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ABSTRACT
Tropical cyclones (TCs) are destructive meteorological phenomena, necessitating accurate pre-
dictions of TC track and intensity to reduce risks to human life. This study evaluates three
Transformer-basedmodels – vanilla Transformer (Transformer), inverted Transformer (iTransformer),
and temporal-variate Transformer (TVFormer) – which are trained, validated, and testedonbest track
data from 1980 to 2021 from the China Meteorological Administration for TC prediction, integrating
temporal, variate, and hybrid token embeddings to analyze temporal and variate correlations. Com-
parative analysis with four recurrent neural network (RNN) models demonstrates the superiority of
the refinedTransformermodels over RNNs: iTransformer reducesmeanabsoluteerror (MAE) and root
mean square error (RMSE) by 29.55% and 25.80% (latitude), 50.31% and 46.18% (longitude), 8.71%
and 9.98% (pressure), and 8.68% and 9.45% (wind speed), while TVFormer achieves MAE and RMSE
reductions of 13.98% and 13.84% (latitude), 39.11% and 38.02% (longitude), 13.69% and 14.02%
(pressure), and 12.84% and 12.94% (wind speed) on average. Among Transformer variants, iTrans-
former excels in track prediction, outperforming Transformer with 21.74% lower MAE and 18.26%
lower RMSE for latitude, and 32.73% lower MAE and 24.01% lower RMSE for longitude. TVFormer
dominates intensity prediction, reducingpressure errors by 4.42% (MAE) and 3.92% (RMSE) andwind
speed errors by 19.21% (MAE) and 14.79% (RMSE) compared to Transformer, while outperforming
iTransformer with 4.59% lower MAE and 3.68% lower RMSE for pressure and 3.83% lower MAE and
3.18% lower RMSE for wind speed. Notably, TVFormer also enhances track prediction, with 7.10%
reduction inMAEand7.02% reduction in RMSE for latitude, and22.84% reduction inMAEand17.09%
reduction in RMSE for longitude compared to Transformer. These results highlight the superiority of
iTransformer in track prediction and the efficacy of TVFormer in intensity prediction, thanks to their
ability to exploit temporal and variate dependencies, offering potential for TC disaster preparedness
systems.
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1. Introduction

Tropical cyclones (TCs) are among the most intense nat-
ural hazards, capable of causing significant devastation
to human life, property, and infrastructure. As a result,
understanding the track and intensity of TCs is essential
as it provides valuable information for various applica-
tions. For instance, the design and safety assessment of
offshore equipment and infrastructure (Fang et al., 2022;
Ju et al., 2021; Zeng et al., 2021), as well as the readi-
ness and survivability assessment of road networks (Hu
et al., 2021; Yang et al., 2016) and buildings (Sampson
et al., 2012) in coastal cities, rely on accurate TC track
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and intensity data. On the other hand, the key compo-
nent of TC early warning systems is the TC prediction
results, whose prediction accuracy and inference speed
directly affect the effectiveness of early warning systems
(Kuleshov et al., 2020; Mandal et al., 2020; Wang et al.,
2020). Consequently, rapid and accurate prediction of the
track and intensity of TCs is essential to the operational
meteorological framework.

There are three main methods for TC prediction:
statistical, dynamical, and statistical-dynamical meth-
ods (Roy & Kovordányi, 2012). Statistical methods
use regression models to establish correlations between
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various indicators from different datasets and the track
and intensity of TCs. In contrast, the dynamical meth-
ods, also known as numerical predictions and akin to
computational fluid dynamics (Chen, Han, et al., 2023;
Huo et al., 2023), focus on solving partial differential
equations (PDEs) that govern atmospheric circulation. In
addition, the statistical-dynamical methods combine sta-
tistical and dynamical methods to predict the track and
intensity of TCs. Each of these methods has its own mer-
its and demerits. Fast inference speed is the major advan-
tage of the statistical methods, but regression models
may be unreliable when predicting TC-related variables
with high randomness and variability. The dynamical
methods have the potential to be more accurate but are
computationally expensive and require extensive exper-
tise in setting their parameters. The advantages and dis-
advantages of both statistical and dynamical methods
are inherent in the statistical-dynamical methods (Tal-
lapragada et al., 2016). Therefore, it is crucial to find a
balance between prediction accuracy and computational
cost to provide information on TC tracks and intensi-
ties for the above assessments. Recent advances in deep
learning (DL) have improved many industries, including
transportation, biotechnology, finance, etc. (LeCun et al.,
2015). DL-based models have demonstrated inference
speeds several orders of magnitude faster than dynam-
ical models for weather forecasting and TC predictions
(Bi et al., 2023; Chen, Guo, et al., 2023; Chen, Zhong,
et al., 2023). In addition, extensive evaluations and exper-
iments have shown that DL-based models outperform
traditional statistical and dynamical models in terms of
the performance of track predictions (Charlton-Perez
et al., 2024; Liu, Hsu, et al., 2024) and intensity pre-
dictions (Ma et al., 2023; Meng et al., 2023). Therefore,
DL holds promise for fast and accurate TC prediction,
which is challenging to achieve with the aforementioned
methods (Wang & Li, 2023).

Applying DL to the TC prediction task allows the use
of a wide variety of datasets, including best track data,
reanalysis data, and satellite data. The best track data in
these datasets includes both track and intensity informa-
tion of each TC, making it a straightforward choice for
building DL models. A popular model for TC track and
intensity prediction using DL and the best track data is
recurrent neural networks (RNNs). The reason is that
RNN-based models, such as long short-term memory
(LSTM) and gated recurrent unit (GRU), are specifi-
cally configured to handle sequence-to-sequence tasks.
For example, some studies adopted RNN to forecast TC
intensity (Pan et al., 2019), while others used LSTM and
GRU to forecast TC track due to their strong ability
in representing temporal correlations (Gan et al., 2024;
Hao et al., 2024; Lian et al., 2020; Qin et al., 2021). The

track and intensity of TCs can also be predicted using
improved RNN-basedmodels such as bidirectional gated
recurrent unit (BiGRU) and convolutional long short-
term memory (ConvLSTM), which have been proposed
to enhance the prediction performance of RNN-based
models (Song et al., 2022; Tong et al., 2022). In addi-
tion to RNN-based models, Transformer is another DL
model for processing time series data (Vaswani, 2017).
With its powerful parallelisation capability and capac-
ity to represent the whole receptive field of series data,
Transformer has found widespread applications beyond
its original field of natural language processing, including
computer vision, speech recognition, bioinformatics, etc.
(Yenduri et al., 2024). Transformer is also suited for TC
track and intensity prediction. For instance, the vanilla
Transformerwas used to predict the track and intensity of
TCs occurring in the Northwest Pacific (Gan et al., 2024;
Jiang et al., 2023). In contrast to the predictions made
using RNN-based models, the use of Transformer in TC
track and intensity prediction is still in its early stage, and
therefore,more research on the use of Transformer-based
models is needed.

