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Abstract

Background Metabolic dysregulation plays a crucial role in the development of diabetic vascular complications.
Current models for diabetic vascular complications predominantly rely on three conventional parameter classes:
demographic characteristics, clinical measures, and standard laboratory indices. In contrast, the potential prognostic
value of the plasma metabolome remains substantially under characterized in this context. This study aims to
systemically reframe the value of circulating metabolites, providing new insights into both assessment and
pathophysiology of diabetic complications.

Methods This study included 333,870 participants from the UK Biobank (n=115,078) and FinnGen Biobank
(n=218,792). The initial analysis utilizing longitudinal data from 7,711 patients with diabetes was used to screen 249
plasma metabolites associated with diabetic vascular complications. These metabolites were carefully quantified
using nuclear magnetic resonance (NMR) to profile the metabolites of these participants. A total of 1,457 and 1,635
people were found to have developed macrovascular (including heart failure, stroke and coronary heart disease
[CHDI) and microvascular complications (including diabetic neuropathy [DN], kidney disease and retinopathy)

at follow-ups, respectively. A Least Absolute Shrinkage and Selection Operator-Cox (LASSO-Cox) regression was
conducted to define the potential biomarkers, adjusting for conventional factors including age, sex, race, smoking
status, diet intake, Townsend deprivation index, systolic and diastolic blood pressure, body mass index, plasma
triglycerides, low-density lipoprotein (LDL) cholesterol, plasma creatinine and estimated glomerular filtration rate.
Subsequently, a multivariate Cox proportional hazards regression model was used to estimate the hazard ratios (HRs).
Finally, a bidirectional two-sample Mendelian randomization (MR) analysis was employed to evaluate the relationships
between the selected metabolomics and diabetic complications to analyze causal associations.

Results Over a 13.06+3.59 years of follow-up, 15 out of 249 plasma metabolites demonstrated significant
associations with incident macrovascular complications in LASSO-Cox regression, while 33 metabolites were linked
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to microvascular complications after 12.77 +3.90 years of follow-up (all P <0.05). In the multivariate Cox proportional
hazards regression, 6 metabolites including creatinine (HR=1.32, 95% confidence interval [CI] 1.17-1.50, P <0.001),
albumin (HR=0.87,95% Cl 0.81-0.94, P <0.001), tyrosine (HR=0.91, 95% Cl 0.85-0.96, P=0.001), glutamine (HR=1.08,
95% Cl 1.01-1.15, P=0.020), lactate (HR=1.07,95% CI 1.01-1.14, P=0.023), and the ratio of phospholipids to total
lipids in small LDL (HR=1.10,95% CI 1.01-1.19, P=0.023) were correlated with macrovascular complications, while

8 metabolites including glucose (HR=1.25,95% CI 1.18-1.33, P <0.001), tyrosine (HR=0.86, 95% Cl 0.80-0.92,

P <0.001), concentration of very large high-density lipoprotein particles (HR=0.78, 95% CI 0.68-0.90, P=0.001),

valine (HR=1.21,95% Cl 1.08-1.36, P=0.001), free cholesterol to total lipids in very small very low-density lipoprotein
(VLDL, HR=1.28,95% Cl 1.10-1.49, P=0.001), alanine (HR=1.08, 95% CI 1.01-1.15, P=0.022), albumin (HR=0.92, 95%
C10.86-0.99, P=0.027), and isoleucine (HR=0.89, 95% CI 0.80-1.00, P=0.041) were associated with microvascular
complications. MR analysis suggested that genetic predisposition to several screened metabolites was linked to
diabetic complications. For CHD, the ratio of phospholipids to total lipids in small LDL was associated with increased
risk (odds ratio [OR]=1.96, 95% Cl 1.33-2.88, P=0.015). As for reverse MR, DN was relevant to decreased level of serum
ratio of docosahexaenoic acid to total fatty acids (OR=0.97, 95% Cl 0.95-0.99, P=0.019), increased level of the ratio of
triglycerides to total lipids in very large VLDL (OR=1.03, 95% CI 1.01-1.05, P=0.019), and pyruvate (OR=1.03, 95% Cl

1.01-1.05, P=0.046).

Conclusions These findings may serve as potential biomarkers for predicting the development of vascular
complications in patients with diabetes, thereby improving clinical management strategies for affected patients.

Trial registration Not applicable.

