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Abstract—Demand response (DR) is a practical solution to
overcoming the challenges posed by the volatility and intermit-
tency of the renewable generation in power systems. Industrial
electricity demand is growing rapidly, which makes the DR po-
tential estimation of industrial user critical for the DR imple-
mentation. In this paper, a unified model for estimating DR po-
tential in the production processes of aluminum, cement, and
steel is proposed on the basis of their unique operational char-
acteristics. Firstly, considering the typical characteristic con-
straints of different industrial users, a DR potential estimation
model is developed to capture typical industrial user response
behavior under various operational and economic factors. The
proposed estimation model is further refined to account for the
uncertain and subjective factors present in the actual estima-
tion environment. Secondly, a virtual data acquisition method is
introduced to obtain the private virtual parameters required in
the estimation process. Then, an industrial user participation
threshold is presented to determine whether industrial users
may participate in DR at a given time with consideration of
their response characteristics. The industrial users may not al-
ways act with perfect rationality, and the response environment
remains uncertain. In addition, the subjective factor in this pa-
per includes the proposed threshold and the bounded rationali-
ty. Finally, an improved DR potential estimation model is pro-
posed to reduce the difficulties in the actual estimation process.
The simulation results validate the effectiveness of the proposed
estimation model and the improved DR potential estimation
model across multiple cases.

Index Terms—Renewable generation, demand response (DR),
industrial user, potential estimation, uncertain factor, subjective
factor, unified model.
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[. INTRODUCTION

EMAND response (DR) aims to incentivize customers

to modify their consumption patterns and alleviate the
imbalance between electricity supply and demand in an eco-
nomical and low-carbon manner [1]. The existing DR mar-
kets are significant. Approximately 23 GW of DR is avail-
able in the U.S. wholesale markets in 2017 [2]. However,
one of the key barriers to DR implementation is quantifying
the user responsiveness, which is crucial for flexibility aggre-
gation, tariff settlement, and system design [3].

DR potential estimation can be categorized into two types
based on direct and indirect estimation methods: baseline es-
timation and response capability estimation. Baseline estima-
tion is an indirect method used as an intermediate step to es-
timate the final DR potential.

In [4] and [5], a new closed-loop method and a fully dis-
tributed framework based on joint fuzzy C-means are pro-
posed for estimating the aggregated baseline load (ABL) of
residential customers. In [6], load data from both before and
after the DR-event day are used in the framework proposed
in [4] and [5] as the input feature to improve the estimation
accuracy. A two-stage decoupled estimation approach to im-
proving the accuracy of ABL estimation in scenarios with be-
hind-the-meter photovoltaic penetration is developed in [7].
DR behaviors of users are constrained and ensured by a self-
reported baseline mechanism in [8] and [9]. Based on the
state-queueing model, the response capability of fixed air-
conditioning systems with load adjustment is estimated in
[10]. In [11], demand flexibility is quantified by means of
time-varying elasticity through Siamese long-short term
memory networks.

Previous studies focus on DR potential estimation of resi-
dential users. According to IEEE reports, approximately 2%-
10% of the industrial users of electricity consume 80% of
the total energy production [12]. Industrial users are charac-
terized by high levels of automation and substantial power
consumption, making them strong candidates for DR.

DR potential estimation of industrial users is currently di-
vided into two categories: one focuses on modeling the DR
potential for specific processes, which emphasizes estima-
tion; and the other involves analyzing the DR potential
based on external characteristics, which focuses on schedul-
ing strategies derived from DR potential. The DR potential
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in energy-intensive industries in Germany is investigated in
[13], which emphasizes the need for tailored strategies. In
[14], a thermo-economic analysis of heat-driven ejectors for
cooling in smelting processes is performed to assess the DR
potential. Reference [15] evaluates the flexibility potential of
two energy-intensive industries, which are the chlor-alkali
process and wood pulp production. In [16], the energy-effi-
cient scheduling of steel plants with flexible electric arc fur-
naces centers is formulated to minimize costs based on dy-
namic electricity pricing. In [17], the DR potential of oxy-
gen production and thermostatic equipment in aquaculture is
estimated to provide constraints for reducing the operational
power costs.

The focus of the above studies lies in the DR potential es-
timation. In contrast, DR potential is primarily used to sup-
port scheduling in the following studies. In [18], a DR trade
model that addresses cost and revenue allocation in hydro-
gen-to-electricity conversion is developed. In [12], the power
consumption modeling for production processes is proposed,
which focuses on supporting day-ahead scheduling with DR.
In [19], a data-driven real-time price-based DR management
scheme is proposed for industrial energy facilities. In [20]
and [21], the DR potential is estimated based on power char-
acteristics and incorporated into the scheduling model. In ad-
dition, an hour-ahead price-based energy management
scheme is proposed to dynamically adjust industrial power
consumption in [22].

Studies on DR potential estimation of industrial users re-
main limited because of their insufficient willingness to par-
ticipate in DR and the necessity of maintaining normal pro-
duction. The current challenges in the DR potential estima-
tion of industrial users are as follows.

1) DR potential estimation of industrial users must consid-
er the coordination in various production processes rather
than treating them independently.

2) Participation of industrial user in DR is fundamentally
an economic decision. To understand the user psychology in
the response process, it requires the consideration of both
the uncertain and subjective factors.

3) DR potential estimation of industrial users varies great-
ly across different industrial consumers. Hence, it is essen-
tial to establish a unified model to ensure the standardization
and usability of the estimated DR potential.

In this context, a unified DR potential estimation model is
proposed to estimate the DR potential of typical industrial
users. The main contributions of this study are as follows.

1) A unified DR potential estimation model for typical in-
dustrial users is formulated considering operational and eco-
nomic factors, which is standardized and easily expandable.

2) Different from that for DR of residential users, an in-
dustrial user participation threshold is proposed to evaluate
whether the industrial user participates in DR.

3) Considering the uncertain and subjective factors in the
estimation process, an improved DR potential estimation
model is further proposed to increase its practical applicabili-
ty.

The structure of the remainder of this paper is as follows.
Section II presents the basic analysis. Section III introduces
the proposed estimation model for typical industrial users.
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Section IV shows the improved DR potential estimation
model considering uncertain and subjective factors. Case
study and conclusions are provided in Sections V and VI, re-
spectively.

II. BASIC ANALYSIS

The accurate DR potential estimation of industrial users
enables the distribution system operator (DSO) to schedule
DR resources effectively, thereby promoting the normaliza-
tion and large-scale implementation of DR. The difference
between DR potential estimation and response scheduling is
that the former represents the maximum willingness to re-
sponse, rather than the actual response amplitude.

Industrial users are rational and adjust their willingness to
response based on the incentive price. Thus, DR potential es-
timation must account for economic factors. Furthermore,
there are uncertain and subjective factors in the actual esti-
mation process that must be considered. These two issues
are addressed in Sections III and 1V, respectively.

