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Abstract
Background  Metabolic dysregulation plays a crucial role in the development of diabetic vascular complications. 
Current models for diabetic vascular complications predominantly rely on three conventional parameter classes: 
demographic characteristics, clinical measures, and standard laboratory indices. In contrast, the potential prognostic 
value of the plasma metabolome remains substantially under characterized in this context. This study aims to 
systemically reframe the value of circulating metabolites, providing new insights into both assessment and 
pathophysiology of diabetic complications.

Methods  This study included 333,870 participants from the UK Biobank (n = 115,078) and FinnGen Biobank 
(n = 218,792). The initial analysis utilizing longitudinal data from 7,711 patients with diabetes was used to screen 249 
plasma metabolites associated with diabetic vascular complications. These metabolites were carefully quantified 
using nuclear magnetic resonance (NMR) to profile the metabolites of these participants. A total of 1,457 and 1,635 
people were found to have developed macrovascular (including heart failure, stroke and coronary heart disease 
[CHD]) and microvascular complications (including diabetic neuropathy [DN], kidney disease and retinopathy) 
at follow-ups, respectively. A Least Absolute Shrinkage and Selection Operator-Cox (LASSO-Cox) regression was 
conducted to define the potential biomarkers, adjusting for conventional factors including age, sex, race, smoking 
status, diet intake, Townsend deprivation index, systolic and diastolic blood pressure, body mass index, plasma 
triglycerides, low-density lipoprotein (LDL) cholesterol, plasma creatinine and estimated glomerular filtration rate. 
Subsequently, a multivariate Cox proportional hazards regression model was used to estimate the hazard ratios (HRs). 
Finally, a bidirectional two-sample Mendelian randomization (MR) analysis was employed to evaluate the relationships 
between the selected metabolomics and diabetic complications to analyze causal associations.

Results  Over a 13.06 ± 3.59 years of follow-up, 15 out of 249 plasma metabolites demonstrated significant 
associations with incident macrovascular complications in LASSO-Cox regression, while 33 metabolites were linked 
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Background
Diabetes and associated vascular disorders are notewor-
thy global public health challenges. Recent epidemiologi-
cal data indicate that diabetes affected approximately 1 in 
11 adults worldwide in 2015 [1]. Projections suggest this 
prevalence will rise dramatically, potentially affecting 693 
million adults globally by 2045 [2]. Diabetic vascular com-
plications exhibit substantial pathophysiological overlap 
at the vascular level, collectively contributing to worse 
clinical outcomes compared to isolated diabetic conditions 
[3]. Recent research  on  these complications has greatly 
advanced  the understanding of  the pathogenesis of the 
disease. The systematic integration of shared determinants 
and underlying pathophysiological mechanisms across 
disease entities facilitates the understanding and manage-
ment of diabetic vascular complications. Therefore, it is of 
great importance to simultaneously explore the impact of 
factors at risk on multiple systems and various angiopa-
thies when investigating diabetic vascular complications.

Diabetic complications, including macrovascular com-
plications such as heart failure (HF), coronary heart 
disease (CHD), and stroke, as well as microvascular dis-
orders such as diabetic kidney disease (DKD), diabetic 
retinopathy (DR), and diabetic neuropathy (DN), can lead 
to serious cardiovascular damage, renal failure, blindness, 
and other consequences, posing a noteworthy decline 
in life quality and a significant increase in the mortality 
risk [4]. The likelihood of HF in patients with diabetes is 
more than twice that of individuals without diabetes [5]. 
At least half of patients with diabetes will develop DN 
in their lifetime [6]. Therefore, identifying biomarkers 

or key contributors to diabetes vascular complications 
is of great clinical importance for the management of 
diabetes.

Diabetes is fundamentally characterized by persistent 
metabolic dysregulation, which serves as a pivotal driver 
in both the development and progression of diabetic vas-
cular complications through underlying pathophysiologi-
cal mechanisms [7–12]. Increasing studies highlights 
the diagnostic and predictive potential of metabolomics 
in diabetic complications, reinforcing the critical role of 
metabolites in vascular pathogenesis [13, 14]. Notably, 
the study related to DKD revealed extensive metabolic 
dysregulation, where urea and creatinine serve as renal 
impairment biomarkers, while elevated circulating galac-
tose, d-fructose, and lactate induce blood pH alterations 
that may initiate DKD progression [14].

