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Abstract

Objectives To investigate whether radiomic features (RFs) repeatability and their prognostic value are study-specific.

Materials and methods This retrospective study included 234 esophageal cancer (EC) patients (contrast-enhanced
computed tomography (CECT) and fluorine-18 fluorodeoxyglucose positron emission tomography (PET)), and 525
nasopharyngeal carcinoma (NPC) patients (CECT). Tumor, peritumor, and lymph node regions were defined as regions
of interest. RF repeatability was assessed via perturbation analysis using intraclass correlation coefficients (ICC), with
consistency and differences across cancer types, pathological regions, and modalities evaluated. The independent
prognostic features common to both EC and NPC were screened from highly repeatable features using C-index and
redundancy analysis.

Results CT-based RFs in NPC and PET-based RFs in EC demonstrated significantly higher repeatability compared to CT-
based RFs in EC (median ICC: 0.886 vs 0.806; 0.897 vs 0.806; p < 0.05). While CT-based peritumoral features showed
comparable repeatability to tumor features in EC (0.824 vs 0.806, p > 0.05), PET-based peritumoral features exhibited
significantly lower repeatability than tumor features (0.819 vs 0.897, p < 0.05). CT-based lymph node features
demonstrated significantly lower repeatability than tumor features in NPC (0.863 vs 0.886, p < 0.05). Nevertheless, the
effects of bin count, feature class, and filter on repeatability demonstrated consistent patterns across different cancer types,
imaging modalities, and pathological regions. Moreover, four common independent prognostic features effectively
stratified both EC and NPC patients into high- and low-risk groups with significant survival differences (p < 0.05).

Conclusions RF repeatability might be affected by cancer type, pathological region, and imaging modality, while certain
features maintain consistent prognostic performance across different cancer types.

Critical relevance statement The identification of high-repeatable pan-cancer prognostic radiomics features enables
noninvasive patient risk stratification to guide personalized therapy, with cross-cancer consistency enhancing their
applicability and convenience in clinical practice, thereby accelerating the integration of radiomics into precision oncology
clinical workflows.
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Key Points
● This study examined RF repeatability and prognostic value specificity.
● RF repeatability varies across cancer types, regions, and modalities.
● The common highly repeatable RFs advance pan-cancer biomarker precision oncology.
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Introduction
Radiomics, which extracts high-dimensional features from
medical images to develop predictive models for disease
diagnosis and prognosis, has emerged as a cornerstone of
precision medicine [1–3]. The repeatability of radiomic
feature (RF), defined as the ability to remain consistent
when imaging the same subject under identical acquisi-
tion protocols [4], is critical to maintaining model stability
and generalizability.
Current investigations of RF repeatability pre-

dominantly focus on specific malignancies, including
nasopharyngeal carcinoma (NPC) [5], head-and-neck
carcinoma [6], soft-tissue sarcomas [7], glioblastoma [8],
cervical cancer [9], and lung cancer [10]. Whether an
extensive study can identify a set of repeatable RFs that
are universally applicable to radiomic analysis is unclear.
Janna et al investigated and compared the RF repeatability
of tumors in lung (n= 27) and rectal cancers (n= 40),
demonstrating limited consistency [11]. More evidence is

needed to prove whether the repeatability of RF is study-
specific, not only in different disease types, but also in
different pathological regions and different imaging
modalities.
RFs provide quantitative descriptors of tumor patho-

physiology [12], encoding morphological, textural, and
intensity-based characteristics that surpass visual inter-
pretation [2]. By harnessing machine learning and artifi-
cial intelligence algorithms, radiomics can decipher
complex patterns, which in turn facilitate the prediction
of tumor heterogeneity [1], aggressiveness [13], treatment
response [14, 15], and even prognosis [16, 17]. This
multiparametric approach augments our understanding
of tumor biology by quantifying phenotypic variations
that mirror genetic alterations, microenvironmental
interactions, and metabolic activity, ultimately enriching
our capacity to tailor precision medicine strategies and
improve clinical outcomes. Further exploring the con-
sistency of the prognostic ability of high-repeatable RFs in
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different cancer types has the potential to unravel the
mysteries underlying both commonalities and distinctions
in tumor biology.
Test–retest experiments, which assess feature con-

