cables, and improve the generality of PINNs while
conserving computational resources.

Activation Function

The activation function can introduce nonlinear factors into
neurons, enabling the neural network to arbitrarily approxi-
mate any nonlinear function, so that the neural network
expression ability is more powerful. Different activation
functions employ distinct approximation methods and oper-
ate within specific activation domains. Currently, the com-
mon activation functions include the Sigmoid function, Tanh
function, and ReLU function, where Tanh function is one of
the most commonly used activation functions in PINNs for
solving PDEs due to its continuous differentiability.

Chen et al. [28] mentioned that choosing activation func-
tions that have the same form as the solution of the PDE
can improve network training efficiency. In this paper, the
vibration responses of the cables generally consist of trigo-
nometric and hyperbolic functions. Theoretically, employ-
ing these two functions as activation functions can more
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Fig. 12 Solution of Sin-activated PINN: (a) Loss function; (b) Absolute errors of predicted responses

quickly approximate the PDE solution. However, the func-
tion selected as the activation function and its derivatives
should be within a suitable interval, neither excessively
large nor too small, as this affect the training efficiency and
stability. Obviously, hyperbolic functions are not suitable,
which often yield extreme values. Therefore, this paper
selects the trigonometric function sine (Sin) as the activa-
tion function for the network.

To illustrate the effectiveness of the activation function,
this paper compares the solutions using a hard boundary
constraint PINN activated by different functions. The previ-
ous solution in Fig. 10 has been realized by the Tanh-acti-
vated PINN, and under the same conditions as that case, the
activation function Tanh is replaced by the Sin function in
hard boundary constraint PINN. The results solved by Sin-
activated PINN are shown in Fig. 12.

From Fig. 12, it can be seen that the Sin-activated PINN
demonstrates greater accuracy in solving the vibration PEDs
of the standard cable structure, with the absolute errors
between the predicted and the true solutions being less than
0.0008. Comparing with the solutions of the Tanh-activated
PINN in Fig. 10, it can be seen that, although they can accu-
rately solve such PDEs, the loss of the Sin-activated PINN
is significantly smaller within the same training epochs,
with errors approximately half those of the Tanh-activated
PINN. As can be seen in Fig. 13, the absolute error sum
in the Sin-activated PINN is smaller and exhibits a distinct
periodicity compared with that of the Tan-activated PINN.
Moreover, compared to the divergence of the absolute errors
in the Tanh-activated PINN, the absolute errors in the Sin-
activated PINN are mostly concentrated at points where the
true values are larger, further reducing the relative errors,
the variation of which has the same periodicity as cable
vibration. Therefore, when solving vibration PDEs of the

—— Tan-activated PINN
0.61 —— Sin-activated PINN

Absolute error sum
o o
W i
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o
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Fig. 13 Absolute error sum with respect to time

standard cable structure in PINN, choosing the Sin func-
tion as the activation function can lead to higher training
efficiency and more accurate solutions than the Tanh func-
tion. Thus, the Sin function is more suitable to serve as the
activation function and is recommended to be chosen for
solving vibration responses of cables in PINNs.

Adaptive Loss Function
Hierarchical Gradient Loss Function

The essence of solving PDEs by PINNs is the optimization
problem of the loss function, and the loss function in the
classical PINN is mainly the weighted sum of the loss terms
of initial conditions, boundary conditions, and the PDE,
as shown in Eq. (3). By setting the weights of each loss
to adjust the influence of these components on the model
training, their interactions can be balanced for more stable
convergence. For the vibration PDEs of the cable structure,
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the boundary and initial conditions contain displacements
and their various derivatives, leading to significant gradi-
ent disparities. This gradient disparity makes it challenging
to adequately penalize the internal components of the loss
through weight adjustments alone, thereby hindering the
optimization process. Therefore, to address this challenge
and accurately penalize each component of the loss in Eq.
(3), this paper proposes the hierarchical gradient loss func-
tion according to the partial derivatives order.
LO0)=wulu(0)+wuLu (0)+wu, L., (0)+wpLpa(0) (13)
Where, L4 (0) as shown in Eq. (8) is the PDE loss, with
training points derived from the initial conditions, boundary
conditions, and the interior of the PDE. £, (¢ ) and w ,, are
the loss term and weight corresponding to the function in the
initial and boundary conditions. £, () and w ,,are the
loss term and weight corresponding to the first-order time
gradient of the function in the initial conditions. £,,,, (6)
and w,,, are the loss term and weight corresponding to the
second-order spatial gradient of the function in the bound-
ary conditions. The specific expressions for each loss term
are as follows.

