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Abstract
With the rapid increase in the number of design patent applications, traditional patent classification systems encounter sig-
nificant challenges in terms of both efficiency and scalability. This paper introduces a multimodal feature fusion approach 
that aims to improve the classification of design patents and address the growing need for faster and more accurate patent 
examination processes. By extracting modality-specific features from design patent texts, images, and metadata, a multimodal 
representation is constructed to optimize the feature representations of each modality. This approach effectively captures the 
interactions among modalities, thereby increasing the expressive power of the features. Furthermore, an attention mechanism 
is employed to integrate these multimodal features into a unified representation, facilitating the automatic classification of 
design patents. The empirical results demonstrate that the proposed method significantly outperforms baseline models, 
achieving substantial improvements in accuracy, precision, recall, and the F1 score. This study provides an innovative 
solution for automating patent classification, increasing both the accuracy and efficiency of patent examination in practical 
applications.
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1  Introduction

The rapid advancement of technology in the modern world 
has been accompanied by a remarkable surge in the number 
of patents (Fink et al. 2017). This increase in patent filings, 
which has reached millions, poses significant challenges to 
traditional patent classification systems (Cohen et al. 2016; 
Liu et al. 2020). At present, patent examination and classi-
fication largely rely on the efforts of examiners, applicants, 
and inventors, who assign relevant patent classification 
codes to new patents. However, this manual process is not 
only time-consuming but also inefficient (Haghighian Roud-
sari et al. 2022; Luo et al. 2021; Miric et al. 2023). As the 
number of patent applications continues to grow, improving 
patent examination and achieving rapid and effective patent 
classification have become key areas of research in the field 

of patent analysis and applications (Lee and Hsiang 2020; 
Trappey et al. 2019).

Patent classification is a critical component of the patent 
examination process as it is an effective means for organ-
izing, searching, analyzing, and managing vast amounts of 
patent literature (Tseng et al. 2007). Its efficiency directly 
impacts the overall performance of intellectual prop-
erty management systems (Wu et al. 2025). While recent 
advances have yielded substantial improvements in the 
automated classification of invention patents, the domain 
of design patents presents a markedly different set of chal-
lenges that remain insufficiently addressed by existing intel-
ligent classification systems. Unlike invention patents, which 
are centered on detailed technical narratives and functional 
disclosures, design patents aim to safeguard the visual and 
ornamental aspects of products, including their appearance, 
shape, surface patterns, and color. This shift in protective 
focus necessitates a different representational structure: 
design patents typically consist of sparse, templated tex-
tual content and a set of schematic illustrations that convey 
the core aesthetic elements. Consequently, traditional text-
centric classification approaches fall short in capturing the 
multimodal semantics inherent in design patents. Accurate 
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classification requires the effective integration of schematic 
visual representations, limited textual cues, and domain-
specific structured knowledge to construct meaningful and 
context-aware representations tailored to the unique charac-
teristics of design patent data (Jiang et al. 2022).

Previous studies have explored the application of machine 
learning methods in patent classification, where patent fea-
tures are manually constructed and then fed into machine 
learning models to determine patent labels (Caldas and Soi-
belman 2003). While these methods are relatively simple 
and practical, they are limited in that they cannot capture 
the deep semantic information between patent texts or effec-
tively handle the current large-scale automatic patent classi-
fication tasks. Furthermore, considering the unique nature of 
design patent classification, machine learning methods fail 
to fully leverage the deep interactive information provided 
by different modalities, resulting in suboptimal classification 
performance.

Deep learning-based methods can adaptively extract 
patent features, enabling better capture of the deep seman-
tic relationships between patent texts. Additionally, these 
methods significantly outperform traditional machine learn-
ing approaches in terms of accuracy and generalizability 
(Aristodemou and Tietze 2018). While existing research 
on the application of deep learning methods to the Inter-
national Patent Classification (IPC) classification of inven-
tion patents is relatively mature, current models primarily 
focus primarily on the textual modality of patents, neglect-
ing other multimodal information, such as image modality 
and metadata modality (Haghighian Roudsari et al. 2022; Li 
et al. 2018). Furthermore, although current multimodal deep 
learning models have demonstrated strong feature learning 
capabilities and model performance, they are rarely applied 
in the field of patent analysis. The challenge remains how 
to transfer advanced multimodal deep learning models to 
the domain of patent analysis, particularly for the practical 
application of design patent classification, a problem that 
requires urgent attention in the field of patent analysis today.

To address these challenges, this paper introduces a novel 
classification method based on multimodal feature fusion, 
which integrates textual, image, and metadata features to 
achieve a more comprehensive classification of design 
patents. By optimizing the fusion of multimodal data, the 
model can capture the complex interactions between vari-
ous data types, thereby improving classification accuracy. 
This method aims not only to improve the classification 
performance of design patents but also to increase patent 
examination efficiency through automation, reducing reli-
ance on manual efforts and increasing processing capacity. 
The proposed method has significant practical implications 
for automating patent examination and improving the overall 
efficiency of intellectual property management systems.

The main contributions of this paper are as follows:

•	 Development of an intelligent classification method for 
design patents

This paper introduces a classification method for design 
patents that integrates textual, image, and metadata features. 
By combining multimodal features, the method captures 
complementary information provided by each data type, 
thereby increasing classification accuracy.

•	 Domain-specialized multimodal feature extraction

To address the limited expressiveness of design patent 
documents, we design tailored extraction strategies for each 
modality, guided by their structural and semantic charac-
teristics. For textual data, domain-relevant keywords are 
first distilled from Locarno corpora and then embedded in 
context-aware representations that preserve essential seman-
tic cues. For visual data, we jointly encode local geometric 
details and global shape structures to retain both fine-grained 
and holistic design features. For metadata, the applicant’s 
historical distribution across Locarno subclasses is trans-
formed into a normalized vector that functions as a semantic 
prior. These three specialized pipelines collectively miti-
gate the semantic sparsity of design patents and significantly 
enhance classification performance.

•	 Optimizing design patent classification performance

The proposed approach refines the fusion mechanism of 
multimodal features, allowing the model to focus more effec-
tively on the most informative parts of each modality, thus 
improving overall feature representation and classification 
performance. Given the current lack of publicly available 
multimodal datasets specifically for design patent classifi-
cation, particularly Chinese datasets, a design patent clas-
sification dataset is constructed. Additionally, comparative 
experiments demonstrate that the proposed method signifi-
cantly outperforms baseline models.

•	 Improving patent examination efficiency

The proposed method offers a promising solution for 
automated patent classification, reducing reliance on manual 
examination and increasing the efficiency of patent review 
systems. This approach holds significant practical value for 
intellectual property management, particularly in the context 
of large-scale patent applications.

