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ABSTRACT  
Fused Deposition Modelling (FDM) is the predominant material extrusion technique in polymer 
additive manufacturing (AM). While it offers compatibility with engineering-grade composites 
and enables the fabrication of polymer-composite components with intricate architectures 
unattainable through traditional techniques, the persistent dependence on empirical process 
tuning often leads to structural defects – critical limitations that hinder FDM’s transition to 
advanced industrial applications. This paper proposes a data-driven approach that integrates 
advanced Artificial Intelligence (AI) with real-time computer vision to optimise FDM process 
parameters and enable in-process anomaly detection. In the developed approach, a stepwise 
machine learning strategy systematically models the printed line quality, ensuring pre-print 
process optimisation. A You Only Look Once (YOLO) object detection model is then deployed 
for in-situ monitoring, analysing the printed line morphology to assess melt flow stability and 
detect geometric deviations during printing. Validation experiments are conducted to assess the 
effectiveness of the developed YOLO model. Overall, the integrated framework demonstrates its 
superiority over empirical methods and analytical models in both pre-process optimisation and 
real-time quality assurance. Furthermore, the integrated machine vision and pattern recognition 
system exhibits adaptability to diverse material deposition systems, providing a unified 
approach to intelligent process optimisation across AM domains.
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1. Introduction

Additive manufacturing (AM) – encompassing technol
ogies that construct three-dimensional (3D) objects 
through successive material layering – enables the cus
tomised production of polymers, ceramics, and metals, 
surpassing conventional manufacturing in terms of 
design freedom and rapid prototyping capabilities 
[1,2]. As a transformative facet of advanced manufactur
ing, AM systems exhibit exceptional material efficiency 
while addressing specialised application requirements 
through geometrically complex structures [3,4]. Among 
these technologies, fused deposition modelling (FDM) 
dominates industrial adoption due to its operational 
maturity. This extrusion-based process allows the fabri
cation of polymeric/composite components with intri
cate architectures that are unattainable through 
traditional techniques, while hybrid variants enable the 

production of metallic parts through post-process sinter
ing [5,6]. As the most established AM modality, FDM 
combines technical versatility with sustainable inno
vation across the aerospace [7,8], biomedical [9,10], 
and automotive sectors [11,12], leveraging diverse ther
moplastics and reproducible workflows to minimise 
material waste and energy consumption in advanced 
manufacturing.

FDM is distinguished among AM technologies such as 
stereolithography (SLA) [13,14] and selective laser sinter
ing (SLS) [15,16] through its compatibility with low- 
melting-point materials, its minimal chemical byproduct 
generation, and its simplified postprocessing enabled 
by water-soluble support structures. However, the indus
trial scalability of this method depends critically on 
precise parameter optimisation – notably the nozzle 
temperature, print speed, and material flow rate – as 
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even minor deviations in the printed line quality can 
induce defects that compromise part functionality [17– 
19]. For instance, line discontinuities caused by nozzle 
clogs or temperature instability can weaken interlayer 
adhesion, leading to delamination in structural com
ponents [20,21]. Under-extrusion, resulting from impro
per flow rates or layer heights, creates micro-voids and 
porosity in the printed lines, reducing the tensile strength 
and fatigue resistance [22,23]. Meanwhile, rapid cooling 
or mechanical vibrations can exacerbate line edge rough
ness, undermining the dimensional tolerances required 
for precision assemblies such as seals or bearings [24]. 
Additionally, uneven extrusion pressure or bed misalign
ment can cause irregular line spreading, distorting fine 
geometries such as microfluidic channels or threaded 
interfaces [25,26]. Typically, these line defects collectively 
degrade the surface finish, geometric accuracy, and 
mechanical integrity, posing barriers to applications that 
require high reliability under load or tight tolerances. 
Consequently, systematic analyses of the FDM line mor
phology and optimisation of related process parameters 
are crucial to balancing the deposition efficiency with 
defect reduction, ensuring that functional parts meet 
industrial standards with regard to strength, precision, 
and surface finish.

Studies show that process parameters such as the 
nozzle temperature, flow rate, and print speed signifi
cantly affect the FDM printing quality [27,28]. This 
arises from the intricate interplay between process par
ameters, which induces material flow dynamics that 
govern the precise extrusion of molten thermoplastic 
filaments and the stabilisation of the deposited line geo
metry [29,30]. Thus, research focused on optimising the 
extrusion uniformity and printing quality has become a 
central focus in FDM studies. For example, several 
empirical techniques that optimise the extrusion multi
plier and nozzle temperature at a given print speed 
have been introduced, ensuring stable melt flow behav
iour prior to line deposition [31,32]. However, the result
ing solutions may remain suboptimal owing to the 
limited exploration of the design space. Similarly, finite 
element analysis (FEA) models have been developed to 
analyse the effects of the nozzle temperature, print 
speed, and flow rate on the melt flow dynamics in 
FDM, with the aim of identifying thermal parameters 
that are effective in ensuring a stable melt flow during 
extrusion [33–36]. However, developing a reliable and 
performance-efficient FEA model for FDM processes – 
particularly those involving rapid thermal gradients 
and material solidification – poses considerable 
difficulty.

In contrast to FEA models, data-driven modelling offers 
superior efficiency and reduced dependence on prior 

knowledge [37,38]. However, its application in FDM 
optimisation has been limited by constrained objective 
functions, sparse datasets, and manual workflows. Never
theless, recent advancements in integrating physics- 
informed machine learning with image sensor analytics 
are driving the development of more robust optimisation 
frameworks. These developments bridge the gap 
between data-driven agility and physics-based rigour, 
allowing for efficient methods that leverage diverse 
visual data while respecting underlying material behav
iour. For instance, Uhrich et al. [39] and Kapusuzoglu 
et al. [40] explored physics-informed machine learning 
approaches that integrate physics-based knowledge 
into data-driven models to predict the printing quality 
of FDM parts, ensuring a consistent physical relationship 
between process parameters and mechanical properties. 
On the other hand, Li et al. [41] integrated thermal, 
vibrational, and imaging data for printing quality optimis
ation; Narayanan et al. [42] used PCA with a support 
vector machine to classify defective polymer parts; Özen 
et al. [43] applied K-means clustering to link process par
ameters with FDM microstructure and properties. Collec
tively, these studies highlight the effectiveness of data- 
driven methods in improving the AM processes. 
However, the inherent susceptibilities like thermal-gradi
ent-induced warping, material cooling shrinkage, and 
nozzle extrusion inconsistencies can destabilise printing 
quality [44–47], leading to defects and dimensional inac
curacies that reduce the functional reliability of the final 
products.