Keywords Diabetes complications, Microvascular complications, Macrovascular complications, Metabolomics

Background
Diabetes and associated vascular disorders are notewor-
thy global public health challenges. Recent epidemiologi-
cal data indicate that diabetes affected approximately 1 in
11 adults worldwide in 2015 [1]. Projections suggest this
prevalence will rise dramatically, potentially affecting 693
million adults globally by 2045 [2]. Diabetic vascular com-
plications exhibit substantial pathophysiological overlap
at the vascular level, collectively contributing to worse
clinical outcomes compared to isolated diabetic conditions
[3]. Recent research on these complications has greatly
advanced the understanding of the pathogenesis of the
disease. The systematic integration of shared determinants
and underlying pathophysiological mechanisms across
disease entities facilitates the understanding and manage-
ment of diabetic vascular complications. Therefore, it is of
great importance to simultaneously explore the impact of
factors at risk on multiple systems and various angiopa-
thies when investigating diabetic vascular complications.
Diabetic complications, including macrovascular com-
plications such as heart failure (HF), coronary heart
disease (CHD), and stroke, as well as microvascular dis-
orders such as diabetic kidney disease (DKD), diabetic
retinopathy (DR), and diabetic neuropathy (DN), can lead
to serious cardiovascular damage, renal failure, blindness,
and other consequences, posing a noteworthy decline
in life quality and a significant increase in the mortality
risk [4]. The likelihood of HF in patients with diabetes is
more than twice that of individuals without diabetes [5].
At least half of patients with diabetes will develop DN
in their lifetime [6]. Therefore, identifying biomarkers

or key contributors to diabetes vascular complications
is of great clinical importance for the management of
diabetes.

Diabetes is fundamentally characterized by persistent
metabolic dysregulation, which serves as a pivotal driver
in both the development and progression of diabetic vas-
cular complications through underlying pathophysiologi-
cal mechanisms [7-12]. Increasing studies highlights
the diagnostic and predictive potential of metabolomics
in diabetic complications, reinforcing the critical role of
metabolites in vascular pathogenesis [13, 14]. Notably,
the study related to DKD revealed extensive metabolic
dysregulation, where urea and creatinine serve as renal
impairment biomarkers, while elevated circulating galac-
tose, d-fructose, and lactate induce blood pH alterations
that may initiate DKD progression [14].

However, though some studies have proved the sig-
nificance of metabolomics in the progression of certain
diabetic complications, including DR and DKD, there is
currently still no research systemically analyzing metabo-
lomics in all diabetic complications, which is crucial for
investigating the common pathophysiological mecha-
nisms and metabolic pathways of these complications
[15, 16].

Consequently, there is an urgent need for a comprehen-
sive assessment of plasma metabolomics at the onset of
diverse diabetic complications [17]. This current research
strives to comprehensively evaluate the relationships of
plasma metabolites and the future risk of diabetic vascu-
lar complications using longitudinal data. Additionally,
employing Mendelian randomization (MR) to elucidate
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the potential genetic causal impact of selected metabo-
lites on diabetic complications, we ultimately delineated
the role of metabolomics in the initiation and progres-
sion of diabetic vascular complication.

Methods

Study participants

The UK Biobank is a prospective cohort study initiated in
2006—-2010, enrolling over 500,000 participants from the
United Kingdom. It has comprehensive datasets encom-
passing disease diagnoses, circulating metabolites, plasma
proteins, genome sequencing data, and so on.

The FinnGen study, a genomic and personalized med-
icine initiative supported by nearly 500,000 Finnish
individuals, aims to advance precision medicine by elu-
cidating genetic determinants of diseases. This project
establishes a unique resource for investigating genetic
variations and their clinical implications in disease pre-
vention, diagnosis, and therapeutic development.

A total of 333,870 participants from UK Biobank
(n=115,078) and FinnGen Biobank round 5 (n=218,792)
were included in this study, consisting of two specific
subpopulations. The workflow of this study was described
in Fig. 1.

Firstly, metabolite data were available among 118,002
participants in the UK Biobank. Among these, 7,713 par-
ticipants had diabetes mellitus at baseline. Participants
with specific diabetic vascular complications at baseline
identified through hospital admissions records, primary
care records, or self-report history during or before the
baseline period were pre-excluded for specific analysis.
The exclusion criteria comprised participants with base-
line diabetes complications: macrovascular complica-
tions (N=1,957), CHD (N=1,607), HF (N =542), stroke
(N'=226), microvascular complications (N =1,955), DKD
(N=432), DN (N=300), and DR (N =1,626). Two partici-
pants were excluded from all study cohorts due to pre-
existing diagnoses of all target complications at baseline.
The final analytical sample comprised 7,711 participants
with longitudinal follow-up data. To be specific, eight
distinct cohorts with longitudinal data were included
in observational study, including: 5,756 participants for
macrovascular complications, 6,106 participants for
CHD, 7,171 participants for HF, 7,487 participants for
stroke, 5,758 participants for microvascular complica-
tions, 7,281 participants for DKD, 7,413 participants for
DN, and 6,087 participants for DR, all with available lon-
gitudinal data for cohort study.

In phase II analysis, 115,078 participants from the
UK Biobank and 218,792 participants from the Finn-
Gen Biobank (Round 5) with genome-wide association
studies (GWAS) data were included for MR analyses to
establish the causal relationship between selected plasma
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metabolomics and macrovascular complications or
microvascular complications.