The remainder of this paper is structured as follows. Sec-
tion 2 reviews prior research on patent classification and 
recent advancements in multimodal deep learning. Section 3 
details the proposed methodology, including multimodal 
feature extraction, modality improvement and fusion, and 
classification design. Section 4 presents empirical evaluation 
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and discussion, covering dataset description and training 
configuration, model performance evaluation, and example 
analysis and discussion. Section 5 concludes the paper with 
a summary of findings and future directions.

2 � Related work

2.1 � Research on patent classification using 
intelligent methods

Patent classification is one of the key steps in patent man-
agement, serving as a method to categorize patents based 
on similar subjects or technical fields (Haghighian Roudsari 
et al. 2022). Widely used classification systems for invention 
patents and utility model patents include the IPC and the 
Cooperative Patent Classification (CPC). In contrast, design 
patents are classified according to the Locarno Classification 
(LOC), the international standard for design patents estab-
lished under the Locarno Agreement (Shalaby and Zadrozny 
2019).

Current research on automatic patent classification can 
be divided into traditional machine learning-based meth-
ods and deep learning-based methods. Traditional machine 
learning approaches involve manually constructing patent 
features and feeding them into machine learning models to 
determine patent labels (Cui 2024; Dib et al. 2024). Methods 
such as k-nearest-neighbor (Fall et al. 2003), support vec-
tor machines (D'hondt, et al., 2013); Fall et al. 2003; Wu 
et al. 2010), naive bayes (D'hondt, et al., 2013); Fall et al. 
2003), K-means (Kim et al. 2008), and artificial neural net-
works (Trappey et al. 2006) have all been applied to patent 
classification tasks. Some scholars have combined expert 
knowledge with machine learning methods for patent clas-
sification. For example, Wu et al. (Wu et al. 2010) integrated 
expert selection methods with a genetic-based hybrid sup-
port vector machine model to build a patent classification 
model. Although traditional machine learning methods are 
simple and practical, they are unable to capture the deep 
semantic information between patent texts and are not well 
suited for handling today’s large-scale automatic patent clas-
sification tasks.

Deep learning-based methods can adaptively extract pat-
ent features and better capture the deep semantic relation-
ships between patent texts. Additionally, they significantly 
outperform traditional machine learning methods in terms 
of accuracy and generalizability. In existing research, the use 
of deep learning methods for IPC classification of invention 
patents is relatively well established. For example, Li et al. 
(Li et al. 2018) proposed a deep learning patent classification 
method, DeepPatent, which combines convolutional neural 
networks and word embedding techniques. This method 
outperforms all existing algorithms trained with the same 

information. Haghighian et al. (Haghighian Roudsari et al. 
2022) introduced a deep learning patent classification algo-
rithm based on a convolutional neural network (CNN) and 
word embedding vectors. Bekamiri et al. (Bekamiri et al. 
2024) proposed a hybrid patent classification method that 
combines a sentence transformer model with traditional 
classification methods to analyze query patents and perform 
classification.

2.2 � Multimodal deep learning models

The main objective of multimodal deep learning is to ena-
ble computers to extract information from various domains, 
such as text, images, video, and speech, and to effectively 
fuse multimodal information to improve model performance 
(Xu et al. 2023a). With the maturation of deep learning tech-
nologies, multimodal deep learning has been widely applied 
in tasks such as rumor detection (Li et al. 2024; Wu et al. 
2021; Yin et al. 2025), sentiment analysis (Das and Singh 
2023; Liu et al. 2022), and named entity recognition (Li 
et al. 2025; Tian et al. 2021), demonstrating excellent per-
formance in these applications.

A persistent challenge is multimodal fusion: aligning, 
interacting with, and jointly encoding signals that differ in 
structure, scale, and information density. Early-/intermedi-
ate-/late-fusion taxonomies capture the processing stage but 
obscure the algorithmic diversity of modern deep fusion. 
Recent surveys therefore advocate functional, mechanism-
centric classifications (Zhao et al. 2024). Below, we sum-
marize three representative families that constitute today’s 
technical backbone.

2.2.1 � Attention‑based fusion

Attention mechanisms, rooted in the transformer framework 
(Vaswani et al. 2017), have become prominent in current 
multimodal systems owing to their ability to learn context-
adaptive weights across and within modalities (Madaan et al. 
2024). Intra-modality self-attention is designed to explic-
itly model the relationships within a single modality. In this 
approach, attention operations, such as dot-product attention 
or additive gate-based attention, consider data from the same 
modality (Qin et al. 2021; Shul and Choi 2024). Intermodal 
(cross/co)-attention explicitly aligns modalities, e.g., pairing 
text tokens with visual regions in vision-language tasks (Li 
et al. 2019; Tan and Bansal 2019). Bidirectional variants 
leverage mutual dependencies (Fang et al. 2022; Wu et al. 
2023). Stacked self-/cross-attention transformers jointly 
capture the global context and fine-grained interactions, 
achieving state-of-the-art results in video captioning, visual 
question answering (VQA), and image–text retrieval (Xu 
et al. 2023a). While these models excel at flexible feature 
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selection, they incur substantial computational overhead and 
can be sensitive to misaligned or noisy modalities.

2.2.2 � Graph neural network‑based fusion

Graph neural networks (GNNs) introduce relational induc-
tive biases that are well suited to multimodal data with 
explicit or latent structures (Ektefaie et al. 2023; Li et al. 
2023a; Zhang et al. 2024). Broadly, graph-based fusion 
methods can be categorized into two principal strategies. 
(1) Modality-specific graph encoding: Intra-modal relations 
are first modeled using appropriate graph neural network 
architectures, and the resulting embeddings are subsequently 
integrated with other modalities through co-attention or con-
catenation. This design supports misinformation detection 
by unifying rumor-propagation graphs with visual cues (Qi 
et al. 2025; Xu et al. 2023b). (2) Joint multimodal graph 
construction: Nodes from all modalities populate a hetero-
geneous graph whose intra-/inter-edges encode semantic 
or temporal links; fusion proceeds through message pass-
ing (Cai et al. 2022). GNNs naturally capture higher-order 
dependencies and remain robust to sparse or irregular data. 
Their main drawbacks—graph-building overhead and reli-
ance on domain knowledge—necessitate careful scalability 
considerations for large-scale deployments.

2.2.3 � Other constraint‑based fusion

Constraint-oriented and hybrid schemes inject explicit pri-
ors or structural objectives to improve robustness. Coor-
dinated representation learning aligns modality-specific 
embeddings via similarity constraints such as canonical-
correlation analysis (CCA) or cosine distance, balancing 
modularity with cross-modal coherence (Khattar et  al. 
2019). Tensor-based fusion models high-order interactions 
through outer products; recent low-rank decompositions 
curb parameter growth without sacrificing discriminative 
capacity (Wu et al., 2024). Channel-exchange networks 
(e.g., CEN + +) implicitly integrate features by dynamically 
swapping channels across unimodal subnetworks, achiev-
ing strong multitask performance with negligible parameter 
overhead (Wang et al. 2022).