Recent advancements in deep learning have signifi
cantly enhanced in-situ monitoring and defect detection 
in FDM, owing to their ability to extract complex pat
terns from high-dimensional data, such as layer-wise 
images, thermal profiles, and acoustic signals, with 
minimal human intervention. For instance, convolu
tional neural networks (CNNs) have demonstrated 
remarkable success in detecting extrusion irregularities 
(e.g. spaghetti defects) and geometric distortions (e.g. 
warping or layer misalignment) by leveraging transfer 
learning to overcome limited training datasets [48]. Simi
larly, texture-based algorithms [49] and hybrid deep 
learning models [50,51] have enabled real-time defect 
diagnosis by correlating process anomalies with multi- 
sensor data. While deep learning has advanced in-situ 
monitoring for FDM, achieving fully autonomous, adap
tive quality control remains challenging [52]. Current 
approaches include single-modality CNNs for visual 
defect detection, multi-sensor fusion models integrating 
thermal and acoustic data, and hybrid CNN-RNN archi
tectures for capturing temporal variations [53,54]. 
Despite high detection accuracy, these systems face 
key limitations: limited interpretability of defect causes, 
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insufficient processing speed for real-time correction, 
and lack of integration across monitoring, diagnosis, 
and actuation. Therefore, integrating a comprehensive 
defect analysis with in-situ monitoring will enable sys
tematic diagnosis, which is critical for improving 
process stability and consistency in FDM.

In this research, a data-driven framework is proposed 
that integrates advanced AI techniques with real-time 
computer vision to optimise FDM printing process 
and enable in-process anomaly detection simul
taneously. In the developed approach, a stepwise 
machine learning strategy that systematically models 
and analyses the printed line morphology is employed, 
ensuring systematic process optimisation prior to print
ing. Subsequently, a You Only Look Once (YOLO) object 
detection model is deployed for in-situ monitoring. This 
model utilises printed line morphology to assess FDM 
printing status and detect anomalies during the 
process. Experiments further confirm the effectiveness 
of the proposed approach with regard to real-time 
process monitoring, demonstrating its potential to 
advance line optimisation and defect detection during 
FDM printing. This end-to-end pipeline enables both 
preemptive process calibration and real-time 
corrective control within a single intelligent system. 
To the best of our knowledge, the present study pro
vides a novel and transformative integration of comp
lementary AI metrologies into a real-time, adaptive 
control paradigm for extrusion-based additive 

manufacturing, establishing a new benchmark for inno
vation in the field.

The remaining of this paper proceeds as follows. 
Section 2 introduces the proposed data-driven frame
work for FDM process modelling and in-situ defect 
detection. Section 3 validates the proposed approach 
through experimental analysis and a real-time monitor
ing performance assessment. Section 4 summarises the 
research and suggests further directions.

2. Proposed data-driven approach in FDM

2.1. Overview of the proposed approach in FDM

Figure 1 outlines the proposed data-driven framework 
for FDM process enhancement. In Figure 1(a), dual 
imaging systems are integrated into the printer: a 
coaxial camera enables autonomous printing process 
optimisation prior to printing, while a process camera 
supports in-situ anomaly detection during printing. 
Figure 1(b) elaborates on the coaxial system’s iterative 
workflow, where a stepwise machine learning approach 
refines the printing quality through adaptive process 
parameter optimisation. Parallel to this, Figure 1(c) high
lights the embedded YOLO architecture of the process 
camera, which performs in-situ defect detection during 
the extrusion process. Finally, Figure 1(d1-d6) demon
strates the real-time anomaly detection capability of 
the system, which stabilises the printing process and 

Figure 1. Integrated data-driven framework for process parameter optimisation and anomaly detection in FDM: (a) Dual-camera FDM 
monitoring system setup, (b) multi-stage process parameter optimisation via coaxial imaging prior to printing, (c) YOLO-based defect 
detection model development, and (d) YOLO-based in-situ anomaly detection with process camera feedback.
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maintains consistent product quality throughout 
production.

2.2. Stepwise machine learning techniques for 
optimisation of the FDM process

Figure 2(a) presents a schematic illustration of a coaxial 
camera system integrated into an FDM 3D printer, 
aligned coaxially with the printhead and oriented 

perpendicularly to the print bed. In this research, an 8 
MP CCD colour camera is employed for image capturing, 
offering a resolution of 3840 × 2160 pixels. Following the 
printing process, the printed line samples are promptly 
moved to the platform beneath the coaxial camera, 
where real-time digital images are captured, as shown in 
Figures 2(b–h) to support rapid process optimisation.

Specifically, the FDM optimisation process consists of 
five sequential stages: (1) A Central Composite Design 

Figure 2. Autonomous process optimisation via a stepwise machine learning method: (a) Coaxial imaging system for in-situ line mor
phology monitoring, (b) CCD of FDM process parameters, (c) Geometric characterisation of deposited lines, (d) ANOVA for parameter 
significance evaluation, (e) RSM modelling of parameter-response relationships, (f) SHAP analysis for feature importance quantifi
cation, (g) GMM-based clustering of line morphology distributions, and (h) SVM-based classification for optimal process window 
identification.
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(CCD) approach efficiently explores the design space, max
imising coverage with minimal experimental data. (2) An 
inline coaxial camera system, paired with automated 
image analysis, characterises printed line samples gener
ated under the CCD framework. (3) Analysis of variance 
(ANOVA) identifies significant process parameters, while 
response surface methodology (RSM) models the input- 
output relationship to guide optimisation. (4) SHAP 
(Shapley Additive Explanations) quantifies the contri
butions of significant variables, selecting those critical for 
further optimisation. (5) A Gaussian Mixture Model 
(GMM) analyses the distribution of printed line patterns, 
and a Support Vector Machine (SVM) distinguishes 
normal from abnormal lines, defining an optimal operating 
window to ensure consistent FDM printing quality. Table 1
presents a comprehensive workflow corresponding to 
Figure 2, outlining the key steps, inputs, approaches, and 
responses for each stage of the process.

2.2.1. CCD statistical experiments
The nonlinearity in the FDM 3D printing process, caused 
by complex thermal gradients and material deposition 
dynamics, requires an experimental design that can 
capture these nonlinearities [55,56]. In this research, 
CCD is implemented to systematically analyse nonlinear 
interactions and curvature effects. As shown in 
Figure 2(b), CCD combines factorial points to examine 
linear and interaction effects, axial points to measure 
quadratic terms, and centre points to assess process 
variability through controlled iterative testing.

2.2.2. Printing quality analysis of FDM
Effective process optimisation in FDM requires a quanti
tative assessment of the extrudate morphology. This 

study establishes four key quality metrics through an 
image analysis [54,57]. Specifically, as shown in 
Figure 2(c), the mean line width w̅ is computed via the 
column-wise spatial averaging of pixel intensity data in 
a discretized form

w̅ =
1
N

􏽘N

i=1

wi (1) 

Then, the greyscale intensities of pixels bounded by the 
identified edges of printed lines are averaged to 
compute the mean line density Lr

Lr =
1
N

􏽘N

i=1

Ii − Ib (2) 

Subsequently, based on the obtained reference lines 
(mean lines), the average line edge roughness Rm and 
line discontinuity Ldisc are defined below,

Rm =

��������������������������

1
2N

􏽘N

i=1

(R2
upper,i + R2

lower,i)

􏽶
􏽵
􏽵
􏽴 (3) 

Ldisc =
Fu + Fl

2N
(4) 

In addition, the overall printing quality Lq is calculated by 
combining the key aspects of the printed lines with 
assigned weights.