Ascertainment of endpoints

Diabetic macrovascular complications were defined as
CHD, HE, and stroke, while microvascular complications
encompassed DR, DN, and DKD. Endpoints were deter-
mined by the earliest recorded occurrence across four
validated sources: self-report history, hospital admis-
sions (ICD-9/ICD-10), death registries, or primary care
records, with death registration dates superseding other
records for deceased cases (Supplementary Materials 1
Table S1-2). To enhance diagnostic precision, diabetes
mellitus confirmation requires at least one criterion: self-
reported history, fasting plasma glucose>11.1 mmol/L,
HbA1c>48 mmol/mol, or active glucose-lowering medi-
cation use, self-reported history, hospital admission
records, or primary care records.

Conventional risk factors

Age, sex, race, smoking status, diet intake, Townsend
deprivation index, systolic and diastolic blood pressure,
body mass index (BMI), plasma triglycerides, low-den-
sity lipoprotein (LDL) cholesterol, plasma creatinine and
estimated glomerular filtration rate (eGFR, calculated
by plasma creatinine, sex, age) were included as conven-
tional risk factors. Detailed conventional factors and field
IDs were provided in Supplementary Materials 1 Table
$3-4.[18].

Quantification and quality control of metabolites

Plasma specimens were prepared in 96-well plates with
plasma mimic to monitor the consistency of quantification
by the UK Biobank. A mixture of two small molecules was
also added to serve as a technical reference. These sam-
ples were further analyzed at Nightingale Health's labo-
ratories in Finland between June 2019 and April 2020. A
total of 249 metabolites were analyzed using nuclear mag-
netic resonance (NMR) to profile the metabolites of these
participants.

Quality control was applied to eliminate technical and
systemic errors. Pre-specified agreement on protocol
was made between UK Biobank and Nightingale Health
Centre to ensure the biomarker consistency throughout
the project. Two internalized control samples were plated
on 96-well plates with plasma samples of participants to
track the consistency and eliminate batch effects. Thus,
NMR quantification differs from other approaches like
spectrometry, by its absence of batch effect, offering the
optimal statistical value [19]. Also, four sets of internal
control samples were used across 1,352 96-well plates
measured [20].

A total of 168 metabolites were quantified in absolute
level, referring to mmol/L, encompassing amino acids,
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Fig. 1 The overall workflow of the study. The diagram represents the inclusion criteria and analytical procedures of the study. ROC=receiver operat-
ing characteristics curve; NRI=net reclassification index; GWAS=genome-wide association studies; MR=Mendelian randomization; LASSO=least absolute
shrinkage and selection operator; MR-PRESSO=Mendelian randomization pleiotropy residual sum and outlier; IDI=integrated discrimination index.

fatty acids, glycosylated molecules, lipids, and lipo-
proteins. The rest 81 was quantified as a ratio. Detailed
metabolites and field IDs were provided in Supplemen-
tary Materials 1 Table S5. Among all participants enrolled
in the study, a total of 725 (9.4%) exhibited missing values
across all metabolites, with a mean of 0.3 +1.50 metabo-
lites missing per individual. These missing values were

addressed through multiple imputation implemented via
the R package mice (v3.16.0).

Summary statistics for GWAS datasets of FinnGen Biobanks
and UK Biobank

The metabolites were further included in the ascer-
tainment of the causal relationship with specific
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diabetic complications. The cohort of the UK Biobank
was included as exposure data to determine the circu-
lating plasma metabolites [21]. The cohort of FinnGen
Biobanks was applied as outcome data to determine the
presence of diabetic complications (https://finngen.git
book.io/documentation/v/r5). Both cohorts comprised
European participants.

Summary statistics for genetic instruments associ-
ated with the outcomes of certain diabetic complications
were obtained from the FinnGen Biobank participants.
Detailed characteristics were shown in Supplementary
Materials 1 Table S6. The full GWAS results of these
metabolites were published by IEU OpenGWAS datasets
with GWAS ID provided in Supplementary Materials 1
Table S7-13.

Statistical analyses

Two steps of analytical approach were conducted to deter-
mine the potential relationship of metabolite biomarkers
with diabetic vascular complications. Before analysis, all
metabolites were first transformed by natural logarithmic
(In[x+1]) and scaled by Z transformation. Also, data of
metabolites exceeding the 2.5th to 97.5th percentile range
were identified as outliers and replaced with the corre-
sponding boundary values (the 2.5th percentile for lower
extremes or the 97.5th percentile for upper extremes) to
minimize their impact on subsequent analyses.