Attention-centric models offer fine-grained, data-driven 
alignment; GNNs embed relational structures; and con-
straint methods integrate explicit priors and lightweight 
couplings. The choice between these models depends on 
task-specific trade-offs in data quality, computational budget, 
and scalability.

2.3 � Research gaps

Despite the growing interest in patent classification, most 
existing efforts remain centered on invention and utility 

patents. These models are often built on assumptions that 
align with invention-patent characteristics: rich textual 
descriptions and, in some cases, images that support techni-
cal claims. However, design patents operate under a funda-
mentally different classification regime that emphasizes the 
protection of visual design elements, such as a product’s 
appearance, shape, patterns, and colors, rather than techni-
cal functionality.

This divergence introduces several challenges. Design 
patents typically contain highly templated and semantically 
sparse text, and their images consist of schematic or orna-
mental drawings that lack the naturalistic features common 
in vision models that have been pretrained based on general-
purpose datasets. Furthermore, structured metadata such as 
Locarno codes or applicant-specific filing patterns, which 
are often available and informative in design patent cases, 
are frequently neglected by current classification pipelines.

While multimodal deep learning offers a promising ave-
nue for bridging heterogeneous information sources, gen-
eral-purpose models fail to generalize well to the unique 
data characteristics and classification demands of design 
patents. Their reliance on verbose textual input, natural-
image assumptions, and omission of domain-specific meta-
data signals creates a substantial gap when they are applied 
to appearance-centric patent classification. In this context, 
developing a domain-adapted multimodal framework tai-
lored specifically to design patent data has become an urgent 
and underexplored problem in the field of patent analysis.

3 � Methodology

In this study, an automatic classification method is con-
structed for design patents based on textual, image, and 
metadata modality features. The model architecture is shown 
in Fig. 1. The framework consists of three steps: (1) multi-
modal feature extraction, (2) multimodal feature enhance-
ment and fusion, and (3) design patent classification, which 
are described in Sects. 3.1.1, 3.2, and 3.3, respectively.

3.1 � Multimodal feature extraction

3.1.1 � Textual Modal Features

Compared with invention patents and utility model patents, 
which include detailed textual descriptions such as titles, 
abstracts, claims, and specifications, design patent docu-
ments contain relatively limited textual information. The tex-
tual features available for patent classification are restricted 
to the title and abstract. Furthermore, the abstracts of design 
patents often includes redundant or repetitive content. For 
example, the abstract of the design patent"Ping Pong Pad-
dle (CN308829903S)"reads:"1. The name of this design 
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product: Ping Pong Paddle. 2. The use of this design prod-
uct: For striking a ping pong ball. 3. The key design feature 
of this product: The shape. 4. The image or photo that best 
represents the key design feature: A 3D view."

Given the limited and often indistinct textual features of 
design patents, this work addresses this issue by extracting 
domain-specific keywords from the titles and abstracts of 
design patents through patent keyword extraction. To con-
struct a classification lexicon for design patents, we use the 
bidirectional long short-term memory with conditional ran-
dom fields (BiLSTM-CRF) model in conjunction with rel-
evant corpora such as the"14th Edition of the International 
Design Classification—Major and Minor Classes Table"and 
the"14th Edition of the International Design Classification—
Product Item List."The BiLSTM-CRF model combines 
bidirectional long short-term memory (BiLSTM) and condi-
tional random fields (CRF), making it suitable for sequence 
labeling tasks such as named entity recognition and key-
word extraction. Specifically, the BiLSTM model captures 
context-dependent feature representations from both forward 
and backward LSTM processes to model long-range depend-
encies within patent texts, while the CRF considers label 
dependencies, ensuring that the generated label sequence is 
globally optimal.

Building on this approach, the pretrained BERT-for-
Patents model developed by Google is employed to convert 

the unstructured textual features of patents into structured 
features. BERT-for-Patents is a language model specifically 
optimized for the patent domain that is built on the bidirec-
tional encoder representations from transformers (BERT) 
architecture. It is particularly effective in processing the 
complex linguistic characteristics and domain-specific ter-
minology commonly found in patent texts.

Specifically, the keyword sequence XPi
=
(

x1, x2,⋯ , xn
)

 
extracted from the patent Pi is first annotated with the [CLS] 
and [SEP] tokens to denote the beginning and end of the 
text, respectively, as shown in Eq. (1):

The processed patent text X′Pi
 is fed into the BERT-for-

Patents model, and the [CLS] token from the final hidden 
layer is extracted. This token is used as the corresponding 
vector, representing the textual state feature Ptext

i
 of the pat-

ent Pi.

3.1.2 � Image Modal Features

This paper adopts a hybrid method based on convolutional 
neural networks (CNN) and vision transformers (ViT) to 
extract the image modal features of design patents, extracting 
features from both local and global perspectives to obtain a 

(1)X�Pi
= [CLS]x1, x2,⋯ , xn[SEP]

Table Tennis Racket (Su-
style Large Clamp).
This industrial design patent
pertains to sports
equipment.
Design Features: The focus
is on the combination of
shape and pattern.
The image that best
illustrates the design 
features: Perspective
Drawing 1.
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Fig. 1   Model Framework Diagram
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more comprehensive image representation. The model archi-
tecture is shown in Fig. 2.

In design patents, image features such as details, edges, and 
shapes play a significant role in recognition and classifica-
tion. Therefore, this paper uses convolutional neural networks 
(CNNs) to extract local features from the images. The CNN 
architecture consists of several convolutional layers, pooling 
layers, and fully connected layers. The convolutional layers 
extract features by sliding convolutional filters across the 
image and the pooling layers reduce the data dimensionality 
and computational cost.

For the specialized image X, the operation through the con-
volution layer is expressed by formula (2) as follows:

where fi,j represents the feature value after convolution, Wm,n 
denotes the convolution kernel weights, and b is the bias 
term. The size of the convolution kernel is denoted by k.

This paper uses a vision transformer (ViT) to extract the 
global features of images. Compared with traditional convolu-
tional networks, the ViT is better at capturing the relationships 
between image patches, which helps enhance the understand-
ing of the overall design and shape of the appearance. The ViT 
model divides the input image into fixed-size patches, each of 
which is linearly projected into a feature vector. These vectors 
are then processed by the transformer encoder layers to learn 
the global dependencies between the patches.

First, the input image X is divided into N image patches, 
with each patch having a size of P × P , as shown in formula 
(3).

where xi represents the input of the i − th image patch.

(2)fi,j =

k
∑

m=−k

k
∑

n=−k

Wm,nXi+m,j+n + b

(3)xi = PatchEmbed(X)

Then, the position embedding (Position Embedding) is 
added to each image patch's feature representation, as shown 
in formula (4):

where xcls is the classification token, and Ei is the position 
embedding.