The aforementioned works rely on direct applications
of the vanilla Transformer (Gan et al., 2024; Jiang et al.,
2023); these models employ the self-attention mecha-
nism to depict temporal correlations, which are deter-
mined by embedding different variables at the same
time step into temporal tokens. Nonetheless, recent
studies have also shown the correlation and interac-
tion between the track, intensity and structure, which
is important because TCs are the result of chaotic evo-
lutionary dynamics (Chavas et al., 2017; Jiang et al.,
2023; Qin et al., 2021; Yenduri et al., 2024). Further-
more, there is usually a significant correlation between
the minimum pressure and the mean maximum sus-
tained wind speed, which are two main interchange-
able measures of TC intensity (Chavas et al., 2017; Zhao
et al., 2024). Thus, these embeddings in vanilla Trans-
former may downplay the significance of the correla-
tions between track and intensity as well as the corre-
lations between variables indicating TC intensity, both
of which are essential in addition to the temporal corre-
lations. In contrast, variate tokens enable Transformer-
based models to effectively capture the wind-pressure
relationship and track-intensity interaction. Therefore,
integrating variate tokens into models has great poten-
tial to interpret such interactions and relationships while
improving model performance. Consequently, it is criti-
cal to investigate the significance of variate correlations in
Transformer-based models and their impact on predic-
tion outcomes. Advancements in time series forecasting
using Transformer-basedmodels have led to the incorpo-
ration of variate tokens or sub-series patches of various
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Figure 1. Framework of the proposed study.

variables to account for the significance of variate cor-
relations. Notable examples are the patch time series
Transformer (PatchTST) and the inverted Transformer
(iTransformer), which both perform well at capturing
variate correlations and extending the look-back window
of time series data (Liu, Tan, et al., 2024; Nie et al., 2023).
However, unlike models that rely solely only on tem-
poral tokens, the utility of Transformer-based models
that employ different embeddings to predict TC tracks
and intensities remains understudied. In view of this,
this paper constructs three Transformer-basedmodels by
using the best track data provided by the China Mete-
orological Administration (CMA) to study the impact
of token embeddings on TC track and intensity predic-
tion, given that one-third of TCs occur in the Northwest
Pacific (Chan, 2005). This study focuses on exploring the
impact of two types of token embeddings, namely tem-
poral tokens and variate tokens, on the prediction of TC
tracks and intensities. In addition, a newmodel that inte-
grates temporal and variate correlations is proposed to
evaluate prediction performance.

This study will be presented following the frame-
work shown in Figure 1. Section 2 introduces three
Transformer-based models, namely, the vanilla Trans-
former, the iTransformer, and the temporal-variate
Transformer (TVFormer) proposed in this study, as well
as the data used. Section 3 presents the results obtained
by the three models, which are then examined and com-
pared in terms of prediction accuracy of TC tracks and
intensities. Finally, Section 4 provides a summary of the
study.

2. Methodology

2.1. Data source and processing

2.1.1. Data source
The data used in this study is the best track dataset pro-
vided by CMA (tcdata.typhoon.org.cn) (Lu et al., 2021;
Ying et al., 2014). With an emphasis on TCs in the
Northwest Pacific region, the entire best track dataset
covers the years 1949–2023. The dataset includes the
track (characterised by the latitude and longitude of the
TC centre as shown in Figure 2) and intensity informa-
tion (defined by the minimum pressure and 2-minute
mean maximum sustained wind speed near the TC cen-
tre). The international ID, name, and intensity category
of TCs are also provided. The dataset primarily uses a 6-
hour temporal resolution and encrypts TC records every
three hours starting from 2017. This study selects the
dataset from 1980 to 2021 because 1980 is widely recog-
nised as the inception of current satellite technology for
TC information collection, which helps to improve the
accuracy and reliability of the dataset.

2.1.2. Data processing
The dataset is divided into three parts: training set, vali-
dation set, and test set, which are used for model train-
ing and evaluation. In this study, the longitude, lati-
tude, minimum pressure, and 2-minute mean maximum
sustained wind speed near the centre of TCs for the
years 1980–2013, 2014–2017, and 2018–2021 have been
selected as the training set, validation set, and test set,
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Figure 2. TCs recorded by the best track data from CMA.

Table 1. Summary of the training, validation and test sets.

Dataset Period
Number
of TCs

Number of
records Ratio

Training set 1980–2013 873 26821 79.22%
Validation set 2014–2017 103 3347 9.89%
Test set 2018–2021 103 3689 10.90%
Total 1980–2021 1079 33857 100.00%

respectively. The details are given in Table 1. The ratio
of the training set, validation set, and test set is approxi-
mately 8:1:1, which is a commonly used data partitioning
ratio, and the number of TC records is comparable to that
used in TC prediction-related studies (Gan et al., 2024;
Jiang et al., 2023; Tong et al., 2022).

TCs labelled ‘nameless’ are excluded because theywere
not fully developed or matured, and they are of much
shorter duration compared to other TCs. This removal
is justified and can contribute positively to maintaining
data quality. When multiple 2-minute mean sustained
winds are present in the best track data, only the 2-minute
mean maximum sustained wind speed near the TC cen-
tre is used to ensure data consistency. The 2-minutemean
sustained winds associated with coastal severe winds of
landfalling TCs and those within a radius of approx-
imately 300–500 km from the TCs are excluded. The
temporal resolution is set to 6 hours, which means that
only data from 00:00 UTC, 06:00 UTC, 12:00 UTC, and
18:00 UTC are used. Data from 03:00 UTC, 09:00 UTC,
15:00 UTC, and 21:00 UTC since 2017 are not included
in the analysis. This study relies on the high-quality data
provided by CMA and does not employ any additional
data processing techniques to deal with the default values.
Our study involves training models for feature evolution,
which is expressed as,

�xt,j = xt,j − xt−1,j (1)

where xt+1,j and xt,j denote the values of feature j at the
time steps t+ 1 and t, respectively. In order to reduce
the computational cost and improve the convergence of
the training process, the following data normalisation is
adopted,

�xnt,j = �xt,j − �xj,min

�xj,max − �xj,min
(2)

where�xnt,j and�xt,j represent the normalised and origi-
nal first order difference of feature j at time step t, respec-
tively. By implementing this normalisation, the data is
adjusted to fit into the range of [0, 1]. De-normalisation
is then performed during the inference stage.