sistency through short-interval scans, are a conventional
evaluation method for RF repeatability, and have been
utilized in several studies, including cervical cancer [9],
lung cancer [10], and other diseases [18]. However, short-
interval scans are uncommon in clinical practice, stem-
ming from resource constraints and radiation exposure
concerns, limiting extensive research on RF repeatability.
Moreover, most of the relevant studies included limited
samples, which reduced the stability and reliability of the
results. To address these limitations, Zwanenburg et al
proposed a perturbation-based RF robustness measure-
ment alternative to test–retest imaging [19]. Zhang et al
validated its effectiveness through direct comparison with
test–retest approaches [4]. Subsequent applications in
head-and-neck carcinoma [6] and NPC [5] have estab-
lished perturbation analysis as a viable alternative.
In this study, we aimed to explore RF repeatability

across different cancer types (esophageal cancer (EC)/
NPC), pathological regions (tumor/peritumor/lymph
nodes), and imaging modalities (CT/PET) using pertur-
bation analysis, and to further evaluate the generalizability
of the prognostic performance of high-repeatable RFs.
Unlike previous studies that focused on single cancer
types or imaging modalities, our work provides a com-
prehensive evaluation of RF repeatability, revealing for the
first time the effects of cancer types, pathological regions,
and imaging modalities on RF repeatability. This study
could provide an important methodological reference for
the study of radiomics, and also provide a new idea for the
study of pan-cancer signatures.

Methods
Patients and images
This study was approved by the Xijing Hospital Ethics
Committee (KY20222145-C-1), and the flowchart is
shown in Fig. 1. The requirement for informed consent
was waived due to the retrospective nature of this study.
To investigate whether the repeatability and prognostic
value of RFs are study-specific or generalizable across
different cancer types, we included two distinct cancers,
EC and NPC, which differ in their morphological and
pathological characteristics. The detailed inclusion and
exclusion criteria are presented in Supplemental A1. We
finally enrolled 234 EC patients and 525 NPC patients
from Xijing Hospital. To evaluate the generalizability of
highly repeatable features, an external dataset of 120 EC
patients from Sichuan Cancer Hospital was also included.
Local recurrence-free survival (LRFS) for patients with EC

and distant metastasis-free survival (DMFS) for patients
with NPC were collected to evaluate the prognostic per-
formance of RFs. The procedure of treatment and follow-
up is described in Supplemental A2. The clinical char-
acteristics and survival outcomes of the included patients
are summarized in Table 1. For images, we collected
contrast-enhanced computed tomography (CECT) images
of all EC and NPC patients, generated by the same
scanner. Additionally, fluorine-18 fluorodeoxyglucose
positron emission tomography (18F-FDG PET) images of
EC patients were collected. The imaging protocols are
summarized in Supplemental A3.

Image preprocessing and region segmentation
All images underwent standardized preprocessing. For
CECT, a unified mediastinal window (window width 400,
window level 40) was used to better reflect tissue anato-
mical information. For PET, image intensities were nor-
malized to decay-corrected injected activity per kg body
weight (SUV [g/mL]). All images were resampled to
1 × 1 × 1mm3 using bspline interpolation. Tumor regions
were manually segmented using ITK-SNAP software by a
radiologist with 5 years of experience and corrected by
two radiologists with 10 years of experience. Peritumoral
regions and lymph nodes, which demonstrate prognostic
relevance in cancer research [20, 21], were also seg-
mented. All radiologists were strictly blinded to clinical
history, pathological diagnoses, and treatment outcomes
during the segmentation process. Detailed delineation
criteria and methods for peritumoral regions and lymph
nodes are provided in Supplemental A4.

Fig. 1 Flowchart of this study. The repeatability of RFs was assessed via
image perturbation in different cancer types, different pathological
regions, and different imaging modalities. The common independent
prognostic features were gradually selected through the steps of feature
repeatability, prognostic value, and redundancy analysis
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RF extraction
A total of 1316 RFs were extracted from each image using
PyRadiomics (version 3.0.1), following the guidelines of
the Image Biomarker Standardization Initiative [22].
Specifically, 18 first-order features and 75 textural features

were calculated from the original images, 5 Laplacian-of-
Gaussian (LoG)-filtered images, and 8 wavelet-filtered
images, which were discretized by a fixed bin count of 128
before feature extraction. Fourteen shape-based features
were also extracted from the original image. To evaluate
the impact of discretization on RF repeatability, additional
bin counts (8, 16, 32, and 64) were tested. The parameters
of feature extraction are listed in Table S1.