However, though some studies have proved the sig-
nificance of metabolomics in the progression of certain 
diabetic complications, including DR and DKD, there is 
currently still no research systemically analyzing metabo-
lomics in all diabetic complications, which is crucial for 
investigating the common pathophysiological mecha-
nisms and metabolic pathways of these complications 
[15, 16].

Consequently, there is an urgent need for a comprehen-
sive assessment of plasma metabolomics at the onset of 
diverse diabetic complications [17]. This current research 
strives to comprehensively evaluate the relationships of 
plasma metabolites and the future risk of diabetic vascu-
lar complications using longitudinal data. Additionally, 
employing Mendelian randomization (MR) to elucidate 

to microvascular complications after 12.77 ± 3.90 years of follow-up (all P < 0.05). In the multivariate Cox proportional 
hazards regression, 6 metabolites including creatinine (HR = 1.32, 95% confidence interval [CI] 1.17–1.50, P < 0.001), 
albumin (HR = 0.87, 95% CI 0.81–0.94, P < 0.001), tyrosine (HR = 0.91, 95% CI 0.85–0.96, P = 0.001), glutamine (HR = 1.08, 
95% CI 1.01–1.15, P = 0.020), lactate (HR = 1.07, 95% CI 1.01–1.14, P = 0.023), and the ratio of phospholipids to total 
lipids in small LDL (HR = 1.10, 95% CI 1.01–1.19, P = 0.023) were correlated with macrovascular complications, while 
8 metabolites including glucose (HR = 1.25, 95% CI 1.18–1.33, P < 0.001), tyrosine (HR = 0.86, 95% CI 0.80–0.92, 
P < 0.001), concentration of very large high-density lipoprotein particles (HR = 0.78, 95% CI 0.68–0.90, P = 0.001), 
valine (HR = 1.21, 95% CI 1.08–1.36, P = 0.001), free cholesterol to total lipids in very small very low-density lipoprotein 
(VLDL, HR = 1.28, 95% CI 1.10–1.49, P = 0.001), alanine (HR = 1.08, 95% CI 1.01–1.15, P = 0.022), albumin (HR = 0.92, 95% 
CI 0.86–0.99, P = 0.027), and isoleucine (HR = 0.89, 95% CI 0.80–1.00, P = 0.041) were associated with microvascular 
complications. MR analysis suggested that genetic predisposition to several screened metabolites was linked to 
diabetic complications. For CHD, the ratio of phospholipids to total lipids in small LDL was associated with increased 
risk (odds ratio [OR] = 1.96, 95% CI 1.33–2.88, P = 0.015). As for reverse MR, DN was relevant to decreased level of serum 
ratio of docosahexaenoic acid to total fatty acids (OR = 0.97, 95% CI 0.95–0.99, P = 0.019), increased level of the ratio of 
triglycerides to total lipids in very large VLDL (OR = 1.03, 95% CI 1.01–1.05, P = 0.019), and pyruvate (OR = 1.03, 95% CI 
1.01–1.05, P = 0.046).

Conclusions  These findings may serve as potential biomarkers for predicting the development of vascular 
complications in patients with diabetes, thereby improving clinical management strategies for affected patients.

Trial registration  Not applicable.
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the potential genetic causal impact of selected metabo-
lites on diabetic complications, we ultimately delineated 
the role of metabolomics in the initiation and progres-
sion of diabetic vascular complication.

Methods
Study participants
The UK Biobank is a prospective cohort study initiated in 
2006–2010, enrolling over 500,000 participants from the 
United Kingdom. It has comprehensive datasets encom-
passing disease diagnoses, circulating metabolites, plasma 
proteins, genome sequencing data, and so on.

The FinnGen study, a genomic and personalized med-
icine initiative supported by nearly 500,000 Finnish 
individuals, aims to advance precision medicine by elu-
cidating genetic determinants of diseases. This project 
establishes a unique resource for investigating genetic 
variations and their clinical implications in disease pre-
vention, diagnosis, and therapeutic development.