L, (0) =& 30 [ (0,¢,0) —u (0,8)]* +
SN a1 0) —u (1)) +
& 1 (24,0,0) — (2, 0)]?

Lot = = S0 e (24,0,0) — ug (,0)]|

Loyze = NLL Z?:H Haxm (07t7 0) — Ugy (0, t)H2 +
& 0 ffiwe (1,4,0) — tge (1, 1)

(14)

When a hard boundary function is used in the network,
L, (0) remains consistently zero. Therefore, in the hard
boundary constraint PINN, Eq. (12) can be simplified
according to the hard boundary function as follows,

LO)=wyLy (0)+wu,,Lu, (9)+wp£z7(9) (15)

Adaptive Weights

Adjusting the weight of each loss term can further activate
the optimizer and accelerate the optimization of the loss
function. Concerning the selection of appropriate weight
hyperparameters, Kapoor et al. [24] solved vibration
responses of beams by directly s assigning a weight of 0.1
to the PDE loss. However, such weight settings are often
problem-specific, which significantly limits the generaliza-
tion of the network. Therefore, Wang et al. [36] theoretically
provided the principles and derivations of weighting from
the tangent kernel perspective. However, this approach pri-
marily addresses the issue that the convergence of the PDE
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loss is much faster than the fitting of the boundary and initial
conditions, and calculating the Jacobi matrix in the tangent
kernel idea greatly increases the computational cost. How-
ever, for solving the vibration PDEs of cables, the fitting of
the boundary and initial conditions is far outpacing the con-
vergence of the PDE. If a hard boundary function is applied,
it can further accelerate the convergence in the loss of the
boundary and initial conditions. From this, it can be seen
that setting weights from the tangent kernel idea is not suit-
able for the vibration PDE of cables.

Therefore, this paper proposes an adaptive weight crite-
rion for each loss from its values and decrease rates. Under
this approach, loss terms with relatively larger values and
slower decline rates should be assigned greater penalty
weights. This adaptive balancing approach can accelerate
the optimization of the loss function, which is conducive
to the network to find the global optimum and improve the
generalization. The adaptive weights for each loss term are

as follows,
< L — Lk

T YRy (10)
“

Where ¢ denotes the various components of the loss func-
tion, min(-) denotes the minimum value among all loss
terms from the previous training epoch, max(-) denotes the
maximum decline rate across all loss terms, £; and £}’
denote the loss terms from the previous two training epochs,
respectively.

To verify the effectiveness of the reconstructed loss func-
tion, adaptive weights are employed to adaptively balance
the loss function during solving PDEs by improved soft
boundary constraint PINNs. Figure 14 compares the PINN
solutions obtained with the classical loss function and the
reconstructed loss function.

As can be seen from Fig. 14, the adaptive weights adjust
in real-time in response to changes in each loss term. Both
PINNs guided by the classical loss function and the hier-
archical gradient loss function with adaptive weights can
accurately solve vibration responses of the cable, achiev-
ing maximum absolute errors on the order of 10~3. How-
ever, comparing the absolute errors computed by the two
loss function networks in Fig. 14 (e) and (f), it is evident
that the errors under the hierarchical gradient loss func-
tion are significantly smaller. The main reason is that the
reconstructed loss function can make the weights penalize
the inside of each loss, preventing mutual interference and
overshadowing among the components, thereby promoting
overall optimization of the loss function and improving the
solution accuracy. Comparing the convergence of the loss
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Fig. 14 Solution of adaptive weight PINN: (a) Each loss in the classic
loss function; (b) Adaptive weights in the classic loss function; (¢)
Each loss in the reconstructed loss function; (d) Adaptive weights in