Assessment of RF repeatability
RF repeatability was assessed via image perturbation, as
proposed by Zwanenburg et al [19]. Twenty perturbed
images were randomly generated, and RFs were recalcu-
lated. RF repeatability was quantified using the one-way,
random intraclass correlation coefficient (ICC), with
higher values indicating better repeatability. Detailed
perturbation parameters and ICC calculation formula are
provided in Table S1 and Supplemental A5, respectively.

Comparison of RF repeatability
Spearman correlation and Mann–Whitney U-tests were
used to assess consistency and differences in RF repeat-
ability across cancer types, pathological regions, and
imaging modalities. The influence of discretization and
image preprocessing on repeatability was also evaluated.

Common independent prognostic RF of EC and NPC
RFs with ICC > 0.75 were identified as highly repeatable,
following methodological guidelines for reliability and
prior radiomics studies establishing this threshold to
ensure robustness against imaging perturbations
[18, 23–28]. Common high-repeatable features were
selected based on their prognostic performance (Con-
cordance index (C-index) > 0.50) in both EC and NPC.
Taking into account the correlation between tumor
volume and prognosis, the absolute value of the Spearman
correlation coefficient quantified the volumetric correla-
tion between each feature and mesh volume, and a
threshold of 0.6 to exclude volume-dependent features
[6, 29, 30]. Volume-independent features were further
assessed using Kaplan–Meier analysis and log-rank tests.
Feature redundancy analysis was performed to identify
independent prognostic features. The methodological
details are provided in Supplemental A6.

Assessment of RF generalizability
To evaluate whether highly repeatable RFs exhibit
superior generalizability across institutions, 234 EC
patients from Xijing Hospital (training set) were used to
evaluate the performance of RFs for predicting LRFS, and
120 EC patients from Sichuan Cancer Hospital were used
as an external testing dataset. Prognostic performance and
generalizability were assessed using the C-index and

Table 1 The clinical characteristics and survival outcomes of
the included patients

Characteristics EC (Xijing) EC (Sichuan) NPC (Xijing)

N= 234 N= 120 N= 525

Age (year, median

[IQR])

68 [62, 73] 62 [56, 66] 48 [41, 55]

Gender (male/female)

Male 181 (77.4%) 91 (75.8%) 375 (71.4%)

Female 53 (22.6%) 29 (24.2%) 150 (28.6%)

T stage

1 4 (1.7%) 0 (0%) 57 (10.9%)

2 26 (11.1%) 13 (10.8%) 177 (33.7%)

3 129 (55.1%) 60 (50.0%) 123 (23.4%)

4 75 (32.1%) 47 (39.2%) 168 (32.0%)

N stage

0 40 (17.1%) 0 (0%) 12 (2.3%)

1 116 (49.6%) 53 (44.2%) 133 (25.3%)

2 61 (26.1%) 59 (49.2%) 273 (52.0%)

3 17 (7.2%) 8 (6.6%) 107 (20.4%)

M stage

0 234 (100%) 120 (100%) 492 (93.7%)

1 0 (0%) 0 (0%) 33 (6.3%)

Tumor location

Cervical/upper 57 (24.4%) 58 (48.3%) –

Middle 80 (34.2%) 46 (38.3%)

Lower 97 (41.4%) 16 (13.4%)

Tumor size (median

[IQR])

Length (cm):

5.0 [4.0, 7.0]

Length (cm):

5.0 [3.0, 6.1]

Volume (cm3):

22.1 [11.1,

41.2]

Treatment dRT: 18 (7.7%) dRT: 10 (8.3%) dCRT: 174

(33.1%)

dCRT: 216

(92.3%)

dCRT: 110

(91.7%)

IC-dCRT: 351

(66.9%)

Follow-up LRFS LRFS DMFS

Event 128 (54.7%) 79 (65.8%) 111 (21.1%)

Censored 106 (45.3%) 41 (34.2%) 414 (78.9%)

Median survival

(months, 95% CI)

27.0 [21,50] 19.7 [12.7, 25.0] –

3-year survival (%, 95%

CI)