In phase I analysis, we selected several metabolites
that were significantly related to specific diabetic com-
plications. Here, we included individuals with longitu-
dinal data to select significant plasma metabolites. Least
absolute shrinkage and selection operator-Cox (LASSO-
Cox) regression, adjusted for conventional covariates,
was performed to assess metabolite effects on complica-
tions while accounting for intercorrelations. Outcomes
represented complication status (presence/absence) at
follow-up visits. Significant metabolites associated with
each complication were identified as non-zero coefficient
biomarkers in LASSO-Cox regression and then were
advanced to phase II. A multivariate Cox proportional
hazards regression was conducted to estimate the hazard
ratio (HR). Two kinds of Cox models were constructed:
Model 1 (traditional covariates: age, sex, race, smoking
status, diet, Townsend deprivation index, systolic and
diastolic blood pressure, BMI, plasma triglycerides, LDL
cholesterol, plasma creatinine and eGFR) and Model 2
(traditional covariates combined with Phase I-derived
metabolites). The discriminative performance of predic-
tive algorithms was evaluated using the area under the
receiver operating characteristic curve (AUC), Concor-
dance index (C-index), net reclassification index (NRI)
, and integrated discrimination index (IDI). NRI could
quantify how the newly developed model reclassified
participants compared to the previous model, and IDI
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could assess how the model was improved. To ensure the
robustness of the statistical analysis, we systematically
evaluated the statistical power of the overall study. Our
power analyses demonstrated excellent statistical power
for detecting associations, with observed values of 1.000
for macrovascular complications and 0.998 for microvas-
cular complications.

In phase II analysis, causal relationships were esti-
mated by applying bidirectional MR between metabo-
lites selected by LASSO-Cox regression and diabetic
vascular complications. MR was conducted under three
assumptions: (1) genetic instruments (IVs) are related to
the exposures; (2) there are no other mediators between
the genetic instruments and the outcome; (3) there are
no correlations between the genetic instruments and the
outcome. Any single-nucleotide polymorphisms (SNPs)
that didn’t conform to the above assumptions were
excluded from the study. The fulfillment of these assump-
tions was further tested by the heterogeneity test and the
pleiotropy test. A heterogeneity test was conducted by
applying Cochran’ s Q test, and horizontal pleiotropy was
tested and excluded by the MR-Egger intercept test and
Mendelian randomization pleiotropy residual sum and
outlier (MR-PRESSO). Also, MR Steiger filtering analy-
sis was conducted to ensure the robustness of the causal
relationship detected.

The following principles were applied to choose the
instruments: (1) SNPs associated with metabolites at the
threshold of P <5*107% were included; (2) SNPs were fil-
tered using linkage disequilibrium (LD) tests, excluding
those with R*<0.01 within a 5000 kb clumping window
size. Heterogeneity and horizontal pleiotropy were tested
to ensure the effectiveness at the threshold of P <0.05;
(3) MR-PRESSO tests were conducted to exclude out-
lier SNPs to ensure the robustness of the analysis; (4)
MR Steiger filtering was conducted to exclude SNPs with
false causal correlation. Heterogeneity and horizontal
pleiotropy were tested to ensure the effectiveness at the
threshold of P <0.05. Five methods of MR were applied,
including simple mode, MR Egger, Inverse weighted
median (IVW), weighted median, and weighted mode.
IVW applies Wald estimates to each SNP, deriving aggre-
gate genetic associations between metabolite biomarkers
and diabetic complications. [IVW was thought to be unbi-
ased and of most statistical value if no horizontal pleiot-
ropy appears [22]. To ensure the robustness of the results,
sensitivity analyses including leave-one-out analysis, for-
est plots, funnel plots, and scatter plots were conducted.
False discovery rate (FDR) correction was also applied to
eliminate the bias induced by multiple testing. Detailed
SNPs selected were listed in Supplementary Materials 2
S1-2.

A two-sided P-value less than 0.05 was considered
statistically significant. All statistical analyses were


https://finngen.gitbook.io/documentation/v/r5
https://finngen.gitbook.io/documentation/v/r5

Li et al. Cardiovascular Diabetology (2025) 24:341

performed using R software, version 4.4.2 (R Foundation
for Statistical Computing).

Ethics

The data collection and utilization for this research were
conducted under ethical guidelines. Before participa-
tion, all individuals involved have given written informed
consent. Given the publicly accessible and anony-
mized nature of the datasets, institutional review board
approval was waived for this particular analysis.

Role of funders

This work only represented the viewpoint of the authors.
The funding sources had no involvement in the study
design or implementation.

Results

Baseline characteristics

In phase I analysis, 7,711 participants with an average age
of 59.3+7.3 years (range, 40.0-70.0 years) were included.
A total of 3,041 (39.4%) participants were female, 6,735
(87.3%) were White, and 925 (12%) were current smok-
ers. Mean BMI was 31.3+579 kg/m? (range, 15.8—
61.7 kg/m?) systolic blood pressure was 139+ 20.3 mmHg
(range, 84.0-188.0 mmHg), diastolic blood pressure was
80.6+11.3 mmHg (range, 53.5-109.5 mmHg), plasma
LDL cholesterol level was 2.84-+0.85 mmol/L (range, 0.28—
7.07 mmol/L), plasma triglyceride was 2.18 +1.31 mmol/L
(range, 0.31-11.19 mmol/L).