A. Framework

Figure 1 illustrates the framework of the proposed estima-
tion model, where ASP is short for aluminum smelting plant;
CMP is short for cement manufacturing plant; and SMP is
short for steel manufacturing plant. In the day-ahead stage,
the DSO communicates response requirements to industrial
users. Industrial users estimate their optimal DR capacity
and report it to the DSO with uncertain incentives. In the in-
traday stage, the DSO determines the incentive price based
on the actual source-load situation and aggregated response
capacities. This paper focuses on the unified DR potential es-
timation model during the day-ahead stage.

Intraday stage
DSO

Day-ahead stage

. . Response operation ' Actual
Uncertain incentives: . . o
o status & capacity | incentives
historical data ‘
A N
v
Production process adjusting
HAFT
]—I ASP CMP « SMP
=} »
1 ASP/CMP/SMP
Response determination dccmn
o Load pfo.ﬁle ' ' p
o Probability density function of Response No
historical incentive prices & response

=== Communication signal (day-ahead stage)
- - - -» Communication signal (intraday stage)

Fig. 1. Framework of proposed estimation model.

The power consumption of industrial users can be divided
into production consumption and nonproduction consump-
tion. Production consumption is primarily associated with
machine-driven processes, electric heating, and other related
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activities. These activities support industrial production
needs, some of which follow a specified sequence that can-
not be interrupted. The objective of the DR potential estima-
tion in this paper is the production consumption, as it ac-
counts for the majority of the energy consumed in industrial
production.

Figure 2 illustrates the schematic diagram of the proposed
estimation model. Firstly, the impacts of power consumption
patterns (workdays and nonworkdays), as well as the correla-
tion between the electricity price and the load curve, are ana-
lyzed to provide a theoretical basis for subsequent modeling.
Secondly, the proposed estimation model is established, with
heterogeneous constraints derived from the production char-
acteristics of different typical industrial users. Finally, an im-
proved DR potential estimation model is proposed consider-
ing the difficulty in obtaining private information, the uncer-
tainty information, and the response characteristics of indus-
trial users.

Correlation o Power consumption patterns
analysis o Correlation between electricity price and load curve
r T pees==c==ss==s=s=====cs==s==c==g
I | : Industrial users :
| i . i
I | : A y
| | I _1 T + - |
I | : = P |
| Proposed | | ASP CMP SMP '
: estimation | CTTTTTTTTTTTTTTTTToTTTeT
| model | Production Changes in Changes in
| process 1 oo éj‘ié 1
| | N electricity cost employment cost
I I Production Szt g & Reward for
| ior S
| : characteristics control cost participation
I |
Improved DR Private information =====p Virtual data acquisition
pqtent{al Uncertain information s Prospect theory
estimation o L
odel Response characteristic ===p Participation threshold
Fig. 2. Schematic diagram of proposed estimation model.

B. Correlation Analysis of Workdays v.s. Nonworkdays

The accuracy of the proposed estimation model is signifi-
cantly influenced by the operation status of industrial users.
The most obvious and common factor influencing the opera-
tion status of industrial users is whether the day is a work-
day.

Two indices are used to assess the similarity between the
power consumption patterns on workdays and nonworkdays:
the power consumption amplitude and the similarity of the
load curves. The power consumption amplitude can be easily
accessed through curve classification, whereas the similarity
of load curves must be evaluated via a specific method. No-
tably, the Hausdorff distance (HD) is introduced to judge the
similarity of line shapes [23], [24]. The HD measures the
distance between two subsets of a metric space. The smaller
the HD, the more similar the lines are, which indicates a
stronger correlation between them. The definition of HD and
related formulas are shown in Supplementary Materia A.
The average HD between workday load curves and nonwork-
day load curves HPL is calculated through (SAS5) in Supple-

mentary Materia A.
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The electricity price has an important effect on the opera-
tion of industrial production, causing the load to fluctuate
regularly with changes in the electricity price. However, the
actual load curve does not exhibit a sharp contrast between
high power consumption period and low power consumption
period, i.c., the operation status of the industrial user is also
significantly affected by other factors. Therefore, the correla-
tion between the electricity price and the load curve should
be analyzed to provide a foundation for the subsequent mod-
eling. HD is used to assess the similarity between the elec-
tricity price and the load curve. The average HD between

the electricity price and the load curves /H, is shown in

(SA6) in Supplementary Materia A.

The results indicate that the correlation between electricity
price and load curves is significantly weaker than the correla-
tion between workday load curves and nonworkday load
curves. Overall, the daily operation status of industrial users
remains relatively stable, and electricity cost does not serve
as a decisive factor influencing the operation status of indus-
trial users.

III. PROPOSED ESTIMATION MODEL FOR TYPICAL
INDUSTRIAL USERS

Typical industrial users are selected for DR potential esti-
mation, e.g., ASP, CMP, and SMP. The aforementioned in-
dustrial users are typical high power-consuming industries
with a high level of automation. Moreover, the production
processes of these industrial users and their corresponding
regulation methods exhibit substantial variations in flexibili-
ty, energy consumption, and other aspects. These processes
encompass most industrial production lines and reflect the
universality of industrial users.

The DR potential provided by industrial users is driven by
economic factors. By optimizing the economic cost altera-
tions related to adjusting the operation status of the internal
equipment to participate in DR C,, the optimal DR potential
can be determined. Therefore, a unified DR potential estima-
tion model for industrial users is developed, comprising
three components: a unified objective function, general con-
straints, and heterogeneity constraints. The heterogeneity con-
straints account for the distinct production processes and re-
sponse requirements of various industrial users. The unified
objective function is formulated as (1). The weight coeffi-
cient A, is used to reduce the impact of changes in electricity
cost and adhere to the principles of industrial production.
Consequently, it prevents industrial users from concentrating
their power consumption during the valley period. Other-
wise, the optimization results are only theoretically optimal
and do not satisfy the actual industrial production demand.

min C,=1,ACE,+ACC,+ACS,— RE, (1)

where subscript s is the element of set S={ASP,CMP,SMP};
ACE, is the change in electricity cost; ACC, is the change in
control cost; ACS, is the change in employment cost; and
RE_ is the revenue for participation in DR.

General constraints include the conservation in relation to
production goals (i.e., energy conservation) and the require-
ment of adhering to the original production operation
scheme. In contrast, heterogeneity constraints account for
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specific equipment switching methods, storage requirements,
and other operational limitations. Required inputs and out-
puts of the estimation model are provided in Remark SA1 of
Supplementary Material A.

Remark 1: why do we use a unified model to estimate
the DR potential of industrial users?

The unified DR potential estimation model proposed in
this paper encompasses typical production processes. It facili-
tates DR potential estimation of industrial users on a unified
basis and is easier to generalize in the context of regional
and multi-industry DR potential estimation. The differences
in DR potential among industrial users are reflected in the
constraint conditions.

Based on field research, the following assumptions are
made to simplify the modeling process.