A total of 333,870 participants from UK Biobank 
(n = 115,078) and FinnGen Biobank round 5 (n = 218,792) 
were included in this study, consisting of two specific 
subpopulations. The workflow of this study was described 
in Fig. 1.

Firstly, metabolite data were available among 118,002 
participants in the UK Biobank. Among these, 7,713 par-
ticipants had diabetes mellitus at baseline. Participants 
with specific diabetic vascular complications at baseline 
identified through hospital admissions records, primary 
care records, or self-report history during or before the 
baseline period were pre-excluded for specific analysis. 
The exclusion criteria comprised participants with base-
line diabetes complications: macrovascular complica-
tions (N = 1,957), CHD (N = 1,607), HF (N = 542), stroke 
(N = 226), microvascular complications (N = 1,955), DKD 
(N = 432), DN (N = 300), and DR (N = 1,626). Two partici-
pants were excluded from all study cohorts due to pre-
existing diagnoses of all target complications at baseline. 
The final analytical sample comprised 7,711 participants 
with longitudinal follow-up data. To be specific, eight 
distinct cohorts with longitudinal data were included 
in observational study, including: 5,756 participants for 
macrovascular complications, 6,106 participants for 
CHD, 7,171 participants for HF, 7,487 participants for 
stroke, 5,758 participants for microvascular complica-
tions, 7,281 participants for DKD, 7,413 participants for 
DN, and 6,087 participants for DR, all with available lon-
gitudinal data for cohort study.

In phase II analysis, 115,078 participants from the 
UK Biobank and 218,792 participants from the Finn-
Gen Biobank (Round 5) with genome-wide association 
studies (GWAS) data were included for MR analyses to 
establish the causal relationship between selected plasma 

metabolomics and macrovascular complications or 
microvascular complications.

Ascertainment of endpoints
Diabetic macrovascular complications were defined as 
CHD, HF, and stroke, while microvascular complications 
encompassed DR, DN, and DKD. Endpoints were deter-
mined by the earliest recorded occurrence across four 
validated sources: self-report history, hospital admis-
sions (ICD-9/ICD-10), death registries, or primary care 
records, with death registration dates superseding other 
records for deceased cases (Supplementary Materials 1 
Table S1-2). To enhance diagnostic precision, diabetes 
mellitus confirmation requires at least one criterion: self-
reported history, fasting plasma glucose ≥ 11.1  mmol/L, 
HbA1c ≥ 48 mmol/mol, or active glucose-lowering medi-
cation use, self-reported history, hospital admission 
records, or primary care records.

Conventional risk factors
Age, sex, race, smoking status, diet intake, Townsend 
deprivation index, systolic and diastolic  blood pressure, 
body mass index (BMI), plasma triglycerides, low-den-
sity lipoprotein (LDL) cholesterol, plasma creatinine and 
estimated glomerular filtration rate (eGFR, calculated 
by ​plasma creatinine, sex, age) were included as conven-
tional risk factors. Detailed conventional factors and field 
IDs were provided in Supplementary Materials 1 Table 
S3-4 [18].

Quantification and quality control of metabolites
Plasma specimens were prepared in 96-well plates with 
plasma mimic to monitor the consistency of quantification 
by the UK Biobank. A mixture of two small molecules was 
also added to serve as a technical reference. These sam-
ples were further analyzed at Nightingale Health's labo-
ratories in Finland between June 2019 and April 2020. A 
total of 249 metabolites were analyzed using nuclear mag-
netic resonance (NMR) to profile the metabolites of these 
participants.

Quality control was applied to eliminate technical and 
systemic errors. Pre-specified agreement on protocol 
was made between UK Biobank and Nightingale Health 
Centre to ensure the biomarker consistency throughout 
the project. Two internalized control samples were plated 
on 96-well plates with plasma samples of participants to 
track the consistency and eliminate batch effects. Thus, 
NMR quantification differs from other approaches like 
spectrometry, by its absence of batch effect, offering the 
optimal statistical value [19]. Also, four sets of internal 
control samples were used across 1,352 96-well plates 
measured [20].

