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Abstract——Demand response (DR) is a practical solution to 
overcoming the challenges posed by the volatility and intermit‐
tency of the renewable generation in power systems. Industrial 
electricity demand is growing rapidly, which makes the DR po‐
tential estimation of industrial user critical for the DR imple‐
mentation. In this paper, a unified model for estimating DR po‐
tential in the production processes of aluminum, cement, and 
steel is proposed on the basis of their unique operational char‐
acteristics. Firstly, considering the typical characteristic con‐
straints of different industrial users, a DR potential estimation 
model is developed to capture typical industrial user response 
behavior under various operational and economic factors. The 
proposed estimation model is further refined to account for the 
uncertain and subjective factors present in the actual estima‐
tion environment. Secondly, a virtual data acquisition method is 
introduced to obtain the private virtual parameters required in 
the estimation process. Then, an industrial user participation 
threshold is presented to determine whether industrial users 
may participate in DR at a given time with consideration of 
their response characteristics. The industrial users may not al‐
ways act with perfect rationality, and the response environment 
remains uncertain. In addition， the subjective factor in this pa‐
per includes the proposed threshold and the bounded rationali‐
ty. Finally, an improved DR potential estimation model is pro‐
posed to reduce the difficulties in the actual estimation process. 
The simulation results validate the effectiveness of the proposed 
estimation model and the improved DR potential estimation 
model across multiple cases.

Index Terms——Renewable generation, demand response (DR), 
industrial user, potential estimation, uncertain factor, subjective 
factor, unified model.

I. INTRODUCTION 

DEMAND response (DR) aims to incentivize customers 
to modify their consumption patterns and alleviate the 

imbalance between electricity supply and demand in an eco‐
nomical and low-carbon manner [1]. The existing DR mar‐
kets are significant. Approximately 23 GW of DR is avail‐
able in the U. S. wholesale markets in 2017 [2]. However, 
one of the key barriers to DR implementation is quantifying 
the user responsiveness, which is crucial for flexibility aggre‐
gation, tariff settlement, and system design [3].

DR potential estimation can be categorized into two types 
based on direct and indirect estimation methods: baseline es‐
timation and response capability estimation. Baseline estima‐
tion is an indirect method used as an intermediate step to es‐
timate the final DR potential.

In [4] and [5], a new closed-loop method and a fully dis‐
tributed framework based on joint fuzzy C-means are pro‐
posed for estimating the aggregated baseline load (ABL) of 
residential customers. In [6], load data from both before and 
after the DR-event day are used in the framework proposed 
in [4] and [5] as the input feature to improve the estimation 
accuracy. A two-stage decoupled estimation approach to im‐
proving the accuracy of ABL estimation in scenarios with be‐
hind-the-meter photovoltaic penetration is developed in [7]. 
DR behaviors of users are constrained and ensured by a self-
reported baseline mechanism in [8] and [9]. Based on the 
state-queueing model, the response capability of fixed air-
conditioning systems with load adjustment is estimated in 
[10]. In [11], demand flexibility is quantified by means of 
time-varying elasticity through Siamese long-short term 
memory networks.

Previous studies focus on DR potential estimation of resi‐
dential users. According to IEEE reports, approximately 2%- 
10% of the industrial users of electricity consume 80% of 
the total energy production [12]. Industrial users are charac‐
terized by high levels of automation and substantial power 
consumption, making them strong candidates for DR.

DR potential estimation of industrial users is currently di‐
vided into two categories: one focuses on modeling the DR 
potential for specific processes, which emphasizes estima‐
tion; and the other involves analyzing the DR potential 
based on external characteristics, which focuses on schedul‐
ing strategies derived from DR potential. The DR potential 
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in energy-intensive industries in Germany is investigated in 
[13], which emphasizes the need for tailored strategies. In 
[14], a thermo-economic analysis of heat-driven ejectors for 
cooling in smelting processes is performed to assess the DR 
potential. Reference [15] evaluates the flexibility potential of 
two energy-intensive industries, which are the chlor-alkali 
process and wood pulp production. In [16], the energy-effi‐
cient scheduling of steel plants with flexible electric arc fur‐
naces centers is formulated to minimize costs based on dy‐
namic electricity pricing. In [17], the DR potential of oxy‐
gen production and thermostatic equipment in aquaculture is 
estimated to provide constraints for reducing the operational 
power costs.

The focus of the above studies lies in the DR potential es‐
timation. In contrast, DR potential is primarily used to sup‐
port scheduling in the following studies. In [18], a DR trade 
model that addresses cost and revenue allocation in hydro‐
gen-to-electricity conversion is developed. In [12], the power 
consumption modeling for production processes is proposed, 
which focuses on supporting day-ahead scheduling with DR. 
In [19], a data-driven real-time price-based DR management 
scheme is proposed for industrial energy facilities. In [20] 
and [21], the DR potential is estimated based on power char‐
acteristics and incorporated into the scheduling model. In ad‐
dition, an hour-ahead price-based energy management 
scheme is proposed to dynamically adjust industrial power 
consumption in [22].

Studies on DR potential estimation of industrial users re‐
main limited because of their insufficient willingness to par‐
ticipate in DR and the necessity of maintaining normal pro‐
duction. The current challenges in the DR potential estima‐
tion of industrial users are as follows.

1) DR potential estimation of industrial users must consid‐
er the coordination in various production processes rather 
than treating them independently.

2) Participation of industrial user in DR is fundamentally 
an economic decision. To understand the user psychology in 
the response process, it requires the consideration of both 
the uncertain and subjective factors.

3) DR potential estimation of industrial users varies great‐
ly across different industrial consumers. Hence, it is essen‐
tial to establish a unified model to ensure the standardization 
and usability of the estimated DR potential.

In this context, a unified DR potential estimation model is 
proposed to estimate the DR potential of typical industrial 
users. The main contributions of this study are as follows.

1) A unified DR potential estimation model for typical in‐
dustrial users is formulated considering operational and eco‐
nomic factors, which is standardized and easily expandable.

2) Different from that for DR of residential users, an in‐
dustrial user participation threshold is proposed to evaluate 
whether the industrial user participates in DR.

3) Considering the uncertain and subjective factors in the 
estimation process, an improved DR potential estimation 
model is further proposed to increase its practical applicabili‐
ty.

The structure of the remainder of this paper is as follows. 
Section II presents the basic analysis. Section III introduces 
the proposed estimation model for typical industrial users. 

Section IV shows the improved DR potential estimation 
model considering uncertain and subjective factors. Case 
study and conclusions are provided in Sections V and VI, re‐
spectively.

II. BASIC ANALYSIS 

The accurate DR potential estimation of industrial users 
enables the distribution system operator (DSO) to schedule 
DR resources effectively, thereby promoting the normaliza‐
tion and large-scale implementation of DR. The difference 
between DR potential estimation and response scheduling is 
that the former represents the maximum willingness to re‐
sponse, rather than the actual response amplitude.

Industrial users are rational and adjust their willingness to 
response based on the incentive price. Thus, DR potential es‐
timation must account for economic factors. Furthermore, 
there are uncertain and subjective factors in the actual esti‐
mation process that must be considered. These two issues 
are addressed in Sections III and IV, respectively.