During a follow-up of 13.06+3.59 years (range,
0.36-16.63 years) for macrovascular complications and
12.77+£3.90 years (range, 0.69-16.62 years) for micro-
vascular complications, 1,457 were diagnosed with
macrovascular complications at follow-up, and 1,635
were diagnosed with microvascular complications at
follow-up. Specifically, 1,149, 750, and 563 participants
were diagnosed with CHD, HEF, and stroke at follow-up,
respectively. In addition, 1,102, 406, and 1,059 partici-
pants were diagnosed with DKD, DN, and DR at follow-
up, respectively. The baseline characteristics were further
described in Supplementary Materials 1 Table S14 and
S15.

Metabolic biomarkers associated with incident diabetic
complications

In phase I analysis, among 249 metabolites quantified by
NMR spectrum, a total of 15 and 33 metabolites were
found to be significantly correlated with macrovascu-
lar or microvascular complications in the LASSO-Cox
regression, respectively. A heatmap was created to dem-
onstrate the correlations between selected metabolites
and both macrovascular and microvascular complica-
tions across participants (Fig. 2). Additionally, a Venn
diagram was constructed to illustrate the overlapping
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patterns of metabolites selected by LASSO-Cox across
the different complications (Fig. 3). Several metabolites
demonstrated broad-spectrum associations across mul-
tiple diabetic complications. Notably, acetate exhibited
universal associations with all complication types exam-
ined. Alanine demonstrated significant correlations with
CHD, HFE, DKD, DN, and DR, while albumin and creati-
nine shared identical association profiles with CHD, HF,
stroke, DKD, and DN. Glucose metabolism alterations
were associated with HEF, stroke, DKD, DN, and DR,
and tyrosine showed consistent relationships with CHD,
stroke, DKD, DN, and DR.

Further, our analysis revealed complication-specific
metabolites. For DKD, the unique metabolites included
acetoacetate, very low-density lipoprotein (VLDL) par-
ticle average diameter, cholesteryl esters-to-total lipids
ratio in large LDL, free cholesterol-to-total lipids ratio in
chylomicrons and extremely large VLDL, isoleucine, leu-
cine, w-6/w-3 fatty acid ratio, phospholipids-to-total lip-
ids ratio in small VLDL, triglycerides-to-total lipids ratio
in very large high-density lipoprotein (HDL), and triglyc-
erides-to-total lipids ratio in very small VLDL. In DN, the
distinctive metabolites consisted of cholesterol-to-total
lipids ratio in large HDL, cholesteryl esters-to-total lip-
ids ratio in large HDL, docosahexaenoic acid(DHA)-to-
total fatty acids ratio, absolute phospholipid content in
chylomicrons and extremely large VLDL, phospholipids-
to-total lipids ratio in very large HDL, polyunsaturated
fatty acids-to-total fatty acids ratio, total branched-chain
amino acids (BCAAs) pool (leucine/isoleucine/valine),
triglyceride content in large HDL, triglycerides-to-total
lipids ratio in small VLDL, and triglycerides-to-total lip-
ids ratio in very large VLDL. Significant metabolites for
each complication were also selected, detailed metabolic
biomarkers were provided in Supplementary Materials 1
Table S16-23.

The following metabolites were positively associ-
ated with the incidence of macrovascular complications
in the multivariate Cox proportional hazards regres-
sion: creatinine (HR=1.32, 95% confidence interval
[CI]: 1.17-1.50, P<0.001), glutamine (HR=1.08, 95%
CI 1.01-1.15, P=0.020), lactate (HR=1.07, 95% CI
1.01-1.14, P=0.023), and phospholipids to total lipids in
small LDL (HR=1.10, 95% CI 1.01-1.19, P=0.023). Con-
versely, albumin (HR=0.87, 95% CI 0.81-0.94, P <0.001),
tyrosine (HR=0.91, 95% CI 0.85-0.96, P=0.001) were
negatively linked with the incidence of macrovascular
complications. The following metabolites were positively
associated with its incidence in the multivariate Cox pro-
portional hazards regression: glucose (HR=1.25, 95% CI
1.18-1.33, P<0.001), valine (HR=1.21, 95% CI 1.08-1.36,
P=0.001), free cholesterol to total lipids in very small
VLDL (HR=1.28, 95% CI 1.10-1.49, P=0.001), alanine
(HR=1.08, 95% CI 1.01-1.15, P=0.022). Conversely,
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Fig. 2 Heatmap showing the correlations between selected metabolites and macrovascular/microvascular complications. Colors represent the mean
level of corresponding metabolites after natural logarithmic transformation(In[x+ 11) and scaled by Z transformation. To simplify complex terminology,
we standardized data labels by using abbreviations. Lipid size categories were abbreviated as follows: "very small" to "XS", "small" to "S", "medium" to "M,
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tyrosine (HR=0.86, 95% CI 0.80-0.92, P<0.001), con-
centration of very large HDL particles (HR=0.78, 95% CI
0.68-0.90, P=0.001), albumin (HR=0.92, 95% CI 0.86—
0.99, P=0.027), and isoleucine (HR=0.89, 95% CI 0.80-
1.00, P =0.041) were negatively linked with the incidence
of microvascular complications (Fig. 4).