Finally, through multiple transformer encoder layers, the 
image patch features are encoded to capture global depend-
encies, as shown in formulas (5) and (6):

where MSA represents the multihead self-attention layer, 
MLP represents the multilayer perceptron, and LN is layer 
normalization.

To achieve a comprehensive understanding of the image, 
the global and local features extracted from the image of the 
patent Pi are combined. The fused feature representation is 
shown in Eq. (7) as follows:

where FCNN represents the local features extracted by a 
convolutional neural network and where FViT  represents 
the global features extracted by the vision transformer. The 
parameter � serves as the fusion coefficient, which controls 
the balance between the global and local feature weights.

3.1.3 � Features of metadata modalities

Design patent holders often concentrate their innovations 
in specific fields (corresponding to the particular Locarno 
classification codes). Therefore, the historical distribution 
of Locarno classification codes associated with a patent 

(4)z0 = [xcls;x1 + E1;x2 + E2;… ;xN + EN]

(5)zl+1 = MSA(LN(zl)) + zl

(6)zl+1� = MLP(LN(zl+1)) + zl+1

(7)P
image

i
= �FCNN

Pi
+ (1 − �)FVIT

Pi

Fig. 2   Image Modality Feature 
Extraction Process Table Tennis Racket

(Su-style Large Clamp)

CN 308771922 S

VIT

Encoder

CNN

Global Feature

Vector

Local Feature 

Vector

Image Feature

Vector

Global Feature

Extraction

Local Feature

Extraction

Image Preprocessing

Design Patent

Image
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holder can serve as prior information for the classification 
of current patents. Incorporating historical distribution data 
can assist the classification model in making more accurate 
predictions.

In this work, the classification code distribution is con-
structed using metadata modality features by obtaining the 
historical patent distribution of holders of design patents to 
be recognized. By analyzing the Locarno classification code 
distribution FA of patent holder A in previous patent applica-
tions, the metadata modality features can be derived, with 
the process for obtaining FA shown in Eq. (8) as follows:

where fA(Li) represents the number of patents held by patent 
holder A in the Locarno classification code Li.

The number of classification codes is normalized to 
obtain the distribution frequency of each classification code. 
The normalization process is shown in Eq. (9) as follows:

The final obtained metadata modality features for patent 
Pi are shown in Eq. (10) as follows:

3.2 � Enhancement and fusion of multimodal 
representations

In the classification task of design patents, text modality fea-
tures, image modality features, and metadata modality features 
reflect different aspects of the patent's classification character-
istics. Multimodal representations are enhanced to optimize 

(8)FA = {fA(L1), fA(L2), ..., fA(Ln)}

(9)wA(Li) =
fA(Li)

∑n

j=1
fA(Lj)

(10)Pmeta
i

= {�A(L1),�A(L2), ...,�A(Ln)}

the feature representations of each modality. By capturing the 
interaction relationships between the modalities, the expres-
sion power of the features is strengthened, thereby increasing 
the accuracy of the classification task. The process of multi-
modal enhancement is shown in Fig. 3.

For each patent, three modality feature representations (text 
feature Ptext

i
 , image feature Pimage

i
 , and metadata feature Pmata

i
 ) 

are extracted from different perspectives. First, the features 
of each modality undergo linear transformation and dimen-
sionality reduction. Subsequently, the three modality features 
are fused to form the enhanced model input Pi, as shown in 
Eq. (11):

Next, the reduced-dimensional representations are used to 
construct the covariance matrix Φ , which captures the correla-
tions between modalities, as shown in Eq. (12):

where f (Pi) is the modality feature matrix after linear 
dimensionality reduction, and I is the correction matrix 
used to eliminate scale differences and strengthen the off-
diagonal elements.

The attention distribution of modality features is computed 
using the covariance matrix, which captures the importance 
of each modality to other modalities. The attention scores 
are normalized using the Softmax function, as expressed by 
Eq. (13):

(11)Pi =
[

Ptext
i

,P
image

i
,Pmata

i

]

(12)Φ = f (Pi) ⋅ I ⋅ f (Pi)
T

(13)Ui = softmax

�

�
√

d∕r

�

g
�

Pi

�

Fig. 3   Modality Enhancement 
Process softmaxtext

iP

image
iP

mata
iP

iP

text
iP

image
iP

mata
iP

iP

if P

ig P
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where Ui represents the enhanced modality representation, 
g(Pi) is the feature obtained after applying a nonlinear map-
ping to Pi, d is the feature dimension, and r is the scaling 
factor.

Finally, the enhanced representation is concatenated 
with the original representation to obtain the enhanced 
representation for each modality P∗

i
 , as shown in Eq. (14):

where ⊕ denotes the feature concatenation operation.
After enhancing the features of each modality, the fea-

tures from the various modalities are fused into a unified 
feature representation. During the fusion of each modal-
ity's features, an attention mechanism is used to quantify 
the weight of each modality's contribution to the final clas-
sification. Specifically, the enhanced representation P∗

i
 for 

each modality is computed with the attention weight attm , 
and the weighted sum is taken to obtain the fused multi-
modal representation, as shown in Eq. (15):

where m represents the number of modalities, attm is the 
attention weight for the i − th modality, and Pm∗

i
 is the 

enhanced modality representation.
The weight atti for each modality is computed through 

the attention mechanism, and the Softmax function is 
used to normalize the weights, ensuring that the sum of 
all modality weights is 1. The process for calculating the 
modality weights is shown in Eq. (16):

where W and b represent the weight matrix and bias param-
eters, respectively, and tanh is the activation function.

3.3 � Design patent classification

After obtaining the multimodal feature fusion vector Pfusion

i
 

for design patents, a fully connected layer is used for clas-
sification, as shown in Eq. (17):

where ŷi represents the predicted classification result for 
the design patent and where Wfc and bfc are the weights and 
biases of the fully connected layer, respectively.

Additionally, binary cross-entropy loss is used to opti-
mize the classification task, with the optimization function 
shown in Eq. (18):

(14)P∗
i
= Ui ⊕ Pi

(15)P
fusion

i
=

m
∑

i=1

attm ⋅ Pm∗
i

(16)attm = Wm
2
⋅ tanh

(

Wm
1
⋅ Pm

i
+ bm

1

)

+ bm
2

(17)ŷi = softmax(Wfc ⋅ P
fusion

i
+ bfc)

where Lclass is the classification loss function, N is the total 
number of samples, yi is the true label for sample i, and ŷi is 
the predicted value for sample i.

4 � Empirical evaluation and discussion

In this section, we present the results of an empirical analy-
sis that was conducted using the constructed design patent 
dataset. The performance of the proposed model is evalu-
ated through comparative experiments and ablation studies. 
Additionally, specific case analyses are performed to discuss 
the results presented in this paper.