A. Framework

Figure 1 illustrates the framework of the proposed estima‐
tion model, where ASP is short for aluminum smelting plant; 
CMP is short for cement manufacturing plant; and SMP is 
short for steel manufacturing plant. In the day-ahead stage, 
the DSO communicates response requirements to industrial 
users. Industrial users estimate their optimal DR capacity 
and report it to the DSO with uncertain incentives. In the in‐
traday stage, the DSO determines the incentive price based 
on the actual source-load situation and aggregated response 
capacities. This paper focuses on the unified DR potential es‐
timation model during the day-ahead stage.

The power consumption of industrial users can be divided 
into production consumption and nonproduction consump‐
tion. Production consumption is primarily associated with 
machine-driven processes, electric heating, and other related 
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Fig. 1.　Framework of proposed estimation model.
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activities. These activities support industrial production 
needs, some of which follow a specified sequence that can‐
not be interrupted. The objective of the DR potential estima‐
tion in this paper is the production consumption, as it ac‐
counts for the majority of the energy consumed in industrial 
production.

Figure 2 illustrates the schematic diagram of the proposed 
estimation model. Firstly, the impacts of power consumption 
patterns (workdays and nonworkdays), as well as the correla‐
tion between the electricity price and the load curve, are ana‐
lyzed to provide a theoretical basis for subsequent modeling. 
Secondly, the proposed estimation model is established, with 
heterogeneous constraints derived from the production char‐
acteristics of different typical industrial users. Finally, an im‐
proved DR potential estimation model is proposed consider‐
ing the difficulty in obtaining private information, the uncer‐
tainty information, and the response characteristics of indus‐
trial users.

B. Correlation Analysis of Workdays v.s. Nonworkdays

The accuracy of the proposed estimation model is signifi‐
cantly influenced by the operation status of industrial users. 
The most obvious and common factor influencing the opera‐
tion status of industrial users is whether the day is a work‐
day.

Two indices are used to assess the similarity between the 
power consumption patterns on workdays and nonworkdays: 
the power consumption amplitude and the similarity of the 
load curves. The power consumption amplitude can be easily 
accessed through curve classification, whereas the similarity 
of load curves must be evaluated via a specific method. No‐
tably, the Hausdorff distance (HD) is introduced to judge the 
similarity of line shapes [23], [24]. The HD measures the 
distance between two subsets of a metric space. The smaller 
the HD, the more similar the lines are, which indicates a 
stronger correlation between them. The definition of HD and 
related formulas are shown in Supplementary Materia A. 
The average HD between workday load curves and nonwork‐
day load curves 

-
H PL

 is calculated through (SA5) in Supple‐
mentary Materia A.

The electricity price has an important effect on the opera‐
tion of industrial production, causing the load to fluctuate 
regularly with changes in the electricity price. However, the 
actual load curve does not exhibit a sharp contrast between  
high power consumption period and low power consumption 
period, i.e., the operation status of the industrial user is also 
significantly affected by other factors. Therefore, the correla‐
tion between the electricity price and the load curve should 
be analyzed to provide a foundation for the subsequent mod‐
eling. HD is used to assess the similarity between the elec‐
tricity price and the load curve. The average HD between 
the electricity price and the load curves 

-
H LP

 is shown in 
(SA6) in Supplementary Materia A.

The results indicate that the correlation between electricity 
price and load curves is significantly weaker than the correla‐
tion between workday load curves and nonworkday load 
curves. Overall, the daily operation status of industrial users 
remains relatively stable, and electricity cost does not serve 
as a decisive factor influencing the operation status of indus‐
trial users.

III. PROPOSED ESTIMATION MODEL FOR TYPICAL 
INDUSTRIAL USERS 

Typical industrial users are selected for DR potential esti‐
mation, e. g., ASP, CMP, and SMP. The aforementioned in‐
dustrial users are typical high power-consuming industries 
with a high level of automation. Moreover, the production 
processes of these industrial users and their corresponding 
regulation methods exhibit substantial variations in flexibili‐
ty, energy consumption, and other aspects. These processes 
encompass most industrial production lines and reflect the 
universality of industrial users.

The DR potential provided by industrial users is driven by 
economic factors. By optimizing the economic cost altera‐
tions related to adjusting the operation status of the internal 
equipment to participate in DR Cs, the optimal DR potential 
can be determined. Therefore, a unified DR potential estima‐
tion model for industrial users is developed, comprising 
three components: a unified objective function, general con‐
straints, and heterogeneity constraints. The heterogeneity con‐
straints account for the distinct production processes and re‐
sponse requirements of various industrial users. The unified 
objective function is formulated as (1). The weight coeffi‐
cient λs is used to reduce the impact of changes in electricity 
cost and adhere to the principles of industrial production. 
Consequently, it prevents industrial users from concentrating 
their power consumption during the valley period. Other‐
wise, the optimization results are only theoretically optimal 
and do not satisfy the actual industrial production demand.

min Cs = λsDCEs +DCCs +DCSs -REs (1)

where subscript s is the element of set S ={ASP,CMP,SMP}; 
DCEs is the change in electricity cost; DCCs is the change in 
control cost; DCSs is the change in employment cost; and 
REs is the revenue for participation in DR.

General constraints include the conservation in relation to 
production goals (i.e., energy conservation) and the require‐
ment of adhering to the original production operation 
scheme. In contrast, heterogeneity constraints account for 
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specific equipment switching methods, storage requirements, 
and other operational limitations. Required inputs and out‐
puts of the estimation model are provided in Remark SA1 of 
Supplementary Material A.

Remark 1: why do we use a unified model to estimate 
the DR potential of industrial users?

The unified DR potential estimation model proposed in 
this paper encompasses typical production processes. It facili‐
tates DR potential estimation of industrial users on a unified 
basis and is easier to generalize in the context of regional 
and multi-industry DR potential estimation. The differences 
in DR potential among industrial users are reflected in the 
constraint conditions.

Based on field research, the following assumptions are 
made to simplify the modeling process.

Assumption 1: the production rate is proportional to pow‐
er consumption.

Assumption 2: identical types of industrial production 
equipment share the same parameters.

The discussions regarding the validity and limitations of 
Assumptions 1 and 2 are provided in Remarks SA2 and SA3 
of Supplementary Material A, respectively. It is worth noting 
that the unified DR potential estimation model corresponds 
to the proposed estimation model.

A. Proposed Estimation Model for ASP

In the aluminum smelting process, alumina is converted 
into aluminum, thus providing material for various indus‐
tries. The production process of an ASP mainly includes 
bauxite mining, alumina production, anode preparation, elec‐
trolytic aluminum production, and aluminum ingot casting 
stages. The power consumption in each stage accounts for 
1%, 21%, 2%, 74%, and 2%, respectively. Therefore, the 
electrolytic aluminum process is adjusted to provide DR ca‐
pacity, and its DR potential is estimated.