43.8 [37.5,

51.2]

31.4 [23.6, 41.8] 83.0 [79.4,

86.7]

Categorical variables were reported as frequencies (proportions). Continuous
variables were reported as median (interquartile range [IQR])
EC esophageal cancer, NPC nasopharyngeal carcinoma, dRT definitive radio-
therapy, dCRT definitive concurrent chemoradiotherapy, IC induction che-
motherapy, CECT contrast-enhanced computed tomography, PET positron
emission tomography, LRFS local recurrence-free survival, DMFS distant
metastasis-free survival
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Kaplan–Meier analysis. The methodological details are
provided in Supplemental A7.

Assessment of the radiomics quality score (RQS)
The RQS [3] was calculated using an online tool (https://
www.radiomics.world/rqs) to evaluate the methodological
rigor and reporting standards of this study.

Results
The repeatability of RFs demonstrated significant varia-
tions across cancer types, pathological regions, and ima-
ging modalities. Notably, CT-based RFs in NPC showed
superior repeatability compared to EC (median ICC: 0.886
vs 0.806, p < 0.05, Fig. 2A), with nearly double the pro-
portion of highly repeatable features (45.0% vs 25.1%,
Fig. 2B). This pattern extended to imaging modalities,
where PET-based RFs in EC exhibited significantly higher
repeatability than CT-based features (median ICC: 0.897
vs 0.806, p < 0.05, Fig. 2D), with 49.0% vs 25.1% highly
repeatable features (Fig. 2E). While CT-based peritumoral
features in EC demonstrated comparable repeatability
(median ICC: 0.824 vs 0.806, p > 0.05, Fig. 2G) and pro-
portion of highly repeatable features to tumor features
(27.0% vs 25.1%, Fig. 2H), PET peritumoral RFs showed
significant degradation in both ICC values (median ICC:
0.819 vs 0.897, p < 0.05, Fig. 2J) and proportion of highly
repeatable features (28.4% vs 49.0%, Fig. 2K). Similarly,
NPC lymph node features exhibited reduced repeatability
compared to primary tumors (median ICC: 0.863 vs 0.886,
p < 0.05, Fig. 2M), with 39.3% vs 45.0% highly repeatable
features (Fig. 2N). Although there were differences
between the RF repeatability of different cancer types,
different pathological regions, and different imaging
modalities, feature repeatability was significantly corre-
lated (Bonferroni-corrected p < 0.05, Fig. 2C, F, I, L, O).
To verify the effects of bin count values, filters and feature

classes on RF repeatability, the mean ICC values of RFs
from different bin counts, different filters, and different
feature classes in each imaging dataset are shown in the
heatmap of Fig. 3. Overall, the first-order features from the
images processed via LoG filtering and a larger bin count
weremore repeatable, whereas the texture features from the
images processed via wavelet filtering and a lower bin count
showed lower repeatability. In the workflow of radiomics, a
specific bin count is applied to perform intensity dis-
cretization for feature extraction. Therefore, we further
compared the effects of bin count values of 8, 16, 32, 64, and
128 on feature repeatability (Fig. S1). The RFs from images
processed by using a larger bin count exhibited higher
repeatability. Moreover, image preprocessing improved
the RF repeatability of CT-based tumor in NPC (median
ICC: 0.886 vs 0.822, p < 0.05), and the details are shown in
Fig. S2.

The prognostic performance of 797 common high-
repeatable RFs with ICC > 0.75 in both EC and NPC was
evaluated, and the 727 RFs with C-index > 0.50 were
further selected as the common potential prognostic
features, which consisted of 606 volume-dependent RFs
and 121 volume-independent RFs (Fig. 4). The prognostic
performance of volume-dependent RFs was higher than
that of the volume-independent RFs (median C-index:
0.62 vs 0.57 in EC, 0.61 vs 0.55 in NPC, Mann–Whitney
U-test: p < 0.05). In addition to the mesh volume, nine
common volume-independent prognostic RFs were fur-
ther selected. The results of the correlation analysis of
these features in EC and NPC revealed that some features
were highly relevant (|r| > 0.6, Fig. S3). Together with the
mesh volume, the independent prognostic features are
shown in Table 2. The common independent prognostic
features of EC and NPC included original_-
shape_MeshVolume, log-5mm-glszm_GrayLevelVar-
iance, wavelet-LHL_glcm_JointEntropy, and wavelet-
HLH_firstorder_Minimum. The survival curves of the
high-risk and low-risk groups divided by the median of
each common independent prognostic feature are shown
in Fig. 5, with significant differences in the LRFS of
patients with EC and DMFS of patients with NPC. The C-
index and hazard ratio (HR) are shown in Table 2.
In total, 234 patients with EC at Xijing Hospital and 120