4.1 � Dataset description and training configuration

4.1.1 � Dataset Description

The experimental data in this paper are sourced from the 
PatSnap patent database. To ensure the balance of the 
samples, 1000 design patents from each subcategory were 
randomly selected as the experimental data source for this 
paper, resulting in a total of 241,000 design patents that were 
used for subsequent experiments. The data extraction time 
was set for October 2024. On this basis, the dataset was split 
into training, validation, and test sets at an 8:1:1 ratio.

The titles, abstracts, summary diagrams, patent owners, 
and original classification numbers of each design patent 
document were extracted for additional experiments. The 
basic information of the patent dataset constructed in this 
paper is shown in Table 1.

4.1.2 � Training Configuration

We implemented all the experiments using PyTorch 2.1 with 
automatic mixed precision (AMP), running on a Windows 
11 platform equipped with an NVIDIA RTX 4060 GPU 
(8 GB VRAM), Intel Core i7-13650HX CPU, and 32 GB 
RAM.

For textual encoding, we fine-tuned the BERT-for-Patents 
model comprising 12 transformer layers, 768 hidden units, 
and 12 attention heads. The maximum sequence length was 
set to 128 tokens, which was sufficient to represent the con-
catenated titles and abstracts of design patents.

The visual representation module integrates both local 
and global descriptors. Local features were extracted using 
a lightweight three-layer CNN with progressively increas-
ing channel sizes (64 → 128 → 256), each followed by 
batch normalization and max pooling, effectively capturing 

(18)Lclass = −

N
∑

i=1

[

yilog(̂yi) + (1 − yi)log(1 − ŷi)
]
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edge- and region-level patterns. Global visual context was 
modeled using a ViT-Base/16 encoder (12 layers, 768 hid-
den units, patch size of 16), applied to images resized to 
224 × 224 and normalized using standard ImageNet statistics 
(mean = [0.485, 0.456, 0.406]; std = [0.229, 0.224, 0.225]).

For multimodal fusion, features from both modalities 
were projected into a 256-dimensional shared space, fol-
lowed by a four-head cross-modal attention module with 
gaussian error linear unit (GELU) activation. The final vis-
ual embedding was computed as a weighted sum of local and 
global features, with the balance coefficient η = 0.5, deter-
mined via validation performance.

We employed the AdamW optimizer with parameters 
β₁ = 0.9, β₂ = 0.999, and weight decay = 0.01. The learn-
ing rate was set to 2 × 10⁻5 for the text encoder and 1 × 10⁻4 
for the visual and fusion branches. The learning schedule 
included a 10% linear warm-up followed by cosine decay. 
Dropout was applied to both the textual and fusion layers 
with a probability of 0.1.

Training was performed with a batch size of 8 using 
16-bit floating-point precision. The model was trained for up 
to 8 epochs, with early stopping based on validation F1 score 
(patience = 2). Gradient clipping (‖g‖₂ ≤ 1.0) was applied 
to stabilize training, and a fixed random seed (42) was used 
throughout to ensure reproducibility.

4.2 � Model performance evaluation

The performance of the proposed model was evaluated using 
four metrics: accuracy, precision, recall, and F1 score.

4.2.1 � Comparative Study

To validate the performance of the model proposed in this 
study, comparative study was conducted by selecting five 
types of baseline models: traditional machine learning mod-
els, text modality models, image modality models, patent-
specific multimodal models, and general-domain document 
classification models. The selected models for comparison 
are listed below, and the results of the comparison are shown 
in Table 2.

(1)	 Machine learning models: Support vector machine 
(SVM) and random forest (RF)

In the machine learning model setup, features from patent 
titles and abstracts are extracted using the BERT-for-Patents 
model, whereas image modality features are extracted using 
a pretrained VIT + CNN model. Metadata modality features 
are obtained by analyzing the Locarno classification distri-
bution of historical patents by patent holder. The feature 
vectors from the three modalities are then reduced in dimen-
sionality and concatenated into a long vector as the model 
input. Finally, the performance of the model is evaluated 
using two machine learning models, SVM and RF, which 
are based on the concatenated features.

(2)	 Text modality models: BERT-for-Patents (Thakur et al. 
2021), DeepPatent (Li et al. 2018), and PatentSBERTa 
(Bekamiri et al. 2024)

BERT-for-Patents, a patent text analysis model developed 
by Google that is based on the BERT Large architecture, is 
fine-tuned and applied in this study to the downstream task 

Table 1   Experimental Data Information

Class Number Class Heading Subclass 
Number

Subclass Heading Quantity

01 Foodstuffs 01 BAKERS'PRODUCTS, BISCUITS, PASTRY, PASTA AND OTHER CEREAL PROD-
UCTS, CHOCOLATES, CONFECTIONERY, ICES

1000

02 FRUIT, VEGETABLES AND PRODUCTS MADE FROM FRUITS AND VEGETABLES 1000
03 CHEESES, BUTTER AND BUTTER SUBSTITUTES, OTHER DAIRY PRODUCE 1000
… … …

Table 2   Comparison of Experimental Results

Model Accuracy Precision Recall F1 Score

SVM 0.6745 0.6921 0.6453 0.6679
RF 0.7134 0.7328 0.6805 0.7057
BERT-for-Patents 0.8312 0.8413 0.8205 0.8308
DeepPatent 0.8147 0.8283 0.8001 0.8139
PatentSBERTa 0.8220 0.8302 0.7949 0.8122
VIT + CNN 0.6250 0.6354 0.6138 0.6244
VGG19 0.6045 0.6155 0.5895 0.6022
ResNet50 0.5919 0.6012 0.5815 0.5912
TechDoc 0.8478 0.8581 0.8368 0.8473
PatentLVLM 0.8426 0.8540 0.8204 0.8369
IMPACT​ 0.8341 0.8447 0.8005 0.8220
VLCDoC 0.8137 0.8248 0.7761 0.7997
PMF 0.8203 0.8320 0.7835 0.8070
GlobalDoc 0.8015 0.8131 0.7610 0.7860
Proposed model 0.8865 0.8982 0.8724 0.8851



	 Journal of King Saud University Computer and Information Sciences (2025) 37:183183  Page 10 of 17

of appearance-based design patent classification. DeepPatent 
employs deep learning algorithms by combining CNNs and 
word embeddings for patent classification. PatentSBERTa 
generates semantic embeddings of patent texts using the 
micro SBERT model and performs patent classification in 
conjunction with the K-nearest neighbors (KNN) algorithm.

(3)	  Image modality models: VIT + CNN, VGG19, and 
ResNet50

In this study, the image features of design patents 
obtained from the VIT + CNN, VGG19, and ResNet50 mod-
els are input into a fully connected layer for classification, 
with the Softmax activation function used to obtain the prob-
ability distribution.