Electrolytic aluminum production process is initiated in 
pots under low DC voltage. Hundreds of cells are connected 
in series to form a potline or multiple potlines. The power 
consumption of a potline is high, and it has sufficient flexi‐
bility to response rapidly to the increase or decrease in ener‐
gy demands. Generally, there are two ways to adjust the 
power consumption of a potline:

1) Turn the pot on/off. Since the pot operation requires 
strict thermal balance, this way negatively impacts the elec‐
trolytic aluminum process.

2) Adjust the tap changers in the rectifier stations. The tap 
positions can change quickly and accurately, allowing for 
rapid reduction or increase in power consumption, as demon‐
strated in Alcoa’s Warrick operation [25]. This way is select‐
ed because it exerts less impact on the production process.

The proposed estimation model for an ASP is given by 
(2). We assume that there are nASP pots that can be adjusted 
(a potline) and each pot has K tap positions. The power con‐
sumption of the ith pot PASPit and the potline in an ASP after 
and before rescheduling PASPt and PASPt0 are derived in 
(3)-(5).

min CASP = λASPDCEASP +DCCASP +DCSASP -REASP (2)

PASPit =∑
k = 1

K

zitk PASPk (3)

PASPt =∑
i = 1

nASP∑
k = 1

K

zitk PASPk (4)

PASPt0 =∑
i = 1

nASP∑
k = 1

K

zitk0
PASPk0

(5)

where the subscript k is the tap position; the subscript k0 is 
the tap position at the original operation point; and zitk is 
the ith pot in the kth tap position with the power consumption 
PASPk at time t .
DCEASP and DCCASP are calculated in (6) and (7) and are 

obtained by subtracting the cost of the original operation 
point from the cost of the rescheduled operation point. Ex‐
cessive switching of machines may accelerate the degrada‐
tion and potentially cause damage. Therefore, switching ac‐
tions are penalized.

DCEASP =∑
t = 1

T

EPt∑
i = 1

nASP∑
k = 1

K

(zitk PASPk0
- zitk0

PASPk0
) (6)

DCCASP =∑
t = 2

T∑
i = 1

nASP∑
k = 1

K

CASP|zitk - zit - 1k| -

∑
t = 2

T∑
i = 1

nASP∑
k = 1

K

CASP|zitk0
- zit - 1k0

| (7)

where T is the number of time intervals; and EPt is the elec‐
tricity price at time t.

The changes in employment cost DCSASP is associated 
with starting and stopping the potline. A certain number of 
workers are required to supervise production when the pot‐
line operates normally. In the response process, the on/off 
status of the potlines remain unchanged. Hence, as shown in 
(8), DCSASP is set to be 0. The DR is set to activate at t1 and 
t2. The obtained revenue can be deduced with (9), and the 
duration of t1 and t2 is set to be 0.5 hour.

DCSASP = 0 (8)

REASP =w1|PASPt1
-PASPt10

| +w2|PASPt2
-PASPt20

| (9)

where w1 and w2 are the incentive coefficients.
Several constraints are considered. As specified in (10), 

the pot must be switched to a specific tap position to main‐
tain thermal balance and avoid interfering with normal pro‐
duction. The production target of electrolytic aluminum is en‐
sured through the equal power consumption constraint in 
(11). Furthermore, changing the tap positions too frequently 
within the same pot may shorten its service life. According 
to (12), within every four consecutive time slots, the tap po‐
sition can be switched at most once.

∑
k = 1

K

zitk = 1 (10)

∑
t = 1

T

PASPt =∑
t = 1

T

PASPt0 (11)

|zitk - zit - 1k| + |zit - 1k - zit - 2k| + |zit - 2k - zit - 3k| £ 1 (12)

The typical production states of an ASP can be catego‐
rized into the rated production, reduced production, holding, 
and cooling states, which switch according to the DC bus 
current. In the rated production state, the DC current of the 
pot is between 90% and 100% of the rated value. In the re‐
duced production state, aluminum electrolysis can still pro‐
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ceed normally, but the output of aluminum liquid decreases 
due to reduced energy input. In the holding and cooling 
states, maintaining normal production of aluminum electroly‐
sis proves to be difficult and may even lead to equipment 
damage. Therefore, the current of aluminum electrolysis is 
constrained to ensure normal production. Equations (13) and 
(14) calculate the DC current Iditk and DC voltage VBitk of 
the ith pot in the kth tap position at time t, respectively. Equa‐
tion (15) limits the allowable fluctuation range of Iditk 
through switching the tap changers in the rectifier stations.

Iditk =VBitk -
E

REC
(13)

VBitk = 1.35( VAL

TAPitk
-VSR ) (14)

0.9 £
Iditk

Id0

£ 1.0 (15)

where REC and E are the equivalent resistance on the load 
DC side and the back electromotive force, respectively; VAL 
and VSR are the high-voltage bus voltage on the load side 
and the voltage drop across the saturable reactor, respective‐
ly; TAPitk is the voltage transformation ratio of the ith pot in 
the kth tap position at time t, which corresponds to zitk; and 
Id0 is the rated DC current of a pot.

Furthermore, the primary purpose of rescheduling the op‐
eration point of an ASP is to generate revenue while provid‐
ing DR resources, rather than optimizing the operational con‐
figuration for revenue. Therefore, with the exception of t1 
and t2, the power consumption must fluctuate near the initial 
curve. In addition, the power consumption should not be ex‐
cessively biased toward the periods of low electricity prices, 
thereby preventing the distortion of its original pattern. Equa‐
tion (16) illustrates this rule, and the response range at t1 
and t2 is constrained by (17).

PASPt0 - δASP £PASPt £PASPt0 + δASP      tÎT\{t1t2 } (16)

P1 £PASPt -PASPt0 £ 0        "t = t1t2 (17)

where δASP is the allowable range of power variation of 
ASP; T={1,2,...,T}; and P1 is the maximum regulation ampli‐
tude.

B. Proposed Estimation Model for CMP

Cement production is an energy-intensive industry, with 
power consumption representing approximately 30% of its 
total costs. The cement production process involves four 
main stages: crushing (CR), kiln feed preparation (KFP), 
clinker production (CP), and finish grinding (FG) stages. 
The KFP stage must remain in operation due to its large ther‐
mal capacity. In addition, the cost of turning the kiln on or 
off is high. Although other stages can be interrupted, the CP 
stage is characterized by relatively low flexibility and pro‐
duces hot clinker, which is cooled and fed into the FG stage 
for grinding into cement powder. The CP and FG stages are 
coupled through the clinker storage area, whose capacity is 
smaller than that of the raw material storage area. Therefore, 
the FG stage must operate continuously to prevent the clin‐
ker accumulation. The most suitable process for interruption 
is the CR stage. In the CR stage, a rapid on/off switching is 

adopted to quickly adjust the power consumption, specifical‐
ly by turning the crushers on or off.