patients with EC at Sichuan Cancer Hospital were used to
assess whether highly repeatable features have better
generalizability. The prognostic performance of RFs from
the high-repeatable RF group and low-repeatable RF
group in the training and testing sets is shown in Fig. S4A,
B. Compared with the low-repeatable RF group, the high-
repeatable RF group had better prognostic performance
(median C-index: 0.614 vs 0.578 in training and 0.603 vs
0.562 in testing, p < 0.05). Notably, the high-repeatable
group had more stable generalizability (median|△C-
index|: 0.022 vs 0.029, p < 0.05). In addition, the external
testing set was also divided into high- and low-risk groups
by the median of the independent prognostic features in
the training set (Fig. S5). The LRFS of the two groups
divided by original_shape_MeshVolume and wavelet-
HLH_firstorder_Minimum was significantly different
(HR [95% confidence interval (CI)]: 1.97 [1.26–3.06] and
0.61 [0.39–0.95]).
The detailed calculation process and corresponding

RQS are presented in Table S2. A 100% score is reached at
36 points, and the RQS for this study was 11.

Discussion
This study comprehensively evaluated the repeatability
and prognostic value of RFs across different cancer types
(EC and NPC), pathological regions (tumor, peritumor,
and lymph node), and imaging modalities (CT and PET).
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Fig. 2 Comparison of RF repeatability across different cancer types, imaging modalities, and pathological regions. A–C Comparison of RF repeatability
between CT-based features in EC and NPC. D–F Comparison of RF repeatability between CT and PET-based features in EC. G–I Comparison of RF
repeatability between tumor and peritumoral regions in CT-based EC. J–L Comparison of RF repeatability between tumor and peritumoral regions in
PET-based EC. M–O Comparison of RF repeatability between tumor and lymph node regions in CT-based NPC
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The key findings revealed that RF repeatability was
influenced by cancer type, pathological region, and ima-
ging modality, while certain features maintain consistent
prognostic performance across different cancer types.
These findings provide valuable insights into the gen-
eralizability of radiomics models and their potential
application in multi-cancer prognostic modeling.
Previous studies on RF repeatability have primarily

focused on a single cancer type, limiting the general-
izability of their findings. For instance, studies by Zhang
et al [5] and Fiset et al [9]. investigated RF repeatability in
NPC and cervical cancer, respectively, but did not com-
pare across different cancer types. Janna et al investigated
the stability of radiomics features via test–retest analyses
on CT scans of rectal and lung cancer patients, high-
lighting the need for disease-specific assessment to

identify robust features [11]. Owing to the simultaneous
differences in hardware, scan acquisition and recon-
struction settings, disease sites, and scan time intervals in
their study, independently assessing the impact of each
factor on feature repeatability is difficult. In this study, we
controlled for scanner variables to reveal the differences
in RF repeatability between EC and NPC.
Our findings demonstrated that peritumoral RFs in CT

exhibited superior reproducibility compared to intratu-
moral features, aligning with prior studies by Tunali et al
[31], who attributed this phenomenon to the relatively
homogeneous microenvironment in peritumoral regions
vs the intrinsic heterogeneity of tumor cores. However,
the reversed trend observed in PET imaging warrants
further exploration. This discrepancy may stem from
fundamental differences in imaging physics and biological

Fig. 3 Mean ICC of RFs subgrouped by bin count values, image filters, and feature classes for different cancer types, different imaging modalities, and
different pathological regions. The heatmaps in the first column show the mean ICC of subgrouped RFs, which were extracted from the tumor of CT in
EC (A), PET in EC (B), and CT in NPC (C). The heatmaps in the second column show the mean ICC of subgrouped RFs, which were extracted from the
peritumor of CT (D) and PET (E) in EC, and the lymph node in NPC (F)
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correlates: CT predominantly reflects anatomical density
variations, whereas PET quantifies metabolic activity. In
tumors, metabolic heterogeneity within the core (e.g.,
hypermetabolic foci) may paradoxically enhance feature

stability in PET due to standardized uptake value (SUV)
normalization protocols, whereas peritumoral regions in
PET often encompass metabolically ambiguous zones
(e.g., necrosis, inflammatory activity, or microscopic