2.2. Problem statement and preliminary

In this study, the short-term prediction of TCs depends
on features for both input and output of themodel. These
features include the track represented by latitude and lon-
gitude aswell as intensity, which encompasseswind speed
and pressure. Consider the time series features �X =
{�X1, �X2, . . . , �Xt} ∈ R

T×C, where C denotes the
number of features. The features from the preceding h
time steps �Xt−h+1:t serve as input, while the features
from the subsequent p time steps �Xt+1:t+p function as
output. The task of this study can be generalised as,

�Xt+1:t+p = f (�Xt−h+1:t) (3)

where f (·) denotes the model to be trained. TC track
and intensity predictions can be framed as a sequence-
to-sequence prediction task. Consequently, RNN-based
models such as LSTM, GRU, and BiGRU are com-
monly employed due to their ability to capture tem-
poral dependencies (Gan et al., 2024; Pan et al., 2019;
Qin et al., 2021; Song et al., 2022). In addition, some
studies explored predictions using convolutional neu-
ral network (CNN)-based models (Tong et al., 2022)
or CNN-RNN hybrid approaches (Tong et al., 2022)
from the perspective of receptive field. These investiga-
tions primarily focused on the recurrent processing of
TC information. In contrast, Transformer-based models
excel at capturing global dependencies and are increas-
ingly becoming the backbone of modern weather fore-
casting models (Bi et al., 2023; Chen, Guo, et al., 2023;
Chen, Zhong, et al., 2023). Therefore, exploring the appli-
cation of Transformer-based models for predicting TC
track and intensity is a promising area. When develop-
ing a Transformer-based model for short-term forecast-
ing, the first step involves embedding multivariate data
into tokens. This study investigates two different kinds
of tokens, namely, temporal tokens and variate tokens, as
illustrated in Figure 3, which represent different embed-
dings. In the vanilla Transformer model, the variables
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Figure 3. Illustration of token embeddings: (a) temporal tokens; (b) variate tokens.

at each time step are fused to create temporal tokens,
resulting in an attention map that illustrates the cor-
relation among various temporal tokens (Figure 3(a)).
Conversely, an inverted embedding way, which incorpo-
rates each variable at whole time steps as variate tokens,
has been introduced to tackle the correlation among dif-
ferent variables (Figure 3(b)) (Liu, Hu, et al., 2024; Nie
et al., 2023). These two embeddings can be expressed as,

H = Embedding(�Xt−h+1:t) (4)

In the above, H represents the latent space following the
token embedding process, with temporal tokens denoted
asHT ∈ R

h×d and variate tokens denoted asHV ∈ R
C×d;

d refers to the channels of latent space. These two kinds
of tokens are investigated in this study due to three main
reasons: First, the track and intensity of TCs are dis-
tinct variables obtained from various measurements or
analysis/reanalysis methods, indicating that they convey
different physical interpretations. Embedding these vari-
ables which carry distinct meanings into fused but indis-
tinguishable channels may lead to unreasonable results
and may hinder model performance. Second, as illus-
trated in Figure 2, TCs recorded by the CMA show
two predominant track directions: westward-moving and
eastward-moving (Luo et al., 2022; Qin et al., 2023).
This directional tend is affected by multiple factors such
as atmospheric circulation and geographical character-
istics (Luo et al., 2022; Qin et al., 2023). Figure 4 gives
examples of westward – and eastward-moving TC cen-
tres, indicating that the first-order differences in lati-
tude and longitude can be summarised as an increase

in latitude and a decrease in longitude, or an increase
in both latitude and longitude. The correlation between
variate tokens may effectively capture this variation pat-
tern. Furthermore, the two variables representing TC
intensity – wind speed and pressure – show strong cor-
relation, as illustrated in Figure 4. The two variables
exhibit an inverse relationship: a decrease in pressure
corresponds to an increase in wind speed, highlighting
the importance of employing variate tokens to analyze
these correlations. Finally, TC track, intensity and struc-
ture can be correlated and interact with each other (Tan
et al., 2022); therefore, relying solely on temporal correla-
tionsmay face challenges in capturing track and intensity
changes.

This studywill employ threemodels: the vanilla Trans-
former, iTransformer, and TVFormer to facilitate the
prediction of short-term track and intensity of TCs.
Temporal tokens, variate tokens, and a combination of
them will be utilised in the three models, which will
be described in the next subsection, to explore the
impact of different token embeddings on prediction
performance.

2.3. Architecture of Transformer-basedmodels

2.3.1. Architecture of vanilla Transformer
Vanilla Transformer is commonly used in time series
forecasting due to its superior performance in paral-
lel computation compared to RNN-based models. As
shown in Figure 5, the architecture of a vanilla Trans-
former includes token embeddings, position encoding,
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Figure 4. Illustration of interaction between TC track and intensity.

Figure 5. Overview of architecture of vanilla Transformer.

encoder blocks, and decoder blocks. This study specif-
ically focuses on token embeddings; as mentioned ear-
lier, the generation of temporal tokens occurs after
token embedding in the vanilla Transformer. The tem-
poral tokens are then further processed by adding
position encoding. The resulting embedding, ET , is as
follows,

ET = HT + PE(�Xt−h+1:t) (5)

where PE(·) stands for position encoding. This study
adopts the typical sinusoidal position encoding approach
(Vaswani, 2017) where embeddings are used to compute
the attention map, and employs the salient innovation of
self-attention in the following manner,

Attention(QT ,KT ,VT) = softmax
(
QTKT

T
√
dk

)
VT (6)

⎧⎪⎨
⎪⎩
QT = ETW

Q
T

KT = ETWK
T

VT = ETWV
T

(7)

whereQT ,KT , andVT represent the query, key, and value,
respectively, which can be derived from the embedded
latent space through linear weighting parameters W(·)

T .
The attention map is obtained by calculating the dot
product of QT and the transposed KT , followed by scal-
ing it by a factor of 1/

√
dk. Moreover, the computation

of multi-head attention significantly improves computa-
tional efficiency. The self-attention is computed for each
head, representing a subspace of feature representations,
and is ultimately concatenated and linearly projected to
produce the final attention map. The attention mecha-
nism allows to represent similarities between the embed-
ded latent spaces across various time steps. Consequently,
the Transformer employs an attention mechanism to
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Figure 6. Overview of the architecture of iTransformer.

assess the correlations of embeddings ET ∈ R
h×d. The

resulting attention map AT ∈ R
h×h×d is thus primarily

concentrated on the temporal dependency.
The encoder block and decoder block share simi-

lar layers; however, there are two significant distinc-
tions between them. The first is that each decoder layer
includes two self-attention computations, while each
encoder layer only performs it once. The second is that
the sequence length after token embedding and posi-
tion encoding provides the input to the encoder for
self-attention calculation, while length of the prediction
and label serve as the input to the decoder for masked
self-attention computation.