Lq = wr × Lr + wr × Rm + wd × Ldisc (5) 

where wi represents the quantised line width in the ith 
column, with N being the total number of columns. Ii is 
the average intensity per column, and Ib is the mean back
ground intensity to reduce illumination effects. Ri captures 
deviations from the mean line edge, while Fu and Fl denote 

Table 1. Five-stage autonomous optimisation workflow for FDM process parameters: From experimental design to operational 
window identification via CCD, ANOVA, RSM, SHAP, GMM and SVM methodologies.
Step Inputs Approaches Responses

1 Design space: 
{ Nozzle temperature, Flow rate multiplier, Layer 
thickness, Print speed, Pressure advance}

CCD experimental design . Designed experimental points: 
(Nozzle temperature, Flow rate multiplier, Layer 
thickness, Print speed, Pressure advance)

2 Experimental points: 
(Nozzle temperature, Flow rate multiplier, Layer 
thickness, Print speed, Pressure advance)

Coaxial camera imaging and 
characterisation of printed line 
features

. Mean line width (w̅)

. Line discontinuity (Ldisc)

. Mean line edge roughness (Rm)

. Mean line density (Lr)

3 . (w̅, Rm)
. (Nozzle temperature, Flow rate multiplier, Layer 

thickness, Print speed, Pressure advance)

ANOVA, RSM and SHAP . Significance analysis
. Correlation analysis
. Feature importance analysis

4 (Lr , Rm , Ldisc) GMM . Distribution of printed line morphology

5 . Labeled lines (abnormal/normal)
. (Nozzle temperature, Flow rate multiplier, Print 

speed)

SVM . Identified optimal operational window
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failures in detecting the upper and lower edges. wr, wr and 
wsp are the weighting coefficients for density, edge rough
ness, and discontinuities in the printed lines, respectively.

2.2.3. ANOVA analysis and RSM modelling
ANOVA evaluates the statistical significance of FDM 
process parameters using CCD-designed experiments 
by quantifying individual parameter effects and detect
ing interactions. It decomposes variance into systematic 
(factor-driven) and random (error) components, using F- 
tests and p-values (p < 0.05) to identify meaningful vari
ables amid experimental noise [55]. This method aids in 
identifying dominant factors and interactions for opti
mised FDM processes. As shown in Figure 2(d–e), RSM 
builds on ANOVA-identified factors to create empirical 
models linking FDM inputs to key outputs. By perform
ing quadratic regression on CCD data, RSM quantifies 
nonlinear relationships and parameter interactions 
while filtering noise. It resolves multi-parameter trade-offs 
that one-variable methods cannot, and the resulting 
second-order polynomial equations predict responses 
across the design space, guiding FDM process optimisation.

2.2.4. Interpretability and quantification of process 
parameter contributions
Building on statistically significant variables, their contri
butions can be systematically evaluated to guide adjust
ments in subsequent experiments or operations. As 
shown in Figure 2(f), SHAP is effective for this, as it 
uses Shapley values to quantify feature contributions 
by assessing their impact across all possible feature com
binations in model predictions [58,59]. SHAP offers both 
global interpretability, showing the overall importance 
of variables, and local interpretability, highlighting indi
vidual feature impacts on specific predictions. This dual 
approach ensures transparency and consistency, while 
its rigorous method provides precise quantification of 
effects.

2.2.5. Process-parameter impact analysis and 
operational optimisation
The intricate dynamics of thermoplastic extrusion, 
thermal gradients, and layer adhesion in FDM signifi
cantly affect extruded line morphology and dimensional 
accuracy. This study uses GMM to quantify the impact of 
critical parameters on the statistical distribution of 
printed line patterns. As shown in Figure 2(g), GMM 
efficiently handles multimodal data and variability, 
enabling precise identification of parameter-driven 
effects on extrusion behaviour, outperforming tra
ditional clustering methods [60,61]. By using extrudate 
characteristics (Lr, Rm, Ldisc) as inputs, GMM categorises 
morphological deviations caused by process 

parameters, establishing relationships that guide adjust
ments to avoid defects. Since FDM printing quality is 
highly sensitive to parameter combinations, suboptimal 
settings can lead to geometric irregularities, compromis
ing mechanical performance and dimensional precision. 
To address this, the study employs an SVM to identify an 
optimised parameter window. As illustrated in 
Figure 2(h), SVM constructs a hyperplane in high-dimen
sional feature space to distinguish stable parameter 
configurations, leveraging its resistance to overfitting 
and ability to model nonlinear relationships [62,63]. 
This approach systematically defines stable processing 
windows, minimising defects and ensuring consistent 
extrudate quality.

2.3. YOLO model for in-situ anomaly detection in 
printed line morphologies

Figure 3 illustrates the in-situ monitoring method for the 
FDM 3D printing process using YOLOv5. As shown in 
Figure 3(a), a process camera is positioned adjacent to 
the printhead to capture the real-time line deposition 
quality under the nozzle. In this study, a 1080P CCD 
colour camera (1920 × 1080 pixels) is employed for in- 
situ process monitoring. In Figure 3(b), images of depos
ited lines are annotated to create a training dataset for 
YOLOv5, which is developed to detect and localise print
ing defects. Figure 3(c) demonstrates how real-time 
defect detection results from sequentially captured 
images are analysed to assess the printing status. If 
anomalies are identified (Figure 3(d)), process par
ameters are adjusted using correlations from the devel
oped RSM models to mitigate defects and improve the 
printing quality.

2.3.1. Line morphology classifier development 
using YOLO architectures
CNNs form the foundation of deep learning frameworks 
for computer vision tasks, with YOLO standing out as a 
preferred architecture for both object detection and 
defect recognition [64]. Unlike traditional classification- 
oriented CNNs, YOLO integrates backbone, neck, and 
head modules to localise defects (via bounding box 
regression) and classify defect types simultaneously, 
which is critical for halting print failures before they pro
pagate [65].

For FDM process monitoring, YOLOv5 offers particular 
advantages due to its optimised balance of inference 
speed, detection accuracy, and compatibility with 
embedded systems. Its architecture leverages Cross 
Stage Partial Darknet 53 (CSPDarknet53) as the back
bone for feature extraction, the Path Aggregation 
Network (PANet) for multi-scale feature fusion, and 
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anchor-based detection heads for bounding box predic
tions [66,67]. Noteworthy innovations include mosaic 
data augmentation to enhance model generalisation, 
adaptive anchor box tuning tailored to FDM-specific 
defect sizes, and auto-learning bounding box priors to 
reduce the need for manual calibration. In this study, 
the total loss function (Ltotal) in YOLOv5 integrates 
three essential components for defect detection. Specifi
cally, the bounding box loss (Lbox) quantifies the differ
ence between the predicted and ground truth 
bounding box coordinates, the object loss (Lobject) 
assesses the confidence that an object is present 
within a predicted bounding box, and the classification 
loss (Lclass) classifies defect categories while addressing 
class imbalance issue [68].

Lbox = 1 − IoU+
r2(b pred, bgt)

c2 + av (6) 

Lobject = −
􏽘S2

i=0

[yi log ( pi)+ (1 − yi) log (1 − pi)] (7) 

Lclass = −
􏽘C

c=1

[yc log ( pc)+ (1 − yc) log (1 − pc)] (8) 

Ltotal = lboxLbox + lobjectLobject + lclassLclass (9) 

Here Lbox integrates the IoU (area overlap ratio), the 
centre distance (ρ) between the centres of the predicted 
(b pred) and ground truth (bgt) boxes, the enclosing box 

diagonal (c), and the aspect ratio consistency (v) weighted 
by α; Lobject computes the binary cross-entropy across S2 

grid cells between the ground truth presence (yi) and pre
dicted probability (pi); Lclass uses the cross-entropy over C 
classes comparing true indicators (yc) and predicted prob
abilities (pc). Moreover, lbox , lobject , and lclass are hyper
parameters tuned to achieve a balance between high 
detection accuracy and fast inference for FDM real-time 
object detection tasks.

