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ABSTRACT

Fused Deposition Modelling (FDM) is the predominant material extrusion technique in polymer
additive manufacturing (AM). While it offers compatibility with engineering-grade composites
and enables the fabrication of polymer-composite components with intricate architectures
unattainable through traditional techniques, the persistent dependence on empirical process
tuning often leads to structural defects - critical limitations that hinder FDM's transition to
advanced industrial applications. This paper proposes a data-driven approach that integrates
advanced Artificial Intelligence (Al) with real-time computer vision to optimise FDM process
parameters and enable in-process anomaly detection. In the developed approach, a stepwise
machine learning strategy systematically models the printed line quality, ensuring pre-print
process optimisation. A You Only Look Once (YOLO) object detection model is then deployed
for in-situ monitoring, analysing the printed line morphology to assess melt flow stability and
detect geometric deviations during printing. Validation experiments are conducted to assess the
effectiveness of the developed YOLO model. Overall, the integrated framework demonstrates its
superiority over empirical methods and analytical models in both pre-process optimisation and
real-time quality assurance. Furthermore, the integrated machine vision and pattern recognition
system exhibits adaptability to diverse material deposition systems, providing a unified
approach to intelligent process optimisation across AM domains.
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1. Introduction ) i i
production of metallic parts through post-process sinter-

Additive manufacturing (AM) - encompassing technol-
ogies that construct three-dimensional (3D) objects
through successive material layering - enables the cus-
tomised production of polymers, ceramics, and metals,
surpassing conventional manufacturing in terms of
design freedom and rapid prototyping capabilities
[1,2]. As a transformative facet of advanced manufactur-
ing, AM systems exhibit exceptional material efficiency
while addressing specialised application requirements
through geometrically complex structures [3,4]. Among
these technologies, fused deposition modelling (FDM)
dominates industrial adoption due to its operational
maturity. This extrusion-based process allows the fabri-
cation of polymeric/composite components with intri-
cate architectures that are unattainable through
traditional techniques, while hybrid variants enable the

ing [5,6]. As the most established AM modality, FDM
combines technical versatility with sustainable inno-
vation across the aerospace [7,8], biomedical [9,10],
and automotive sectors [11,12], leveraging diverse ther-
moplastics and reproducible workflows to minimise
material waste and energy consumption in advanced
manufacturing.

FDM is distinguished among AM technologies such as
stereolithography (SLA) [13,14] and selective laser sinter-
ing (SLS) [15,16] through its compatibility with low-
melting-point materials, its minimal chemical byproduct
generation, and its simplified postprocessing enabled
by water-soluble support structures. However, the indus-
trial scalability of this method depends critically on
precise parameter optimisation — notably the nozzle
temperature, print speed, and material flow rate - as

CONTACT Haining Zhang @ m160034@e.ntu.edu.sg @ School of Information Engineering, Suzhou University, Suzhou, People’s Republic of China;
Joon Phil Choi @ jpchoi@kimm.re.kr @ Department of 3D Printing, Korea Institute of Machinery & Materials, Daejeon, Republic of Korea

© 2025 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group

This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (http://creativecommons.org/licenses/by-nc/4.0/), which
permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which this article has been pub-
lished allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent.


http://crossmark.crossref.org/dialog/?doi=10.1080/17452759.2025.2545523&domain=pdf&date_stamp=2025-08-20
http://creativecommons.org/licenses/by-nc/4.0/
mailto:m160034@e.ntu.edu.sg
mailto:jpchoi@kimm.re.kr
http://www.tandfonline.com

2 (& H.ZHANGETAL

even minor deviations in the printed line quality can
induce defects that compromise part functionality [17-
19]. For instance, line discontinuities caused by nozzle
clogs or temperature instability can weaken interlayer
adhesion, leading to delamination in structural com-
ponents [20,21]. Under-extrusion, resulting from impro-
per flow rates or layer heights, creates micro-voids and
porosity in the printed lines, reducing the tensile strength
and fatigue resistance [22,23]. Meanwhile, rapid cooling
or mechanical vibrations can exacerbate line edge rough-
ness, undermining the dimensional tolerances required
for precision assemblies such as seals or bearings [24].
Additionally, uneven extrusion pressure or bed misalign-
ment can cause irregular line spreading, distorting fine
geometries such as microfluidic channels or threaded
interfaces [25,26]. Typically, these line defects collectively
degrade the surface finish, geometric accuracy, and
mechanical integrity, posing barriers to applications that
require high reliability under load or tight tolerances.
Consequently, systematic analyses of the FDM line mor-
phology and optimisation of related process parameters
are crucial to balancing the deposition efficiency with
defect reduction, ensuring that functional parts meet
industrial standards with regard to strength, precision,
and surface finish.

Studies show that process parameters such as the
nozzle temperature, flow rate, and print speed signifi-
cantly affect the FDM printing quality [27,28]. This
arises from the intricate interplay between process par-
ameters, which induces material flow dynamics that
govern the precise extrusion of molten thermoplastic
filaments and the stabilisation of the deposited line geo-
metry [29,30]. Thus, research focused on optimising the
extrusion uniformity and printing quality has become a
central focus in FDM studies. For example, several
empirical techniques that optimise the extrusion multi-
plier and nozzle temperature at a given print speed
have been introduced, ensuring stable melt flow behav-
iour prior to line deposition [31,32]. However, the result-
ing solutions may remain suboptimal owing to the
limited exploration of the design space. Similarly, finite
element analysis (FEA) models have been developed to
analyse the effects of the nozzle temperature, print
speed, and flow rate on the melt flow dynamics in
FDM, with the aim of identifying thermal parameters
that are effective in ensuring a stable melt flow during
extrusion [33-36]. However, developing a reliable and
performance-efficient FEA model for FDM processes —
particularly those involving rapid thermal gradients
and material solidification - poses considerable
difficulty.

In contrast to FEA models, data-driven modelling offers
superior efficiency and reduced dependence on prior

knowledge [37,38]. However, its application in FDM
optimisation has been limited by constrained objective
functions, sparse datasets, and manual workflows. Never-
theless, recent advancements in integrating physics-
informed machine learning with image sensor analytics
are driving the development of more robust optimisation
frameworks. These developments bridge the gap
between data-driven agility and physics-based rigour,
allowing for efficient methods that leverage diverse
visual data while respecting underlying material behav-
iour. For instance, Uhrich et al. [39] and Kapusuzoglu
et al. [40] explored physics-informed machine learning
approaches that integrate physics-based knowledge
into data-driven models to predict the printing quality
of FDM parts, ensuring a consistent physical relationship
between process parameters and mechanical properties.
On the other hand, Li et al. [41] integrated thermal,
vibrational, and imaging data for printing quality optimis-
ation; Narayanan et al. [42] used PCA with a support
vector machine to classify defective polymer parts; Ozen
et al. [43] applied K-means clustering to link process par-
ameters with FDM microstructure and properties. Collec-
tively, these studies highlight the effectiveness of data-
driven methods in improving the AM processes.
However, the inherent susceptibilities like thermal-gradi-
ent-induced warping, material cooling shrinkage, and
nozzle extrusion inconsistencies can destabilise printing
quality [44-47], leading to defects and dimensional inac-
curacies that reduce the functional reliability of the final
products.