2.3.2. Architecture of iTransformer
iTransformer is an innovative model that aims to address
the limitations of the vanilla Transformer in time series
forecasting tasks. It demonstrates superior performance
compared to other Transformer-based models on public
benchmark datasets (Liu, Hu, et al., 2024). Figure 6 illus-
trates the architecture of iTransformer, indicating that its
components are the same as those in the vanilla Trans-
former. In iTransformer, since the token embeddings are
processed along the temporal dimension while main-
taining the distinguishability of the variate dimension,
the position encoding is not necessarily required. The

attention map can be computed using the self-attention
mechanism with the generated variate tokens as follows.

Attention(QV ,KV ,VV) = softmax
(
QVKV

T
√
dk

)
VV (8)

⎧⎪⎨
⎪⎩
QV = HVW

Q
V

KV = HVWK
V

VV = HVWV
V

(9)

where QV , KV , and VV denote the query, key, and value,
respectively, which are obtained from the variate tokens
via the linear weight parametersW(·)

T . The self-attention
mechanism produces an attention map AV ∈ R

C×C×d,
which can subsequently be used to interact with VV ,
allowing greater weights to be assigned to paired vari-
ables that exhibit higher correlation. The focus of the
attentionmechanism in iTransformer is to capturemulti-
variate correlations rather than the temporal correlations
typically found in the vanilla Transformer.

It is worth noting that after the computation of self-
attention, applying add-and-norm, and passing through
feedforward networks, the dimension of the output
encoder block, OV ∈ R

C×d, remains the same as the
dimension of the variate tokens. A linear projection is
then used to directly map this output to the desired
prediction P ∈ R

C×p, which eliminates the need for a
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Figure 7. Overview of architecture of TVFormer.

decoder block in the vanilla Transformer within the
iTransformer. The rationale is that iTransformer main-
tains the variate dimension unchanged to underscore
the multivariate correlation, which is already captured
by the attention map derived from historical data. If the
same decoder architecture of the vanilla Transformer
is used, no additional multivariate information will be
acquired. Additionally, the temporal dimension in the
vanilla Transformer is preserved since it is essential for
computing the attention map required to generate the
target prediction. In contrast, the temporal dimension
in iTransformer is integrated and assembled, allowing
for a direct mapping of the final prediction length. If
the same decoder architecture as the vanilla Transformer
is used, the temporal dimension of the decoder input
remains embedded, resulting in no distinction compared
to directly mapping the encoder output. Consequently,
direct projection is sufficient and can simplify the model,
thus reducing the computational cost.

2.3.3. Architecture of TVFormer
The aforementioned vanilla Transformer and iTrans-
former focus on self-attention computations utilising
only temporal tokens and variate tokens, respectively.
Inspired by hybrid convolutional attention modules such
as the Convolutional Block Attention Module (CBAM)
(Woo et al., 2018), in this study, a Transformer-based

model that integrates dual attention calculations using
both temporal and variate tokens and draws, named
TVFormer, is proposed to predict the track and inten-
sity of TCs. As shown in Figure 7, the core concept of
the proposed TVFormer involves generating temporal
tokens to compute attention, and then deriving vari-
ate tokens from the above to perform a second atten-
tion computation. This two-step process aims to effec-
tively capture both temporal correlations and variate
correlations. Specifically, the latent space is obtained
using the procedure described in Equation (5), fol-
lowed by attention computation using Equations (6) and
(7). The resulting output, OT ∈ R

h×d, is first embedded
as follows,

HR = Embedding(OT) (10)

The embedded features HR ∈ R
h×C can then be used to

generate variate tokens. Attention is subsequently com-
puted using Equations (8) and (9), and prediction is
achieved via projection, which is the same as used in
iTransformer. This process illustrates that the interim
features HR encapsulate information regarding tempo-
ral correlations, while the attention computation with
variate tokens ensures the effective representation ofmul-
tivariate correlations.
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2.4. Evaluationmetrics

The prediction results are evaluated using three met-
rics: mean absolute error (MAE), root mean square error
(RMSE), and R2 score, using the following formulas:

MAE = 1
n

n∑
i=1

|yi − ŷi| (11)

RMSE =
√√√√1

n

n∑
i=1

(yi − ŷi)2 (12)

R2 = 1 −
∑n

i=1 (yi − ŷi)2∑n
i=1 (yi − yi)2

(13)

where yi, ŷi, and yi denote the target values, predicted
values, and mean value of the variable i, respectively; n
represents the total number of values associated with the
variable i. Lower MAE and RMSE and higher R2 scores
indicate better model performance.

2.5. Experimental setup

In this study, two RNN-based models – LSTM and GRU
– along with their improved versions, ConvLSTM and
BiGRU, are employed to compare their prediction per-
formance with the Transformer-based models. Hyperpa-
rameters are set according to the commonly used set-
tings in previous studies (Gan et al., 2024; Hao et al.,
2024; Meng & Song, 2024; Song et al., 2022; Tong et al.,
2022) and refined by the authors through grid search. The
sequence length is configured to 32 (Jiang et al., 2023),
and the label and prediction lengths are set in a 1:1 ratio.
Anunfixed timewindow is adopted, theminimum length
of the input sequence is set to 7, and necessary padding is
used to ensure the required length. The hidden layer size
of the RNN-basedmodels is set to 128. The Transformer-
basedmodels each consist of two encoder blocks and one
decoder block, featuring 8 attention heads and a dropout
rate of 0.1. The dimensions of the latent space and feed-
forward networks are set to 512 and 2048, respectively.
The batch size for all models is 32, and the learning rate
is set to 0.001. The number of training epochs is set
high, three trials are conducted for each model, and an
early stopping criterion is implemented. The best mod-
els, determined by the lowest validation loss, are selected
for performance evaluation. The activation function used
is GELU, and the Adam optimiser is adopted. Training is
performed on a platform equipped with 64 GB of RAM
and a single RTX 6000 Ada 48 GB GPU, using Python
3.10 and PyTorch 2.1.0 for programming and training.

3. Results and discussion

3.1. Comparisonwith LSTM andGRU

Table 2 compares the prediction performance of the
RNN-based models and the Transformer-based models,
where the predictions with the smallest errors are under-
lined (for the sake of brevity, the term ‘vanilla Trans-
former’ is shortened to ‘Transformer’ hereafter). It is evi-
dent that among the RNN-based models studied, GRU
outperforms LSTM in predicting track and intensity;
this conclusion is consistent with previous studies (Jiang
et al., 2023; Song et al., 2022). Meanwhile, when it comes
to the Transformer-based models studied, iTransformer
and TVFormer emerge as the frontrunners in terms of
track prediction and intensity prediction, respectively.
The performance of these two models surpasses that of
Transformer, GRU, and LSTM, further demonstrating
the potential of Transformer-based models in predicting
the short-term track and intensity of TCs. However, it is
worth noting that although Transformer provides more
accurate prediction than LSTM, it does not consistently
outperform GRU, especially in terms of wind speed and
24-hour track forecasts.