the reconstructed loss function; (e) Absolute errors guided by classi-
cal loss function; (f) Absolute errors guided by the reconstructed loss
function
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function adaptively weighted in Fig. 14 (a) and the loss
function manually weighted in Fig. 8 (a) under the same
training conditions, Fig. 14 (a) shows a much faster conver-
gence than Fig. 9 (a). The main reason is that the adaptive
weights can penalize and balance each loss component in
real-time, facilitating the network to efficiently search for
the global optimum. At the same time, it can also avoid the
work of manually adjusting parameters and improve the
generalization and usability of the network, as shown in
Fig. 14 (b) and (d), where the weights are able to change
in real-time with training. From the weight variation, it can
be observed that the weights corresponding to larger loss
or smaller loss reduction rates are also larger. For example,
the adaptive weight corresponding to the lossis greater than
those of others in Fig. 14(a). As the reduction rate of loss
decreases in the later stages, the corresponding weight adap-
tively increases.

Additionally, it is necessary to further compare the
additional computational cost before and after the net-
work incorporates adaptive weights. In this paper, the
network training was conducted 100,000 epochs using an
Intel(R) Core (TM) i7-8700 CPU @ 3.20 GHz proces-
sor, keeping network parameters consistent both before
and after introducing adaptive weights. The training times
for the network with manually adjusted weights and adap-
tive weights were 5856.45 s and 5840.49 s, respectively,
indicating a negligible time difference. However, the
time consumed in manually selecting weight parameters
far exceeds that of the adaptive weight network. The pri-
mary reason is that manual weight parameter selection
requires continuous adjustment of weights during the
training process to select the most suitable parameters,
and the parameter selection varies depending on the prob-
lem, invisibly increasing the time required for successful
training. In contrast, the introduction of adaptive weights
reduces this time cost. Furthermore, the adaptive weight
calculation in this paper introduces no additional train-
ing parameters or selection time to the network structure.
The values required for adaptive weight computation
are derived from intermediate values generated during
the network training process, requiring only storage and
simple dynamic calculations to obtain, without incurring
significant additional time costs.

Response Solution for Cables with Actual
Parameters
Coordinate Transformation

As mentioned above, PINNs designed for cable-like struc-
tures failed to solve the vibration responses of cables,
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mainly due to the significant differences from the order-
of-magnitude of physical parameters in the vibration PDE
of actual cables. To address the challenges during training,
this paper balances the unevenness of coefficients through
coordinate transformation, which can convert each coeffi-
cient to 1.

In the new coordinate system, 2= z/L, t= x/T, then

— 2 _ 4 _ 2
Ugpy = U;;/L s Upgpor — U;E;E/L , Ut = 'U/;’;/T N Sub'

stituting them into Eq. (5) yields,
Ut B~ S =0, 7€ 0 7] 7€ 0. 4] (17)

When the coefficients in the aforementioned equation are

normalized to 1, we can obtain L = g/%, T =4/ "E”;I

Therefore, the relationship between the new coordinates and
the original coordinates can be expressed as follows,

~ H
r=2x EI
. (18)
t =1/ 0ET

Through utilizing Eq. (17), the vibration PDE of the actual
cables will become Eq. (18) as follows.

U+ =0, T € [0,/ ] Te {0, \/%} (19)

Similarly, the initial conditions under the new coordinate
system can be transformed as,

u (Z, 0) = sin (m? }f{ll> , uy (T, 0)=0 (20)

The boundary conditions are expressed in the new coordi-
nate system as,

u (O,E) =u (l\/gf) = u;;((),i) =u— (l\/%f) =0 (21)

Substituting Eq. (19) and Eq. (20) into Eq. (9) yields the
hard boundary function under the new coordinate system
as follows.

@ (7,5,0) = @(70,0) (7 -0) (1) - 7) +sin (x7,/511) (22)

For comparative analysis, the analytical solution of Eq. (18)
in the new coordinate system is given as follows, shown in
Fig. 3 above in the original coordinate system.

u(’ff) = sin (71' 5\/%) cos <7r \/gw/(1+7r2512)f> (23)
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Response Solution

After the coordinate transformation, the definition domains
of the vibration PDE are scaled in the new coordinate sys-
tem. Therefore, it is necessary to normalize the inputs uni-
formly within the network, while the subsequent network
can continue to track the normalization process without
additional transformations during differentiation, improv-
ing the training efficiency and stability of the network. By
adopting the improved PINN in Sect. The improved PINN,
Eq. (16) is solved in the new coordinate system. Since the
hard boundary function can be expressed as Eq. (21), the
hard boundary constraint PINN is preferred to solve the
vibration response of cables with actual parameters. The
loss function is determined by Eq. (12), while the weights
are adjusted by the adaptive weight in Eq. (15). Taking the
actual suspension cable in Sect. PDE solution for cable
vibration as an example validates the accuracy and stability
of the improved PINN, whose vibration response is firstly
predicted under the new coordinate system, then the pre-
dicted vibration response in the original coordinate system
can be obtained through the inverse coordinate transforma-
tion. The results are shown in Figs. 15 and 16.