Recent advancements in deep learning have signifi-
cantly enhanced in-situ monitoring and defect detection
in FDM, owing to their ability to extract complex pat-
terns from high-dimensional data, such as layer-wise
images, thermal profiles, and acoustic signals, with
minimal human intervention. For instance, convolu-
tional neural networks (CNNs) have demonstrated
remarkable success in detecting extrusion irregularities
(e.g. spaghetti defects) and geometric distortions (e.g.
warping or layer misalignment) by leveraging transfer
learning to overcome limited training datasets [48]. Simi-
larly, texture-based algorithms [49] and hybrid deep
learning models [50,51] have enabled real-time defect
diagnosis by correlating process anomalies with multi-
sensor data. While deep learning has advanced in-situ
monitoring for FDM, achieving fully autonomous, adap-
tive quality control remains challenging [52]. Current
approaches include single-modality CNNs for visual
defect detection, multi-sensor fusion models integrating
thermal and acoustic data, and hybrid CNN-RNN archi-
tectures for capturing temporal variations [53,54].
Despite high detection accuracy, these systems face
key limitations: limited interpretability of defect causes,



insufficient processing speed for real-time correction,
and lack of integration across monitoring, diagnosis,
and actuation. Therefore, integrating a comprehensive
defect analysis with in-situ monitoring will enable sys-
tematic diagnosis, which is critical for improving
process stability and consistency in FDM.

In this research, a data-driven framework is proposed
that integrates advanced Al techniques with real-time
computer vision to optimise FDM printing process
and enable in-process anomaly detection simul-
taneously. In the developed approach, a stepwise
machine learning strategy that systematically models
and analyses the printed line morphology is employed,
ensuring systematic process optimisation prior to print-
ing. Subsequently, a You Only Look Once (YOLO) object
detection model is deployed for in-situ monitoring. This
model utilises printed line morphology to assess FDM
printing status and detect anomalies during the
process. Experiments further confirm the effectiveness
of the proposed approach with regard to real-time
process monitoring, demonstrating its potential to
advance line optimisation and defect detection during
FDM printing. This end-to-end pipeline enables both
preemptive  process calibration and real-time
corrective control within a single intelligent system.
To the best of our knowledge, the present study pro-
vides a novel and transformative integration of comp-
lementary Al metrologies into a real-time, adaptive

control paradigm for extrusion-based additive
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manufacturing, establishing a new benchmark for inno-
vation in the field.

The remaining of this paper proceeds as follows.
Section 2 introduces the proposed data-driven frame-
work for FDM process modelling and in-situ defect
detection. Section 3 validates the proposed approach
through experimental analysis and a real-time monitor-
ing performance assessment. Section 4 summarises the
research and suggests further directions.

2. Proposed data-driven approach in FDM
2.1. Overview of the proposed approach in FDM

Figure 1 outlines the proposed data-driven framework
for FDM process enhancement. In Figure 1(a), dual
imaging systems are integrated into the printer: a
coaxial camera enables autonomous printing process
optimisation prior to printing, while a process camera
supports in-situ anomaly detection during printing.
Figure 1(b) elaborates on the coaxial system’s iterative
workflow, where a stepwise machine learning approach
refines the printing quality through adaptive process
parameter optimisation. Parallel to this, Figure 1(c) high-
lights the embedded YOLO architecture of the process
camera, which performs in-situ defect detection during
the extrusion process. Finally, Figure 1(d1-d6) demon-
strates the real-time anomaly detection capability of
the system, which stabilises the printing process and

(1 Statistical design of

N « Central Composite Design (CCD)
experiments for FDM

Filament

- istical signifi -
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Figure 1. Integrated data-driven framework for process parameter optimisation and anomaly detection in FDM: (a) Dual-camera FDM
monitoring system setup, (b) multi-stage process parameter optimisation via coaxial imaging prior to printing, (c) YOLO-based defect
detection model development, and (d) YOLO-based in-situ anomaly detection with process camera feedback.
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maintains
production.

consistent product quality throughout

2.2, Stepwise machine learning techniques for
optimisation of the FDM process

Figure 2(a) presents a schematic illustration of a coaxial
camera system integrated into an FDM 3D printer,
aligned coaxially with the printhead and oriented

perpendicularly to the print bed. In this research, an 8
MP CCD colour camera is employed for image capturing,
offering a resolution of 3840 x 2160 pixels. Following the
printing process, the printed line samples are promptly
moved to the platform beneath the coaxial camera,
where real-time digital images are captured, as shown in
Figures 2(b-h) to support rapid process optimisation.
Specifically, the FDM optimisation process consists of
five sequential stages: (1) A Central Composite Design
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Figure 2. Autonomous process optimisation via a stepwise machine learning method: (a) Coaxial imaging system for in-situ line mor-
phology monitoring, (b) CCD of FDM process parameters, (c) Geometric characterisation of deposited lines, (d) ANOVA for parameter
significance evaluation, (e) RSM modelling of parameter-response relationships, (f) SHAP analysis for feature importance quantifi-
cation, (g) GMM-based clustering of line morphology distributions, and (h) SVM-based classification for optimal process window

identification.
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Table 1. Five-stage autonomous optimisation workflow for FDM process parameters: From experimental design to operational
window identification via CCD, ANOVA, RSM, SHAP, GMM and SVM methodologies.

Step Inputs

Approaches

Responses

1 Design space:
{ Nozzle temperature, Flow rate multiplier, Layer
thickness, Print speed, Pressure advance}

2 Experimental points:
(Nozzle temperature, Flow rate multiplier, Layer

Coaxial camera imaging and
characterisation of printed line

CCD experimental design o Designed experimental points:

(Nozzle temperature, Flow rate multiplier, Layer
thickness, Print speed, Pressure advance)

Mean line width (w)
Line discontinuity (Lgs)

thickness, Print speed, Pressure advance) features Mean line edge roughness (Ry,)
Mean line density (L,)
3 o (W, Rn) ANOVA, RSM and SHAP » Significance analysis
o (Nozzle temperature, Flow rate multiplier, Layer o Correlation analysis
thickness, Print speed, Pressure advance) » Feature importance analysis
4 (E, R, Laisc) GMM  Distribution of printed line morphology
5 o Labeled lines (abnormal/normal) SVM o Identified optimal operational window
o (Nozzle temperature, Flow rate multiplier, Print
speed)

(CCD) approach efficiently explores the design space, max-
imising coverage with minimal experimental data. (2) An
inline coaxial camera system, paired with automated
image analysis, characterises printed line samples gener-
ated under the CCD framework. (3) Analysis of variance
(ANOVA) identifies significant process parameters, while
response surface methodology (RSM) models the input-
output relationship to guide optimisation. (4) SHAP
(Shapley Additive Explanations) quantifies the contri-
butions of significant variables, selecting those critical for
further optimisation. (5) A Gaussian Mixture Model
(GMM) analyses the distribution of printed line patterns,
and a Support Vector Machine (SVM) distinguishes
normal from abnormal lines, defining an optimal operating
window to ensure consistent FDM printing quality. Table 1
presents a comprehensive workflow corresponding to
Figure 2, outlining the key steps, inputs, approaches, and
responses for each stage of the process.