2.3.2. Anomaly detection and status evaluation
This study focuses on real-time process monitoring for 
FDM by classifying printed line morphology into nine 
defect categories: ‘Discontinuities’ (D), ‘Insufficient 
density’ (I), ‘High spreading’ (S), ‘Rough surface texture’ 
(R), ‘High warping’ (W), ‘Nonuniform distribution’ (Nm), 
‘Blocky deposition pattern’ (B), ‘Excessive voids and 
bubbles’ (V), and ‘Normal line’ (N). These categories 
identify common extrusion issues caused by factors 
like thermal gradients, material flow inconsistencies, 
and mechanical misalignments. A mode-detection algor
ithm tracks prediction frequencies across consecutive 
printed lines. When an abnormal category exceeds a 
statistically determined threshold, indicating systemic 
defects, the system triggers compensatory adjustments 
based on a RSM model that maps key parameter- 
response relationships. Calibration defines tuning incre
ments while balancing the correction speed and stability 
to prevent overcompensation oscillations. If no 

Figure 3. YOLOv5-enabled FDM process monitoring system. (a) In-situ deposition monitoring setup, (b) YOLOv5 defect detection 
pipeline development (Backbone→PANet→Output), (c) time-dependent printing status assessment using the developed YOLOv5 
model, and (d) dynamic process parameter adjustment via RSM-based optimisation.
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dominant defect mode is detected or predictions remain 
‘Normal,’ the parameters remain unchanged to maintain 
process consistency. This approach allows efficient 
defect mitigation in real-time, avoiding the need for 
post-hoc inspection, and enhances dimensional accu
racy in complex geometries prone to process-induced 
distortions.

3. Experimental results and discussion

3.1. Experimental setup

This study utilised an open-source Voron FDM 3D printer 
for data acquisition, chosen for its cost-effectiveness, 
integrated bootloader, and built-in Z-probe. A Raspberry 
Pi 4 Model B functioned as a networked serial gateway, 
enabling real-time bidirectional communication via the 
USB-CDC protocol. Building on this hardware foun
dation, a CCD design was implemented with coded 
factor levels spanning centre (0), factorial (±1), and 
axial (±1.68) points, as mathematically formalised in 
Appendix Table A1. Specifically, the nozzle temperature, 
flow rate multiplier, layer thickness, pressure advance, 
and print speed are considered as the independent 
input factors, with the printed line edge roughness 
and line width investigated as target responses.

During printing, each experimental point, which was 
varied according to the CCD design and replicated 
three times, generated a single-pass line sample with 
distinct morphometric attributes deposited on a sub
strate; the printed line morphology was immediately 
measured using an Olympus microscope, and the 
profiles were analysed via an image processing 

algorithm. The detailed FDM experimental setup is sum
marised in Table 2.

Meanwhile, to build a comprehensive data-set with 
which to develop a YOLO classifier, a CCD process 
camera was employed to obtain images of various print
ing states by altering adjustable process variables within 
a defined design space. These states were grouped into 
nine categories: ‘Discontinuities,’ ‘Insufficient density,’ 
‘Excessive spreading,’ ‘Rough surface texture,’ ‘High 
warping,’ ‘Nonuniform distribution,’ ‘Blocky deposition 
pattern,’ ‘Excessive voids and bubbles,’ and ‘Normal 
line.’ To increase the robustness of the developed 
model and diversify the dataset, additional augmenta
tions such as lighting variations, image flipping, resizing, 
and rotation were applied, along with samples from 
different materials and colours. In total, 9,396 printed 
line images were generated, with 80% designated for 
training and 20% for validation. Figure A1 shows the 
experimental points in the design space, which were 
obtained through Latin Hypercube Sampling (LHS) for 
further process optimisation [69,70].

3.2. Process optimisation of FDM

3.2.1. ANOVA of CCD derived models
The CCD-derived target responses (Appendix Table A2) 
are analysed using quadratic regression models to quan
tify the relationships between the process parameters 
and the printed line characteristics. ANOVA confirmed 
the statistical significance of both the models and indi
vidual factors, validating their predictive capability for 
process-response interaction.

Table 2. Experimental setup of the FDM process.
Adjustable process variables Work Environment

Nozzle temperature Flow rate multiplier Pressure advance Layer thickness Print speed Bed temperature Tip diameter Material

100°C 50–200% 0–2 s 0.1–0.3 mm 60–900 mm/min 100°C 0.4 mm PLA

Table 3. The ANOVA results of CCD study.

Factors

R1 R2

F value P value F value P value

Model 168.98 <0.0001 78.79 <0.0001
A 474.43 <0.0001 79.82 <0.0001
B 333.74 <0.0001 182.87 <0.0001
D 59.41 <0.0001
E 213.59 <0.0001
AB 20.74 <0.0001 6.75 0.0106
AE 90.27 <0.0001
BD 6.22 0.0140
A2 119.35 <0.0001 28.85 <0.0001
B2 10.33 0.0017
E2 21.13 <0.0001
R2 0.8973 0.8468
Adj. R2 0.8920 0.8361
Adeq. precision 40.445 33.84
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Table 3 details ANOVA results evaluating responses 
R1 (line width) and R2 (line edge roughness), with 
factors A (nozzle temperature), B (flow rate multiplier), 
C (pressure advance), D (layer thickness), and E (print 
speed), alongside interactions (e.g. AB, AC). P-values 
and F-values assessed model significance: low P-values 
denoted statistically impactful factors, while elevated 
F-values confirmed that the model-derived variation 
outweighed the inherent process variability. Non-signifi
cant interactions (AD for R1, BE for R2) were methodi
cally eliminated to strengthen model validity. The lack- 
of-fit test, with P-values smaller than 0.05, confirmed 
that residual errors were negligible relative to replicate 
variability, further supporting the adequacy of the 
model. High R2 values indicated robust explanatory 
power, capturing the main response variability, while 
Adequate Precision ratios (>15) validated a sufficient 
signal-to-noise resolution for practical use [55]. Gener
ally, the CCD model effectively isolated critical par
ameter effects and interactions, predicted the line 
width (R1) and edge roughness (R2) with accuracy, and 
identified key parameters for quality-driven process 
optimisation.