Assumption 1: the production rate is proportional to pow-
er consumption.

Assumption 2: identical types of industrial production
equipment share the same parameters.

The discussions regarding the validity and limitations of
Assumptions 1 and 2 are provided in Remarks SA2 and SA3
of Supplementary Material A, respectively. It is worth noting
that the unified DR potential estimation model corresponds
to the proposed estimation model.

A. Proposed Estimation Model for ASP

In the aluminum smelting process, alumina is converted
into aluminum, thus providing material for various indus-
tries. The production process of an ASP mainly includes
bauxite mining, alumina production, anode preparation, elec-
trolytic aluminum production, and aluminum ingot casting
stages. The power consumption in each stage accounts for
1%, 21%, 2%, 74%, and 2%, respectively. Therefore, the
electrolytic aluminum process is adjusted to provide DR ca-
pacity, and its DR potential is estimated.

Electrolytic aluminum production process is initiated in
pots under low DC voltage. Hundreds of cells are connected
in series to form a potline or multiple potlines. The power
consumption of a potline is high, and it has sufficient flexi-
bility to response rapidly to the increase or decrease in ener-
gy demands. Generally, there are two ways to adjust the
power consumption of a potline:

1) Turn the pot on/off. Since the pot operation requires
strict thermal balance, this way negatively impacts the elec-
trolytic aluminum process.

2) Adjust the tap changers in the rectifier stations. The tap
positions can change quickly and accurately, allowing for
rapid reduction or increase in power consumption, as demon-
strated in Alcoa’s Warrick operation [25]. This way is select-
ed because it exerts less impact on the production process.

The proposed estimation model for an ASP is given by
(2). We assume that there are n,g, pots that can be adjusted
(a potline) and each pot has K tap positions. The power con-
sumption of the i pot P,,,, and the potline in an ASP after
and before rescheduling P,g,andP,g,,, are derived in
(3)-(5).

min C,p =2 ypACE ygp+ ACC yqp + ACS s p — RE )

ASP
K

2 3)

ASP.k
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sy K
Psp= zzztkPASP,k 4)

isli=1

ns K
Psp0= zzztkopASP,ko Q)

=lk=

where the subscript & is the tap position; the subscript k&, is
the tap position at the original operation point; and z,,, is
the i" pot in the " tap position with the power consumption
P,p at time 7 .

ACE s, and ACC,, are calculated in (6) and (7) and are
obtained by subtracting the cost of the original operation
point from the cost of the rescheduled operation point. Ex-
cessive switching of machines may accelerate the degrada-
tion and potentially cause damage. Therefore, switching ac-
tions are penalized.

Hasp K
ACE sp= zEP z;(zm ASP.k, ztk(,PASP,kO) (6)
i=1
T Nasp K
ACC o= ZZ;CASP|an Ziodl —
t i
T Nasp K
ZZ;CASP|Zi,t,kO_Zi,t—1,k0| (7
1=2i=1k=

where T is the number of time intervals; and EP, is the elec-
tricity price at time

The changes in employment cost ACS,q 1S associated
with starting and stopping the potline. A certain number of
workers are required to supervise production when the pot-
line operates normally. In the response process, the on/off
status of the potlines remain unchanged. Hence, as shown in
(8), ACS s 1s set to be 0. The DR is set to activate at #, and
t,. The obtained revenue can be deduced with (9), and the
duration of ¢, and ¢, is set to be 0.5 hour.

ACS ,»=0 (3)

©

REASP=W1|PASPJ1_PASP.,tl,0|+W2|PASP.,t1_PASP,tl,O|

where w, and w, are the incentive coefficients.

Several constraints are considered. As specified in (10),
the pot must be switched to a specific tap position to main-
tain thermal balance and avoid interfering with normal pro-
duction. The production target of electrolytic aluminum is en-
sured through the equal power consumption constraint in
(11). Furthermore, changing the tap positions too frequently
within the same pot may shorten its service life. According
to (12), within every four consecutive time slots, the tap po-
sition can be switched at most once.

K
> zu=1 (10)
=1

T T
zPASP.t: szsp,z,o (11)
=1 =1

2= Zid F 2= Ziaal T2 =2 sl 1 (12)

The typical production states of an ASP can be catego-
rized into the rated production, reduced production, holding,
and cooling states, which switch according to the DC bus
current. In the rated production state, the DC current of the
pot is between 90% and 100% of the rated value. In the re-
duced production state, aluminum electrolysis can still pro-
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ceed normally, but the output of aluminum liquid decreases
due to reduced energy input. In the holding and cooling
states, maintaining normal production of aluminum electroly-
sis proves to be difficult and may even lead to equipment
damage. Therefore, the current of aluminum electrolysis is
constrained to ensure normal production. Equations (13) and
(14) calculate the DC current /,,, and DC voltage Vy,,, of
the i" pot in the k™ tap position at time ¢, respectively. Equa-
tion (15) limits the allowable fluctuation range of I,
through switching the tap changers in the rectifier stations.
E

L= Veiii— 13
d.i,t,k B.i.tk REC ( )
_ VAL
VBJ.L,/\'_ 135( TAPi,tﬂk VSR) (14)
I,
0.9< 3’“ <1.0 (15)
do

where R.. and E are the equivalent resistance on the load
DC side and the back electromotive force, respectively; V,,
and Vg, are the high-voltage bus voltage on the load side
and the voltage drop across the saturable reactor, respective-
ly; TAP,,, is the voltage transformation ratio of the i pot in
the k™ tap position at time #, which corresponds to z,,,; and
1,, is the rated DC current of a pot.

Furthermore, the primary purpose of rescheduling the op-
eration point of an ASP is to generate revenue while provid-
ing DR resources, rather than optimizing the operational con-
figuration for revenue. Therefore, with the exception of ¢,
and ¢,, the power consumption must fluctuate near the initial
curve. In addition, the power consumption should not be ex-
cessively biased toward the periods of low electricity prices,
thereby preventing the distortion of its original pattern. Equa-
tion (16) illustrates this rule, and the response range at ¢,
and ¢, is constrained by (17).

PASP,t.O_§ASPSPASP,tSPASP,t.O-’_éASP te T\{t17t2}

(16)
P1£PASP,1_PASPJ,OSO (17)

where J,q is the allowable range of power variation of
ASP; T={1,2,...,T}; and P, is the maximum regulation ampli-
tude.

Vi=t,,t,

B. Proposed Estimation Model for CMP

Cement production is an energy-intensive industry, with
power consumption representing approximately 30% of its
total costs. The cement production process involves four
main stages: crushing (CR), kiln feed preparation (KFP),
clinker production (CP), and finish grinding (FG) stages.
The KFP stage must remain in operation due to its large ther-
mal capacity. In addition, the cost of turning the kiln on or
off is high. Although other stages can be interrupted, the CP
stage is characterized by relatively low flexibility and pro-
duces hot clinker, which is cooled and fed into the FG stage
for grinding into cement powder. The CP and FG stages are
coupled through the clinker storage area, whose capacity is
smaller than that of the raw material storage area. Therefore,
the FG stage must operate continuously to prevent the clin-
ker accumulation. The most suitable process for interruption
is the CR stage. In the CR stage, a rapid on/off switching is
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adopted to quickly adjust the power consumption, specifical-
ly by turning the crushers on or off.