2.2.1. CCD statistical experiments

The nonlinearity in the FDM 3D printing process, caused
by complex thermal gradients and material deposition
dynamics, requires an experimental design that can
capture these nonlinearities [55,56]. In this research,
CCD is implemented to systematically analyse nonlinear
interactions and curvature effects. As shown in
Figure 2(b), CCD combines factorial points to examine
linear and interaction effects, axial points to measure
quadratic terms, and centre points to assess process
variability through controlled iterative testing.

2.2.2. Printing quality analysis of FDM
Effective process optimisation in FDM requires a quanti-
tative assessment of the extrudate morphology. This

study establishes four key quality metrics through an
image analysis [54,57]. Specifically, as shown in
Figure 2(c), the mean line width w is computed via the
column-wise spatial averaging of pixel intensity data in
a discretized form

=l

1 N
i=1

Then, the greyscale intensities of pixels bounded by the
identified edges of printed lines are averaged to
compute the mean line density L,

1
L,,:NZ/,»—/b Q)

Subsequently, based on the obtained reference lines
(mean lines), the average line edge roughness R, and
line discontinuity Ly are defined below,

1 N
Rm = IN Z (Ripper,i + Rlzower,i) (3)
2N i=1
Fu + FI
Laise = 4
disc 5N (4)

In addition, the overall printing quality L, is calculated by
combining the key aspects of the printed lines with
assigned weights.

Lg=w, x L, + W, X Ry + Wqg X Laisc (5)

where w; represents the quantised line width in the ith
column, with N being the total number of columns. /; is
the average intensity per column, and /,, is the mean back-
ground intensity to reduce illumination effects. R; captures
deviations from the mean line edge, while F, and F; denote
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failures in detecting the upper and lower edges. w,, w, and
wy, are the weighting coefficients for density, edge rough-
ness, and discontinuities in the printed lines, respectively.

2.2.3. ANOVA analysis and RSM modelling

ANOVA evaluates the statistical significance of FDM
process parameters using CCD-designed experiments
by quantifying individual parameter effects and detect-
ing interactions. It decomposes variance into systematic
(factor-driven) and random (error) components, using F-
tests and p-values (p < 0.05) to identify meaningful vari-
ables amid experimental noise [55]. This method aids in
identifying dominant factors and interactions for opti-
mised FDM processes. As shown in Figure 2(d-e), RSM
builds on ANOVA-identified factors to create empirical
models linking FDM inputs to key outputs. By perform-
ing quadratic regression on CCD data, RSM quantifies
nonlinear relationships and parameter interactions
while filtering noise. It resolves multi-parameter trade-offs
that one-variable methods cannot, and the resulting
second-order polynomial equations predict responses
across the design space, guiding FDM process optimisation.

2.2.4. Interpretability and quantification of process
parameter contributions

Building on statistically significant variables, their contri-
butions can be systematically evaluated to guide adjust-
ments in subsequent experiments or operations. As
shown in Figure 2(f), SHAP is effective for this, as it
uses Shapley values to quantify feature contributions
by assessing their impact across all possible feature com-
binations in model predictions [58,59]. SHAP offers both
global interpretability, showing the overall importance
of variables, and local interpretability, highlighting indi-
vidual feature impacts on specific predictions. This dual
approach ensures transparency and consistency, while
its rigorous method provides precise quantification of
effects.

2.2.5. Process-parameter impact analysis and
operational optimisation

The intricate dynamics of thermoplastic extrusion,
thermal gradients, and layer adhesion in FDM signifi-
cantly affect extruded line morphology and dimensional
accuracy. This study uses GMM to quantify the impact of
critical parameters on the statistical distribution of
printed line patterns. As shown in Figure 2(g), GMM
efficiently handles multimodal data and variability,
enabling precise identification of parameter-driven
effects on extrusion behaviour, outperforming tra-
ditional clustering methods [60,61]. By using extrudate
characteristics (L—p, Rm, Lgisc) as inputs, GMM categorises
morphological  deviations caused by process

parameters, establishing relationships that guide adjust-
ments to avoid defects. Since FDM printing quality is
highly sensitive to parameter combinations, suboptimal
settings can lead to geometric irregularities, compromis-
ing mechanical performance and dimensional precision.
To address this, the study employs an SVM to identify an
optimised parameter window. As illustrated in
Figure 2(h), SVM constructs a hyperplane in high-dimen-
sional feature space to distinguish stable parameter
configurations, leveraging its resistance to overfitting
and ability to model nonlinear relationships [62,63].
This approach systematically defines stable processing
windows, minimising defects and ensuring consistent
extrudate quality.

2.3. YOLO model for in-situ anomaly detection in
printed line morphologies

Figure 3 illustrates the in-situ monitoring method for the
FDM 3D printing process using YOLOV5. As shown in
Figure 3(a), a process camera is positioned adjacent to
the printhead to capture the real-time line deposition
quality under the nozzle. In this study, a 1080P CCD
colour camera (1920 x 1080 pixels) is employed for in-
situ process monitoring. In Figure 3(b), images of depos-
ited lines are annotated to create a training dataset for
YOLOV5, which is developed to detect and localise print-
ing defects. Figure 3(c) demonstrates how real-time
defect detection results from sequentially captured
images are analysed to assess the printing status. If
anomalies are identified (Figure 3(d)), process par-
ameters are adjusted using correlations from the devel-
oped RSM models to mitigate defects and improve the
printing quality.

2.3.1. Line morphology classifier development

using YOLO architectures

CNNs form the foundation of deep learning frameworks
for computer vision tasks, with YOLO standing out as a
preferred architecture for both object detection and
defect recognition [64]. Unlike traditional classification-
oriented CNNs, YOLO integrates backbone, neck, and
head modules to localise defects (via bounding box
regression) and classify defect types simultaneously,
which is critical for halting print failures before they pro-
pagate [65].

For FDM process monitoring, YOLOVS5 offers particular
advantages due to its optimised balance of inference
speed, detection accuracy, and compatibility with
embedded systems. Its architecture leverages Cross
Stage Partial Darknet 53 (CSPDarknet53) as the back-
bone for feature extraction, the Path Aggregation
Network (PANet) for multi-scale feature fusion, and
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Figure 3. YOLOv5-enabled FDM process monitoring system. (a) In-situ deposition monitoring setup, (b) YOLOV5 defect detection
pipeline development (Backbone—PANet—Output), (c) time-dependent printing status assessment using the developed YOLOv5
model, and (d) dynamic process parameter adjustment via RSM-based optimisation.

anchor-based detection heads for bounding box predic-
tions [66,67]. Noteworthy innovations include mosaic
data augmentation to enhance model generalisation,
adaptive anchor box tuning tailored to FDM-specific
defect sizes, and auto-learning bounding box priors to
reduce the need for manual calibration. In this study,
the total loss function (L) in YOLOVS integrates
three essential components for defect detection. Specifi-
cally, the bounding box loss (Lyok) quantifies the differ-
ence between the predicted and ground truth
bounding box coordinates, the object loss (Lopject)
assesses the confidence that an object is present
within a predicted bounding box, and the classification
loss (Leass) classifies defect categories while addressing

class imbalance issue [68].