To evaluate the modelling accuracy, studentized 
residuals (expressed in standard deviation units) were 
analysed. Figure 4(a,b) presents normal probability 
plots for the target responses, where the residuals 
adhere closely to a straight-line distribution with little 

scatter, confirming the statistical validity of the models. 
Figure 4(c,d) shows the residuals plotted against the 
experimental test order: the random dispersion of data 
points around the central axis – devoid of discernible 
patterns – verifies their independence from temporal 
sequencing, thereby eliminating the test order as a con
founding factor in the CCD models. Figure 4(e,f) com
pares predicted versus actual printed line features 
using a reference line (y = x). The high coefficient of 
determination and adequate precision values indicate 
robust model performance, successfully capturing 
causal relationships between key process parameters 
and printed line features. Collectively, ANOVA results 
confirm the reliability of the developed CCD model for 
both further process optimisation and defect 
prediction in FDM printing, yielding mathematical 
expressions (in coded units) that quantify the influence 
of each parameter on the printed line features, as 
follows:

R1 = 1.11+ 0.2881A+ 0.2416B − 0.1019D

+ 0.0667AB+ 0.0365BD − 0.3205A2 (10) 

R2 = 0.2303+ 0.0133A+ 0.0201B+ 0.0217E

− 0.0043AB − 0.0156AE − 0.0179A2

− 0.0107B2 + 0.0153E2 (11) 

Figure 4. Residual analysis and model validation for the printed line width (PLW) and line edge roughness (LER): (a–b) Normal prob
ability plots of residuals (PLW: a; LER: b), (c–d) Residuals vs. test orders (PLW: c; LER: d), and (e–f) Predicted vs. actual correlations (PLW: 
e; LER: f).
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3.2.2. Analysis of process parameter effects based 
on RSM
To enable predictive process adjustments and timely 
deviation compensation in FDM, establishing reliable 
input-output correlations between process variables 
and outcomes is imperative. Guided by ANOVA insights, 
RSM was implemented for systematic modelling of these 
relationships. In Figure 5, each subfigure visualises the 
interactive effects between two parameters on printed 
line feature, while non-varying parameters remain 
fixed at their average values.

Specifically, Figure 5(a–c) illustrates the relationships 
between the line width and the independent variables 
(nozzle temperature, flow rate multiplier, layer thick
ness). The plots reveal a positive linear correlation 
between the nozzle temperature and line width, 
whereas the flow rate multiplier and layer thickness 
show weaker linear effects. Interaction effects, such as 
the nozzle temperature × flow rate multiplier, induce 
nonlinear variations in the line width. The quadratic 
term for the nozzle temperature dominates the response 
surface curvature, manifesting as a concave shape that 
signifies a diminishing line width at higher nozzle temp
eratures. Figure 5(d–f) presents the effects of the nozzle 
temperature, flow rate multiplier, and print speed on the 
edge roughness. All three variables exhibit positive 
linear trends, though the nozzle temperature and flow 
rate act more gradually than the print speed. Inter
actions such as the nozzle temperature × flow rate mul
tiplier and nozzle temperature × print speed reduce the 
roughness when these parameters increase 

concurrently. Quadratic effects further modulate the 
response: the nozzle temperature2 and flow rate2 sup
press the roughness, while the print speed2 exacerbates 
it. The interdependent linear, interaction, and quadratic 
effects in the response surfaces collectively justify RSM 
modelling for process optimisation.

3.2.3. SHAP – order of importance of the key 
process parameters
Moreover, as shown in Figure 6, SHAP quantifies the contri
butions of statistically significant variables, selecting critical 
ones for subsequent optimisation. Specifically, Figure 6(a) 
reveals that the nozzle temperature, flow rate multiplier, 
and layer thickness are ranked by importance (highest to 
lowest), with the nozzle temperature having the greatest 
impact. SHAP values demonstrate that the nozzle tempera
ture and flow rate positively affect the line width at high 
parameter values but negatively do so at low ones, while 
the layer thickness follows the opposite trend. This non
linear behaviour may stem from interaction effects 
between parameters. In Figure 6(b), the print speed is 
identified as the parameter most strongly influencing the 
line width, followed by the flow rate multiplier and 
nozzle temperature. SHAP values corroborate that inter
actions between these parameters amplify the roughness 
at elevated values but suppress it at lower ones, demon
strating the nonlinear dynamics observed earlier. Given 
the comparable significance of the nozzle temperature, 
flow rate multiplier, and print speed – and the minimal 
influence of the layer thickness – the optimisation strategy 
prioritises adjustments to the first three parameters. The 

Figure 5. RSM-based analysis of process parameter effects on deposited line features: (a–c) Printed line width and (d–f) printed line 
edge roughness.
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layer thickness is fixed at its median value to isolate its neg
ligible effect.

Generally, the obtained results demonstrate strong 
alignment between RSM and SHAP analyses, confirming 
the robustness of the findings. Figure 5 reveals that 
nozzle temperature exerts the most significant 
influence on line width, followed by flow rate multiplier. 

For edge roughness, print speed is the primary factor, in 
agreement with SHAP results presented in Figure 6. Both 
methods also identify key interactions, such as the 
nozzle temperature × flow rate multiplier in RSM and 
parameter-dependent nonlinearities in SHAP. The 
minimal impact of layer thickness in both analyses 
justifies its exclusion from the optimisation process. 

Figure 6. SHAP-based feature importance explanation of the FDM process: effects of input factors on (a) the printed line width and (b) 
the printed line edge roughness.

Figure 7. Instances of nine distinct printed line shapes obtained under different operational conditions.
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Overall, the complementary insights from RSM and SHAP 
offer a solid foundation for fine-tuning parameters in FDM.

3.2.4. Printed line pattern analysis and process 
window optimisation
Images of printed line samples generated through an 
LHS experimental design were analysed using a 
Matlab® algorithm. Three key metrics of the printed 
line quality – the line edge roughness (Rm), line disconti
nuity (Ldisc), and line density (Lr) – were adopted to 
analyse the distribution of printed line patterns. Based 
on a GMM clustering analysis, as shown in Figure 7, 
the printed line morphology can be classified into nine 
characteristic types: (a) discontinuities, (b) insufficient 
density, (c) high spreading, (d) non-uniform distribution, 
(e) high warping, (f) rough surface texture, (g) excessive 
voids/bubbles, (h) blocky deposition patterns, and (i) 
normal lines. Generally, this quantitative clustering 
analysis of the printed line pattern distribution facilitates 
the objective differentiation of various printed line pat
terns and aids in distinguishing normal lines from defec
tive ones.

Specifically, Figure 8(a–f) illustrates the overall trend of 
the printed line morphology distribution obtained 
through GMM clustering, revealing significant changes 
with an increase in the nozzle temperature. Initially, in 
Figure 8(a), the printed lines display a normal line mor
phology within a stable distribution range, indicating 
minimal influence of the print speed. As the nozzle 

temperature rises in Figure 8(b,c), the emergence of 
rough surface textures and high warping signals a decline 
in the printing quality due to alterations in the material 
flow properties. In Figure 8(d), excessive voids and 
bubbles become prominent alongside high warping, 
reflecting the detrimental impacts of elevated tempera
tures on material consistency. Figure 8(e) highlights the 
appearance of non-uniform distributions and irregular 
surface textures, emphasising the critical need for precise 
temperature management to maintain the printing 
quality. Finally, according to Figure 8(f), the morphology 
is severely compromised, with widespread defects such 
as voids and rough textures dominating the distribution, 
underscoring the challenges posed by increased tempera
tures during the FDM printing process. Overall, the GMM 
clustering approach effectively captures these trends, illus
trating the complex relationship between the main process 
parameters and the quality of the printed lines.