The inclusion of metabolites improved the predictive
effectiveness of the conventional models for all diabetic
complications (all P <0.05, Fig. 5). In macrovascular com-
plications, the merged model improved predictive accu-
racy (P<0.001), with the AUC increasing from 0.672
(95% CI 0.656—0.687) to 0.687 (95% CI 0.672—0.702), NRI
of 0.112, relative IDI of 0.222, absolute IDI of 0.005, and
C-index rising from 0.649 (95% CI 0.635-0.663) to 0.662
(95% CI 0.649-0.672). For microvascular complications,
AUC increased from 0.639 (95% CI 0.623-0.657) to 0.680
(95% CI 0.665—-0.695, P <0.001), NRI reached 0.140, rela-
tive IDI was 0.588, absolute IDI was 0.012, and C-index
improved from 0.614 (95% CI 0.600-0.628) to 0.649 (95%

CI 0.635-0.662). Specific diseases including CHD, HE,
stroke, DKD, DN, and DR all showed varying degrees of
improved predictive performance, with notable enhance-
ments in DKD (AUC 0.760, 95% CI 0.745-0.776; 0.787,
95% CI 0.782-0.802, P<0.001), DN (AUC 0.637, 95%
CI 0.610-0.665; 0.726, 95% CI 0.703-0.750, P <0.001),
and DR (AUC 0.568, 95% CI 0.550-0.587; 0.631, 95%
CI 0.613-0.648, P<0.001). Detailed NRIs, relative and
absolute IDIs, and AUCs for different Cox models after
adding metabolomics as a predictor were shown in Sup-
plementary Materials 1 Table S24.

Metabolic biomarkers causally related to the diabetic
vascular complications

It showed that metabolomics had a more notewor-
thy effect on the development of CHD after FDR cor-
rection. Detailed information was demonstrated in
Table 1. To be specific, for CHD, the ratio of phospho-
lipids to total lipids in small LDL (odds ratio [OR] =1.96,
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Fig. 3 Venn diagram showing the LASSO-Cox selected metabolites in different diabetic vascular complications. DKD = diabetic kidney disease; DN =dia-
betic neuropathy; DR=diabetic retinopathy; CHD = coronary heart disease; HF =heart failure.

95% CI 1.33-2.88, P=0.015) proved to be substantially
hazardous.

Reverse MR demonstrated the reverse causal effect of
complications on metabolomics levels. DN was relevant
to decreased level of serum ratio of DHA to total fatty
acids (OR=0.97, 95% CI 0.95-0.99, P=0.019), increased
ratio of triglycerides to total lipids in very large VLDL
(OR=1.03, 95% CI 1.01-1.05, P=0.019), and pyruvate
(OR=1.03,95% CI 1.01-1.05, P =0.046). The main results
of MR analysis were demonstrated in Supplementary
Materials 2 S3.

To ensure the assumptions of MR analysis were satis-
fied, analyses including a heterogeneity test, Steiger filter-
ing analysis, and a pleiotropy test were conducted. The
results were demonstrated in Supplementary Materials
2 S4-S6. Further, sensitivity analyses including leave-one-
out analysis, forest plots, funnel plots, and scatter plots

were calculated and demonstrated in Supplementary
Materials 1 Figure S1-S47.

Discussion

The findings suggested that certain plasma metabolites,
including acetate, alanine, creatinine, glucose, phospho-
lipid ratios, fatty acids, albumin, and tyrosine and so on,
may contribute to the development of diabetic vascular
complications and could serve as common biomarkers or
therapeutic targets for these conditions.

Acetate demonstrated significant associations with all
diabetic complications examined in this study. This find-
ing was supported by the established research indicating
an inverse relationship between circulating acetate levels
and insulin resistance [23]. Further, studies have found
that acetate can prevent heart and kidney from nicotine-
induced cardiorenal dysmetabolism [24]. Collectively,
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saturated fatty acids" to"PUFA".

these observations suggest that acetate dysregulation may
play a fundamental role in the pathogenesis of diverse
diabetic complications through its modulation of sys-
temic metabolism.