2
LbOX:1—IoU+M+aV 6)
SZ
Lobject = — lyilog(p) + (1 —y)log (1 —p)l  (7)
i=0

C

Letass = — Z [yclog (pc) + (1 —y)log (1 — po)] (8)
c=1

I—rotal = )\bobeox + /\objectLobjecr + )\classl-class (9)

Here Lo integrates the loU (area overlap ratio), the
centre distance (p) between the centres of the predicted
(bpred) and ground truth (by:) boxes, the enclosing box

diagonal (), and the aspect ratio consistency (v) weighted
by a; Lopject cOmputes the binary cross-entropy across 52
grid cells between the ground truth presence (y;) and pre-
dicted probability (p;); Leiass Uses the cross-entropy over C
classes comparing true indicators (y.) and predicted prob-
abilities (p.). Moreover, Apox, Aopjects and Acass are hyper-
parameters tuned to achieve a balance between high
detection accuracy and fast inference for FDM real-time
object detection tasks.

2.3.2. Anomaly detection and status evaluation

This study focuses on real-time process monitoring for
FDM by classifying printed line morphology into nine
defect categories: ‘Discontinuities’ (D), ‘Insufficient
density’ (1), ‘High spreading’ (S), ‘Rough surface texture’
(R), ‘High warping’ (W), ‘Nonuniform distribution’ (Nm),
‘Blocky deposition pattern’ (B), ‘Excessive voids and
bubbles’ (V), and ‘Normal line’ (N). These categories
identify common extrusion issues caused by factors
like thermal gradients, material flow inconsistencies,
and mechanical misalignments. A mode-detection algor-
ithm tracks prediction frequencies across consecutive
printed lines. When an abnormal category exceeds a
statistically determined threshold, indicating systemic
defects, the system triggers compensatory adjustments
based on a RSM model that maps key parameter-
response relationships. Calibration defines tuning incre-
ments while balancing the correction speed and stability
to prevent overcompensation oscillations. If no
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Table 2. Experimental setup of the FDM process.

Adjustable process variables

Work Environment

Nozzle temperature ~ Flow rate multiplier ~ Pressure advance

Layer thickness

Print speed Bed temperature  Tip diameter  Material

100°C 50-200% 0-2s

0.1-0.3 mm

60-900 mm/min 100°C 0.4 mm PLA

dominant defect mode is detected or predictions remain
‘Normal,” the parameters remain unchanged to maintain
process consistency. This approach allows efficient
defect mitigation in real-time, avoiding the need for
post-hoc inspection, and enhances dimensional accu-
racy in complex geometries prone to process-induced
distortions.

3. Experimental results and discussion
3.1. Experimental setup

This study utilised an open-source Voron FDM 3D printer
for data acquisition, chosen for its cost-effectiveness,
integrated bootloader, and built-in Z-probe. A Raspberry
Pi 4 Model B functioned as a networked serial gateway,
enabling real-time bidirectional communication via the
USB-CDC protocol. Building on this hardware foun-
dation, a CCD design was implemented with coded
factor levels spanning centre (0), factorial (+1), and
axial (£1.68) points, as mathematically formalised in
Appendix Table A1. Specifically, the nozzle temperature,
flow rate multiplier, layer thickness, pressure advance,
and print speed are considered as the independent
input factors, with the printed line edge roughness
and line width investigated as target responses.

During printing, each experimental point, which was
varied according to the CCD design and replicated
three times, generated a single-pass line sample with
distinct morphometric attributes deposited on a sub-
strate; the printed line morphology was immediately
measured using an Olympus microscope, and the
profiles were analysed via an image processing

Table 3. The ANOVA results of CCD study.

algorithm. The detailed FDM experimental setup is sum-
marised in Table 2.

Meanwhile, to build a comprehensive data-set with
which to develop a YOLO classifier, a CCD process
camera was employed to obtain images of various print-
ing states by altering adjustable process variables within
a defined design space. These states were grouped into
nine categories: ‘Discontinuities,” ‘Insufficient density,’
‘Excessive spreading,’ ‘Rough surface texture,’ ‘High
warping,” ‘Nonuniform distribution,” ‘Blocky deposition
pattern,” ‘Excessive voids and bubbles,’ and ‘Normal
line. To increase the robustness of the developed
model and diversify the dataset, additional augmenta-
tions such as lighting variations, image flipping, resizing,
and rotation were applied, along with samples from
different materials and colours. In total, 9,396 printed
line images were generated, with 80% designated for
training and 20% for validation. Figure A1 shows the
experimental points in the design space, which were
obtained through Latin Hypercube Sampling (LHS) for
further process optimisation [69,70].

3.2. Process optimisation of FDM

3.2.1. ANOVA of CCD derived models

The CCD-derived target responses (Appendix Table A2)
are analysed using quadratic regression models to quan-
tify the relationships between the process parameters
and the printed line characteristics. ANOVA confirmed
the statistical significance of both the models and indi-
vidual factors, validating their predictive capability for
process-response interaction.

R1 R2
Factors F value P value F value P value
Model 168.98 <0.0001 78.79 <0.0001
A 47443 <0.0001 79.82 <0.0001
B 333.74 <0.0001 182.87 <0.0001
D 59.41 <0.0001
E 213.59 <0.0001
AB 20.74 <0.0001 6.75 0.0106
AE 90.27 <0.0001
BD 6.22 0.0140
A 119.35 <0.0001 28.85 <0.0001
B2 10.33 0.0017
E? 21.13 <0.0001
R? 0.8973 0.8468
Adj. R? 0.8920 0.8361
Adeq. precision 40.445 33.84




Table 3 details ANOVA results evaluating responses
R1 (line width) and R2 (line edge roughness), with
factors A (nozzle temperature), B (flow rate multiplier),
C (pressure advance), D (layer thickness), and E (print
speed), alongside interactions (e.g. AB, AC). P-values
and F-values assessed model significance: low P-values
denoted statistically impactful factors, while elevated
F-values confirmed that the model-derived variation
outweighed the inherent process variability. Non-signifi-
cant interactions (AD for R1, BE for R2) were methodi-
cally eliminated to strengthen model validity. The lack-
of-fit test, with P-values smaller than 0.05, confirmed
that residual errors were negligible relative to replicate
variability, further supporting the adequacy of the
model. High R? values indicated robust explanatory
power, capturing the main response variability, while
Adequate Precision ratios (>15) validated a sufficient
signal-to-noise resolution for practical use [55]. Gener-
ally, the CCD model effectively isolated critical par-
ameter effects and interactions, predicted the line
width (R1) and edge roughness (R2) with accuracy, and
identified key parameters for quality-driven process
optimisation.