Figure 15 shows changes of the loss function and adap-
tive weight during solving the vibration response of the
actual cable by the improved PINN, where each loss rap-
idly converges and weights change in real-time to adjust the
network. From the figures, it can be seen that due to the
hard boundary constraint, the loss term corresponding to the
hard boundary function remains zero at floating-point pre-
cision. Additionally, the adaptive weights proposed in this
paper can be suitable for solving the vibration response of
the actual cable, which can stimulate the network to further

0 20000 40000 60000 80000 100000

Epoch

optimize the loss function, leading to rapid convergence of
the loss function and avoiding parameter adjustment.

From Fig. 16, it can be observed that the improved PINN
accurately solves the free vibration response of the actual
cable, and the solution is essentially consistent with the
analytical solution in Fig. 3. Figure 16 (b) represents that
the absolute errors between the predictions and true values
are small, with the maximum absolute error being less than
0.0048. To observe the local fitting ability of the PINN, the
variations of vibration response with respect to spatial and
temporal variables are presented as shown in Fig. 16(c) and
(d). When ¢#=0.5, the variation of the predicted responses
in space coincides almost with the true solution. Similarly,
when x=0.5/, the change of the predicted responses in time is
completely close to the true solution. These results indicate
that the improved PINN can accurately capture the vibration
response of the actual cable. Therefore, the improved PINN
in this paper can accurately solve the vibration response of
actual cables and has a certain degree of generalization.

Discussion
Discussion of Parameters
Tension-bending Ratio

While exploring the PINN solution for the vibration response
of actual cables, it is found that the PINNs designed for
solving the response of cable-like structures are not suitable
for solving that of cable structures. Therefore, comparing
the vibration PDEs of cable-like structures and cable struc-
tures, it can be seen from the dimensionless process that the

0 20000 40000 60000 80000 100000
Epoch

Fig. 15 Changes of loss function and weights during training: (a) Changes of each loss; (b) Weight changes
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Fig. 16 Vibration responses of the actual cable: (a) Predicted vibration responses; (b) Absolute errors of predicted responses; (¢) Response at

t=0.5; (d) Responses at x=0.5/

primary distinction lies in the tension-bending ratio coeffi-

cient & = \/HI?/EI, which is a dimensionless parameter

proposed by Irvine [37] to describe the characteristics of
cables. When & — 0, it represents the single beam model
of the cable-like structure. When £ — o0, it represents the
cable solution based on tensioned string theory. However,
actual cables considering bending stiffness lies between
these two. Therefore, it is necessary to further discuss the
impact of £ on network training.

For the same cable, the length [ and bending stiffness
ET remain constant, so the parameter ¢ can be changed
by varying the cable force, as the larger cable force pro-
duces the greater £ . Therefore, this paper changes param-
eter £ by varying the cable force of the actual suspension
cable in Sect. PDE solution for cable vibration. According
to the literature [38], when ¢ > 210, the response solution
derived from the Euler-Bernoulli beam theory is similar to
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that based on the tensioned string theory, indicating that
the bending stiffness of the cable can be disregarded. For
this reason, this article only needs to consider the case
& < 210 when analyzing cables considering bending stiff-
ness. Hence, this paper adjusts the cable force to make
¢ € (0,300), and the effect of ¢ on the PINN solution
can be observed from the error changes with respect to & .
To intuitively understand the results, this paper introduces
the relative L,-norm error 2R and calculates its variation, as
shown in Fig. 17.

oy ltore —ully _ Y (pre —u)” (24)
l[ully VY

Where, u,. is the response displacement predicted by the
PINN, w is the true solution while > is the sum of the
entire solution domains.
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Fig. 17 Change of the relative L,-norm error with the tension-bending
ratio

Figure 17 illustrates the variation of the relative L,-
norm error between the PINN solution and the true solution
under different tension-bending ratios. As the param-
eter increases, the relative L,-norm error also increases.
Although the error in solving cable vibration has increased,
it remains within an acceptable range, with the maximum
of the relative L,-norm error less than 102, which dem-
onstrates high accuracy in engineering applications. From
Fig. 17, it is seen that the improved PINN can obtain highly
accurate solutions for the free vibration response of any
cables with the tension-bending ratio ranging from 0 to
300. This also proves that the improved PINN in this paper
can achieve the robust solution of actual cables with high
generalization.