(4)	 Patent-Specific Multimodal Models: TechDoc (Jiang 
et  al. 2022), IMPACT (Shomee et  al. 2024) and 
PatentLVLM (Awale et al. 2025)

TechDoc integrates VGG19-based image encoders and 
Bi-GRU text embeddings. These features are fused through 
a hierarchical attention mechanism and classified using a 
GraphSAGE-based network. IMPACT employs ResNet-50 
for image encoding and RoBERTa for textual representation. 
Inputs comprise patent titles, abstracts and Large Language-
and-Vision Assistant (LLaVA)- generated image captions. 
The modalities are fused through late concatenation, and 
the unified features are optimized in an end-to-end manner. 
PatentLVLM incorporates a pretrained ViT-g/14 backbone 
and RoBERTa textual features and introduces a Q-Former 
module for cross-modal alignment. Domain adaptation is 
achieved by further optimizing the Q-Former and task-
specific classification parameters under a hybrid contras-
tive–supervised objective.

(5)	 General-Domain Document Classification Models: 
VLCDoC (Bakkali et al. 2023), PMF (Li et al. 2023b) 
and GlobalDoc (Bakkali et al. 2025)

VLCDoC uses ViT-Base and RoBERTa encoders pre-
trained with dual-contrastive objectives. Patent-specific 
adaptation is performed via a linear classification head 
that operates atop the preserved pretrained representations. 
PMF utilizes frozen ViT-Base and BERT-Base encoders, 
with three types of deep-layer prompts—query, query-con-
text, and fusion-context—inserted to facilitate cross-modal 
alignment. In this work, domain-specific adaptation is per-
formed by fine-tuning the prompts and classification head on 
multimodal patent data. GlobalDoc employs a cross-modal 
transformer pretrained via contrastive meta-learning, which 
encodes rich multimodal representations. In this work, for 
domain-specific adaptation, a task-oriented classification 

module is integrated atop the pretrained backbone to facili-
tate effective patent categorization.

As shown in the comparison results in Table 2, the pro-
posed model significantly outperforms the baseline models 
across all the metrics. Compared with those of the best-
performing baseline model, TechDoc, the proposed model 
achieves a 4.56% increase in accuracy, a 4.67% increase in 
precision, a 4.25% increase in recall, and a 4.46% increase in 
the F1 score, indicating that the proposed model has strong 
practical effectiveness in the automatic classification of 
design patents.

Traditional machine learning models have limited per-
formance when handling multimodal patent data. These 
models primarily rely on feature engineering and traditional 
classification algorithms, which are suitable for simple, 
high-dimensional feature spaces but struggle to effectively 
model complex multimodal data (such as combinations of 
text, images, and metadata). As a result, their accuracy and 
precision tend to be lower.

Single-text and single-image modality models each have 
their own advantages in handling patent text and image 
features. However, since the illustrations in design patents 
are often abstract, text modality models outperform image 
modality models. The multimodal fusion model proposed in 
this paper effectively leverages the complementary informa-
tion between text, image, and metadata modalities. Com-
pared with single-modality models, the multimodal fusion 
model can better understand patent classification features 
from different perspectives. By optimizing feature fusion 
between modalities using an attention mechanism, the model 
improves overall performance.

Among patent-specific multimodal baselines, TechDoc, 
PatentLVLM, and IMPACT achieve the strongest perfor-
mance, highlighting the advantages of architectures explic-
itly tailored to the characteristics of patent data. In contrast, 
general-purpose systems such as PMF, VLCDoC, and 
GlobalDoc consistently underperform. This performance 
gap can be attributed to three main factors: (1) Domain mis-
match: Design patents typically combine sparse technical 
descriptions with highly abstract visual illustrations, which 
differ substantially from the semantically rich documents 
used to pretrain general-purpose models. (2) Text sparsity: 
Patent titles and short claims provide limited semantic con-
text, diminishing the benefit of large language encoders 
that expect verbose input. (3) The distinctive style and high 
level of abstraction in design drawings differ markedly from 
the natural images or scanned documents typically used in 
general-purpose document classification, thereby constrain-
ing the ability of visual encoders to extract discriminative 
features.

The proposed model addresses these limitations by jointly 
encoding textual and visual cues through a unified attention-
based framework, resulting in richer and more task-relevant 
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multimodal representations. Overall, the results suggest that 
while general-purpose models possess a degree of transfera-
bility, domain-specific adaptations remain critical for achiev-
ing state-of-the-art performance in patent classification.

4.2.2 � Ablation Study

 To validate the impact of each component of the proposed 
model on its overall performance and to identify the key 
driving factors behind its improved performance, ablation 
experiments were conducted by systematically removing 
certain components. The experimental setup and results of 
the ablation study are presented in Table 3.

The results of the ablation experiment presented in 
Table 3 demonstrate that the three modalities—text, image, 
and metadata—each contribute to varying degrees to the 
overall performance of the proposed automatic classifica-
tion model for design patents, with all the modalities being 
indispensable.

Among the components, the removal of the text modality 
leads to the most significant decline in performance across 
all the metrics. Textual features are essential for understand-
ing the subject and technical details of a patent, playing a 
pivotal role in identifying the category of design patents. The 
removal of the image modality results in the second-largest 
decrease in model performance, highlighting the unique 
contribution of the image modality. The image modality 
provides information regarding the product's appearance, 
shape, and structure, offering complementary classification 
details that enhance the text-based features.

When the modality enhancement module is removed, 
the model exhibits a moderate decline in performance. The 
modality enhancement module optimizes the feature repre-
sentations of each modality, allowing for a clearer expres-
sion of the information from each modality and improving 
the representational power of the final fused features.

The removal of the metadata modality causes a slight 
reduction in performance, indicating that the metadata serve 
a more auxiliary role. While this module provides prior 

guidance for specific categories, its contribution to over-
all classification is relatively limited. Direct concatenation 
of the enhanced modality features has a minimal effect on 
performance, as the modality enhancement module already 
considers the interactions between modalities during the 
feature strengthening process. However, direct concatena-
tion significantly increases the computational complexity 
of the model.

In summary, the text modality serves as the primary 
source of information and makes the greatest contribution 
to patent classification. The image modality provides valu-
able auxiliary information, whereas the metadata modality, 
although contributing less overall, offers prior guidance 
that can improve model performance in certain categories. 
The modality enhancement and attention mechanisms fur-
ther optimize the synergy between modalities, resulting in a 
significant improvement in overall performance for design 
patent classification.

4.2.3 � Sensitivity analysis

 To assess the robustness of our model to key hyperparam-
eter settings, we conducted a comprehensive sensitivity 
analysis on six representative parameters. The results are 
presented in Fig. 4, which illustrates the F1 score variations 
under different configurations.

Figure 4 illustrates the F1 score response to individual 
variations in six key hyperparameters. The model achieves 
peak performance at a text encoder learning rate of 2 × 10⁻5, 
an image/fusion learning rate of 1 × 10⁻4, and a CNN–ViT 
fusion ratio of 0.5. Notable performance degradation is 
observed under excessive dropout, large weight decay, or 
overly small/large hidden dimensions.