In addition, two more models, ConvLSTM and
BiGRU, are selected as baselines for the improved LSTM
and GRU. ConvLSTM demonstrates an improvement
over LSTM, while BiGRU shows higher performance
than GRU, which is consistent with previous research
results (Song et al., 2022; Tong et al., 2022). It is alsoworth
noting that the Transformer models generally have lower
prediction accuracy for track and wind speed compared
to ConvLSTM and BiGRU. However, overall, iTrans-
former and TVFormer tend to provide more accurate
TC track and intensity forecasts compared to ConvL-
STM and BiGRU, except for the 6-hour intensity forecast
of iTransformer. This suggests that while the attention
mechanism in Transformer has improved model per-
formance in track and intensity prediction, the results
indicate that temporal tokens may not be the most effec-
tive choice for applying the attentionmechanism in these
predictions. This finding highlights the need to study
the impact of different token embeddings on the perfor-
mance of Transformer-based models.

3.2. Prediction performance of Transformer-based
models

3.2.1. Track prediction
The track predictions obtained from the three Trans-
former-based models for 6-hour, 12-hour, 18-hour, and
24-hour lead times are illustrated in Figures 8–11, respec-
tively. Overall, the predictions are effective with the pre-
dicted track points fluctuating closely around the true
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Table 2. Comparison of prediction accuracy using RNN-based models and Transformer-based models. The smallest errors for each lead
time are underlined.

Latitude (°N) Longitude (°E) Pressure (hPa) Wind Speed (m/s)

Lead Times Models MAE RMSE MAE RMSE MAE RMSE MAE RMSE

6-h LSTM 0.51 0.66 0.90 1.25 3.31 5.39 1.93 2.99
ConvLSTM 0.39 0.51 0.42 0.59 2.92 4.31 1.70 2.40

GRU 0.41 0.56 0.55 0.80 3.23 4.77 1.90 2.65
BiGRU 0.37 0.49 0.39 0.56 2.94 4.40 1.73 2.43

Transformer 0.38 0.50 0.50 0.69 2.91 4.34 1.90 2.60
iTransformer 0.29 0.38 0.33 0.49 2.93 4.33 1.73 2.40
TVFormer 0.37 0.48 0.39 0.57 2.81 4.23 1.68 2.35

12-h LSTM 1.00 1.30 1.81 2.50 6.28 9.46 3.69 5.28
ConvLSTM 0.79 1.04 0.87 1.24 5.14 7.45 2.95 4.17

GRU 0.80 1.07 1.06 1.53 5.61 8.08 3.26 4.51
BiGRU 0.75 1.00 0.82 1.16 5.28 7.70 3.02 4.24

Transformer 0.76 1.01 0.99 1.35 5.13 7.46 3.39 4.58
iTransformer 0.60 0.81 0.70 1.03 5.13 7.44 2.96 4.16
TVFormer 0.69 0.92 0.80 1.14 4.90 7.19 2.86 4.04

18-h LSTM 1.49 1.92 2.74 3.77 8.89 13.03 5.26 7.31
ConvLSTM 1.21 1.59 1.37 1.96 7.33 10.40 4.19 5.82

GRU 1.16 1.56 1.53 2.20 7.68 10.87 4.46 6.10
BiGRU 1.15 1.53 1.29 1.84 7.71 10.85 4.34 5.95

Transformer 1.17 1.55 1.51 2.05 7.23 10.28 4.81 6.42
iTransformer 0.96 1.31 1.15 1.66 7.24 10.23 4.19 5.75
TVFormer 1.10 1.45 1.24 1.75 6.94 9.87 4.02 5.55

24-h LSTM 1.96 2.53 3.69 5.07 11.14 16.09 6.61 9.08
ConvLSTM 1.64 2.16 1.92 2.74 9.24 12.92 5.29 7.28

GRU 1.49 2.01 1.97 2.81 9.39 13.18 5.47 7.42
BiGRU 1.57 2.09 1.82 2.60 9.96 13.66 5.54 7.48

Transformer 1.61 2.12 2.11 2.83 9.08 12.68 6.10 8.06
iTransformer 1.37 1.88 1.67 2.40 9.09 12.68 5.23 7.13
TVFormer 1.50 1.99 1.73 2.45 8.67 12.16 5.03 6.90

values. Notably, for the 24-hour lead time track predic-
tion, the R2 values of the predicted tracks from all three
Transformer-basedmodels exceed 0.96, indicating strong
prediction capability. In addition to MAE and RMSE,
the R2 values also demonstrate that iTransformer pro-
vides the highest prediction accuracy for all examined
lead times, followed by TVFormer, while Transformer
ranks last. Regarding the prediction accuracy of latitude
and longitude, it is observed that the predicted longi-
tude consistently exhibits larger errors than latitude in all
four lead times. This observation could be explained by
the spatial distribution of tracks illustrated in Figure 2,
which shows that the variations in longitude, specifically
from 100°E to 180°, are more pronounced than those
in latitude, ranging from 0° to 60°N. Moreover, as illus-
trated in Figure 4, the variations in latitude are mainly
positive, indicating that the TCs tend to move north-
ward in the latitude dimension. The change in longitude
can be either positive or negative, indicating that the
TCs can move westward or eastward along the longi-
tude dimension. Consequently, changes in longitude are
more pronounced than in latitude, regardless of magni-
tude or direction. As a result, the models may struggle to
capture these larger changes, resulting in larger errors in
longitude prediction.

In the scenario of 6-hour lead time track prediction,
the latitude predictions generated by iTransformer are
significantly better than those generated by Transformer

and TVFormer. The MAE of iTransformer is 24%
and 22% smaller than the MAEs of Transformer and
TVFormer, respectively. Moreover, the predicted longi-
tude of iTransformer and TVFormer significantly out-
performs the predicted latitude of Transformer, with the
MAEs of iTransformer and TVFormer being 34% and
15% smaller than that of Transformer, respectively.When
the lead time for prediction increases from 6 hours to 12,
18, and 24 hours, similar trends can be observed. The
predicted latitude of TVFormer is comparable to that of
Transformer with TVFormer performing slightly better,
while iTransformer provides much better performance.
In terms of longitude prediction, TVFormer is close to
iTransformer with iTransformer slightly outperforming
TVFormer, while Transformer has the lowest perfor-
mance among the three models. It is worth noting that
prediction error increases with the increase of lead time
due to error accumulation, which is a common challenge
in time series prediction tasks. Specifically, when the lead
time changes from 6 hours to 24 hours, the latitude MAE
increases by 1.23°, 1.08°, and 1.13°, respectively, while
the latitude RMSE increases by 1.62°, 1.50°, and 1.51°
for Transformer, iTransformer, and TVFormer. Mean-
while, the longitude MAE increases by 1.61°, 1.34°, and
1.34°, respectively, while the longitude RMSE increases
by 2.14°, 1.91°, and 1.88° for the same models over the
same lead time interval. The statistical confidence inter-
vals of the three metrics are also shown in Figures 8–11.
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Figure 8. Scatter plots of 6-h track and intensity predictions using three Transformer-based models.