The proposed estimation model for a CMP is given by 
(18). Given that there are nCMP crushers that can be adjusted, 
a binary variable μmt is introduced to denote the operation 
status of the mth crusher at time t. μmt = 1 represents that the 
crusher is on, and μmt = 0 represents that the crusher is off. 
The power consumption of the mth crusher PCMPmt and all ad‐
justable crushers in a CMP after and before rescheduling 
PCMPt and PCMPt0 are derived in (19)-(21).

min CCMP = λCMPDCECMP +DCCCMP +DCSCMP -RECMP (18)

PCMPmt = ϕmμmt (19)

PCMPt =∑
m = 1

nCMP

ϕmμmt (20)

PCMPt0 =∑
m = 1

nCMP

ϕmμ
0
mt (21)

where ϕm is the rated power of the mth crusher; and μ0
mt is 

the original operation status of the mth crusher at time t.
Similarly, DCECMP and DCCCMP are calculated in (22) and 

(23), respectively. The difference between the CMP and ASP 
is that the CMP uses on/off switching to adjust power con‐
sumption, and there is a difference in labor costs between 
day and night shifts. Therefore, the changes in labor costs 
must be taken into account in (24). Finally, the received rev‐
enue of the CMP RECMP can be calculated in (25).

DCECMP =∑
t = 1

T

EPt∑
m = 1

nCMP

(ϕmμmt - ϕmμ
0
mt ) (22)

DCCCMP =∑
t = 2

T ∑
m = 1

nCMP

CCMP|μmt + 1 - μmt| -

∑
t = 2

T ∑
m = 1

nCMP

CCMP|μ0
mt + 1 - μ

0
mt| (23)

DCSCMP =CSA∑
t = 1

T ∑
m = 1

nCMP

|μmt - μ
0
mt| (24)

RECMP =w1|PCMPt1
-PCMPt10

| +w2|PCMPt2
-PCMPt20

| (25)

where CCMP is the cost coefficient for the switching action of 
the CMP; and CSA is the salary coefficient.

Since the CMP operates at rated power in the CR stage, 
the output rate of raw materials remains constant when it is 
on, as shown in (26). Therefore, the normal production pro‐
cess can be maintained with the same power consumption in 
the CR stage.

∑
t = 1

T

PCMPt =∑
t = 1

T

PCMPt0 (26)

In the cement production process, the CR and KFP stages 
are connected through the raw material storage area. The 
KFP stage is always on with a constant consumption rate. 
Thus, the amount of the stored intermediate product is direct‐
ly related to the number of crushers in operation. To in‐
crease the flexibility of the CMP in transferring the load, all 
crushers are considered to share a single storage area, as 
shown in (27). However, the storage-area capacity is limited. 
The operation status of the crushers must be carefully man‐

1364



JIANG et al.: DEMAND RESPONSE POTENTIAL ESTIMATION MODEL FOR TYPICAL INDUSTRIAL USERS CONSIDERING...

aged to prevent overflow or insufficient storage in the KFP 
stage, as specified in (28).

qt +∑
m = 1

nCMP

Bp μmt - τC = qt + 1 (27)

Qlow £ qt £Qhigh (28)

where qt is the utilization volume of the storage area at time 
t; Bp and τC are the generation rate of the CR stage and the 
consumption rate of the KFP stage, respectively; and Qlow 
and Qhigh are the lower and upper limits of the storage area, 
respectively.

Finally, the response ranges at t1 and t2 are constrained in 
(29) and (30), respectively.

PCMPt0 - δCMP £PCMPt £PCMPt0 + δCMP      tÎT\{t1t2 } (29)

P2 £PCMPt -PCMPt0 £ 0      "t = t1t2 (30)

where δCMP is the allowable range of power variation of 
CMP; and P2 is the maximum regulation amplitude.

C. Proposed Estimation Model for SMP

In contrast to aluminum smelting, steel manufacturing in‐
volves a complex production process, where both logistics 
management and energy optimization are crucial. Given that 
the objective is not to optimize the production of the steel 
plant, only power consumption is considered in this context.

The production process of SMP includes four equipment: 
electric arc furnace (EAF), argon oxygen decarburization 
(AOD), ladle furnace (LF), and continuous caster (CC). The 
first three equipment operate in batch mode, meaning a spec‐
ified amount of metal is processed at a time [23]. Each 
batch of metal is called one heat. One heat is generated in 
the EAF, and the generated heat is subsequently transported 
to the AOD to reduce the carbon content. In the LF, the spe‐
cific parameters of the liquid steel are adjusted, and this liq‐
uid steel is cast into slabs in the CC.

The most power-intensive production stage occurs in the 
EAF. Moreover, the scrap metal begins to cool after an inter‐
ruption lasting more than 30 min. Furthermore, restarting 
melting process incurs additional costs. Since EAFs are pow‐
ered by transformers, their power consumption can be adjust‐
ed by changing the position of the on-load tap changers 
(OLTCs). However, frequent switching of the OLTCs may re‐
duce their lifetime.
1)　Typical Distinction Illustration

The SMP is selected as the third typical industrial user 
due to the continuity of its production process. As men‐
tioned earlier, one heat is generated in an EAF, but the total 
energy required for melting is fixed, and the melting process 
cannot be interrupted. In other words, the product of the 
melting duration and the melting power equals a constant 
value.

Since the melting process cannot be interrupted, the set‐
ting of OLTC cannot be altered while the melting is in prog‐
ress. In other words, the setting of the OLTC must remain 
fixed, and the corresponding fixed duration depends on the 
tap setting. For ASP, electrolytic aluminum production oper‐
ates continuously, which means that the switching of the tap 
position can occur at any time and only affects the output 
rate rather than the final result.

For different melting modes, the melting task for each 
mode fully spans the current time slot. The time slot is set 
to be 0.5 hour. If the melting time of a mode is 79 min, it is 
viewed as spanning 3 time slots.
2)　Proposed Estimation Model Formulation

The proposed estimation model for an SMP is given in 
(31). Given that there are nSMP EAFs that can be adjusted 
and each EAF has H tap positions. The power consumption 
of the jth EAF PSMPjt and all the EAFs in an SMP after and 
before rescheduling PSMPt and PSMPt0 are derived in 
(32)-(34).

min CSMP = λSMPDCESMP +DCCSMP +DCSSMP -RESMP (31)

PSMPjt = zjth PSMPh (32)

PSMPt =∑
j = 1

nSMP∑
h = 1

H

zjth PSMPh (33)

PSMPt0 =∑
j = 1

nSMP∑
h = 1

H

zjth0
PSMPh0

(34)

where PSMPh is the power consumption of SMP in the hth tap 
position; zjth is the jth EAF in the hth tap position with pow‐
er consumption at time t; and the subscript h0 denotes the 
tap position at the original operation point.
DCESMP, DCCSMP, and DCSSMP are calculated in (35)-(37), 

respectively. DR is set to activate at t1 and t2. The received 
revenue of the SMP RESMP is calculated in (38).

DCESMP =∑
t = 1

T

EPt∑
j = 1

nSMP∑
h = 1

H

(zjth PSMPh - zjth0
PSMPh0

) (35)

DCCSMP =∑
t = 2

T∑
j = 1

nSMP∑
h = 1

H

CSMP|zjth - zjt - 1h| -

∑
t = 2

T∑
j = 1

nSMP∑
h = 1

H

CSMP|zjth0
- zjt - 1h0

| (36)

DCSSMP = 0 (37)

RESMP =w1|PSMPt1
-PSMPt10

| +w2|PSMPt2
-PSMPt20

| (38)

where CSMP is the cost coefficient of the switching action of 
SMP.