The proposed estimation model for a CMP is given by
(18). Given that there are n., crushers that can be adjusted,
a binary variable u, , is introduced to denote the operation
status of the m" crusher at time ¢. u, =1 represents that the
crusher is on, and u, ,=0 represents that the crusher is off.
The power consumption of the m™ crusher P, , and all ad-
justable crushers in a CMP after and before rescheduling
Py, and Py, are derived in (19)-(21).

min Ceyp=AcypACE cyp + ACCyp + ACS cpip = RE . (18)

PCMP,mJ:¢m/um.t (19)

PCMP,tz z¢mlum,t (20)
m=1

Peyp,o= 2¢m#81,t (21)
m=1

where ¢, is the rated power of the m"™ crusher; and p), is
the original operation status of the m™ crusher at time ¢.

Similarly, ACE .\ and ACCqyp are calculated in (22) and
(23), respectively. The difference between the CMP and ASP
is that the CMP uses on/off switching to adjust power con-
sumption, and there is a difference in labor costs between
day and night shifts. Therefore, the changes in labor costs
must be taken into account in (24). Finally, the received rev-
enue of the CMP RE ., can be calculated in (25).

Memp

T
AC‘E‘CMP: zEPtz(¢mlum,t_¢mlugz,t) (22)
t=1 m=1
T Newr
ACCoyp= z z Conplt i1 =i =
=2m=1
tT Nomp
> 2 Compltir =t (23)
t=2m=1
T Tewp 0
ACSCMP = CSAZ z |Il'l)7l,t_ll’t)71,t| (24)
t=1m=1
RE c\ip=WilPoup., = Powp.r, ol + WalPowe, = Powieol - (25)

where C,; is the cost coefficient for the switching action of
the CMP; and Cg, is the salary coefficient.

Since the CMP operates at rated power in the CR stage,
the output rate of raw materials remains constant when it is
on, as shown in (26). Therefore, the normal production pro-
cess can be maintained with the same power consumption in
the CR stage.

T T

ZPCMP,t: EPCMP,L‘,O

t=1 t=1

(26)

In the cement production process, the CR and KFP stages
are connected through the raw material storage area. The
KFP stage is always on with a constant consumption rate.
Thus, the amount of the stored intermediate product is direct-
ly related to the number of crushers in operation. To in-
crease the flexibility of the CMP in transferring the load, all
crushers are considered to share a single storage area, as
shown in (27). However, the storage-area capacity is limited.
The operation status of the crushers must be carefully man-
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aged to prevent overflow or insufficient storage in the KFP
stage, as specified in (28).

q,+ zBp:um,t_TC:qu (27)
m=1

Oiw<q,< thgh (28)
where ¢, is the utilization volume of the storage area at time
f; B, and 7. are the generation rate of the CR stage and the
consumption rate of the KFP stage, respectively; and O,
and Q,;, are the lower and upper limits of the storage area,
respectively.

Finally, the response ranges at ¢, and ¢, are constrained in
(29) and (30), respectively.

te T\{t.t,} (29)
PZSPCMP,I_PCMRLOSO Vi=t.1, (30)

where O, is the allowable range of power variation of
CMP; and P, is the maximum regulation amplitude.

C. Proposed Estimation Model for SMP

In contrast to aluminum smelting, steel manufacturing in-
volves a complex production process, where both logistics
management and energy optimization are crucial. Given that
the objective is not to optimize the production of the steel
plant, only power consumption is considered in this context.

The production process of SMP includes four equipment:
electric arc furnace (EAF), argon oxygen decarburization
(AOD), ladle furnace (LF), and continuous caster (CC). The
first three equipment operate in batch mode, meaning a spec-
ified amount of metal is processed at a time [23]. Each
batch of metal is called one heat. One heat is generated in
the EAF, and the generated heat is subsequently transported
to the AOD to reduce the carbon content. In the LF, the spe-
cific parameters of the liquid steel are adjusted, and this lig-
uid steel is cast into slabs in the CC.

The most power-intensive production stage occurs in the
EAF. Moreover, the scrap metal begins to cool after an inter-
ruption lasting more than 30 min. Furthermore, restarting
melting process incurs additional costs. Since EAFs are pow-
ered by transformers, their power consumption can be adjust-
ed by changing the position of the on-load tap changers
(OLTCs). However, frequent switching of the OLTCs may re-
duce their lifetime.

1) Typical Distinction Illustration

The SMP is selected as the third typical industrial user
due to the continuity of its production process. As men-
tioned earlier, one heat is generated in an EAF, but the total
energy required for melting is fixed, and the melting process
cannot be interrupted. In other words, the product of the
melting duration and the melting power equals a constant
value.

Since the melting process cannot be interrupted, the set-
ting of OLTC cannot be altered while the melting is in prog-
ress. In other words, the setting of the OLTC must remain
fixed, and the corresponding fixed duration depends on the
tap setting. For ASP, electrolytic aluminum production oper-
ates continuously, which means that the switching of the tap
position can occur at any time and only affects the output
rate rather than the final result.

PCMP,t,O - 5CMP < PCMP,t = PCMP, t,0 + 5CMP
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For different melting modes, the melting task for each
mode fully spans the current time slot. The time slot is set
to be 0.5 hour. If the melting time of a mode is 79 min, it is
viewed as spanning 3 time slots.

2) Proposed Estimation Model Formulation

The proposed estimation model for an SMP is given in
(31). Given that there are ngy,, EAFs that can be adjusted
and each EAF has H tap positions. The power consumption
of the j" EAF Pgp ;. and all the EAFs in an SMP after and
before rescheduling Py, and Py, are derived in
(32)-(34).

min Cyyp =AgypACEgyp + ACCqyp+ ACSgyp —RE g (31)

PSMP,j,t:Zj,t,hPSMP.h (32)
Nsvp H
Pop, = zzzj.t,hpsw.,h (33)
j=1h=1
novp H
Pop.o= EZZj,t,hOPSMP,hO (34)
j=th=1

where Pg,, is the power consumption of SMP in the A" tap
position; z,,, is the /" EAF in the 4" tap position with pow-
er consumption at time # and the subscript 4, denotes the
tap position at the original operation point.

ACE g p, ACCqpp, and ACSg,p are calculated in (35)-(37),
respectively. DR is set to activate at ¢, and ¢,. The received
revenue of the SMP RE,, is calculated in (38).