To evaluate the modelling accuracy, studentized
residuals (expressed in standard deviation units) were
analysed. Figure 4(a,b) presents normal probability
plots for the target responses, where the residuals
adhere closely to a straight-line distribution with little
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scatter, confirming the statistical validity of the models.
Figure 4(c,d) shows the residuals plotted against the
experimental test order: the random dispersion of data
points around the central axis — devoid of discernible
patterns — verifies their independence from temporal
sequencing, thereby eliminating the test order as a con-
founding factor in the CCD models. Figure 4(e,f) com-
pares predicted versus actual printed line features
using a reference line (y=x). The high coefficient of
determination and adequate precision values indicate
robust model performance, successfully capturing
causal relationships between key process parameters
and printed line features. Collectively, ANOVA results
confirm the reliability of the developed CCD model for
both further process optimisation and defect
prediction in FDM printing, yielding mathematical
expressions (in coded units) that quantify the influence
of each parameter on the printed line features, as
follows:

R1=1.1140.2881A 4 0.24168 — 0.1019D

+ 0.0667AB + 0.03658D — 0.3205A2 (10)
R2 = 0.2303 4+ 0.0133A + 0.0201B + 0.0217E
— 0.0043AB — 0.0156AE — 0.0179A%
—0.01078% 4+ 0.0153F? (11)
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Figure 4. Residual analysis and model validation for the printed line width (PLW) and line edge roughness (LER): (a—b) Normal prob-
ability plots of residuals (PLW: a; LER: b), (c—d) Residuals vs. test orders (PLW: ¢; LER: d), and (e—f) Predicted vs. actual correlations (PLW:
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3.2.2. Analysis of process parameter effects based
on RSM

To enable predictive process adjustments and timely
deviation compensation in FDM, establishing reliable
input-output correlations between process variables
and outcomes is imperative. Guided by ANOVA insights,
RSM was implemented for systematic modelling of these
relationships. In Figure 5, each subfigure visualises the
interactive effects between two parameters on printed
line feature, while non-varying parameters remain
fixed at their average values.

Specifically, Figure 5(a—c) illustrates the relationships
between the line width and the independent variables
(nozzle temperature, flow rate multiplier, layer thick-
ness). The plots reveal a positive linear correlation
between the nozzle temperature and line width,
whereas the flow rate multiplier and layer thickness
show weaker linear effects. Interaction effects, such as
the nozzle temperature x flow rate multiplier, induce
nonlinear variations in the line width. The quadratic
term for the nozzle temperature dominates the response
surface curvature, manifesting as a concave shape that
signifies a diminishing line width at higher nozzle temp-
eratures. Figure 5(d-f) presents the effects of the nozzle
temperature, flow rate multiplier, and print speed on the
edge roughness. All three variables exhibit positive
linear trends, though the nozzle temperature and flow
rate act more gradually than the print speed. Inter-
actions such as the nozzle temperature x flow rate mul-
tiplier and nozzle temperature X print speed reduce the
roughness when these parameters increase
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concurrently. Quadratic effects further modulate the
response: the nozzle temperature? and flow rate? sup-
press the roughness, while the print speed” exacerbates
it. The interdependent linear, interaction, and quadratic
effects in the response surfaces collectively justify RSM
modelling for process optimisation.

3.2.3. SHAP - order of importance of the key
process parameters

Moreover, as shown in Figure 6, SHAP quantifies the contri-
butions of statistically significant variables, selecting critical
ones for subsequent optimisation. Specifically, Figure 6(a)
reveals that the nozzle temperature, flow rate multiplier,
and layer thickness are ranked by importance (highest to
lowest), with the nozzle temperature having the greatest
impact. SHAP values demonstrate that the nozzle tempera-
ture and flow rate positively affect the line width at high
parameter values but negatively do so at low ones, while
the layer thickness follows the opposite trend. This non-
linear behaviour may stem from interaction effects
between parameters. In Figure 6(b), the print speed is
identified as the parameter most strongly influencing the
line width, followed by the flow rate multiplier and
nozzle temperature. SHAP values corroborate that inter-
actions between these parameters amplify the roughness
at elevated values but suppress it at lower ones, demon-
strating the nonlinear dynamics observed earlier. Given
the comparable significance of the nozzle temperature,
flow rate multiplier, and print speed - and the minimal
influence of the layer thickness — the optimisation strategy
prioritises adjustments to the first three parameters. The
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Figure 5. RSM-based analysis of process parameter effects on deposited line features: (a—c) Printed line width and (d—f) printed line

edge roughness.
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Figure 6. SHAP-based feature importance explanation of the FDM process: effects of input factors on (a) the printed line width and (b)

the printed line edge roughness.

layer thickness is fixed at its median value to isolate its neg-
ligible effect.

Generally, the obtained results demonstrate strong
alignment between RSM and SHAP analyses, confirming
the robustness of the findings. Figure 5 reveals that
nozzle temperature exerts the most significant
influence on line width, followed by flow rate multiplier.

(a) Discontinuities

(b) Insufficient density

For edge roughness, print speed is the primary factor, in
agreement with SHAP results presented in Figure 6. Both
methods also identify key interactions, such as the
nozzle temperature x flow rate multiplier in RSM and
parameter-dependent nonlinearities in  SHAP. The
minimal impact of layer thickness in both analyses
justifies its exclusion from the optimisation process.

(c) High spreading

Figure 7. Instances of nine distinct printed line shapes obtained under different operational conditions.
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Figure 8. Distribution of the printed line morphology at nozzle temperatures of (a) 230°C, (b) 250°C, (c) 270°C, (d) 290°C, (e) 310°C, and

(f) 320°C.

Overall, the complementary insights from RSM and SHAP
offer a solid foundation for fine-tuning parameters in FDM.

3.2.4. Printed line pattern analysis and process
window optimisation

Images of printed line samples generated through an
LHS experimental design were analysed using a
Matlab® algorithm. Three key metrics of the printed
line quality - the line edge roughness (Rp), line disconti-
nuity (Lgisc), and line density (L:) - were adopted to
analyse the distribution of printed line patterns. Based
on a GMM clustering analysis, as shown in Figure 7,
the printed line morphology can be classified into nine
characteristic types: (a) discontinuities, (b) insufficient
density, (c) high spreading, (d) non-uniform distribution,
(e) high warping, (f) rough surface texture, (g) excessive
voids/bubbles, (h) blocky deposition patterns, and (i)
normal lines. Generally, this quantitative clustering
analysis of the printed line pattern distribution facilitates
the objective differentiation of various printed line pat-
terns and aids in distinguishing normal lines from defec-
tive ones.

Specifically, Figure 8(a—f) illustrates the overall trend of
the printed line morphology distribution obtained
through GMM clustering, revealing significant changes
with an increase in the nozzle temperature. Initially, in
Figure 8(a), the printed lines display a normal line mor-
phology within a stable distribution range, indicating
minimal influence of the print speed. As the nozzle

temperature rises in Figure 8(b,c), the emergence of
rough surface textures and high warping signals a decline
in the printing quality due to alterations in the material
flow properties. In Figure 8(d), excessive voids and
bubbles become prominent alongside high warping,
reflecting the detrimental impacts of elevated tempera-
tures on material consistency. Figure 8(e) highlights the
appearance of non-uniform distributions and irregular
surface textures, emphasising the critical need for precise
temperature management to maintain the printing
quality. Finally, according to Figure 8(f), the morphology
is severely compromised, with widespread defects such
as voids and rough textures dominating the distribution,
underscoring the challenges posed by increased tempera-
tures during the FDM printing process. Overall, the GMM
clustering approach effectively captures these trends, illus-
trating the complex relationship between the main process
parameters and the quality of the printed lines.