Once the temperature of the EAF decreases, it takes a 
large amount of energy and time to reheat to the effective 
temperature range, thereby incurring substantial economic 
and time costs. Hence, the EAF must select an operation 
mode, as specified in (39). Each heat consumes the same 
amount of energy in the melting process, utilizing the con‐
sumed energy to guarantee the generated heat amount, as 
shown in (40).

∑
h = 1

H

zjth = 1 (39)

∑
t = 1

T

PSMPt =∑
t = 1

T

PSMPt0 (40)

Heat generation occurs in one furnace at a time, rather 
than continuously adding and outputting new intermediate 
products, which ensures the integrity of the melting process, 
as specified in (41).

(zjth - zjt - 1h )+ (zjΘh + t - 1h - zjΘh + th )£ 1 (41)
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where the subscript Θh denotes the melting process corre‐
sponding to PSMPh.

Two equipment and a single resource storage unit are con‐
figured. If the production rate of EAF is larger than the con‐
sumption rate of AOD, the resources are stored. Otherwise, 
the AODs remain on standby until the storage unit is full. 
The EAFs share a large storage unit, which increases the po‐
tential for coordination. To reduce the calculation complexi‐
ty, even though the intermediate product of the EAF is pro‐
duced in a single furnace, it is amortized over the melting 
time of that furnace. The average value is obtained by divid‐
ing the total amount by the period, thereby expressing the 
production rate, as shown in (42) and (43). The quantity of 
materials within the storage unit must not exceed its capaci‐
ty. Otherwise, an overflow of intermediate products may oc‐
cur, thereby interfering with the normal operation of the sub‐
sequent process. Equations (44) and (45) express the con‐
straints.

ḡjt =∑
h = 1

H zjth gh

Θh
(42)

Gt =∑
j = 1

nSMP

ḡjt (43)

St = St - 1 +Gt - τS (44)

S low £ St £ Shigh (45)

where ḡjt is the average production rate of the jth EAF at 
time t; gh is the generation rate of the EAF in the hth tap po‐
sition; Gt is the overall production rate of all EAFs at time t; 
τS is the consumption rate of the EAF; and St, S low, and Shigh 
are the storage capacity at time t, the maximum storage ca‐
pacity of the storage unit, and the minimum storage capacity 
of the storage unit, respectively.

Once again, improving SMP operation is not the primary 
objective, and the regulation scope is constrained by (46) 
and (47).

PSMPt0 - δSMP £PSMPt £PSMPt0 + δSMP      tÎT\{t1t2 } (46)

P3 £PSMPt -PSMPt0 £ 0      "t = t1t2 (47)

where δSMP is the allowable range of power variation of  
SMP; and P3 is the maximum regulation amplitude.

IV. IMPROVED DR POTENTIAL ESTIMATION MODEL 
CONSIDERING UNCERTAIN AND SUBJECTIVE FACTORS 

In Section III, the DR potential of industrial user is esti‐
mated on the basis of a comprehensive understanding of the  
operation status and the incentive price provided by the 
DSO. In practice, the DR potential estimation is typically 
performed on day-ahead or periodic basis (e. g., weekly). 
However, in the actual DR potential estimation process, un‐
certain and subjective factors arise, such as those associated 
with unknown parameters, uncertain incentive prices, and 
psychological factors.

A. Virtual Data Acquisition Method

Specific process arrangements are used in the actual DR 
potential estimation process. However, these are private pa‐
rameters and are not reported during DR. The inaccessibility 

of these parameters directly affects the accuracy and feasibil‐
ity of the proposed estimation method. Therefore, a virtual 
data acquisition method is proposed to reduce the need for 
the above-mentioned data.

According to (1), DCEs and REs are not related to the spe‐
cific process arrangements, whereas DCCs and DCSs are 
strongly related to them. However, both DCCs and DCSs sub‐
tract the cost of the original operation point from the cost of 
normal operation and rescheduled operation point. Since the 
production process is scheduled in advance, the cost of the 
normal operation is fixed. During optimization, a change to 
a fixed value in the objective function does not affect the fi‐
nal results, i.e., the original production arrangement does not 
affect the DR effect after rescheduling.

Therefore, it is not necessary to obtain the original actual 
data. Thus, obtaining a virtual production arrangement is 
beneficial. When obtaining a virtual production arrangement, 
the deviations between the virtual power curve and the origi‐
nal power curve must be minimized, as specified in (48) and 
(49). The other constraints are the same as those shown in 
Section III.

min |Pst -PLst| (48)

    s.t.

(1 - κ1 )∑
t = 1

T

PLst £∑
t = 1

T

Pst £(1 + κ2 )∑
t = 1

T

PLst (49)

where Pst and PLst are the original power and virtual power 
of industrial user s at time t, respectively; and κ1 and κ2 are 
the constant coefficients used to limit the deviation range, 
where κ1 = κ2 = 2%.

The virtual data acquisition method for obtaining virtual 
parameters involves replacing certain inaccessible actual data 
with logically consistent virtual data. The obtained virtual da‐
ta may not affect the subsequent DR potential estimation re‐
sults because the independent constants do not influence the 
final optimization outcome in the problem-solving process. 
However, the virtual data acquisition method still requires 
preliminary data.

B. Considering Uncertain and Subjective Factors

1)　Industrial User Participation Threshold
Industrial users who participate in DR are motivated by 

economic considerations. In contrast to residential users, in‐
dustrial users have a certain participation threshold when par‐
ticipating in DR, which is related to their specific response 
characteristics.

1) Lower sensitivity to the incentive price. Industrial pro‐
duction involves specific production goals, and ensuring  
noninterference with normal output is a necessary prerequi‐
site for participation in DR. When participating in DR, the 
industrial user (plant) must adjust its production processes, 
which incurs additional costs. Therefore, industrial users are 
relatively insensitive to incentives and are unlikely to adjust 
their production processes in response to small changes in in‐
centives.

2) Higher participation intention threshold. The electricity 
cost of the industrial production is significant. If participat‐
ing in DR yields only small economic revenues, the industri‐
al user is more likely to maintain the original operation sta‐
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tus.
3) Indirect response mode. Generally, residential users 

switch the operation status or adjust the operation parame‐
ters to directly change their current power consumption. In‐
dustrial users are inclined to adjust the production process 
due to production sequence and targets, which indirectly al‐
ters their power consumption, as shown in Supplementary 
Material A Figs. SA1 and SA2.

4) Significant response effect. Industrial users have advan‐
tages in response amplitude and duration compared with resi‐
dential users.

Based on the response characteristics of industrial users, 
an industrial user participation threshold is proposed to 
judge whether the industrial user is willing to participate in 
DR, as shown in Fig. 3.