Nswp H

’
ACEg\p= zEPtzz(zj,LhPSMP‘h_Zj.t,h(,PSMP,h(,) (35)
t=1 j=1h=1
T Nswe H
ACCgyp= zzECSMP|Zj,t,h_Zj,t—l,h| -
(=2j=1h=1
T Nswe H
CSMP'Z/‘. thy " Zjit- 1A,h“| (36)
1=2j=1h=1
ACSp=0 (37)
RESMP:W1|PSMP,,1‘_PSMP‘t‘,()'+W2|PSMP.t2_PSMP,tZ.0| (38)

where Cj,,, is the cost coefficient of the switching action of
SMP.

Once the temperature of the EAF decreases, it takes a
large amount of energy and time to reheat to the effective
temperature range, thereby incurring substantial economic
and time costs. Hence, the EAF must select an operation
mode, as specified in (39). Each heat consumes the same
amount of energy in the melting process, utilizing the con-
sumed energy to guarantee the generated heat amount, as
shown in (40).

(39

T T
EPSMR;: zpsmpfno

=1 =1

(40)

Heat generation occurs in one furnace at a time, rather
than continuously adding and outputting new intermediate
products, which ensures the integrity of the melting process,
as specified in (41).

(Zj.L,h “Zj-1h )+(Zj,(~),,+t—l,h ~Zj0,+th )<1

(41)
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where the subscript @, denotes the melting process corre-
sponding to Pgyp -

Two equipment and a single resource storage unit are con-
figured. If the production rate of EAF is larger than the con-
sumption rate of AOD, the resources are stored. Otherwise,
the AODs remain on standby until the storage unit is full.
The EAFs share a large storage unit, which increases the po-
tential for coordination. To reduce the calculation complexi-
ty, even though the intermediate product of the EAF is pro-
duced in a single furnace, it is amortized over the melting
time of that furnace. The average value is obtained by divid-
ing the total amount by the period, thereby expressing the
production rate, as shown in (42) and (43). The quantity of
materials within the storage unit must not exceed its capaci-
ty. Otherwise, an overflow of intermediate products may oc-
cur, thereby interfering with the normal operation of the sub-
sequent process. Equations (44) and (45) express the con-
straints.

iz g
- JthSh
gjﬂl_h:l 0, (42)
G= 2.8 (43)
Jj=1
§,=8,_,+G,—14 (44)
Slow < St < Shigh (45)

where g;, is the average production rate of the j™ EAF at
time #; g, is the generation rate of the EAF in the A" tap po-
sition; G, is the overall production rate of all EAFs at time ¢
7g is the consumption rate of the EAF; and S, S,,,, and S,
are the storage capacity at time 7, the maximum storage ca-
pacity of the storage unit, and the minimum storage capacity
of the storage unit, respectively.

Once again, improving SMP operation is not the primary
objective, and the regulation scope is constrained by (46)
and (47).

PSMP,t.O_ésMPSPSMP,tSPSMP,t,O+5SMP te T\{II’IZ} (46)

P3SPSMP,I_PSMP,LOSO Vi=t,t, 47)

where dgp i1s the allowable range of power variation of
SMP; and P, is the maximum regulation amplitude.

IV. IMPROVED DR POTENTIAL ESTIMATION MODEL
CONSIDERING UNCERTAIN AND SUBJECTIVE FACTORS

In Section III, the DR potential of industrial user is esti-
mated on the basis of a comprehensive understanding of the
operation status and the incentive price provided by the
DSO. In practice, the DR potential estimation is typically
performed on day-ahead or periodic basis (e. g., weekly).
However, in the actual DR potential estimation process, un-
certain and subjective factors arise, such as those associated
with unknown parameters, uncertain incentive prices, and
psychological factors.

A. Virtual Data Acquisition Method

Specific process arrangements are used in the actual DR
potential estimation process. However, these are private pa-
rameters and are not reported during DR. The inaccessibility
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of these parameters directly affects the accuracy and feasibil-
ity of the proposed estimation method. Therefore, a virtual
data acquisition method is proposed to reduce the need for
the above-mentioned data.

According to (1), ACE, and RE, are not related to the spe-
cific process arrangements, whereas ACC, and ACS, are
strongly related to them. However, both ACC, and ACS, sub-
tract the cost of the original operation point from the cost of
normal operation and rescheduled operation point. Since the
production process is scheduled in advance, the cost of the
normal operation is fixed. During optimization, a change to
a fixed value in the objective function does not affect the fi-
nal results, i.e., the original production arrangement does not
affect the DR effect after rescheduling.

Therefore, it is not necessary to obtain the original actual
data. Thus, obtaining a virtual production arrangement is
beneficial. When obtaining a virtual production arrangement,
the deviations between the virtual power curve and the origi-
nal power curve must be minimized, as specified in (48) and
(49). The other constraints are the same as those shown in
Section III.

min |Ps,t_PL,s,t| (48)

s.t.

T T T
A-x)D P < DP <(+K,) D P, (49)
t=1 t=1 t=1
where P, and P, are the original power and virtual power
of industrial user s at time ¢, respectively; and x, and «, are
the constant coefficients used to limit the deviation range,
where x, =x,=2%.

The virtual data acquisition method for obtaining virtual
parameters involves replacing certain inaccessible actual data
with logically consistent virtual data. The obtained virtual da-
ta may not affect the subsequent DR potential estimation re-
sults because the independent constants do not influence the
final optimization outcome in the problem-solving process.
However, the virtual data acquisition method still requires
preliminary data.

B. Considering Uncertain and Subjective Factors

1) Industrial User Participation Threshold

Industrial users who participate in DR are motivated by
economic considerations. In contrast to residential users, in-
dustrial users have a certain participation threshold when par-
ticipating in DR, which is related to their specific response
characteristics.

1) Lower sensitivity to the incentive price. Industrial pro-
duction involves specific production goals, and ensuring
noninterference with normal output is a necessary prerequi-
site for participation in DR. When participating in DR, the
industrial user (plant) must adjust its production processes,
which incurs additional costs. Therefore, industrial users are
relatively insensitive to incentives and are unlikely to adjust
their production processes in response to small changes in in-
centives.

2) Higher participation intention threshold. The electricity
cost of the industrial production is significant. If participat-
ing in DR yields only small economic revenues, the industri-
al user is more likely to maintain the original operation sta-
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tus.

3) Indirect response mode. Generally, residential users
switch the operation status or adjust the operation parame-
ters to directly change their current power consumption. In-
dustrial users are inclined to adjust the production process
due to production sequence and targets, which indirectly al-
ters their power consumption, as shown in Supplementary
Material A Figs. SA1 and SA2.

4) Significant response effect. Industrial users have advan-
tages in response amplitude and duration compared with resi-
dential users.

Based on the response characteristics of industrial users,
an industrial user participation threshold is proposed to
judge whether the industrial user is willing to participate in
DR, as shown in Fig. 3.

G Curve 1
°
| Region W/ Fot
4 A S K
- +\ Curve 2
" . 1 Region
Region LB
&y C
G

Keep original operation status; Willing to adjust

Fig. 3. Judgment of industrial user’s willing to participate in DR.