To define a reliable operational range within the
design space, the printing quality metric L; was evalu-
ated against a predetermined threshold. Printed lines
in the training dataset were labelled as either normal
or defective based on this threshold. An SVM model
was then trained to identify the decision boundaries of
the optimal operating region. The resulting 2D oper-
ational windows at nozzle temperatures of 230°C, 250°
C, 279°C, and 290°C are shown in Figure 9(a). Addition-
ally, by incorporating more samples across the 3D
design space, the 3D operational window was
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Figure 9. Process parameter optimisation of the line morphology in (a) the 2D and (b) 3D operational domains.

determined, as shown in Figure 9(b). The developed
model achieved a classification accuracy rate of 93.1%,
demonstrating its effectiveness in optimising the inter-
play among the key adjustable process variables
during the fabrication process.

3.2.5. Print speed effects on line defect formation
This study investigates the influence of several key
process parameters on the quality of FDM prints, includ-
ing nozzle temperature, flow rate multiplier, layer thick-
ness, and pressure advance. Among these, print speed
emerges as a particularly critical factor, as it directly
affects the residence time of molten thermoplastic
near the nozzle exit. This, in turn, influences material
deposition rate, cooling behaviour, and interlayer
adhesion. Specifically, a higher print speed reduces the
deposition time per unit length, which may lead to
inadequate bonding and extrusion instability due to
insufficient heating or pressure buildup during extrusion.
These issues can manifest as surface roughness, voids, or
incomplete fusion between layers, ultimately compromis-
ing the overall quality of the printed object.

To quantitatively substantiate this relationship, CCD-
based statistical methods, including ANOVA and RSM,
are employed in this research for a comprehensive
analysis. The results, as shown in Table 3 and
Figure 5(d—f), identify print speed as one of the most sig-
nificant parameters influencing line defects, particularly
under high nozzle temperatures. Furthermore, the
SHAP analysis (Figure 6(b)) quantitatively ranks print
speed as the most influential variable affecting line
edge roughness among all evaluated parameters,
including nozzle temperature and flow rate multiplier.
Additionally, the GMM clustering results reveal that
defect classes, such as ‘discontinuities’ and ‘rough tex-
tures, are more prevalent in high-speed printing

scenarios. To further validate these findings under
varied printing conditions, a series of comprehensive
experiments are conducted across a broad design
space - including print speeds ranging from 60 to 900
mm/min — along with variations in nozzle temperature,
flow rate, and pressure advance. This extensive par-
ameter sweep, detailed in Appendix Figure A1, further
reinforces the conclusion that print speed has a critical
impact on printing quality.

3.3. In-situ anomaly detection of FDM

3.3.1. Line morphology classifier development and
model comparison

In this research, YOLOv5 was implemented using the
official Ultralytics repository for real-time object detection,
while EfficientNet [71] and MobileNetV3 [72] were
deployed using TensorFlow with ImageNet pre-trained
weights as initialisation. All models were trained using a
batch size of 16, the Adam optimiser, and an initial learning
rate of 0.001, with a learning rate scheduler applied to
ensure stable convergence. Moreover, early stopping,
based on validation accuracy, was employed to prevent
overtraining, while dropout layers were integrated into
the EfficientNet and MobileNetV3 models to further miti-
gate overfitting. Input images were resized to 224 x 224
pixels and normalised using the mean and standard devi-
ation computed from the training dataset to ensure con-
sistent and accelerate convergence across models. In
addition, the data augmentation techniques, including
random rotations, translations, scaling, and colour jitter-
ing, were applied to improve model generalisation and
reduce overfitting. These augmentation procedures col-
lectively introduced greater variation into the training
set, enabling the models to learn robust, high-level
representations and improve classification and
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Figure 10. YOLOv5 model development and evaluation: (a) Curves showing the training and testing performance over 100 epochs,
and (b) testing performance evaluation matrix highlighting accuracy across different printed line morphologies.

detection performance on unseen data across various
defect classes.

Generally, the test accuracies achieved by YOLOVS5,
EfficientNet, and MobileNetV3 were 96.3%, 91.5%, and
93.2%, respectively. Although direct comparisons
between models may be challenging due to their
inherent differences, the 96.3% accuracy achieved in
FDM anomaly detection is significant, demonstrating
the potential and effectiveness of YOLO-based methods
in this context. In particular, EfficientNet delivers strong
classification performance through the use of mobile
inverted bottleneck convolution with channel-wise atten-
tion through squeeze-and-excite operations [71], while

.

discontinuous 0.59

. e .
spreading 0.84

MobileNetV3 demonstrated superior modelling perform-
ance owing to its hardware-optimised inverted residual
blocks incorporating spatial and channel attention mech-
anisms [72], which strategically allocate computational
resources to critical features. Conversely, the improved
detection accuracy of YOLOV5 results from its comp-
lementary architectural design: the CSPNets optimises
gradient propagation while reducing computational
redundancy, and the PANet enables robust multi-scale
defect characterisation through bidirectional feature
pyramid fusion [66]. This hierarchical processing allows
YOLOV5 to resolve microscopic texture anomalies and
macroscopic structural defects simultaneously.

[@@] rough | voids and blocky
jsurface 0.781|  bubbles 0.58 | -|deposition 0.82

Figure 11. Progressive abstraction in CNN feature learning. (a1-a6) Original input images of printed lines, extracted features after (b1-
b6) the initial, (c1-c6) the third, and (d1-d6) the final convolutional layer.
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profile (red) across sequential printed lines.

Figure 10(a) illustrates the progression of the training
and testing performance over epochs of the YOLOvV5
model, whereas Figure 10(b) highlights variations in the
test accuracy across different printed line morphologies.
Lines with insufficient densities exhibit superior accuracy,
likely due to their identifiable structural characteristics.
Conversely, a rough surface texture in printed lines com-
plicate recognition, as their ambiguous features reduce
the discriminability of the model.

3.3.2. Feature analysis of the YOLOv5 model

The YOLOv5 architecture employs a hierarchical
feature learning approach, progressively transforming
raw pixel inputs (Figure 11(a)) into increasingly
abstract representations through successive nonlinear
layers. As illustrated in Figure 11, the model begins
with initial layers that preserve structural continuity
(Figure 11(b)), followed by intermediate layers that
focus on detecting orientation-specific edge primitives
(Figure 11(c)), and reaching deep layers that leverage
multi-scale fusion to resolve complex topologies
(Figure 11(d)). This multi-stage processing enables
YOLOVS5 to effectively handle defect patterns by main-
taining sensitivity to subtle variations while capturing
robust representations of canonical patterns. The hier-
archical structure not only ensures the preservation of
fine details in early layers but also facilitates the
detection of intricate structures and complex relation-
ships in deeper layers, making the model highly adept
at understanding and analysing intricate defect patterns.