It is noteworthy that the track prediction intervals of
iTransformer are similar at a lead time of 6 hours, and as
the lead time increases, its intervals are smaller than those
of the other two Transformer-based models, indicating

that iTransformer has strong prediction capabilities with
low uncertainty. However, similar to the error accumu-
lation observed in MAE, RMSE, and R2, the intervals
for all three Transformer-based models also expand with



12 Y. J. ZENG ET AL.

Figure 9. Scatter plots of 12-h track and intensity predictions using three Transformer-based models.

increasing lead time. This limitation has been pointed out
in related evaluations (Gan et al., 2024; Jiang et al., 2023;
Song et al., 2022).

The superior results achieved by iTransformer show
that using variate tokens for attention computation can
effectively capture the multivariate correlations implicit
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Figure 10. Scatter plots of 18-h track and intensity predictions using three Transformer-based models.

in the variations in track data, which are more sig-
nificant than temporal dependencies. This capability
is beneficial for producing accurate predictions and

suppressing error accumulation. In contrast, using tem-
poral tokens for attention computation is less effective
and may even prevent the Transformer from generating
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Figure 11. Scatter plots of 24-h track and intensity predictions using three Transformer-based models.

efficient predictions. Consequently, the performance of
TVFormer lies between Transformer and iTransformer,
which may be attributed to the balance between the

adverse impact of attention computation using temporal
tokens and the positive impact of attention computation
using variate tokens.
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3.2.2. Intensity prediction
Figures 8–11 provide the intensity predictions generated
by the three Transformer-based models for lead times
of 6 hours, 12, 18, and 24 hours, respectively. Overall,
TVFormer shows superior prediction ability, followed by
iTransformer and then Transformer. Furthermore, the R2

values for intensity predictions are notably smaller than
those for track predictions. This observation can also be
seen from the large fluctuations in intensity predictions in
the scatter plot. This is reasonable because the variations
in wind speed and pressure as shown in Figure 4 are
significantly larger than the variations in latitude and
longitude. In addition, the R2 margins for wind speed
prediction by TVFormer are the smallest overall. At lead
times of 18 and 24 hours, the R2 margins of TVFormer
are also noticeably lower than those of other models.

Compared to iTransformer and Transformer, the
MAE of TVFormer achieves 4% smaller in pressure pre-
diction with 6-hour lead time. On the other hand, the
MAE of iTransformer is slightly larger than that of Trans-
former, while slightly smaller than that of Transformer.
Similar trends are observed as the lead time increases.
Furthermore, when increasing the lead time from6 hours
to 24 hours, the MAE of pressure prediction increases by
6.17, 6.16, and 5.86 hPa for Transformer, iTransformer,
and TVFormer, respectively, and the RMSE of pressure
prediction increases by 8.34, 8.35, and 7.93 hPa, respec-
tively.

For wind speed prediction with 6-hour lead time,
TVFormer and iTransformer outperform Transformer
with 13% and 9% smaller MAEs, respectively. As the
lead time increases, the MAEs of TVFormer and iTrans-
former are consistently smaller than that of Transformer.
Moreover, both TVFormer and iTransformer are more
effective in mitigating error accumulation. Specifically,
when the lead time extends from 6 hours to 24 hours,
the MAE of Transformer increases by 4.20 m/s, while the
MAEs of iTransformer and TVFormer increase less, by
3.50 and 3.35 m/s, respectively. Meanwhile, the RMSE
increases by 5.46 m/s for Transformer, compared to 4.73
m/s for iTransformer and 4.55 m/s for TVFormer. Simi-
lar to track forecasting, the statistical confidence intervals
for the metrics also increase as the lead time extends,
while the error increases and the R2 score decreases.
Nevertheless, TVFormer still shows smaller uncertain-
ties in wind speed and pressure predictions. As the lead
time increases, the error accumulation becomes more
pronounced, which represents a limitation of time series
forecasting.

Given that iTransformer and Transformer show sim-
ilar performance in pressure prediction, both models
may struggle to achieve higher accuracy when rely-
ing solely on attention computations using variate or
temporal tokens. In contrast, TVFormer provides more

accurate predictions by leveraging the advantage of atten-
tion computation with both temporal tokens and variate
tokens. Moreover, the superior performance of iTrans-
former in wind speed predictions suggests that the mul-
tivariate correlations it captures play an important role
in the accuracy. One of the influencing factors may be
the ability of iTransformer to identify the correlations
illustrated in Figure 4. In addition, iTransformer can
effectively and implicitly capture the interaction between
track and wind structure, which affects wind speed (Tan
et al., 2022). It is worth noting that among the three
Transformer-basedmodels, TVFormer’s superior perfor-
mance in predicting wind speed further reinforces the
benefits of using attention computation that combines
both temporal and variate tokens. In summary, TC inten-
sity prediction can be significantly enhanced by integrat-
ing temporal and variate tokens into Transformer-based
models.

3.3. Model scalability and efficiency

The Transformer-based models have shown potential
in predicting TC track and intensity in the Northwest
Pacific. To further evaluate the scalability and generalisa-
tion ability of the models trained on the CMA best track
data, we obtain TCs over the South Indian and North
Atlantic regions from2018 to 2021 from the International
Best Track Archive for Climate Stewardship (IBTrACS)
(Knapp et al., 2010). In addition, ConvLSTM and BiGRU
models that showed strong performance are included
for comparison. For each model, the MAEs for differ-
ent lead times are averaged to calculate the overall MAEs
for different variables, and the corresponding results are
presented in Figure 12.