Moreover, the decrease in the in tension-bending ratio
¢ is equivalent to an increase in the stiffness of the cable
itself, corresponding to a structure with high-frequency
vibrations. Even for such high-frequency structures, the
improved PINN can accurately solve the vibration response.
Conversely, the increase in the tension-bending ratio corre-
sponds to the increase of the cable force for the same cable,
which means the relative L,-norm error increases with the
increase of cable force. However, fundamentally, all coef-
ficients of PDEs are normalized to 1 after the coordinate
transformation, and the mathematical forms of PDEs are the
same. Therefore, the parameter changes reflect the range
changes of definition domains in new coordinates. With the
increase of the parameter, the definition domains increases
in the new coordinates accordingly. Therefore, the calcula-
tion errors of the vibration response predicted by the PINN
gradually accumulate with the expansion of the definition
domains.

Learmning rate X0

Fig. 18 Change of the relative L,-norm error with initial learning rate

Learning Rate

The learning rate is a crucial hyperparameter in neural net-
works, primarily responsible for controlling the step size of
weight updates, determining the motion speed of the model
through the parameter space. An excessively large learning
rate may cause the model to diverge or oscillate around a
local minimum, while an overly small learning rate may lead
to slow convergence or even overfitting. Therefore, select-
ing an appropriate learning rate is essential for the success-
ful training and generalization of neural networks [39]. This
article adopts the Adam adaptive learning rate algorithm,
which dynamically adjusts the learning rate according to
the gradient and second-order moment estimation of each
parameter. However, the initial learning rate needs to be
adjusted to determine the optimal one. Therefore, this paper
employs the Cosine Annealing LR algorithm to specifically
adjust the initial learning rate of the optimizer, which con-
tributes to enhancing the efficiency and generalization of the
model. For PINNs solving the dynamic response of cables,
this paper has found that the initial learning rate directly
affects the solution precision. Therefore, the paper investi-
gates the effects of different initial learning rates on PINN
solutions, as shown in Fig. 18.

From Fig. 18, it can be observed that using different
initial learning rates in the network yields varying com-
putational effects. However, as the initial learning rate
decreases, the relative L,-norm error of solutions can-
not consistently decrease. When the initial learning rate is
greater than 0.001, the relative error decreases as the initial
learning rate decreases. This indicates that as the step size of
parameter updates decreases, it is beneficial for the model to
move towards a more optimal gradient descent path during
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training, avoiding rapid jumps over local optima or oscilla-
tions, thereby enabling the model to converge faster to the
global optimum. However, when the initial learning rate is
less than 0.001, the relative error will increase instead as
the initial learning rate decreases. This is mainly because
excessively reducing the step size of parameter updates can
lead to the model getting stuck in local optima while finely
adjusting the network parameters. When the initial learning
rate is 0.001, the relative error is minimized and the solution
accuracy is optimal, which is adopted in this paper. There-
fore, for PINNs solving the cable vibration responses, the
initial learning rate between 0.0005 and 0.002 can ensure the
network optimal fitting performance and stability. At pres-
ent, setting initial learning rates relies heavily on manually
adjusting parameters, so it is necessary to further research
for setting the initial learning rate of the network based on
specific problem characteristics in an informed and system-
atic manner.

Analysis of the Accuracy

With the introduction of the improved PINN, it can be seen
from its error diagrams of solving the vibration PDEs that
the absolute errors accumulate with the increase of time. As
shown in the aforementioned Figs. 11 and 13, the absolute
error sum in the spatial domain increases as time marches.
To understand the variation of the errors with time, this
paper solves the free vibration response of the actual cable
in Sect. PDE solution for cable vibration during different
times by the hard boundary constraint PINN. The changes
of the error over time are shown in Fig. 19.