3.3.3. Abnormality identification and status
evaluation for real-time optimisation

The YOLO classifier was employed to categorise images
of produced line patterns generated during the FDM
process. To introduce variability in the produced line

patterns, main adjustable process variables were
selected randomly during printing, with the resulting
samples recorded using a process camera. To further
ensure the prediction accuracy, Gradient-weighted
Class Activation Mapping (Grad-CAM) [73], along with
a colour bar that associates gradient values with
specific colours in the heat map, was integrated with
YOLO to generate localisation maps that highlight criti-
cal regions within the image. These maps provide an
interpretable form of post-hoc attention, offering valu-
able insights into the model’s decision-making process.
Figure 12(a-j) presents the classification results of the
YOLO model across various printed line characteristics.
Even with background changes, the produced lines
were consistently classified with high accuracy, highlight-
ing the robustness of the developed classifier. The
general performance of the FDM process was derived
from the sequence of classification results. Figure 12(k)
depicts the FDM printing status, which includes cat-
egories such as ‘Rough surface texture,’ ‘Discontinuities,’
‘Non-uniform distribution,” and ‘Blocky deposition pat-
terns, among others. Although occasional misclassifi-
cations occurred, the predicted status profile (blue lines)
closely tracked the true profile (red lines), offering mean-
ingful insights into the evolving dynamics of the FDM
process.

Furthermore, the inherent susceptibilities to process
instability including  thermal-gradient-induced
warping, material shrinkage during cooling, and nozzle
extrusion inconsistencies - can compromise the sustain-
ability of the optimised process parameters. This necessi-
tates additional calibration before subsequent printing.
In such cases, the identified working status can typically
be categorised into one of two different types: normal
status (characterised by uniform line deposition) and
abnormal status (evidenced by irregular line
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Table 4. Basic guidance for online modifications in the FDM process.

Controllable Process Parameters

Detected printing status Nozzle temperature Flow rate Print speed
Discontinuous / / N
Insufficient Density N / N
Excessive spreading N\ N /
Rough surface texture N\ N /
High warping N N 7
Nonuniform distribution N\ N /
Blocky deposition pattern N / N
Excessive voids and bubbles N\ N N\
Normal - - -

morphology). If an anomaly is detected in the status,
real-time modifications to adjustable process variables
(e.g. nozzle temperature, flow rate, and print speed)
can be implemented using the developed process
model. Table 4 shows the basic guidelines for online
modifications in the FDM process, prioritising controlla-
ble variables in descending order of criticality. For
example, if a ‘Blocky deposition pattern’ is determined,
the nozzle temperature should initially be decreased to
reduce material viscosity. Next, the flow rate should be
increased to compensate for potential under-extrusion,
while the print speed is simultaneously decreased to
ensure an adequate material deposition volume on the
substrate.

On the other hand, while the YOLO model achieves
high overall accuracy, it may exhibit conservative mis-
classifications when faced with ambiguous or edge-case
defect patterns. These challenges typically manifest as
confusions with neighbouring classes, indicating a slight
drop in performance rather than a system failure. To
address such scenarios, the system incorporates several
key features: attention maps (Figure 12) visualise the
model’s focus, showing whether uncertain regions are
appropriately weighted during classification; temporal
consistency checks (Figure 12(k)) evaluate defect predic-
tions across frames to suppress transient misclassifications;
and confidence thresholding mechanisms activate
additional review processes for low-confidence detec-
tions. Together, these strategies maintain system stability
during uncertain conditions, with planned enhancements
including training set augmentation with edge-case
samples and the implementation of uncertainty quantifi-
cation metrics to further improve ambiguity handling.

4, Conclusion

This work presents a comprehensive data-driven frame-
work that integrates advanced machine learning, deep
learning, and real-time computer vision to optimise
FDM 3D printing process parameters and enable in-
situ anomaly detection. The framework employs a step-
wise machine learning approach to model and analyse

printed line morphologies, ensuring robust pre-print
parameter optimisation. For real-time monitoring, a
YOLOv5-based object detection model is deployed to
assess the stability of the melt flow and to detect mor-
phological anomalies during fabrication. Validation
experiments demonstrate the effectiveness of this
framework, as it achieves 93.1% accuracy in parameter
optimisation and 96.3% precision in defect classification,
significantly outperforming conventional empirical (i.e.
trial-and-error) and analytical (i.e. simulation-based)
methods. A notable contribution of this work lies in its
seamless combination of GMM-based morphological
classification, SVM-based operational boundary definition,
SHAP interpretability, and YOLO-based real-time detection
capabilities. This multi-layered integration enables both
proactive process planning and reactive correction
within a unified, closed-loop control system.

Future research will focus on further enhancing the
robustness and scalability of the proposed system
across diverse AM environments. Key areas for explora-
tion include: (1) examining varying bed temperatures
to optimise process performance, while validating the
system across different hardware platforms to ensure
real-time applicability; (2) integrating additional
quality indicators into the RSM framework, coupled
with machine learning models for defect-feature
mapping, to improve defect detection and enable
more adaptive control strategies; (3) extending the
optimisation model to incorporate adaptive extrusion
control and advanced slicing algorithms, addressing
challenges in material deposition, layer adhesion, and
complex geometries; (4) exploring the integration of
parameters such as layer thickness and inter-layer
bonding to further optimise process parameters and
enhance material performance; (5) validating the pro-
posed framework across heterogeneous AM platforms
and materials, while leveraging transfer learning tech-
niques to facilitate rapid deployment across diverse
platforms without the need for exhaustive retraining;
and (6) integrating physics-based models with
machine learning approaches to improve model trans-
parency and robustness.



Overall, the proposed methodology advanced FDM
manufacturing by integrating data-driven optimisation,
in-process anomaly detection, and real-time adapta-
bility. Leveraging advanced machine vision and
pattern recognition techniques, it significantly reduces
defects, enhances reliability, and offers robust scalability
across various AM platforms, including inkjet and direct
metal deposition. This approach establishes a strong
foundation for process optimisation across multiple
domains.
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Appendix
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Figure A1. (a) 2D and (b) 3D experimental design based on LHS.

Table A1. The designed experimental points based on CCD.

3104

5]
O
(=]

NO. Nozzle temperature Flow rate multiplier Pressure advance Layer thickness Print speed
1 230 200 2 0.3 60
2 230 200 0 0.1 900
3 230 200 0 0.3 480
4 230 200 0 0.3 900
5 230 50 0 0.3 480
6 230 125 2 0.3 60
7 230 200 0 0.2 60
8 230 50 1 0.1 60
9 230 50 1 0.3 60
10 230 50 0 0.3 900
1 230 200 1 0.3 60
12 230 125 2 0.3 900
13 230 200 2 0.3 900
14 230 200 0 0.2 900
15 230 50 2 0.1 900
16 230 200 2 0.1 480
17 230 200 0 0.1 480
18 230 50 2 0.1 480
19 230 50 2 0.3 60
20 230 50 2 0.3 480
21 230 50 0 0.1 900
22 230 50 0 0.1 60
23 230 125 0 0.1 60
24 230 200 0 0.1 60
25 230 125 1 0.2 480
26 230 125 2 0.1 900
27 230 50 0 0.1 480
28 230 125 0 0.1 900
29 230 50 2 0.1 60
30 230 50 0 0.2 900
31 230 50 0 0.2 60
32 230 200 2 0.2 60
33 230 50 1 0.3 900
34 230 50 2 0.2 60
35 230 125 0 0.3 60
36 230 50 2 0.2 900
37 230 200 1 0.3 900
38 230 200 2 0.2 900
39 230 200 0 0.3 60
40 230 50 2 0.3 900
41 230 125 2 0.1 60

(Continued)
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Table A1. Continued.