Alanine was found to be associated with CHD, HF,
NEP, NEU and DR. There was established evidence
linking impaired alanine catabolism to metabolic

dysregulation [25, 26]. Specifically, hepatic alanine catab-
olism contributes to gluconeogenesis, thereby exacer-
bating hyperglycemia [25]. Also, the ratio of alanine to
glycine was reported as a significant predictive factor for
diabetes [26]. Therefore, serum level of alanine may affect
the level of serum glucose, thus influencing the prognosis
of diabetes.
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Table 1 Results of main Mendelian randomization analyses

Exposure Outcome OR 95% P Method
Cl value
Phospholipids ~ Coronary heart 196 133- 0015 Inverse
to total lipids disease 2.88 variance
ratio in small weighted
LDL
Acetone Heart Failure 040 0.17- 0038 Wald
0.95 ratio
Diabetic Ratio of docosa- 097 095- 0.019 Inverse
neuropathy hexaenoic acid to 0.99 variance
total fatty acids weighted
Diabetic Ratio of docosa- 097 095- 0.043  Weighted
neuropathy hexaenoic acid to 0.99 median
total fatty acids
Diabetic Albumin 097 094- 0049 Weighted
neuropathy 0.99 median
Diabetic Pyruvate 1.03 1.01- 0049 Weighted
neuropathy 1.06 median
Diabetic Pyruvate 1.03 1.01- 0046 Inverse
neuropathy 1.05 variance
weighted
Diabetic Triglycerides to 1.03 1.01- 0049 Weighted
neuropathy total lipids ratio in 1.05 median
very large VLDL
Diabetic Triglycerides to 1.03 1.01- 0019 Inverse
neuropathy total lipids ratio in 1.05 variance
very large VLDL weighted
Diabetic Phospholipidsto 096 0.94- 0.041  Weighted
retinopathy total lipids ratio in 0.99 median

very large VLDL
OR=o0dds ratio; Cl= confidence interval,VLDL=very low-density lipoprotein.

Creatinine emerged as a prominent risk factor for
CHD, HE, Stroke, DN and DKD. As serum creatinine is
a well-established diagnostic marker for renal dysfunc-
tion, including DKD, its association with macrovascular
complications likely reflects the known pathophysiologi-
cal interplay between diabetic microvascular and mac-
rovascular disease [27, 28]. Furthermore, prior studies
have demonstrated that hyperglycemia contributes to
elevated serum creatinine levels [29]. These collective
mechanisms—renal impairment, systemic vascular dys-
function, and metabolic derangements—may jointly
account for creatinine's association with multiple diabetic
complications.

High level of glucose was reported to be toxic to neu-
rons, which appeared to be highly sensitive to hyper-
glycemia [30]. Previous studies have found that the
consumption of glucose by neurons are independent
from plasma insulin [31], indicating that hyperglycemia
are directly leading to the damage of neurons by glucose-
driven oxidative stress and protein glycation [32]. Due
to the abundance of microglia and neuron synapses in
retina, retinopathy also appears to be highly sensitive to
hyperglycemia [33].
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The ratios of phospholipids across different lipoprotein
subfractions were significantly associated with multiple
diabetic complications, including CHD, DKD, DN and
DR. This aligns with existing evidence demonstrating a
well-established link between oxidized phospholipids and
increased CHD risk [34, 35]. Furthermore, a recent study
highlighted distinct phospholipid metabolic profiles in
individuals with diabetes compared to non-diabetic con-
trols, reinforcing the potential role of phospholipid dys-
regulation in diabetes-related vascular pathology [36].

The dysregulation of fatty acid metabolism was a con-
sistent feature across multiple diabetic complications
in this study. Specifically, elevated fatty acid ratios in
very-small VLDL particles were significantly associated
with increased risk of HF, DN, and DKD. Monounsatu-
rated fatty acids (MUFAs) consistently demonstrated
adverse associations, whereas polyunsaturated fatty
acids (PUFAs) showed protective effects. Furthermore, a
higher w-3 to w-6 fatty acid ratio was positively associ-
ated with DKD progression, suggesting potential path-
way-specific mechanisms in renal complications. These
findings collectively implicate altered lipid metabolism
in the pathogenesis of diabetic vascular complications
through multiple interacting pathways. These findings are
supported by established studies concerning the correla-
tion between lipid profiles and lipophilic index of serum
phospholipids. Such shifts promote impaired glycemic
control, endothelial dysfunction, and chronic inflamma-
tion, all hallmarks of diabetic vasculopathy [37]. Collec-
tively, our results validate a robust association between
the dysregulation of fatty acids and the progression of
diabetic micro and macrovascular complications.

Also, albumin was found to be widely correlated with
both macrovascular and microvascular complications
significantly as a protective factor. Established studies
have found a firm correlation of glycated albumin (GA)
with serum HbAlc and the risk of incidence of diabetes
complications [38, 39]. Therefore, a rising level of serum
albumin may indicate a decreasing level of serum glucose
and glycated albumin, acting as a protective factor.

Besides, tyrosine was also found to be a significant
protective factor for almost all complications, which
was consistent with previous studies [40, 41]. Consider-
ing tyrosine is the precursor of dopamine, patients with
a low level of tyrosine may face inadequate synthesis
of dopamine [42], leading to the incidence of DR [40].
Furthermore, the kidney is crucial for the absorption of
phenylalanine, its conversion to tyrosine, and the subse-
quent release. Impaired transformation of phenylalanine
into tyrosine has been noted in renal failure [43]. Conse-
quently, lower tyrosine levels may indicate renal failure,
potentially leading to other microvascular complications.
Also, tyrosine appears to be inversely correlated with
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HbA1lc levels, which is a known risk factor for diabetic
vascular complications [41].