Let C0 and Cn represent the cost of the industrial user in 
normal operation status and that after participating in DR, re‐
spectively. As shown in Fig. 3, the two curves divide the 
plane into three regions. Region A represents the case where 
Cn >C0. Region B represents the case where Cn <C0, but Cn -
C0 is smaller than the proposed threshold. Region C indi‐
cates that Cn -C0 is larger than the proposed threshold. Fur‐
thermore, the DR behavior of the industrial user under differ‐
ent conditions can be identified. Specifically, only when the 
changes in costs fall within Region C will the industrial user 
adjust its production process. In other words, only the blue 
point in Fig. 3 represents the case where the industrial user 
is willing to adjust the production process, which means that 
the industrial user is willing to participate in DR.

ì
í
î

Cn -C0 £-TLV       Willing to participate in DR

Cn -C0 >-TLV       Unwilling to participate in DR
  (50)

where TLV is the proposed threshold, and TLV > 0.
The theoretical value of the proposed threshold can be de‐

termined based on the proportion of the average annual reve‐
nue of the industry and the ratio of the electricity bill to to‐
tal costs. In practical applications, the theoretical value can 
be adjusted according to other factors, such as the current 
production demand, production schedules, and seasonal prof‐
itability.

The setting of the theoretical value aligns with the actual 
choices of industrial users, as they are unlikely to alter their 
original operation status for small revenues. Industrial users 
of different types and sizes exhibit varying proposed thresh‐
olds.

2)　Incentive Price and Bounded Rationality
The proposed threshold assists industrial users in determin‐

ing whether to participate in DR. However, the index used 
by industrial users to determine whether to participate in DR 
is not based on absolute costs, but rather on perceived costs. 
Absolute costs refer to the revenue an industrial user would 
receive in a known situation with perfect rationality. This es‐
timation environment is difficult to achieve due to the bound‐
ed rationality of industrial users and the incentive prices. It 
is worth noting that the incentive price is one of the uncer‐
tain factors and the bounded rationality is one of the subjec‐
tive factors.

In this context, industrial users can only receive perceived 
costs and make decisions based on incentive price and 
bounded rationality. Influenced by irrational psychological 
factors, industrial users with varying levels of rationality 
make different choices. Prospect theory (PT) [26] is a theory 
that can accurately model the irrational behaviors of industri‐
al users and describe and predict the behavior of individuals 
in risk decision-making processes. PT differs from tradition‐
al expected-value theory and expected-utility theory in con‐
verting the objective probability of users into subjective 
probability.

PT assumes that the risk decision-making process consists 
of an editing process and an estimation process. In the edit‐
ing process, industrial users with bounded rationality define 
their revenues and losses using the proposed threshold as a 
reference point. In the DR potential estimation process, in‐
dustrial users evaluate each edited prospect and choose the 
best option based on the value function and weighting func‐
tion.

Editing process: in many DR markets (e.g., in China), in‐
dustrial users are required to report their DR potential esti‐
mation in advance, after which the incentive price is provid‐
ed. If the incentive price exceeds the expectation, the reve‐
nue is greater. Otherwise, the industrial user may incur a 
loss. In this case, the industrial user is more likely to report 
a stable value based on historical incentive prices. Determin‐
ing how to estimate the DR potential under conditions of un‐
certainty and improve economic performance in most cases 
is worth studying.

An improved DR potential estimation model considering 
incentive price is proposed. The variable (ΩDPst1

DPst2
) de‐

notes that the incentive price is Ω and the response ampli‐
tude is (DPst1

DPst2
). Equation (51) calculates the actual rev‐

enue of the industrial user Vs (Ω͂DPst1
DPst2

) when the giv‐

en incentive price is Ω͂, while the industrial user obtains the 
reported (DPst1

DPst2
) based on Ω. The first two terms Ω͂ 

and DPst1
 calculate the actual cost when the industrial user 

participates in DR with (ΩDPst1
DPst2

). The third term 

DPst2
 calculates the revenue deviation. Considering the char‐

acteristic of lower sensitivity to the incentive price, it is easy 
to obtain (DPst1

DPst2
) with different Ω, and (DPst1

DPst2
) 

has a limited number of levels.

Keep original operation status; Willing to adjust

C0

Cn

45° 

Threshold
Region

A

Region

B
Region

C

Curve 1

Curve 2

Fig. 3.　Judgment of industrial user’s willing to participate in DR.
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Vs (Ω͂DPst1
DPst2

)=-[Cs (ΩDPt1
DPt2

)+ (1 - λs )·

DCEs (ΩDPt1
DPt2

)- (Ω͂ -Ω)(DPt1
+DPt2

)]

(51)

Estimation process: the actual load curve and incentive 
price are uncertain factors that affect the DR potential esti‐
mation. As day-ahead forecasting achieves a high degree of 
accuracy and industrial users exhibit lower sensitivity to in‐
centive prices, small power fluctuations in the load curve do 
not interfere with response decisions. Therefore, only the un‐
certainty of the given incentive prices is considered. Two 
key functions are explored: the value function and the 
weighting function.

Equation (52) infers the perceived costs of industrial user 
s in the specified response amplitude (DPst1

DPst2
) based on 

the probability distribution of historical incentive prices. Fur‐
thermore, (52) can be discretized to (53) to reduce the diffi‐
culty of the solution.

V͂s (DPst1
DPst2

)= ∫
Ω͂ÎR

Vs (Ω͂DPst1
DPst2

)ρ(Ω͂) (52)

V͂s (DPst1
DPst2

)= ∑
Ω͂ÎR

Vs (Ω͂DPst1
DPst2

)ρ(Ω͂) (53)

where V͂s (DPst1
DPst2

) is the perceived cost of industrial us‐

er s as the value function when the response amplitude is 
(DPst1

DPst2
); ρ(Ω͂) is the probability of Ω͂ and ∑

Ω͂ÎR
ρ(Ω͂)= 1; 

and R is the set of feasible incentive prices.
Moreover, industrial users are not always perfectly ratio‐

nal but more often exhibit bounded rationality, which leads 
to varying risk preferences. ρ(Ω͂) is the objective function 
that maps the perfectly rational situation, while ω(ρ(Ω͂)) is 
the corresponding subjective probability. According to [27], 
ω(ρ(Ω͂)) is the probability weighting function that transforms 
objective probabilities into subjective probabilities, as de‐
fined in (54). When rationality degree α is set to be 1, indus‐
trial users are perfectly rational. When α decreases, industri‐
al users become more inclined to the occurrence of low-prob‐
ability events. The value of α can be obtained through field 
research or analysis of the historical behavioral data.

ω(ρ(Ω͂))= exp[-(-ln ρ(Ω͂))α ]       0 £ α £ 1 (54)

The S-shaped value function V͂s (DPst1
DPst2

) indicates 

that an industrial user exhibits risk-seeking behavior when 
facing losses and risk-averse behavior when dealing with rev‐
enues. Therefore, the objective function in (1) is modified as:

V͂s (DPst1
DPst2

)=ω(ρ(Ω͂))∑
Ω͂ÎR

Vs (Ω͂DPst1
DPst2

) (55)

When confronted with different values of Ω, the industrial 
user exhibits varying DR effects. The objective function (1) 
provides the optimal DR behavior of industrial users under 
deterministic Ω. Considering the bounded rationality of in‐
dustrial users and the uncertainty of actual Ω, the S-shaped 
value function (55) formulated based on PT and (1) de‐
scribes the perceived costs of industrial user DR behavior un‐
der uncertain Ω. However, this perceived cost only repre‐
sents the revenue from the current DR behavior, but not the 
overall DR behavior. Nevertheless, the goal of DR potential 

estimation is to determine the response amplitude through 
economic optimization. Therefore, additional process is need‐
ed.