4.2.4 � Computational cost and scalability

 To ensure fair comparison, only multimodal classification 
models were selected as baselines. All models were evalu-
ated under consistent conditions on an RTX 4060 GPU. 
Table 4 summarizes the parameter counts and average infer-
ence latencies for seven representative models.

While TechDoc remains the most efficient in terms 
of latency (9.5 ms/sample) and performs competitively 
in classification accuracy, our model demonstrates a 
more favorable balance across key dimensions—achiev-
ing higher accuracy with only a moderate increase in 
parameter count and maintaining real-time inference 
capability (13.9 ms/sample). Compared to more complex 
systems like IMPACT and PatentLVLM, which require 
significantly larger computational resources (491  M 
and 3.4B parameters respectively) and suffer from high 
latency (52.1 ms and 160.8 ms), the proposed model is 
both lighter-weight and faster, making it better suited for 

Table 3   Ablation Experiment Results

Model Accuracy Precision Recall F1 Score

Remove text modality 0.6410 0.6500 0.6282 0.6390
Remove image modality 0.8246 0.8321 0.8140 0.8230
Remove metadata modal-

ity
0.8571 0.8623 0.8507 0.8565

Remove modality 
enhancement

0.8392 0.8476 0.8315 0.8395

Modality enhancement 
with direct concatena-
tion

0.8638 0.8697 0.8574 0.8634

Proposed model 0.8865 0.8982 0.8724 0.8851
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deployment in production environments. It also outper-
forms models such as PMF, VLCDoC, and GlobalDoc in 
inference speed, despite having comparable or smaller 
model sizes.

According to the China National Intellectual Property 
Administration (CNIPA), over 536,000 invention pat-
ent applications were filed in 2024 alone. These figures 
highlight the need for scalable, low-latency classification 
systems to support high-volume patent examination work-
flows. The compact design and efficient runtime of our 
model ensure practical deployability on standard hard-
ware platforms, offering an effective solution for real-
world, large-scale applications.

4.2.5 � Cross‑Domain Evaluation

To assess the robustness and cross-domain transferability 
of the proposed model, we extended our experiments to two 
additional design patent datasets from different legal and 
linguistic jurisdictions. Specifically, US-2024-D consists 
of 10,906 English-language design patents filed with the 
U.S. Patent and Trademark Office (USPTO) in 2024, where 
textual content includes only titles and structured claims. 
EU-2024-D contains 101,738 design patents submitted to 
the European Union Intellectual Property Office (EUIPO) in 
the same year. Notably, a substantial portion of entries in the 
EU dataset lack abstract information and are represented by 
titles alone, requiring the model to rely more heavily on non-
textual modalities. The results are summarized in Table 5.

As summarized in Table 5, our model consistently main-
tains strong performance across all three datasets, achieving 
a F1 score of 0.8556 based on US-2024-D and 0.8264 based 
on EU-2024-D. Compared with that of CN-Design-241 K, 
which provides full-text Chinese descriptions and extensive 
assignee metadata, the slight drop in performance with the 

Fig. 4   Sensitivity Analysis Results

Table 4   Model Size and Inference Latency

Model Parameter Count (M) Inference 
Latency (ms/
sample)

TechDoc 146.7 9.5
IMPACT​ 491.5 52.1
PatentLVLM 3401.5 160.8
VLCDoC 217.2 21.4
PMF 199.8 16.4
GlobalDoc 225.6 26.3
Proposed model 197.3 13.9

Table 5   Evaluation on Multilingual Design Patent Datasets

Dataset Accuracy Precision Recall F1 Score

CN-Design-D 0.8865 0.8982 0.8724 0.8851
US-2024-D 0.8563 0.8729 0.8381 0.8556
EU-2024-D 0.8254 0.8417 0.8123 0.8264
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US and EU corpora can be attributed to reduced text com-
pleteness, lower metadata coverage, and domain-specific dif-
ferences in patent drafting styles. Nevertheless, the model 
demonstrates strong resilience in scenarios with limited 
textual input, highlighting its ability to adaptively leverage 
visual semantics and contextual metadata for reliable cross-
lingual classification.

4.3 � Example analysis and discussion

To investigate the classification performance of the proposed 
model in particular subdomains and assess its practical 
applicability, class 14 was selected as an example for analy-
sis. This class includes"Recording, Telecommunications, or 
Data Processing Equipment,"which consists of 7 subclasses. 
The detailed information is provided in Table 6.

To ensure sample balance, 1,000 patents were selected 
randomly from each subcategory for the example analy-
sis. To improve the interpretability of the proposed model, 
the baseline models with the best performance in single-
modal features—BERT-for-Patents for the text modality and 
VIT + CNN for the image modality—are also included for 

comparative experiments. The final results of the example 
analysis are presented in Fig. 5.

The experimental results demonstrate that the proposed 
multimodal fusion model outperforms the single-modality 
baseline models across all the metrics, indicating that the 
model exhibits good robustness during the actual classifica-
tion process. Furthermore, to investigate the typical errors 
made by both the proposed model and the single-modality 
models in the design patent classification task, as well as to 
examine the impact of each modality's features on the clas-
sification, ten patents that were misclassified by each model 
were selected for inspection. The recognition results for the 
ten patents that were obtained from the model proposed in 
this study and the two baseline models are shown in Table 7.

In common error cases, both the proposed model and the 
single-modality models (text and image) exhibit a certain 
number of misclassifications, as shown in Table 7:

For patents with multiple Locarno classification codes

Both the proposed model and the two baseline models 
can only recognize one classification code. For example, 
patent CN308898803S, which serves both as a clock and 

Table 6   Classification Information for Class 14

Subclass Number Subclass Heading

14–01 EQUIPMENT FOR THE RECORDING OR REPRODUCTION OF SOUNDS OR PICTURES
14–02 DATA PROCESSING EQUIPMENT AS WELL AS PERIPHERAL APPARATUS AND DEVICES
14–03 TELECOMMUNICATIONS EQUIPMENT, WIRELESS REMOTE CONTROLS AND RADIO AMPLIFIERS
14–04 GRAPHICAL USER INTERFACES AND ICONS
14–05 RECORDING AND DATA STORAGE MEDIA
14–06 HOLDERS, STANDS AND SUPPORTS FOR ELECTRONIC EQUIPMENT, NOT INCLUDED IN OTHER CLASSES
14–99 MISCELLANEOUS

Fig. 5   Sample Analysis Experi-
mental Results
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a speaker, has features that are more aligned with a clock 
when observed from the appearance modality. Consequently, 
the single-image model classifies it as 10–01 (Clocks and 
Alarm Clocks), the single-text model classifies it as 14–01 
(Recording or Reproducing Apparatus for Sound or Image), 
and the proposed model classifies it as 10–01 (Clocks and 
Alarm Clocks). For classifying design patents with multiple 
uses, the principle of"appearance first"should be followed, 
meaning that the product should be classified based on its 
visual similarity to a particular category. In the case of pat-
ent CN308898803S, its appearance more closely resembles 
that of a clock, so the classification code should primarily be 
10–01 (Clocks and Alarm Clocks). For design patents with 
multiple Locarno classification codes, the proposed model, 
which incorporates image modality features, proves to be a 
valuable reference in practice.