Our study observed an increase in plasma triglyceride
levels in macrovascular complications, which serves as
a critical predisposing factor for atherosclerosis devel-
opment, the pathological foundation of macrovascular
complications. Although the intake of plasma cholesterol
by foam cells was considered to be a protective reaction
[44], the rising level of circulating lipoproteins still leads
to foam cell apoptosis in localized areas lacking oxygen
and thus accelerates the development and progression of
atherosclerosis [45].

Apart from those molecules mentioned above, it’s
interesting to dig into the mechanisms related to these
metabolites, most of which are lipids and ketone bod-
ies. Several pathways were reported to be related to the
progression of dyslipidemia. Due to the impact of insu-
lin on regulating the expression of low-density lipopro-
tein receptors, it's common for those patients with poorly
controlled T1D to have increased levels of LDL choles-
terol, LDL particles, and apolipoprotein B [46]. Animal
models have also proved that the level of plasma LDL-
cholesterol in those with diabetes increased compared to
those without [47].

Dyslipidemia can damage the circulatory system, espe-
cially the macrovascular system. The pathophysiology of
how these altered lipid profiles interact with the vascular
system was reported previously. First, these can lead to
endothelial dysfunction, a precursor to atherosclerosis,
by reducing nitric oxide availability and increasing oxida-
tive stress. Dyslipidemia can impair endothelial function
via various mechanisms, such as boosting oxygen-derived
free radicals, activating protein kinase C (PKC), and
worsening lipid imbalances [48]. Second, dyslipidemia is
associated with systemic inflammation, which promotes
atherosclerosis and plaque instability. Furthermore, ele-
vated triglycerides and altered lipoproteins can enhance
coagulation pathways, increasing the risk of thrombosis.

Due to the similar pathological mechanisms of dia-
betic vascular complications, primarily characterized by
endothelial dysfunction and atherosclerosis [49], there
has been a growing recommendation for comprehensive
management of diabetic vascular complications across
multiple organs to improve outcomes and prognoses
[30]. Several models within individual studies that fore-
cast multiple diabetes-related vascular complications,
covering both macro- and microvascular issues, includ-
ing RECODe models [50], UKPDS outcomes model 1 and
2 [51], as well as models by other research groups [52,
53]. Notably, the RECODe system demonstrates predic-
tive generalizability across macrovascular sequelae, DR,
DN, and DKD, relying on overlapping conventional bio-
markers. The performance of these models, indicated by
C index values between 0.54 and 0.79, was comparable to
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our traditional models' predictive capabilities (C index
0.649 for macrovascular complications; 0.614 for micro-
vascular complications). Furthermore, we identified sig-
nificant plasma metabolites for each condition, which
were found to enhance the predictive performance of the
respective disease models.

However, before applying them to clinical care, cru-
cial challenges remain unsolved. Though current NMR-
quantified metabolomics appears to be more economical
and rapid than other mass-spectrum alternatives, the
setbacks as sensitivity and limitations exist. Current
NMR-spectrum mainly focuses on lipids and is limited
by accessible endpoints information [19, 54]. At the same
time, however, our study must acknowledge some short-
comings and limitations. First, the metabolic data of our
study are from the UK Biobank, and the subjects in the
sample are most British people from developed coun-
tries in Western Europe, which may limit the generality
of our results to countries with other geographical and
socioeconomic backgrounds. Secondly, due to the limita-
tions of the database, our study mainly focused on elderly
and middle-aged patients with diabetes or those with
a history of diabetes, and there was a lack of research
and discussion on young people. Thirdly, to ensure the
robustness of the overall analysis, the threshold of SNP
selection in MR analysis was set to a rather strict value.
However, in some analyses, including the reverse MR
analysis of HF and DN, there were not enough SNPs for
MR-PRESSO analysis or leave-one-out analysis. This
constraint may potentially impact the precision of these
specific analyses. Fourthly, while multiple ascertainment
methods for endpoint diagnosis were employed, the
potential incompleteness of data for all participants was
not fully addressed, which might lead to bias. Fifthly, the
improvements observed in the AUC and C-index were
relatively modest. This limitation may stem from the fact
that NMR-based metabolites might not fully capture the
most critical pathological processes underlying diabetic
vascular complications. Consequently, future studies
should employ additional methodologies to investigate
the roles of other metabolites or omics profiles in dia-
betic vascular complications. Finally, due to the limited
source of longitudinal data, we have not completed exter-
nal validation of the model, even if we use MR analysis
to explain the causal relationship, so we cannot know its
universality and make further corrections.

Conclusions

In conclusion, our study revealed that several metabo-
lites were found to be significantly correlated with inci-
dent diabetic complications. Genetic predisposition to
screened metabolites was also linked to diabetic com-
plications. Future research is needed to explore and
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verify our findings in different ethnicities and larger
populations.
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