The set of all DR behaviors Ps ={(DPst11
DPst21

) 
(DPst12

DPst22
) ... (DPst1z

DPst2z
) ... (DPst1Z

DPst2Z
)} is 

obtained through (1), where subscript z denotes the zth DR 
behavior; and Z is the last DR behavior. The obtained 
V͂s (DPst1z

DPst2z
) is defined as a prospect set. Correspond‐

ingly, the prospect V͂s can be obtained. Among all the pros‐
pect sets, the industrial user may choose the DR capacity 
corresponding to the best prospect (DP *

st1
DP *

st2
) as the DR 

potential estimation. Therefore, the improved DR potential 
estimation model is expressed as:

ì

í

î

ïïïï

ï
ïï
ï

max V͂s (DPst1z
DPst2z

)

s.t.  (2)-(47)

        (DPst1z
DPst2z

)ÎPs

(56)

Finally, the industrial user determines whether to partici‐
pate in DR according to the perceived costs. Therefore, the 
reported potential capacity (DP *

st1
DP *

st2
) of industrial user s 

can be derived as:

(DP *
st1
DP *

st2
)=

ì
í
î

ïï(DP *
st1
DP *

st2
)

(00)
      

V͂s (DP *
st1
DP *

st2
)³TLVs

V͂s (DP *
st1
DP *

st2
)<TLVs

  (57)

V. CASE STUDY 

In this section, DR potential estimations of the ASP, CMP, 
and SMP are calculated. The actual load curves and electrici‐
ty price data over three months are obtained from an indus‐
trial park in China. Parameter settings are listed in Table I.

A. Correlation Analysis

In Supplement Material A Fig. SA3, the first column 
shows the HD between daily loads in a specified plant and 
the second column shows the HD between daily loads and 
the electricity price in a specified plant. In addition, rows 1-
3 show the calculated HDs of ASP, CMP, and SMP, respec‐
tively. Based on Fig. SA3 and Table II, the daily load of the 
same industrial user exhibits a strong correlation. The simi‐

TABLE I
PARAMETER SETTINGS

Parameter

Φ (MW)

Θh

τS, τM (t)

Bp

CASP, CSMP, CCMP ($)

ḡ (t)

H

K

nASP, nCMP, nSMP

Value

2.2

4, 3, 2

180, 4

0.25

90, 150, 180

22.5, 30.0, 
40.0

3

3

15, 30, 6

Parameter

PASPk (MW)

PSMPh (MW)

P1, P2, P3 (MW)

q1 (t)

Qlow, Qhigh (t)

S1 (t)

Slow, Shigh (t)

T

w1, w2 ($·MWh)

Value

18, 19, 20

22.5, 30.0, 
40.0

12, 10, 25

10

0, 20

100

0, 3000

48

120, 120
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larity between workday load curvers and nonworkday load 
curvers is high, indicating similar operation patterns. There‐
fore, the proposed estimation model can be used to estimate 
the DR potential of a specified industrial user, regardless of 
workdays or nonworkdays. In addition, industrial power con‐
sumption and electricity prices are related, but their similari‐
ty is weaker than that between daily loads. Thus, industrial 
power consumption is affected by the electricity price, but 
the electricity price is not the decisive factor that affects the 
production process. Therefore, it is reasonable to weaken the 
influence of electricity cost variation factors in the proposed 
estimation model.

B. Validation of Proposed Estimation Model

The proposed estimation model is applied to ASP, CMP, 
and SMP to validate its effectiveness under different cases. 
This subsection outlines the DR effects of different industrial 
users under various incentive prices, categorized as cases 1, 
2, and 3. To demonstrate the significant stepwise DR effects, 
the incentive prices chosen in ASP are divided into three lev‐
els: $60, $90, and $120. The other two industrial users se‐
lected incentives of $40, $60, and $80. The comparison of 
specific revenue is listed in Table III, and the DR effects are 
detailed below.

1)　ASP
Taking the ASP response as an example, Figs. 4 and 5(a)-

(c) are compared. It is worth noting that different colors in 
Fig. 5 represent different tap positions. Since Fig. 5 is only 
for overall visual comparison rather than detailed compari‐
son, there is no legend. As shown in Fig. 4, the greater the 
incentive price, the larger the response amplitude. As the in‐
centive price increases, switching the operation status be‐
comes more complicated. Only when the incentive price is 
large enough to cover the cost of switching may the ASP be 
inclined to response in order to gain more revenues. Under 
the constraint of λASP, the operation status of the ASP still 
follows certain operational rules. Table III compares the reve‐
nues of the ASP under different incentive prices. Under a 
reasonable arrangement of production process, the greater 

the response amplitude, the greater the obtained revenues, 
which aligns with conventional understanding.

Figures 5(a), 5(d), and 6 are compared to demonstrate the 
necessity of the introduction of λASP. The weighted electricity 
cost is not considered in the residential load response. In ad‐
dition, the electricity cost is negligible compared with the ob‐
tained response revenue. However, industrial users consume 
large amounts of electricity, and the electricity cost and re‐
sponse revenue are not on the same order of magnitude.

If λASP is not introduced, the ASP will prioritize economic 
factors excessively. This leads to a substantial increase in the 
disparity of power consumption across different periods, 
thereby causing the operation of the ASP to deviate from its 
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Fig. 6.　Comparison of response performance of ASP with and without λASP.

380

390

400

410

420

430

440

450

460

0

50

100

150

200

250

300

350

400

P
ri

ce
 (

$
)

0 2 4 6 8 10 12 14 16 18 20 22 24

Time (hour)

Electricity price 
Original load curveResponse curve ($60);

Response curve ($90);
Response curve ($120)

P
o
w

er
 (

M
W

)

Fig. 4.　Comparison of response performance of ASP under different incen‐
tive prices.

0 4 8 12 16 20 24

1

2

3

4

Time (hour)

O
p

er
at

io
n

 s
ta

tu
s

0 4 8 12 16 20 24

1

2

3

4

Time (hour)

(a) (b)

O
p

er
at

io
n

 s
ta

tu
s

0 4 8 12 16 20 24

1

2

3

4

Time (hour)

O
p

er
at

io
n

 s
ta

tu
s

0 4 8 12 16 20 24

1

2

3

4

Time (hour)

(c) (d)

O
p

er
at

io
n

 s
ta

tu
s

Fig. 5 Comparison of tap positions of ASP. (a) Incentive price is set to be 
$60. (b) Incentive price is set to be $90. (c) Incentive price is set to be 
$120. (d) Incentive price is set to $60 without setting λASP.