To define a reliable operational range within the 
design space, the printing quality metric Lq was evalu
ated against a predetermined threshold. Printed lines 
in the training dataset were labelled as either normal 
or defective based on this threshold. An SVM model 
was then trained to identify the decision boundaries of 
the optimal operating region. The resulting 2D oper
ational windows at nozzle temperatures of 230°C, 250° 
C, 279°C, and 290°C are shown in Figure 9(a). Addition
ally, by incorporating more samples across the 3D 
design space, the 3D operational window was 

Figure 8. Distribution of the printed line morphology at nozzle temperatures of (a) 230°C, (b) 250°C, (c) 270°C, (d) 290°C, (e) 310°C, and 
(f) 320°C.
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determined, as shown in Figure 9(b). The developed 
model achieved a classification accuracy rate of 93.1%, 
demonstrating its effectiveness in optimising the inter
play among the key adjustable process variables 
during the fabrication process.

3.2.5. Print speed effects on line defect formation
This study investigates the influence of several key 
process parameters on the quality of FDM prints, includ
ing nozzle temperature, flow rate multiplier, layer thick
ness, and pressure advance. Among these, print speed 
emerges as a particularly critical factor, as it directly 
affects the residence time of molten thermoplastic 
near the nozzle exit. This, in turn, influences material 
deposition rate, cooling behaviour, and interlayer 
adhesion. Specifically, a higher print speed reduces the 
deposition time per unit length, which may lead to 
inadequate bonding and extrusion instability due to 
insufficient heating or pressure buildup during extrusion. 
These issues can manifest as surface roughness, voids, or 
incomplete fusion between layers, ultimately compromis
ing the overall quality of the printed object.

To quantitatively substantiate this relationship, CCD- 
based statistical methods, including ANOVA and RSM, 
are employed in this research for a comprehensive 
analysis. The results, as shown in Table 3 and 
Figure 5(d–f), identify print speed as one of the most sig
nificant parameters influencing line defects, particularly 
under high nozzle temperatures. Furthermore, the 
SHAP analysis (Figure 6(b)) quantitatively ranks print 
speed as the most influential variable affecting line 
edge roughness among all evaluated parameters, 
including nozzle temperature and flow rate multiplier. 
Additionally, the GMM clustering results reveal that 
defect classes, such as ‘discontinuities’ and ‘rough tex
tures,’ are more prevalent in high-speed printing 

scenarios. To further validate these findings under 
varied printing conditions, a series of comprehensive 
experiments are conducted across a broad design 
space – including print speeds ranging from 60 to 900 
mm/min – along with variations in nozzle temperature, 
flow rate, and pressure advance. This extensive par
ameter sweep, detailed in Appendix Figure A1, further 
reinforces the conclusion that print speed has a critical 
impact on printing quality.

3.3. In-situ anomaly detection of FDM

3.3.1. Line morphology classifier development and 
model comparison
In this research, YOLOv5 was implemented using the 
official Ultralytics repository for real-time object detection, 
while EfficientNet [71] and MobileNetV3 [72] were 
deployed using TensorFlow with ImageNet pre-trained 
weights as initialisation. All models were trained using a 
batch size of 16, the Adam optimiser, and an initial learning 
rate of 0.001, with a learning rate scheduler applied to 
ensure stable convergence. Moreover, early stopping, 
based on validation accuracy, was employed to prevent 
overtraining, while dropout layers were integrated into 
the EfficientNet and MobileNetV3 models to further miti
gate overfitting. Input images were resized to 224 × 224 
pixels and normalised using the mean and standard devi
ation computed from the training dataset to ensure con
sistent and accelerate convergence across models. In 
addition, the data augmentation techniques, including 
random rotations, translations, scaling, and colour jitter
ing, were applied to improve model generalisation and 
reduce overfitting. These augmentation procedures col
lectively introduced greater variation into the training 
set, enabling the models to learn robust, high-level 
representations and improve classification and 

Figure 9. Process parameter optimisation of the line morphology in (a) the 2D and (b) 3D operational domains.
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detection performance on unseen data across various 
defect classes.

Generally, the test accuracies achieved by YOLOv5, 
EfficientNet, and MobileNetV3 were 96.3%, 91.5%, and 
93.2%, respectively. Although direct comparisons 
between models may be challenging due to their 
inherent differences, the 96.3% accuracy achieved in 
FDM anomaly detection is significant, demonstrating 
the potential and effectiveness of YOLO-based methods 
in this context. In particular, EfficientNet delivers strong 
classification performance through the use of mobile 
inverted bottleneck convolution with channel-wise atten
tion through squeeze-and-excite operations [71], while 

MobileNetV3 demonstrated superior modelling perform
ance owing to its hardware-optimised inverted residual 
blocks incorporating spatial and channel attention mech
anisms [72], which strategically allocate computational 
resources to critical features. Conversely, the improved 
detection accuracy of YOLOv5 results from its comp
lementary architectural design: the CSPNets optimises 
gradient propagation while reducing computational 
redundancy, and the PANet enables robust multi-scale 
defect characterisation through bidirectional feature 
pyramid fusion [66]. This hierarchical processing allows 
YOLOv5 to resolve microscopic texture anomalies and 
macroscopic structural defects simultaneously.

Figure 10. YOLOv5 model development and evaluation: (a) Curves showing the training and testing performance over 100 epochs, 
and (b) testing performance evaluation matrix highlighting accuracy across different printed line morphologies.

Figure 11. Progressive abstraction in CNN feature learning. (a1-a6) Original input images of printed lines, extracted features after (b1- 
b6) the initial, (c1-c6) the third, and (d1-d6) the final convolutional layer.
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Figure 10(a) illustrates the progression of the training 
and testing performance over epochs of the YOLOv5 
model, whereas Figure 10(b) highlights variations in the 
test accuracy across different printed line morphologies. 
Lines with insufficient densities exhibit superior accuracy, 
likely due to their identifiable structural characteristics. 
Conversely, a rough surface texture in printed lines com
plicate recognition, as their ambiguous features reduce 
the discriminability of the model.

3.3.2. Feature analysis of the YOLOv5 model
The YOLOv5 architecture employs a hierarchical 
feature learning approach, progressively transforming 
raw pixel inputs (Figure 11(a)) into increasingly 
abstract representations through successive nonlinear 
layers. As illustrated in Figure 11, the model begins 
with initial layers that preserve structural continuity 
(Figure 11(b)), followed by intermediate layers that 
focus on detecting orientation-specific edge primitives 
(Figure 11(c)), and reaching deep layers that leverage 
multi-scale fusion to resolve complex topologies 
(Figure 11(d)). This multi-stage processing enables 
YOLOv5 to effectively handle defect patterns by main
taining sensitivity to subtle variations while capturing 
robust representations of canonical patterns. The hier
archical structure not only ensures the preservation of 
fine details in early layers but also facilitates the 
detection of intricate structures and complex relation
ships in deeper layers, making the model highly adept 
at understanding and analysing intricate defect patterns.