Figure 19 represents that the improved PINN solves the
vibration response of the cable at different time thresholds,
where Fig. 19 (a)-(e) show the varying curves of predicted
responses at x=0.5/ within 1s ~ 5s, and Fig. 19 (f) illus-
trates the variation of the relative L,-norm error between
network predictions and true solutions with time. From Fig.
19 (a)-(c), it can be observed that the deviation between pre-
dicted and true values grows with time increasing, although
the predictions still maintain a certain accuracy. However,
as time marches for r>4s, as shown in Fig. 19 (d) and (e),
the deviation between predicted and true values becomes
significant and cannot be ignored. Moreover, it is clear from
Fig. 19 (e) that the fitting performance of the network deteri-
orates over time, even at the training beginning. In addition,
it is observed from Fig. 19 (f) that the relative L,-norm error
increases with time and sharply escalates after 4 s, where the
network will fail. Therefore, computational errors in the net-
work accumulate and even lead to network failure, as time
progresses.

In this paper, when PINNs solve the vibration response
of actual cables, the pre-processing of coordinate
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transformation is required, which normalizes the PDE
coefficients at the cost of expanding the time domain.
Therefore, it is necessary to divide the time in the new
coordinate system to ensure training accuracy and avoid
error accumulation over time. Some previous studies have
implemented certain improvements for the error accu-
mulation effect in PINNs. Chen et al. [28] divided the
entire time domain and employed transfer learning, which
solved structural vibration over a long time by AT-PINN.
The latest study [40] proposed CEENs that divide the
time domain into non-overlapping subintervals and assign
neural networks for them to obtain long-time solutions.
However, these time divisions mainly rely on empirical
judgment. Comparing the vibration phenomenon of the
absolute error sum and the actual cable vibration men-
tioned above, it can be obtained that the vibration period
of the error is consistent with that of the cable. Therefore,
while segmenting time in PINNs, the vibration period of
the cable should also be considered. Certainly, the under-
lying principles governing this relationship warrant fur-
ther investigation.

Conclusion

Due to the differences in dynamic analysis between cable-
like structures and standard cable, as well as the limitations
of networks, existing PINNs designed for cable-like struc-
tures are not directly applicable to general cable vibration
problems. This paper systematically analyzes the key chal-
lenges in extending traditional PINNs to real cables through
case studies. An improved PINN framework, incorporat-
ing optimized training strategies, is proposed to accurately
capture the free vibration response of arbitrary cables with
enhanced generalization. The key findings are presented
below.

(1) This paper proposes a comprehensive preferred strat-
egy of hard-soft boundary constraints for reinforc-
ing boundary conditions, ensuring accurate vibration
response solutions for cables using both improved soft
boundary constraint PINNs and hard boundary PINNs.
When the hard boundary function can be constructed,
hard boundary constraint PINNs are preferred for solv-
ing the PDEs. In cases where such a function is infeasi-
ble, the improved soft boundary constraint PINNs serve
as a robust alternative.

(2) The study shows that the Sin function is more suitable as
the activation function for PINNSs in solving the vibra-
tion PDEs of cables. Compared with the Tanh-activated
PINN, the periodicity of the Sin function enables the
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network to more efficiently and accurately approximate
the vibration responses of cables.

This paper proposes hierarchical gradient loss function
based on the partial derivatives order, precisely penal-
izing the internal component of each loss. In addition,
the proposed adaptive weight avoids the repeated and
invalid manual adjustments to the loss function weights,
thereby improving the generalization and usability of
the network.

3

Through parameter analysis and error evaluation in solv-
ing the vibration responses of actual cables by PINNS, it
is found that the errors increase with the tension-bending
ratio of cables, essentially reflecting that the errors gradu-
ally accumulate with the expansion of the PDEs definition
domains. Additionally, analysis of network parameters fur-
ther reveals that the learning rate significantly affects solu-
tion accuracy, with an optimal initial range recommended
between 0.0005 and 0.002. Furthermore, PINN solution
errors grow over longer prediction times, with their peri-
odic variation aligning with the vibration period of cables.
Therefore, further improvements in the network archi-
tecture and training strategies should be needed in future
research to achieve accurate solutions for cable vibration
at any time.
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