TABLE II
COMPARISON OF HDS

Industrial 
user

ASP

CMP

SMP

HD

Workday v.s. 
workday

3.42

2.66

2.82

Workday v.s 
nonworkday

3.48

2.69

2.88

Load curve v.s 
electricity price

5.04

6.25

5.28

TABLE III
COMPARISON OF REVENUES

Case No.

1

2

3

Revenue ($)

ASP

2814.0

4293.2

5720.9

CMP

-6849.6

-5556.6

-4999.6

SMP

20931

21681

22899
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normal operational rules, as depicted in Fig. 6.
2)　CMP

Figure 7 shows the comparison of response performance 
of CMP under different incentive prices. 

The difference between the CMP response curve and the 
ASP response curve is that when the incentive price exceeds 
a certain value, the response effect is significantly enhanced. 
This occurs due to the fact that, around this value, the costs 
and revenues are roughly balanced. When the incentive price 
increases significantly, the revenues outweigh the cost 
change, and the CMP is more likely to response and obtain 
greater revenues. However, the revenues in Table III indicate 
that CMP consistently shows negative revenues. Therefore, 
the evaluated CMP may never participate in DR. This is be‐
cause, despite having theoretical DR potential, its economic 
DR potential is zero. Therefore, it is necessary to select oth‐
er CMPs or industrial users as participants in the response 
process.

Figure 8 shows the comparison of the salary and employ‐
ment costs of a CMP under different incentive prices. The 
peaks and valleys of salary and electricity prices are inverse‐
ly related. Through strategic planning, salary expenditures 
can be reduced by adjusting the pace of power consumption.

Figure 9 shows the comparison of effects of the storage 
capacity on CMP response (incentive price is set to be $60). 
Changing the storage capacity affects the response curve but 
not the response amplitude. This is because there is still 
some room for a CMP to respond at low storage capacities. 
Therefore, changes in the storage capacity within a certain 
range do not affect the response performance.

3)　SMP
Figure 10 shows the comparison of the response perfor‐

mance of an SMP under different incentive prices. Figure 11 
shows the comparison of effects of initial storage capacity 
on SMP response (incentive price is set to be $60). The dif‐
ference between the initial storage capacity and storage ca‐
pacity is that the overall response curve is unaffected when 
the storage capacity is sufficient. Storage capacity affects the 
response curve because a change in storage capacity alters 
the overall planning space, giving the industrial user various 
choices. As shown in Table III, among three industrial users, 
the SMP has the highest unit response revenue and the larg‐
est response range, making it a reliable and efficient choice 
for DR participation.

4)　Validation of Virtual Data Acquisition Method
In this study, the improved DR potential estimation model 

is adopted by three industrial users. To reduce redundancy, 
the ASP is used as an example for verification as follows.
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Fig. 9.　Comparison of effects of storage capacity on CMP response (incen‐
tive price is set to be $60). (a) Capacity evolution under different storage ca‐
pacities. (2) Response effects under different storage capacities.
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Figure 12 compares the actual load curve with the fitted 
load curve, showing that the errors between the two curves 
are small. The parameters obtained during curve fitting are 
incorporated into the proposed estimation model for the same 
calculation. A comparison of Fig. 4 and Supplementary Materi‐
al A Fig. SA4 shows that the final DR potential estimation ob‐
tained using the fitted load curve is identical to that obtained 
using the known actual load curve. Therefore, the virtual data 
acquisition method further reduces the difficulty in data acqui‐
sition and effectively protects the industrial user privacy.

5)　Validation of Uncertain and Subjective Factors
The industrial user infers the incentive price that the DSO 

may offer based on the previous rule, and accordingly deter‐
mines the optimal response behavior, thereby obtaining 
Vs (x). Figure 13 shows the industrial user perceived costs of 
PT under different rationality degrees. The values for CMP 
and SMP in Fig. 13 are the actual values divided by 10 to 
maintain the balance of the figure.

According to Fig. 13, when the rationality degree of indus‐
trial user is low, the expectation for the future tends to be 
overly optimistic, and the expected revenue is much greater 
than the actual possible revenue. In this case, the DSO 
yields a positive response with a low incentive price, but 
this may negatively affect the user.

As depicted in Fig. 13, two proposed thresholds (threshold 
1 and threshold 2) are presented. Among them, the value of 
threshold 2 is excessively small, rendering the rationality of 
users ineffective in determining whether to participate in 
DR. However, with the setting of threshold 2, industrial us‐
ers with low rationality may participate in DR due to overly 
optimistic revenue estimates. Despite this, the actual expect‐
ed revenue cannot support their participation. That is, the 

threshold is not actually met, but the user participates given 
the optimistic estimate. Therefore, it leads to a false response.

Moreover, the CMP may not participate in DR, regardless 
of whether threshold 1 or threshold 2 is adopted, whereas 
the ASP and SMP responses are directly related to the selec‐
tion of the threshold. The selection of the threshold is impor‐
tant: a large threshold is not conducive to DR participation 
and may lead to false responses. As shown in Supplementa‐
ry Material A Fig. SA5, there are fewer ASP false responses, 
but the proportion of SMP false responses is high. Nonethe‐
less, while the selection of a relatively small threshold can 
decrease the probability of false responses, it may lead to 
frequent DR participation, which has the potential to impact 
normal production. In Fig. SA6 of Supplementary Material 
A, both ASP and SMP participate in DR, regardless of the 
rationality degree of the industrial user.

Therefore, industrial users should select the thresholds 
based on their specific circumstances, ensuring that they are 
neither too small to have a meaningful impact nor too large 
to negatively affect their revenues and response performance.
6)　Validation of Actual Data

The proposed estimation model is applied to simulate the 
actual response effect using DR data from an SMP. Taking a 
response event in 2022 as an example, and the compensation 
price is set to be 2.3 ¥/kWh according to the “Demand Re‐
sponse Management Guidelines”. With the proposed estima‐
tion model, the response revenue of the ASP exceeds the pro‐
posed threshold, indicating the willingness to participate in 
DR. As shown in Fig. 14, the overall response effect is 
aligned well, confirming the effectiveness and accuracy of 
the proposed estimation model.

VI. CONCLUSION 

A unified DR potential estimation model based on PT for 
typical industrial users is proposed. The uncertainty of pa‐
rameters and the rationality of industrial users significantly 
impact the decision-making progress, influencing both the ef‐
fect and the economy of participation, as well as determin‐
ing whether industrial users are willing to participate in DR. 
For industrial users, the decision to participate in DR forms 
the basis for estimating the effects of participation.

The simulation results demonstrate that the proposed esti‐
mation model can accurately estimate the DR potential of 
various industrial users. Furthermore, the estimated storage 
capacity, derived from combining the proposed threshold and 
the risk attitudes of the users toward uncertain and subjec‐
tive factors, holds practical significance and provides valu‐
able guidance to the response behavior of users participating 
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in DR. When the rationality degree of the industrial user is 
low, industrial users are more willing to participate in DR 
under the same conditions. Finally, when data is limited, the 
virtual data acquisition method facilitates the completion of 
the estimation process.

In summary, the proposed estimation model effectively es‐
timates DR potential for typical industrial users with consid‐
eration of uncertain and subjective factors.
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