3.3.3. Abnormality identification and status 
evaluation for real-time optimisation
The YOLO classifier was employed to categorise images 
of produced line patterns generated during the FDM 
process. To introduce variability in the produced line 

patterns, main adjustable process variables were 
selected randomly during printing, with the resulting 
samples recorded using a process camera. To further 
ensure the prediction accuracy, Gradient-weighted 
Class Activation Mapping (Grad-CAM) [73], along with 
a colour bar that associates gradient values with 
specific colours in the heat map, was integrated with 
YOLO to generate localisation maps that highlight criti
cal regions within the image. These maps provide an 
interpretable form of post-hoc attention, offering valu
able insights into the model’s decision-making process. 
Figure 12(a–j) presents the classification results of the 
YOLO model across various printed line characteristics. 
Even with background changes, the produced lines 
were consistently classified with high accuracy, highlight
ing the robustness of the developed classifier. The 
general performance of the FDM process was derived 
from the sequence of classification results. Figure 12(k) 
depicts the FDM printing status, which includes cat
egories such as ‘Rough surface texture,’ ‘Discontinuities,’ 
‘Non-uniform distribution,’ and ‘Blocky deposition pat
terns,’ among others. Although occasional misclassifi
cations occurred, the predicted status profile (blue lines) 
closely tracked the true profile (red lines), offering mean
ingful insights into the evolving dynamics of the FDM 
process.

Furthermore, the inherent susceptibilities to process 
instability – including thermal-gradient-induced 
warping, material shrinkage during cooling, and nozzle 
extrusion inconsistencies – can compromise the sustain
ability of the optimised process parameters. This necessi
tates additional calibration before subsequent printing. 
In such cases, the identified working status can typically 
be categorised into one of two different types: normal 
status (characterised by uniform line deposition) and 
abnormal status (evidenced by irregular line 

Figure 12. (a–j) Grad-CAM-enhanced YOLO model classification results for FDM, annotated with asterisks (*true class, **predicted 
class); (k) Temporal evaluation of the printing status, showing the predicted class distribution (blue) versus the ground-truth 
profile (red) across sequential printed lines.
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morphology). If an anomaly is detected in the status, 
real-time modifications to adjustable process variables 
(e.g. nozzle temperature, flow rate, and print speed) 
can be implemented using the developed process 
model. Table 4 shows the basic guidelines for online 
modifications in the FDM process, prioritising controlla
ble variables in descending order of criticality. For 
example, if a ‘Blocky deposition pattern’ is determined, 
the nozzle temperature should initially be decreased to 
reduce material viscosity. Next, the flow rate should be 
increased to compensate for potential under-extrusion, 
while the print speed is simultaneously decreased to 
ensure an adequate material deposition volume on the 
substrate.

On the other hand, while the YOLO model achieves 
high overall accuracy, it may exhibit conservative mis
classifications when faced with ambiguous or edge-case 
defect patterns. These challenges typically manifest as 
confusions with neighbouring classes, indicating a slight 
drop in performance rather than a system failure. To 
address such scenarios, the system incorporates several 
key features: attention maps (Figure 12) visualise the 
model’s focus, showing whether uncertain regions are 
appropriately weighted during classification; temporal 
consistency checks (Figure 12(k)) evaluate defect predic
tions across frames to suppress transient misclassifications; 
and confidence thresholding mechanisms activate 
additional review processes for low-confidence detec
tions. Together, these strategies maintain system stability 
during uncertain conditions, with planned enhancements 
including training set augmentation with edge-case 
samples and the implementation of uncertainty quantifi
cation metrics to further improve ambiguity handling.

4. Conclusion

This work presents a comprehensive data-driven frame
work that integrates advanced machine learning, deep 
learning, and real-time computer vision to optimise 
FDM 3D printing process parameters and enable in- 
situ anomaly detection. The framework employs a step
wise machine learning approach to model and analyse 

printed line morphologies, ensuring robust pre-print 
parameter optimisation. For real-time monitoring, a 
YOLOv5-based object detection model is deployed to 
assess the stability of the melt flow and to detect mor
phological anomalies during fabrication. Validation 
experiments demonstrate the effectiveness of this 
framework, as it achieves 93.1% accuracy in parameter 
optimisation and 96.3% precision in defect classification, 
significantly outperforming conventional empirical (i.e. 
trial-and-error) and analytical (i.e. simulation-based) 
methods. A notable contribution of this work lies in its 
seamless combination of GMM-based morphological 
classification, SVM-based operational boundary definition, 
SHAP interpretability, and YOLO-based real-time detection 
capabilities. This multi-layered integration enables both 
proactive process planning and reactive correction 
within a unified, closed-loop control system.

Future research will focus on further enhancing the 
robustness and scalability of the proposed system 
across diverse AM environments. Key areas for explora
tion include: (1) examining varying bed temperatures 
to optimise process performance, while validating the 
system across different hardware platforms to ensure 
real-time applicability; (2) integrating additional 
quality indicators into the RSM framework, coupled 
with machine learning models for defect-feature 
mapping, to improve defect detection and enable 
more adaptive control strategies; (3) extending the 
optimisation model to incorporate adaptive extrusion 
control and advanced slicing algorithms, addressing 
challenges in material deposition, layer adhesion, and 
complex geometries; (4) exploring the integration of 
parameters such as layer thickness and inter-layer 
bonding to further optimise process parameters and 
enhance material performance; (5) validating the pro
posed framework across heterogeneous AM platforms 
and materials, while leveraging transfer learning tech
niques to facilitate rapid deployment across diverse 
platforms without the need for exhaustive retraining; 
and (6) integrating physics-based models with 
machine learning approaches to improve model trans
parency and robustness.

Table 4. Basic guidance for online modifications in the FDM process.

Detected printing status

Controllable Process Parameters

Nozzle temperature Flow rate Print speed

Discontinuous ↗ ↗ ↘
Insufficient Density ↘ ↗ ↘
Excessive spreading ↘ ↘ ↗
Rough surface texture ↘ ↘ ↗
High warping ↘ ↘ ↗
Nonuniform distribution ↘ ↘ ↗
Blocky deposition pattern ↘ ↗ ↘
Excessive voids and bubbles ↘ ↘ ↘
Normal → → →
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Overall, the proposed methodology advanced FDM 
manufacturing by integrating data-driven optimisation, 
in-process anomaly detection, and real-time adapta
bility. Leveraging advanced machine vision and 
pattern recognition techniques, it significantly reduces 
defects, enhances reliability, and offers robust scalability 
across various AM platforms, including inkjet and direct 
metal deposition. This approach establishes a strong 
foundation for process optimisation across multiple 
domains.
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Appendix

Table A1.  The designed experimental points based on CCD.
NO. Nozzle temperature Flow rate multiplier Pressure advance Layer thickness Print speed
1 230 200 2 0.3 60
2 230 200 0 0.1 900
3 230 200 0 0.3 480
4 230 200 0 0.3 900
5 230 50 0 0.3 480
6 230 125 2 0.3 60
7 230 200 0 0.2 60
8 230 50 1 0.1 60
9 230 50 1 0.3 60
10 230 50 0 0.3 900
11 230 200 1 0.3 60
12 230 125 2 0.3 900
13 230 200 2 0.3 900
14 230 200 0 0.2 900
15 230 50 2 0.1 900
16 230 200 2 0.1 480
17 230 200 0 0.1 480
18 230 50 2 0.1 480
19 230 50 2 0.3 60
20 230 50 2 0.3 480
21 230 50 0 0.1 900
22 230 50 0 0.1 60
23 230 125 0 0.1 60
24 230 200 0 0.1 60
25 230 125 1 0.2 480
26 230 125 2 0.1 900
27 230 50 0 0.1 480
28 230 125 0 0.1 900
29 230 50 2 0.1 60
30 230 50 0 0.2 900
31 230 50 0 0.2 60
32 230 200 2 0.2 60
33 230 50 1 0.3 900
34 230 50 2 0.2 60
35 230 125 0 0.3 60
36 230 50 2 0.2 900
37 230 200 1 0.3 900
38 230 200 2 0.2 900
39 230 200 0 0.3 60
40 230 50 2 0.3 900
41 230 125 2 0.1 60