NO. Nozzle temperature Flow rate multiplier Pressure advance Layer thickness Print speed
42 230 125 0 0.3 900
43 230 50 0 03 60
44 230 50 1 0.1 900
45 230 200 1 0.1 60
46 230 200 2 0.1 60
47 230 200 1 0.1 900
48 230 200 2 0.3 480
49 230 200 2 0.1 900
50 270 125 1 0.1 480
51 270 50 2 0.3 60
52 270 50 0 0.3 900
53 270 200 2 0.3 900
54 270 200 0 0.3 900
55 270 125 1 0.2 60
56 270 125 2 0.2 480
57 270 200 1 0.2 480
58 270 50 1 0.2 480
59 270 125 1 0.2 900
60 270 50 0 0.1 900
61 270 200 2 0.3 60
62 270 50 2 0.3 900
63 270 50 0 0.3 60
64 270 125 0 0.2 480
65 270 50 0 0.1 60
66 270 200 0 0.1 900
67 270 200 2 0.1 60
68 270 125 1 0.2 480
69 270 200 2 0.1 900
70 270 200 0 0.3 60
71 270 200 0 0.1 60
72 270 50 2 0.1 60
73 270 125 1 03 480
74 270 50 2 0.1 900
75 310 125 2 0.1 900
76 310 200 0 0.1 480
77 310 200 2 0.2 900
78 310 50 0 0.1 60
79 310 200 2 0.3 60
80 310 125 1 0.2 480
81 310 50 2 0.3 900
82 310 200 2 0.1 480
83 310 50 2 0.2 900
84 310 50 0 0.3 480
85 310 50 2 0.1 480
86 310 200 1 0.3 60
87 310 125 2 0.3 900
88 310 200 2 0.2 60
89 310 200 2 0.3 900
90 310 200 1 0.1 900
91 310 200 0 0.3 480
92 310 200 0 0.2 900
93 310 200 0 0.1 900
94 310 50 1 0.1 900
95 310 50 0 0.2 900
96 310 50 2 0.3 60
97 310 50 0 0.1 900
98 310 50 0 0.3 900
99 310 50 0 0.2 60
100 310 50 0 0.3 60
101 310 125 0 0.1 60
102 310 200 2 0.1 60
103 310 200 0 0.3 60
104 310 50 2 0.2 60
105 310 125 0 0.3 900
106 310 125 2 0.1 60
107 310 50 1 0.3 60
108 310 125 2 0.3 60
109 310 200 1 0.3 900
110 310 125 0 0.1 900
m 310 50 2 0.1 900
112 310 50 0 0.1 480

(Continued)
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Table A1. Continued.

NO. Nozzle temperature Flow rate multiplier Pressure advance Layer thickness Print speed
113 310 200 2 0.1 900
114 310 200 2 0.3 480
115 310 50 1 0.3 900
116 310 200 1 0.1 60
117 310 50 2 0.1 60
118 310 200 0 0.3 900
119 310 50 1 0.1 60
120 310 200 0 0.2 60
121 310 50 2 0.3 480
122 310 125 0 0.3 60
123 310 200 0 0.1 60

Table A2. The CCD-derived target responses of FDM.

NO. Printed line width Printed line edge roughness
1 0.916745 0.1785
2 0.924542 0.279
3 0.571676 0.234
4 0.55009 0.2445
5 0.249528 0.174
6 0.485121 0.14685
7 0.769289 0.2145
8 0.474753 0.14835
9 0.220355 0.168
10 0.23288 0.1845
" 0.577559 0.159
12 0.42313 0.2355
13 0.54892 0.2895
14 0.583024 0.2385
15 0.419111 0.2415
16 0.718254 0.2355
17 0.767227 0.1935
18 0.430501 0.1725
19 0.189625 0.1485
20 0.175821 0.1455
21 0.389129 0.234
22 0.463423 0.1425
23 0.612298 0.159
24 0.706434 0.174
25 0.434146 0.1935
26 0.379546 0.2745
27 0.486122 0.168
28 0.310522 0.2475
29 0.420768 0.144
30 0.392354 0.204
31 0.415053 0.1185
32 0.72052 0.198
33 0.257517 0.207
34 0.402268 0.1485
35 0.48683 0.1845
36 0.363514 0.2085
37 0.610578 0.252
38 0.662934 0.2775
39 0.616564 0.2085
40 0.267647 0.204
4 0.547268 0.1845
42 0.452288 0.2745
43 0.263641 0.144
44 0.501546 0.234
45 0.573436 0.2025
46 0.716579 0.198
47 0.463459 0.249
48 0.546267 0.2205
49 0.715071 0.2565
50 1.528952 0.243
51 0.502167 0.1875
52 0.597895 0.2445
53 1316118 0.2895
54 1.300706 0.2565
55 1.157656 0.2355

(Continued)
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Table A2. Continued.

NO. Printed line width Printed line edge roughness
56 1.315482 0.2385
57 1.364491 0.243
58 0.727428 0.174
59 1.095085 0.2865
60 1.016429 0.2475
61 1321678 0.2355
62 0.562865 0.2475
63 0.570853 0.189
64 1.137866 0.219
65 1.026661 0.1875
66 1.58994 0.2745
67 1.593911 0.231
68 1.091217 0.219
69 1.457779 0.2955
70 1.197111 0.2385
71 1.521596 0.2085
72 0.928766 0.1935
73 0.870144 0.2415
74 0.873057 0.2145
75 1.13601 0.234
76 1.182443 0.219
77 1.484213 0.2685
78 0.853413 0.2115
79 131193 0.2535
80 1.302769 0.2355
81 0.736194 0.234
82 1.234613 0.219
83 0.912173 0.2115
84 0.6906 0.1815
85 1.018778 0.204
86 1.328445 0.2475
87 1.107649 0.237
88 1.579575 0.2535
89 1.358664 0.2415
920 1.736417 0.2385
91 1.341646 0.237
92 1.391095 0.2655
93 1.554903 0.261
94 1.12894 0.2085
95 0.703566 0.2115
96 0.687577 0.2175
97 1.059954 0.234
98 0.496604 0.2355
29 0.569003 0.213
100 0.69512 0.1875
101 0.969812 0.2145
102 1.185984 0.2235
103 1.323643 0.2265
104 0.921788 0.2145
105 1.091977 0.228
106 1.412359 0.2505
107 0.816379 0.2235
108 0.845687 0.2475
109 1.238607 0.2535
110 1.181194 0.258
m 0.725585 0.2115
112 0.69421 0.2025
113 1.416503 0.2685
114 1.070439 0.228
115 0.44891 0.228
116 1.578102 0.2415
17 1.070553 0.213
118 1.209513 0.237
119 0.877836 0.2025
120 1.267229 0.2445
121 0.502593 0.2025
122 0.792841 0.2235

123 1.392783 0.2415
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