As shown in Figure 12(a), the Transformer-based
models show better prediction performance than Con-
vLSTM and BiGRU in the South Indian region, except
for Transformer in predicting wind speed. Specifically,
iTransformer outperforms the other four models in pre-
dicting TC track, followed by TVFormer. In addition,
TVFormer demonstrates the best performance in pre-
dicting intensity, while iTransformer and Transformer
also perform well in wind speed and pressure prediction,
outperforming ConvLSTM and BiGRU. Figure 12(b)
shows the performance of TC track and intensity pre-
dictions in the North Atlantic. iTransformer continues to
demonstrate strong capabilities in track prediction; how-
ever, TVFormer fails to maintain its strong performance
in pressure and wind speed prediction. Specifically, while
TVFormer predicts wind speed most accurately among
the five models studied, its pressure predictions have
errors of approximately 2% larger than those of ConvL-
STM and iTransformer, and about 10% larger than those
of Transformer.
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Figure 12. Comparison of overall MAEs for track and intensity predictions in different regions: (a) South Indian; (b) North Atlantic.

The findings indicate that iTransformer exhibits
strong scalability in predictingTC track,while TVFormer
shows strong performance but lacks scalability when
directly applying the model trained on the CMA best
track data to predict intensity in the North Atlantic
region. Notably, Transformer achieves the most accu-
rate pressure forecasts in the North Atlantic, highlighting
the important role of temporal tokens in this region.
Furthermore, given the varying characteristics of TCs
across different regions and the discrepancies in best
track data from various agencies (Knapp & Kruk, 2010;
Schreck et al., 2014), fine-tuning or retraining is recom-
mended to ensure that the models can generate accurate
predictions.

Using a single GPU card, the runtimes of Transformer,
iTransformer, and TVFormer in predicting the North-
west Pacific test set are 14.42, 11.44, and 14.50 s, respec-
tively; the runtimes for predicting the South Indian test
set (59 TCs) are 8.38, 8.23, and 8.67 s, respectively; and
the runtimes for predicting the North Atlantic test set (84
TCs) are 9.52, 7.37, and 9.64 s, respectively. Furthermore,
these test sets cover weather categories of different inten-
sities such as tropical depressions, typhoons, and hur-
ricanes. The fast inference speed of these Transformer-
based models offers a significant advantage over tradi-
tional numerical forecasting (Bi et al., 2023; Kim et al.,
2023; Liu, Tan, et al., 2024), making them a valuable
supplement for real-time forecasting systems or opera-
tional centres such as CMA or National Oceanic and
Atmospheric Administration (NOAA) (Boussioux et al.,
2022).

3.4. Model interpretability analysis

To further investigate feature importance, permutation
importance analysis is conducted, and the results are
presented in Figure 13. The overall loss change of Trans-
former is different from that of iTransformer, TVFormer,

and ConvLSTM; specifically, permuting any of the track,
pressure, or wind speed features leads to a decrease in
overall loss, and the magnitudes of these changes are
relatively similar. This feature importance ranking of
Transformer shows that the features are effectively fused
through the token embedding. In contrast, for the other
three models, intensity plays the largest role in feature
importance compared to track, pressure is crucial for
ConvLSTM and iTransformer, and wind speed is cru-
cial for TVFormer. This observation aligns with previous
analyses indicating that the magnitudes of intensity and
track variations differ significantly.

The overall loss changes of iTransformer and TVFor-
mer are larger than those of Transformer and ConvL-
STM. This discrepancy may be attributed to the design
of Transformer and ConvLSTM, which focuses on cap-
turing temporal dependencies, resulting in smaller over-
all loss changes due to feature fusion. As illustrated in
Figure 13(e), the feature importance indicates that lon-
gitude and wind speed are important for iTransformer,
highlighting its ability to effectively capture variate cor-
relations. Consequently, the permutation of either track
or intensity can notably affect model accuracy. Similarly,
Figure 13(f) shows that pressure and longitude are impor-
tant for TVFormer, reflecting its ability to capture variate
correlations. It is noted that the loss changes related to
wind speed and pressure are more obvious in TVFormer
than in iTransformer, while the loss changes associated
with track are more significant in iTransformer. This
pattern provides insights into the feature importance of
iTransformer andTVFormer and their evaluation results.

Figure 14 shows the attention maps of Transformer,
iTransformer, and TVFormer, which are calculated based
on the last encoder layer as described in Mylonas et al.,
2024. While there is debate about whether attention
maps accurately reflect model decisions (Hao et al., 2021;
Kovaleva et al., 2019; Tsai et al., 2019), they remain use-
ful for understanding model performance. It is seen that
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Figure 13. Results of permutation importance: (a)-(d) overall loss changes of Transformer, iTransformer, TVFormer, andConvLSTM; (e)-(f )
loss changes of variables in iTransformer and TVFormer.

Figure 14. Visualisation of attention maps calculated from the last encoder layer: (a) Transformer; (b) iTransformer; (c)-(d) TVFormer.
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Figure 15. Track predictions for three cases: (a) 6-h; (b) 12-h; (c) 18-h; (d) 24-h. Here ‘TV’, ‘Tra’, and ‘iTr’ represent TVFormer, Transformer,
and iTransformer, respectively.

the dimensions of the attention maps of Transformer
and iTransformer are different, which aligns with their
respective architectures. The attention map of Trans-
former reveals that larger attention weights are assigned
to points near the reference point of the initial predic-
tion (marked with a red triangle in the figure). It is
worth noting that the attention weights are also signif-
icant near the beginning of the sequence and in the
marked area in Figure 14(a). This suggests that long-
term sequential dependencies are crucial for predicting
TC track and intensity, which is consistent with previ-
ous studies (Jiang et al., 2023). The attention map of
iTransformer demonstrates strong variate correlations,
including correlations between latitude and longitude,
betweenwind speed and pressure, and between track and
intensity. This observation aligns with the data shown in
Figure 4. Notably, iTransformer exhibits greater attention
weights between pressure and track, and between wind
speed and track, proving once again that pressure and
wind speed are key indicators for tracking TCs (Roy &
Kovordányi, 2012; Tan et al., 2022). Looking at the atten-
tion maps of TVFormer, it is evident that its temporal
component is different from that of Transformer. Larger
attention weights are observed at five points near the ref-
erence prediction point (markedwith a red triangle in the

figure), and the marked area in Figure 14(c) also shows
higher attention weights compared to the neighbouring
points. Moreover, the attention weights for intensity and
track in the attention map of TVFormer are more signif-
icant compared to iTransformer, which is consistent with
previous studies on track-intensity interactions (Knaff &
Zehr, 2007). In view of the above, the strong ability of
TVFormer in predicting TC intensity suggests that both
temporal and variate dependencies are crucial factors.

3.5. Case study

To further demonstrate the performance of the three
Transformer-based models, three TCs, Phanfone,
Mangkhut, and Faxai, are selected as specific examples.
These cases are often used to verify related studies on
short-term TC track and intensity predictions using the
best track data (Gan et al., 2024; Jiang et al., 2023). TCs
Phanfone andMangkhutmoved from southeast to north-
west, while TC Faxai initially moved from southeast to
northwest and then changed direction tomove northeast.