(Continued ) 

Figure A1. (a) 2D and (b) 3D experimental design based on LHS.
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Table A1. Continued.
NO. Nozzle temperature Flow rate multiplier Pressure advance Layer thickness Print speed
42 230 125 0 0.3 900
43 230 50 0 0.3 60
44 230 50 1 0.1 900
45 230 200 1 0.1 60
46 230 200 2 0.1 60
47 230 200 1 0.1 900
48 230 200 2 0.3 480
49 230 200 2 0.1 900
50 270 125 1 0.1 480
51 270 50 2 0.3 60
52 270 50 0 0.3 900
53 270 200 2 0.3 900
54 270 200 0 0.3 900
55 270 125 1 0.2 60
56 270 125 2 0.2 480
57 270 200 1 0.2 480
58 270 50 1 0.2 480
59 270 125 1 0.2 900
60 270 50 0 0.1 900
61 270 200 2 0.3 60
62 270 50 2 0.3 900
63 270 50 0 0.3 60
64 270 125 0 0.2 480
65 270 50 0 0.1 60
66 270 200 0 0.1 900
67 270 200 2 0.1 60
68 270 125 1 0.2 480
69 270 200 2 0.1 900
70 270 200 0 0.3 60
71 270 200 0 0.1 60
72 270 50 2 0.1 60
73 270 125 1 0.3 480
74 270 50 2 0.1 900
75 310 125 2 0.1 900
76 310 200 0 0.1 480
77 310 200 2 0.2 900
78 310 50 0 0.1 60
79 310 200 2 0.3 60
80 310 125 1 0.2 480
81 310 50 2 0.3 900
82 310 200 2 0.1 480
83 310 50 2 0.2 900
84 310 50 0 0.3 480
85 310 50 2 0.1 480
86 310 200 1 0.3 60
87 310 125 2 0.3 900
88 310 200 2 0.2 60
89 310 200 2 0.3 900
90 310 200 1 0.1 900
91 310 200 0 0.3 480
92 310 200 0 0.2 900
93 310 200 0 0.1 900
94 310 50 1 0.1 900
95 310 50 0 0.2 900
96 310 50 2 0.3 60
97 310 50 0 0.1 900
98 310 50 0 0.3 900
99 310 50 0 0.2 60
100 310 50 0 0.3 60
101 310 125 0 0.1 60
102 310 200 2 0.1 60
103 310 200 0 0.3 60
104 310 50 2 0.2 60
105 310 125 0 0.3 900
106 310 125 2 0.1 60
107 310 50 1 0.3 60
108 310 125 2 0.3 60
109 310 200 1 0.3 900
110 310 125 0 0.1 900
111 310 50 2 0.1 900
112 310 50 0 0.1 480

(Continued ) 
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Table A1. Continued.
NO. Nozzle temperature Flow rate multiplier Pressure advance Layer thickness Print speed
113 310 200 2 0.1 900
114 310 200 2 0.3 480
115 310 50 1 0.3 900
116 310 200 1 0.1 60
117 310 50 2 0.1 60
118 310 200 0 0.3 900
119 310 50 1 0.1 60
120 310 200 0 0.2 60
121 310 50 2 0.3 480
122 310 125 0 0.3 60
123 310 200 0 0.1 60

Table A2.  The CCD-derived target responses of FDM.
NO. Printed line width Printed line edge roughness
1 0.916745 0.1785
2 0.924542 0.279
3 0.571676 0.234
4 0.55009 0.2445
5 0.249528 0.174
6 0.485121 0.14685
7 0.769289 0.2145
8 0.474753 0.14835
9 0.220355 0.168
10 0.23288 0.1845
11 0.577559 0.159
12 0.42313 0.2355
13 0.54892 0.2895
14 0.583024 0.2385
15 0.419111 0.2415
16 0.718254 0.2355
17 0.767227 0.1935
18 0.430501 0.1725
19 0.189625 0.1485
20 0.175821 0.1455
21 0.389129 0.234
22 0.463423 0.1425
23 0.612298 0.159
24 0.706434 0.174
25 0.434146 0.1935
26 0.379546 0.2745
27 0.486122 0.168
28 0.310522 0.2475
29 0.420768 0.144
30 0.392354 0.204
31 0.415053 0.1185
32 0.72052 0.198
33 0.257517 0.207
34 0.402268 0.1485
35 0.48683 0.1845
36 0.363514 0.2085
37 0.610578 0.252
38 0.662934 0.2775
39 0.616564 0.2085
40 0.267647 0.204
41 0.547268 0.1845
42 0.452288 0.2745
43 0.263641 0.144
44 0.501546 0.234
45 0.573436 0.2025
46 0.716579 0.198
47 0.463459 0.249
48 0.546267 0.2205
49 0.715071 0.2565
50 1.528952 0.243
51 0.502167 0.1875
52 0.597895 0.2445
53 1.316118 0.2895
54 1.300706 0.2565
55 1.157656 0.2355

(Continued ) 
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Table A2. Continued.
NO. Printed line width Printed line edge roughness
56 1.315482 0.2385
57 1.364491 0.243
58 0.727428 0.174
59 1.095085 0.2865
60 1.016429 0.2475
61 1.321678 0.2355
62 0.562865 0.2475
63 0.570853 0.189
64 1.137866 0.219
65 1.026661 0.1875
66 1.58994 0.2745
67 1.593911 0.231
68 1.091217 0.219
69 1.457779 0.2955
70 1.197111 0.2385
71 1.521596 0.2085
72 0.928766 0.1935
73 0.870144 0.2415
74 0.873057 0.2145
75 1.13601 0.234
76 1.182443 0.219
77 1.484213 0.2685
78 0.853413 0.2115
79 1.31193 0.2535
80 1.302769 0.2355
81 0.736194 0.234
82 1.234613 0.219
83 0.912173 0.2115
84 0.6906 0.1815
85 1.018778 0.204
86 1.328445 0.2475
87 1.107649 0.237
88 1.579575 0.2535
89 1.358664 0.2415
90 1.736417 0.2385
91 1.341646 0.237
92 1.391095 0.2655
93 1.554903 0.261
94 1.12894 0.2085
95 0.703566 0.2115
96 0.687577 0.2175
97 1.059954 0.234
98 0.496604 0.2355
99 0.569003 0.213
100 0.69512 0.1875
101 0.969812 0.2145
102 1.185984 0.2235
103 1.323643 0.2265
104 0.921788 0.2145
105 1.091977 0.228
106 1.412359 0.2505
107 0.816379 0.2235
108 0.845687 0.2475
109 1.238607 0.2535
110 1.181194 0.258
111 0.725585 0.2115
112 0.69421 0.2025
113 1.416503 0.2685
114 1.070439 0.228
115 0.44891 0.228
116 1.578102 0.2415
117 1.070553 0.213
118 1.209513 0.237
119 0.877836 0.2025
120 1.267229 0.2445
121 0.502593 0.2025
122 0.792841 0.2235
123 1.392783 0.2415
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