For patents with discrepancies between textual descrip-
tions or image content and their main innovative aspects

Patent CN308905059S, which is a recording box, may 
be classified as a button, control device, switch, or similar 
product based purely on the image features, resulting in the 
image modality model assigning it the classification code 
13–03 (Distribution or Power Control Equipment, includ-
ing wires, conductors, switches, circuit breakers, and dis-
tribution panels). For patents where the textual description 
or image content deviates from the main innovation (such 
as CN308862271S, CN308898700S, CN308879892S, and 
CN308585220S), single-modality models are likely to make 
errors. The proposed model, which combines both text and 
image modality features, can more accurately identify the 
complementary aspects and correctly classify patents such 
as CN308905059S and CN308879892S. However, for pat-
ents such as CN308862271S and CN308898700S, noise 
from modality features may interfere with the correct clas-
sification. Additionally, for patent CN308879847S, in which 
both the single-text and single-image models made errors, 

the proposed model correctly identified its classification 
by incorporating metadata features. Overall, the proposed 
model demonstrates better robustness and yields more accu-
rate classification results.

For patents that do not fit well within the existing clas-
sification system

With the rapid pace of product iterations and technologi-
cal innovations, the update frequency of the International 
Classification for Design Patents has not kept up with the 
speed of patent updates. As a result, the current classifica-
tion system cannot accommodate all types of products. For 
example, patents CN308823181S (Identity Authentication 
Card) and CN308856311S (Waterproof and Anti-Silicone 
Oil Plug Device) do not have a suitable classification code, 
leading to their classification under 14–99 (Other Miscel-
laneous Categories of Recording, Telecommunications, or 
Data Processing Equipment). Both the proposed model and 
the single-modality models misclassified these patents. To 
address such errors, additional empirical data and training 
samples should be incorporated to improve the classifica-
tion performance. However, the fundamental solution lies in 
the need for intellectual property management authorities to 
explore a more refined, multilevel design patent classifica-
tion system that is better suited to the national context and 
more user friendly.

5 � Conclusions

This study presents an automatic classification method for 
design patents that integrates text modality features, image 
modality features, and metadata modality features. It effec-
tively mitigates the issue of sparse text modality features 
in design patents and enriches the current research on pat-
ent classification by expanding the scope of modality fea-
ture selection. This study makes four application-driven 

Table 7   Recognition Results of 
Each Model

Serial number Patent
number

Locarno
classification

Proposed model BERT-for-Patents ViT + 
CNN

1 CN308905045S 14–01、26–05 14–01 14–01 14–01
2 CN308898803S 14–01、10–01 10–01 14–01 10–01
3 CN308905059S 14–01 14–01 14–01 13–03
4 CN308862271S 14–01 16–01 14–01 16–01
5 CN308898700S 14–01 21–01 21–01 21–01
6 CN308879892S 14–03 14–03 19–07 14–03
7 CN308585220S 14–02 14–02 14–01 14–02
8 CN308879847S 14–03 14–03 10–06 10–04
9 CN308823181S 14–99 14–02 14–02 14–02
10 CN308856311S 14–99 23–01 13–03 23–01
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contributions that address persistent challenges in design 
patent classification:

(1)	  Textual sparsity compensation: The textual content of 
design patents is extremely brief and highly redundant. 
We address the extreme brevity and redundancy of 
design patent texts through a two-stage representation 
strategy. First, domain-specific keywords are extracted 
using a BiLSTM-CRF model trained on authoritative 
Locarno classification corpora. This step filters out 
generic expressions and identifies salient semantic 
cues. Second, the keyword sequence is encoded via 
BERT-for-Patents, enhancing contextual and domain-
specific representations. This hybrid approach produces 
compact yet informative embeddings tailored to the 
characteristics of design patents.

(2)	 Appearance-centric visual modelling: Design patents 
place primary emphasis on product appearance. To 
fully capture both geometric details and holistic struc-
tural patterns, we propose a hybrid image encoder that 
integrates Convolutional Neural Networks (CNNs) for 
local features (e.g., edges, contours) and Vision Trans-
formers (ViTs) for global shape modeling. CNNs spe-
cialize in fine-grained visual cues, while ViT divides 
the image into fixed-size patches and models their inter-
dependencies via transformer encoders. The fusion of 
local and global streams provides a dual-scale repre-
sentation that improves visual discrimination for subtle 
design differences.

(3)	 Behavioural metadata priors: Design-patent assignees 
tend to follow stable category preferences, clearly vis-
ible in their historical Locarno filing patterns. Yet most 
existing models overlook these behavioural signals. We 
compute the frequency distribution of Locarno codes 
across each assignee’s past applications and embed 
this profile as a structured metadata vector. Leverag-
ing such behavioural priors steers the model toward 
more context-aware predictions, offering pronounced 
benefits for applicants with highly focused portfolios 
or operating in long-tail categories.

(4)	 Three-stage fusion architecture for cross-modal coor-
dination: To improve the quality of multimodal repre-
sentations, we design a structured fusion pipeline com-
prising three sequential stages. The view enhancement 
stage captures inter-modal dependencies via a covari-
ance matrix and refines each modality through intra-
modal attention. The adaptive attention stage dynami-

cally weighs each modality based on its relevance to the 
classification objective, prioritizing salient cues. The 
final weighted fusion stage consolidates these refined 
representations into a unified embedding space. This 
hierarchical design mitigates weak inter-modal cou-
pling, resolves modality imbalance, and aligns hetero-
geneous semantics, thereby enhancing both robustness 
and predictive accuracy across diverse scenarios.

Benchmark experiments against all baselines—spanning 
traditional machine learning, single-modality, and state-of-
the-art multimodal models—show that the proposed frame-
work achieves the highest F1 score while maintaining a 
relatively small parameter count (197 M) and relatively low 
inference latency (13.9 ms/sample). Additional evaluations 
on USPTO and EUIPO corpora confirm strong cross-juris-
diction robustness, even when many records contain titles 
only. Practically, the framework can streamline design-pat-
ent examination and retrieval workflows, offering a scalable 
solution for intellectual-property stakeholders.

However, the study has certain limitations. During the 
empirical analysis, the issue of the uneven distribution of 
Locarno classification codes in design patents was unad-
dressed. Additionally, the image modality extraction pro-
cess only utilized the summary drawings of design patents. 
Future work will focus on addressing issues such as the 
imbalance in sample data distribution and refining the meth-
odology accordingly.
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