Let C, and C, represent the cost of the industrial user in
normal operation status and that after participating in DR, re-
spectively. As shown in Fig. 3, the two curves divide the
plane into three regions. Region A represents the case where
C,>C,. Region B represents the case where C,<C,, but C,—
C, is smaller than the proposed threshold. Region C indi-
cates that C,—C, is larger than the proposed threshold. Fur-
thermore, the DR behavior of the industrial user under differ-
ent conditions can be identified. Specifically, only when the
changes in costs fall within Region C will the industrial user
adjust its production process. In other words, only the blue
point in Fig. 3 represents the case where the industrial user
is willing to adjust the production process, which means that
the industrial user is willing to participate in DR.

C,—C,<-TLV  Willing to participate in DR
C,—C,>-TLV  Unwilling to participate in D

where TLV is the proposed threshold, and 7LV > 0.

The theoretical value of the proposed threshold can be de-
termined based on the proportion of the average annual reve-
nue of the industry and the ratio of the electricity bill to to-
tal costs. In practical applications, the theoretical value can
be adjusted according to other factors, such as the current
production demand, production schedules, and seasonal prof-
itability.

The setting of the theoretical value aligns with the actual
choices of industrial users, as they are unlikely to alter their
original operation status for small revenues. Industrial users
of different types and sizes exhibit varying proposed thresh-
olds.

r 0
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2) Incentive Price and Bounded Rationality

The proposed threshold assists industrial users in determin-
ing whether to participate in DR. However, the index used
by industrial users to determine whether to participate in DR
is not based on absolute costs, but rather on perceived costs.
Absolute costs refer to the revenue an industrial user would
receive in a known situation with perfect rationality. This es-
timation environment is difficult to achieve due to the bound-
ed rationality of industrial users and the incentive prices. It
is worth noting that the incentive price is one of the uncer-
tain factors and the bounded rationality is one of the subjec-
tive factors.

In this context, industrial users can only receive perceived
costs and make decisions based on incentive price and
bounded rationality. Influenced by irrational psychological
factors, industrial users with varying levels of rationality
make different choices. Prospect theory (PT) [26] is a theory
that can accurately model the irrational behaviors of industri-
al users and describe and predict the behavior of individuals
in risk decision-making processes. PT differs from tradition-
al expected-value theory and expected-utility theory in con-
verting the objective probability of users into subjective
probability.

PT assumes that the risk decision-making process consists
of an editing process and an estimation process. In the edit-
ing process, industrial users with bounded rationality define
their revenues and losses using the proposed threshold as a
reference point. In the DR potential estimation process, in-
dustrial users evaluate each edited prospect and choose the
best option based on the value function and weighting func-
tion.

Editing process: in many DR markets (e.g., in China), in-
dustrial users are required to report their DR potential esti-
mation in advance, after which the incentive price is provid-
ed. If the incentive price exceeds the expectation, the reve-
nue is greater. Otherwise, the industrial user may incur a
loss. In this case, the industrial user is more likely to report
a stable value based on historical incentive prices. Determin-
ing how to estimate the DR potential under conditions of un-
certainty and improve economic performance in most cases
is worth studying.

An improved DR potential estimation model considering
incentive price is proposed. The variable (AP, ,AP_, ) de-
notes that the incentive price is Q and the response ampli-
tude is (AP, ,AP, ). Equation (51) calculates the actual rev-

enue of the industrial user V, (&, AP, AP, ) when the giv-

en incentive price is Q, while the industrial user obtains the
reported (AP, ,AP ;) based on Q. The first two terms Q
and AP, calculate the actual cost when the industrial user
participates in DR with (AP ,,AP ). The third term
AP,
acteristic of lower sensitivity to the incentive price, it is easy
to obtain (AP ,,AP ) with different Q, and (AP, ,AP,)

has a limited number of levels.

s.1,?

calculates the revenue deviation. Considering the char-
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V(Q.AP,, AP, )=—C,(QAP,. AP, )+(1 -1,
ACE,(QAP,. AP, )~(Q—Q)AP, +AP, )]
(51
Estimation process: the actual load curve and incentive
price are uncertain factors that affect the DR potential esti-
mation. As day-ahead forecasting achieves a high degree of
accuracy and industrial users exhibit lower sensitivity to in-
centive prices, small power fluctuations in the load curve do
not interfere with response decisions. Therefore, only the un-
certainty of the given incentive prices is considered. Two
key functions are explored: the value function and the

weighting function.

Equation (52) infers the perceived costs of industrial user
s in the specified response amplitude (AP, ,AP,,) based on

the probability distribution of historical incentive prices. Fur-
thermore, (52) can be discretized to (53) to reduce the diffi-
culty of the solution.

I;vs (APMI,APM:)= J~ VS (Qv APx,t,7APs,t2 )p(f)) (52)

QeR
I;S(APs,tl’APs.tz): z VS(‘Q’APS,t,7APs,IZ)p(‘Q) (53)
QeR
where 7, (AP, ,AP_, ) is the perceived cost of industrial us-

er s as the value function when the response amplitude is
(AP, . AP ,); p(©) is the probability of € and z p(Q)=1;

QeR

S0,

and R is the set of feasible incentive prices.

Moreover, industrial users are not always perfectly ratio-
nal but more often exhibit bounded rationality, which leads
to varying risk preferences. p(f)) is the objective function
that maps the perfectly rational situation, while w(p(Q)) is
the corresponding subjective probability. According to [27],
w(p(Q)) is the probability weighting function that transforms
objective probabilities into subjective probabilities, as de-
fined in (54). When rationality degree « is set to be 1, indus-
trial users are perfectly rational. When a decreases, industri-
al users become more inclined to the occurrence of low-prob-
ability events. The value of a can be obtained through field
research or analysis of the historical behavioral data.

o(p(Q)=exp[(-Inp(Q))'] 0<a<l (54)
The S-shaped value function 7, (AP, ,AP_, ) indicates

that an industrial user exhibits risk-seeking behavior when
facing losses and risk-averse behavior when dealing with rev-
enues. Therefore, the objective function in (1) is modified as:
V(AP AP, )=a(p(Q) D V(AP AP, ) (55
QeR

When confronted with different values of Q, the industrial
user exhibits varying DR effects. The objective function (1)
provides the optimal DR behavior of industrial users under
deterministic ©. Considering the bounded rationality of in-
dustrial users and the uncertainty of actual Q, the S-shaped
value function (55) formulated based on PT and (1) de-
scribes the perceived costs of industrial user DR behavior un-
der uncertain Q. However, this perceived cost only repre-
sents the revenue from the current DR behavior, but not the
overall DR behavior. Nevertheless, the goal of DR potential
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estimation is to determine the response amplitude through
economic optimization. Therefore, additional process is need-
ed.