The track predictions of the three TCs at four lead
times are illustrated in Figure 15. Themeanposition error
shows that iTransformer has the best performance, fol-
lowed by TVFormer and then Transformer. This ranking
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aligns with the overall evaluation results on the test set.
While all three Transformer-based models show poten-
tial for predicting short-term TC tracks, the most signif-
icant differences occur in the predicted centres during
the initial gradual formation and final decay stages of
the TCs. The models exhibit a tendency to generate less
accurate predictions during these stages, as marked by
the dashed ellipses and dashed rectangles in Figure 15.

This is understandable, because the translation speeds of
the TCs during these stages differ from those in other
stages (Sun et al., 2017). Nevertheless, both iTransformer
and TVFormer show higher accuracy in predicting TC
centres during these periods. For example, at the 6-hour
lead time, although all three models provide similar pre-
dictions overall, iTransformer and TVFormer yield more
accurate estimates of the true centres during the decay

Figure 16. Intensity predictions for three cases: (a) 6-h pressure prediction; (b) 12-h pressure prediction; (c) 18-h pressure prediction; (d)
24-h pressure prediction; (e) 6-h wind speed prediction; (f ) 12-h wind speed prediction; (g) 18-h wind speed prediction; (h) 24-h wind
speed prediction. Here ‘TV’, ‘Tra’, and ‘iTr’ represent TVFormer, Transformer, and iTransformer, respectively.
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Figure 16. Continued.

stage of TC Faxai. Similar findings are observed at lead
times of 12, 18, and 24 hours. Moreover, during the decay
stage of TC Phanfone, Transformer shows a larger posi-
tion error, while iTransformer and TVFormer perform
more effectively. In addition, at the initial time points
of TCs Faxai and Mangkhut, the predicted TC centres
of iTransformer and TVFormer are closer to the true
centres.

The intensity predictions of the three TCs at four
lead times are illustrated in Figure 16. Overall, the three
Transformer-based models effectively capture the trends
of TC pressure and wind speed. In the three selected
cases, Transformer performs well in predicting the pres-
sure of TCs Phanfone and Mangkhut, while TVFormer
excels in predicting the pressure of TC Faxai and in this
case iTransformer performs poorly. This finding aligns
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with previous studies and indicates that the contribu-
tion of temporal tokens in attention computation is crit-
ical for accurate pressure prediction. It is noteworthy
that all three models tend to overestimate the minimum
pressure values compared to the true minimum pres-
sures, as shown by the black dashed rectangles in the
figure. Furthermore, the time lag effect becomes evident
as the lead time increases, which may be due to the mod-
els’ tendency to adhere to historical patterns. For wind
speed prediction, TVFormer shows strong performance
overall. The time lag effect in the wind speed prediction
is also observable, as marked by the black dashed rectan-
gles in the figure. However, with the integration of both
temporal and variate tokens, peak wind speed values pre-
dicted by TVFormer are much closer to the true peak
values as shown by the purple dashed rectangles, while
Transformer tends to overestimate the wind speed.

4. Conclusions and future research directions

In this study, the effects of different token embeddings
in Transformer-based models on the performance of
short-term TC track and intensity prediction are inves-
tigated. Three models – Transformer, iTransformer, and
TVFormer – are trained and evaluated using the best
track data from CMA. These models focus on tempo-
ral tokens, variate tokens, and integration of both token
types generated through different embedding methods.
Two Transformer variants, iTransformer and TVFormer,
have demonstrated improved prediction accuracy. Their
runtime for forecasting 100 TCs is measured in seconds,
while traditional numerical forecasting takes hours to
calculate one TC. This fast runtime, along with reliance
onminimal sequential information for prediction, shows
great potential as a complementary tool for early warn-
ing systems deployed in the real world. By comparing the
performance of the three Transformer-based models and
four RNN-based models, the following conclusions can
be drawn:

• iTransformer and TVFormer demonstrate superior
performance compared to RNN-based models in pre-
dicting short-term TC track and intensity, as evi-
denced by the evaluation metrics. Specifically, iTrans-
former and TVFormer reduce the MAE by 0.88° and
0.79° compared to LSTM, by 0.24° and 0.14° com-
pared to GRU, by 0.19° and 0.10° compared to ConvL-
STM, and by 0.14° and 0.04° compared to BiGRU in
track prediction. For pressure prediction, their aver-
age MAE values are reduced by 1.31 and 1.58 hPa
compared to LSTM, by 0.38 and 0.65 hPa compared
to GRU, by 0.06 and 0.33 hPa compared to ConvL-
STM, and by 0.38 and 0.64 hPa compared to BiGRU.

In wind speed prediction, the average MAE values of
iTransformer and TVFormer are reduced by 0.85 and
1.46 m/s compared to LSTM, by 0.38 and 0.65 m/s
compared to GRU, by 0.06 and 0.33 m/s compared to
ConvLSTM, and by 0.38 and 0.64 m/s compared to
BiGRU.

• For track prediction, iTransformer outperforms both
TVFormer and Transformer, achieving average MAE
reductions of 0.11° and 0.18° in latitude, and 0.08°
and 0.32° in longitude, respectively. In addition,
TVFormer outperforms Transformer with average
MAE reductions of 0.06° in latitude and 0.24° in lon-
gitude, due to the integration of variate tokens. The
attention map of iTransformer reveals that track and
intensity correlations are well captured, highlighting
the importance of variate tokens, which are more
effective in enhancing track prediction than embed-
ding temporal tokens at the same time step.

• For pressure prediction, TVFormer achieves mean
MAE reductions of 0.27 and 0.26 hPa compared to
iTransformer and Transformer, respectively. For wind
speed prediction, it achieves reductions of 0.13 and
0.65 m/s compared to iTransformer and Transformer,
respectively. Furthermore, permutation importance
analysis shows that intensity contributes most to the
model accuracy of both iTransformer and TVFormer.
The integration of temporal and variate tokens in
TVFormer enhances accuracy in intensity predic-
tion. Furthermore, the temporal and variate com-
ponents of TVFormer’s attention maps differ from
those of Transformer and iTransformer, demonstrat-
ing the effectiveness of this integration in capturing
correlations.

Future research could be enhanced by expanding the
dataset to include data from different basins, enabling
fine-tuning or retraining of the model. This approach
will improve the scalability and accuracy of model pre-
dictions of TC tracks and intensities in various regions.
In addition, since TCs are significantly influenced by
environmental circulation, combining multi-source data
such as reanalysis data can further improve predic-
tion performance by integrating physical constraints.
Finally, Transformer-based models present an alterna-
tive to statistical-dynamical approaches, with the poten-
tial to improve the capabilities of numerical models and
ensemble forecasts.
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