Fig. 4 Prognostic performance of the common potential prognostic RFs in EC and NPC. The prognostic performance of volume-dependent RFs was
higher than that of the volume-independent RFs

Table 2 List of independent prognostic features in EC and NPC

Cancer type Filter Class Name ICC C-index HR [95% CI]

EC Original Shape MeshVolume 0.971 0.648 2.33 [1.64–3.3]

log-2mm GLCM MaximumProbability 0.973 0.578 1.76 [1.24–2.5]

log-5mm GLSZM GrayLevelVariance 0.982 0.564 0.62 [0.44–0.88]

Wavelet-LHL GLCM JointEntropy 0.995 0.551 0.67 [0.47–0.94]

Wavelet-HLH Firstorder Minimum 0.980 0.548 0.69 [0.49–0.98]

NPC Original Shape MeshVolume 0.954 0.655 2.68 [1.85–3.89]

log-5mm GLSZM GrayLevelVariance 0.988 0.572 0.61 [0.42–0.88]

Wavelet-LHL GLCM JointEntropy 0.991 0.585 0.44 [0.3–0.64]

Wavelet-HLH Firstorder Minimum 0.989 0.579 0.53 [0.37–0.78]

ICC intraclass correlation coefficient, C-index concordance index, HR hazard ratio, CI confidence interval, EC esophageal cancer, NPC nasopharyngeal carcinoma, GLCM
gray level co-occurrence texture matrix, GLSZM gray level size zone matrix
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Fig. 5 Kaplan–Meier survival analysis of the common independent prognostic features in EC and NPC. The survival curves of the high-risk and low-risk
groups divided by the median of each common independent prognostic feature were significantly different in terms of the LRFS of patients with EC
(A–D) and the DMFS of patients with NPC (E–H)
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invasion), amplifying measurement variability. These
modality-specific nuances highlight the importance of
context-aware radiomic modeling and underscore the
need for standardized preprocessing pipelines tailored to
imaging modalities.
In this study, we evaluated the consistency of the effects

of different bin counts, different filters, and different feature
classes on RF repeatability in different cancer types, dif-
ferent pathological regions, and different imaging mod-
alities. Reducing the bin count may amplify differences in
texture features as a consequence of the diminished size of
the gray-level matrix [5]. Wichtmann et al indicated that at
least 32 bins should be employed for MRI, and the intensity
discretization to 64 bins might rarely lead to more repea-
table features [32]. Moreover, too large a bin count may
introduce too much noise. We also explored the effect of
bin count on RF repeatability in different regions of PET
and CT, suggesting a reasonable selection for specific stu-
dies. The repeatability of features derived from wavelet
filtering with high-pass filters was consistently poor across
datasets, as these features predominantly retain high-
frequency components of the image, such as edges and
textural details, which are highly sensitive to minute var-
iations in the image, thereby diminishing the repeatability
of associated features [11, 31]. Conversely, the LoG filter-
ing, by virtue of its smoothing-before-enhancement char-
acteristic, effectively mitigates noise interference, leading to
more stable feature extraction. In particular, with the
increase of scale parameter (sigma), the image experiences
greater smoothing, which enhances robustness against
noise and minor alterations [33]. Compared with first-
order features, which focus on the global gray distribution
of the image, texture features analyze pixel relations and are
sensitive to local changes and noise, resulting in poorer
feature repeatability. These consistent findings provide
broader validation for previous studies.
This study provides evidence that high repeatability

guarantees the external generalizability of prognostic
features, and further reveals that high-repeatable RFs
might have prognostic performance across cancer types.
In machine learning, overfitting refers to the phenomenon
where a model performs well on training data but
degrades on new data, often due to the model over-
learning noise or chance in the training data. Features
with high repeatability could provide consistent infor-
mation across patients facing the same clinical situation
or across different healthcare facilities, which means that
these features are less likely to be affected by random
image noise. Therefore, using high-repeatable features can
reduce the possibility of such overreliance on specific
noise or details in the training data, thereby reducing the
risk of overfitting. Because of their consistency under
different conditions, the high-repeatable features not only