The set of all DR behaviors P ={(AP, |,AP, ,),

(AP.S,I,,Z’AP.S',12,2)7 Ed (AP A})s.lz‘z )ﬂ R (APS,[],Z7 APS.,IZ,Z)} iS

obtained through (1), where subscript z denotes the z" DR
behavior; and Z is the last DR behavior. The obtained
VAP, ..AP,, .) is defined as a prospect set. Correspond-
ingly, the prospect I7A_ can be obtained. Among all the pros-
pect sets, the industrial user may choose the DR capacity
corresponding to the best prospect (AP, ,AP_,) as the DR
potential estimation. Therefore, the improved DR potential
estimation model is expressed as:

81,22

8,4,z

max I;S (APS,[l.Z’ APs,tz.z)
s.t. (2)-(47) (56)
(AP.V.I,.Z’ AP.\',IZ.Z )E P.v

Finally, the industrial user determines whether to partici-
pate in DR according to the perceived costs. Therefore, the
reported potential capacity (AP, .AP; ) of industrial user s

can be derived as:

@ ap o [OPLAPL) V,(AP;,.AP;, )2 TLV,
e VAP AP )<TLY,
(57)

V. CASE STUDY

In this section, DR potential estimations of the ASP, CMP,
and SMP are calculated. The actual load curves and electrici-
ty price data over three months are obtained from an indus-
trial park in China. Parameter settings are listed in Table I.

TABLE I
PARAMETER SETTINGS

Parameter Value Parameter Value
@ (MW) 22 P s (MW) 18, 19, 20
22.5, 30.0,
o, 4,3,2 Pgyp,y (MW) 40.0
7o, Ty (1) 180, 4 P, P, P, (MW) 12, 10, 25
B, 0.25 q, () 10
Cysp Csup Conp (8) 90, 150, 180 O Qin O 0, 20
_ 22.5, 30.0,
g 40.0 S, 100
H 3 Siow Shign () 0, 3000
K 3 T 48
s Mewp Psyp 15, 30, 6 w,, w, (§-MWh) 120, 120

A. Correlation Analysis

In Supplement Material A Fig. SA3, the first column
shows the HD between daily loads in a specified plant and
the second column shows the HD between daily loads and
the electricity price in a specified plant. In addition, rows 1-
3 show the calculated HDs of ASP, CMP, and SMP, respec-
tively. Based on Fig. SA3 and Table II, the daily load of the
same industrial user exhibits a strong correlation. The simi-
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larity between workday load curvers and nonworkday load
curvers is high, indicating similar operation patterns. There-
fore, the proposed estimation model can be used to estimate
the DR potential of a specified industrial user, regardless of
workdays or nonworkdays. In addition, industrial power con-
sumption and electricity prices are related, but their similari-
ty is weaker than that between daily loads. Thus, industrial
power consumption is affected by the electricity price, but
the electricity price is not the decisive factor that affects the
production process. Therefore, it is reasonable to weaken the
influence of electricity cost variation factors in the proposed
estimation model.

TABLE 11
COMPARISON OF HDsS

HD
Industrial
user Workday v.s. Workday v.s Load curve v.s
workday nonworkday electricity price
ASP 3.42 3.48 5.04
CMP 2.66 2.69 6.25
SMP 2.82 2.88 5.28

B. Validation of Proposed Estimation Model

The proposed estimation model is applied to ASP, CMP,
and SMP to validate its effectiveness under different cases.
This subsection outlines the DR effects of different industrial
users under various incentive prices, categorized as cases 1,
2, and 3. To demonstrate the significant stepwise DR effects,
the incentive prices chosen in ASP are divided into three lev-
els: $60, $90, and $120. The other two industrial users se-
lected incentives of $40, $60, and $80. The comparison of
specific revenue is listed in Table III, and the DR effects are
detailed below.

TABLE III
COMPARISON OF REVENUES

Revenue ($)

Case No.
ASP CMP SMP
1 2814.0 —6849.6 20931
2 4293.2 —5556.6 21681
3 5720.9 —4999.6 22899
1) ASP

Taking the ASP response as an example, Figs. 4 and 5(a)-
(c) are compared. It is worth noting that different colors in
Fig. 5 represent different tap positions. Since Fig. 5 is only
for overall visual comparison rather than detailed compari-
son, there is no legend. As shown in Fig. 4, the greater the
incentive price, the larger the response amplitude. As the in-
centive price increases, switching the operation status be-
comes more complicated. Only when the incentive price is
large enough to cover the cost of switching may the ASP be
inclined to response in order to gain more revenues. Under
the constraint of 1,g, the operation status of the ASP still
follows certain operational rules. Table III compares the reve-
nues of the ASP under different incentive prices. Under a
reasonable arrangement of production process, the greater
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the response amplitude, the greater the obtained revenues,

which aligns with conventional understanding.

460~ Response curve ($60); — Original load curve

-+~ Response curve ($90); Electricity price 400
4501 __ Response cur ($120) 330
o 440} ponse curve 1300
z
2 2
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Fig. 4. Comparison of response performance of ASP under different incen-
tive prices.
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Fig. 5 Comparison of tap positions of ASP. (a) Incentive price is set to be
$60. (b) Incentive price is set to be $90. (c) Incentive price is set to be
$120. (d) Incentive price is set to $60 without setting A ,gp.

Figures 5(a), 5(d), and 6 are compared to demonstrate the
necessity of the introduction of 4,g. The weighted electricity
cost is not considered in the residential load response. In ad-
dition, the electricity cost is negligible compared with the ob-
tained response revenue. However, industrial users consume
large amounts of electricity, and the electricity cost and re-
sponse revenue are not on the same order of magnitude.

— Original load curve
---- Response curve with 4,4 ($60)
---- Response curve without 1,gp ($60)

460
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Fig. 6. Comparison of response performance of ASP with and without 1,

If Z,qp 1s not introduced, the ASP will prioritize economic
factors excessively. This leads to a substantial increase in the
disparity of power consumption across different periods,
thereby causing the operation of the ASP to deviate from its
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normal operational rules, as depicted in Fig. 6.
2) CMP

Figure 7 shows the comparison of response performance
of CMP under different incentive prices.

80 100
70 50
< 60 0
2% 50 2
54 -100 g
2 L das0 E
= 20 /1 -200
j i
0 2 4 6 8 10 12 14 16 18 20 22 24

Time (hour)
— Original load curve; —— Electricity price; ---- Response curve ($40)
- Response curve ($60); —-- Response curve ($80)

Fig. 7. Comparison of response performance of CMP under different incen-
tive prices.

The difference between the CMP response curve and the
ASP response curve is that when the incentive price exceeds
a certain value, the response effect is significantly enhanced.
This occurs due to the fact that, around this value, the costs
and revenues are roughly balanced. When the incentive price
increases significantly, the revenues outweigh the cost
change, and the CMP is more likely to response and obtain
greater revenues. However, the revenues in Table III indicate
that CMP consistently shows negative revenues. Therefore,
the evaluated CMP may never participate in DR. This is be-
cause, despite having theoretical DR potential, its economic
DR potential is zero. Therefore, it is necessary to select oth-
er CMPs or industrial users as participants in the response
process.