help the model learn more general rules but also reduce
the misjudgment caused by accidental factors, which is
the key to realizing the generalizability of the model to
new data and new environments. Our results are con-
sistent with those of previous studies showing that high-
repeatable RFs enhance model generalizability [4–6].
Notably, we identified several high-repeatable features

with consistent prognostic ability in both EC and NPC.
These features may touch on core mechanisms of tumor
biology that are prevalent across multiple tumor types and
thus have broad predictive value. Volume is an important
independent prognostic factor for both EC and NPC, and
reflects the overall condition of the tumor. Chang et al
proposed that tumor volume had a greater effect on the
prognosis of NPC than T stage [34]. Kang et al also sug-
gested that tumor volume based on CT imaging was
superior to the T stage of tumor invasion depth in pre-
dicting the prognosis of nonoperative EC patients [35]. The
larger the tumor size, the greater the burden of tumor cells,
the more intratumoral blood flow disorders, and the more
hypoxic cells. These factors might affect the theatment
efficacy, leading to local uncontrolled disease or recurrence
after treatment, thus affecting long-term survival. Further
assessment of the biological significance of these prognostic
features in different cancer types via radiogenomics is
encouraged. Our results also demonstrated that the prog-
nostic performance of volume-dependent RFs was sig-
nificantly higher than that of volume-independent RFs. This
observation aligns with the findings of Traverso et al [36],
who reported that volume-related RFs played a predominant
role in prognostic models for lung and head-and-neck can-
cers, whereas volume-independent RFs lacked sufficient
independent prognostic power. Certain shape-based features
(e.g., SurfaceArea) essentially quantify tumor dimensional
characteristics, serving as sophisticated measurements of
tumor bulk. While clinically valuable, these features may not
provide substantial new biological information beyond
conventional size assessments. Notably, some volume-
associated texture features (e.g., LargeAreaEmphasis) may
encode additional biological information by capturing spatial
heterogeneity patterns across tumor volumes or regional
microenvironmental variations. Such features might repre-
sent a convergence of volumetric and textural information,
where tumor size serves as a scaffold for spatial hetero-
geneity patterns. Moreover, volume-independent features
retain value by detecting localized biological processes, and
their integration with volume-dependent features provides
more comprehensive prognostic information through com-
plementary tumor characterization.
This study has several limitations. First, although per-

turbation analysis is a feasible alternative to test–retest
imaging, perturbations may not fully capture all the real-
world variability encountered in clinical practice. Second,
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while the experimental design evaluated the repeatability of
RFs under identical imaging conditions, their reproduci-
bility across heterogeneous clinical settings remains to be
validated. Third, our dataset lacked diversity in patient
demographics (e.g., age, gender, and ethnic distributions),
which may limit the generalizability of our findings across
different populations. Finally, although the RQS score of 11
aligns with the average quality of existing radiomics studies
in EC (9.07) [37], there are several aspects that need to be
improved in future work: (1) multivariable integration:
combining RFs with established prognostic factors (for
example, TNM-staging) to develop holistic prediction
systems; (2) biological interpretation: exploring associa-
tions between stable RFs and underlying gene-protein
expression patterns through radiogenomics to deepen
understanding of radiomics and biology; and (3) clinical
validation: conducting prospective trials to provide the
highest level of evidence supporting the clinical validity and
usefulness of the radiomics biomarker. These improve-
ments would provide high-quality radiomic biomarkers
and transform radiomic models from research tools to
clinically actionable decision-support systems.

Conclusions
In this study, we found that RF repeatability exhibits
significant heterogeneity across cancer types, imaging
modalities, and pathological regions, while certain fea-
tures demonstrate robust prognostic generalizability
regardless of tumor origin. These findings underscore that
in the practice of radiomics for specific clinical or research
objectives, systematic assessment of RF repeatability is not
only a necessary step, but also essential to ensure the
generalizability of prognostic signatures across centers
and diseases. This study advances the generality and
practicality of radiomics in diverse clinical scenarios,
facilitating the progression of precision medicine.
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