Figure 8 shows the comparison of the salary and employ-
ment costs of a CMP under different incentive prices. The
peaks and valleys of salary and electricity prices are inverse-
ly related. Through strategic planning, salary expenditures
can be reduced by adjusting the pace of power consumption.

300 1100
250 === a—
L \ 1 E
2 200 | \ ] 2
2 | R 1-100
é 150 L \\._._\_' »»»»» /‘ E‘
T - <
100 L ! /l:: 12200 @
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Time (hour)
— Salary; ---- Employment cost ($40)
- Employment cost ($60); --- Employment cost ($80)
Fig. 8. Comparison of salary and employment costs of CMP under differ-

ent incentive prices.

Figure 9 shows the comparison of effects of the storage
capacity on CMP response (incentive price is set to be $60).
Changing the storage capacity affects the response curve but
not the response amplitude. This is because there is still
some room for a CMP to respond at low storage capacities.
Therefore, changes in the storage capacity within a certain
range do not affect the response performance.
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Fig. 9. Comparison of effects of storage capacity on CMP response (incen-

tive price is set to be $60). (a) Capacity evolution under different storage ca-
pacities. (2) Response effects under different storage capacities.

3) SMP

Figure 10 shows the comparison of the response perfor-
mance of an SMP under different incentive prices. Figure 11
shows the comparison of effects of initial storage capacity
on SMP response (incentive price is set to be $60). The dif-
ference between the initial storage capacity and storage ca-
pacity is that the overall response curve is unaffected when
the storage capacity is sufficient. Storage capacity affects the
response curve because a change in storage capacity alters
the overall planning space, giving the industrial user various
choices. As shown in Table III, among three industrial users,
the SMP has the highest unit response revenue and the larg-
est response range, making it a reliable and efficient choice
for DR participation.
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Fig. 10. Comparison of response performance of SMP under different in-
centive prices.
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Fig. 11. Comparison of effects of initial storage capacity on SMP response
(incentive price is set to be $60). (a) Capacity evolution under different ini-
tial storage capacities. (2) Response effects under different initial storage ca-
pacities.

4) Validation of Virtual Data Acquisition Method

In this study, the improved DR potential estimation model
is adopted by three industrial users. To reduce redundancy,
the ASP is used as an example for verification as follows.
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Figure 12 compares the actual load curve with the fitted
load curve, showing that the errors between the two curves
are small. The parameters obtained during curve fitting are
incorporated into the proposed estimation model for the same
calculation. A comparison of Fig. 4 and Supplementary Materi-
al A Fig. SA4 shows that the final DR potential estimation ob-
tained using the fitted load curve is identical to that obtained
using the known actual load curve. Therefore, the virtual data
acquisition method further reduces the difficulty in data acqui-
sition and effectively protects the industrial user privacy.

440,
_435¢
B 430}
= 4250
(5]

E 420}
415}
410

0

—— Actual load curve
----Fitted load curve

1‘0 lé f4 ]‘6 1‘8 2‘0 2‘2 54
Time (hour)

2 4 6 8

Fig. 12. Comparison of actual load curve and fitted load curve.

5) Validation of Uncertain and Subjective Factors

The industrial user infers the incentive price that the DSO
may offer based on the previous rule, and accordingly deter-
mines the optimal response behavior, thereby obtaining
V. (x). Figure 13 shows the industrial user perceived costs of
PT under different rationality degrees. The values for CMP
and SMP in Fig. 13 are the actual values divided by 10 to
maintain the balance of the figure.
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Fig. 13. Industrial user perceived costs of PT under different rationality de-
grees.

According to Fig. 13, when the rationality degree of indus-
trial user is low, the expectation for the future tends to be
overly optimistic, and the expected revenue is much greater
than the actual possible revenue. In this case, the DSO
yields a positive response with a low incentive price, but
this may negatively affect the user.

As depicted in Fig. 13, two proposed thresholds (threshold
1 and threshold 2) are presented. Among them, the value of
threshold 2 is excessively small, rendering the rationality of
users ineffective in determining whether to participate in
DR. However, with the setting of threshold 2, industrial us-
ers with low rationality may participate in DR due to overly
optimistic revenue estimates. Despite this, the actual expect-
ed revenue cannot support their participation. That is, the
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threshold is not actually met, but the user participates given
the optimistic estimate. Therefore, it leads to a false response.

Moreover, the CMP may not participate in DR, regardless
of whether threshold 1 or threshold 2 is adopted, whereas
the ASP and SMP responses are directly related to the selec-
tion of the threshold. The selection of the threshold is impor-
tant: a large threshold is not conducive to DR participation
and may lead to false responses. As shown in Supplementa-
ry Material A Fig. SAS, there are fewer ASP false responses,
but the proportion of SMP false responses is high. Nonethe-
less, while the selection of a relatively small threshold can
decrease the probability of false responses, it may lead to
frequent DR participation, which has the potential to impact
normal production. In Fig. SA6 of Supplementary Material
A, both ASP and SMP participate in DR, regardless of the
rationality degree of the industrial user.

Therefore, industrial users should select the thresholds
based on their specific circumstances, ensuring that they are
neither too small to have a meaningful impact nor too large
to negatively affect their revenues and response performance.
6) Validation of Actual Data

The proposed estimation model is applied to simulate the
actual response effect using DR data from an SMP. Taking a
response event in 2022 as an example, and the compensation
price is set to be 2.3 ¥/kWh according to the “Demand Re-
sponse Management Guidelines”. With the proposed estima-
tion model, the response revenue of the ASP exceeds the pro-
posed threshold, indicating the willingness to participate in
DR. As shown in Fig. 14, the overall response effect is
aligned well, confirming the effectiveness and accuracy of
the proposed estimation model.
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Fig. 14. Validation of actual data of SMP.
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VI. CONCLUSION

A unified DR potential estimation model based on PT for
typical industrial users is proposed. The uncertainty of pa-
rameters and the rationality of industrial users significantly
impact the decision-making progress, influencing both the ef-
fect and the economy of participation, as well as determin-
ing whether industrial users are willing to participate in DR.
For industrial users, the decision to participate in DR forms
the basis for estimating the effects of participation.

The simulation results demonstrate that the proposed esti-
mation model can accurately estimate the DR potential of
various industrial users. Furthermore, the estimated storage
capacity, derived from combining the proposed threshold and
the risk attitudes of the users toward uncertain and subjec-
tive factors, holds practical significance and provides valu-
able guidance to the response behavior of users participating
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in DR. When the rationality degree of the industrial user is
low, industrial users are more willing to participate in DR
under the same conditions. Finally, when data is limited, the
virtual data acquisition method facilitates the completion of
the estimation process.

In summary, the proposed estimation model effectively es-
timates DR potential for typical industrial users with consid-
eration of uncertain and subjective factors.
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