A total of 168 metabolites were quantified in absolute 
level, referring to mmol/L, encompassing amino acids, 
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fatty acids, glycosylated molecules, lipids, and lipo-
proteins. The rest 81 was quantified as a ratio. Detailed 
metabolites and field IDs were provided in Supplemen-
tary Materials 1 Table S5. Among all participants enrolled 
in the study, a total of 725 (9.4%) exhibited missing values 
across all metabolites, with a mean of 0.3 ± 1.50 metabo-
lites missing per individual. These missing values were 

addressed through multiple imputation implemented via 
the R package mice (v3.16.0).

Summary statistics for GWAS datasets of FinnGen Biobanks 
and UK Biobank
The metabolites were further included in the ascer-
tainment of the causal relationship with specific 

Fig. 1  The overall workflow of the study. The diagram represents the inclusion criteria and analytical procedures of the study. ROC=receiver operat-
ing characteristics curve; NRI=net reclassification index; GWAS=genome-wide association studies; MR=Mendelian randomization; LASSO=least absolute 
shrinkage and selection operator; MR-PRESSO=Mendelian randomization pleiotropy residual sum and outlier; IDI=integrated discrimination index.
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diabetic complications. The cohort of the UK Biobank 
was included as exposure data to determine the circu-
lating plasma metabolites [21]. The cohort of FinnGen 
Biobanks was applied as outcome data to determine the 
presence of diabetic complications (​h​t​t​p​​s​:​/​​/​f​i​n​​n​g​​e​n​.​​g​i​t​​
b​o​o​k​​.​i​​o​/​d​​o​c​u​​m​e​n​t​​a​t​​i​o​n​/​v​/​r​5). Both cohorts comprised 
European participants.

Summary statistics for genetic instruments associ-
ated with the outcomes of certain diabetic complications 
were obtained from the FinnGen Biobank participants. 
Detailed characteristics were shown in Supplementary 
Materials 1 Table S6. The full GWAS results of these 
metabolites were published by IEU OpenGWAS datasets 
with GWAS ID provided in Supplementary Materials 1 
Table S7-13.

Statistical analyses
Two steps of analytical approach were conducted to deter-
mine the potential relationship of metabolite biomarkers 
with diabetic vascular complications. Before analysis, all 
metabolites were first transformed by natural logarithmic 
(ln[x + 1]) and scaled by Z transformation. Also, data of 
metabolites exceeding the 2.5th to 97.5th percentile range 
were identified as outliers and replaced with the corre-
sponding boundary values (the 2.5th percentile for lower 
extremes or the 97.5th percentile for upper extremes) to 
minimize their impact on subsequent analyses.

In phase I analysis, we selected several metabolites 
that were significantly related to specific diabetic com-
plications. Here, we included individuals with longitu-
dinal data to select significant plasma metabolites. Least 
absolute shrinkage and selection operator-Cox (LASSO-
Cox) regression, adjusted for conventional covariates, 
was performed to assess metabolite effects on complica-
tions while accounting for intercorrelations. Outcomes 
represented complication status (presence/absence) at 
follow-up visits. Significant metabolites associated with 
each complication were identified as non-zero coefficient 
biomarkers in LASSO-Cox regression and then were 
advanced to phase II. A multivariate Cox proportional 
hazards regression was conducted to estimate the hazard 
ratio (HR). Two kinds of Cox models were constructed: 
Model 1 (traditional covariates: age, sex, race, smoking 
status, diet, Townsend deprivation index, systolic and 
diastolic blood pressure, BMI, plasma triglycerides, LDL 
cholesterol, plasma creatinine and eGFR) and Model 2 
(traditional covariates combined with Phase I-derived 
metabolites). The discriminative performance of predic-
tive algorithms was evaluated using ​the area under ​the 
receiver operating characteristic curve (AUC), Concor-
dance index (C-index), net reclassification index (NRI)​
, and integrated discrimination index (IDI). NRI could 
quantify how the newly developed model reclassified 
participants compared to the previous model, and IDI 

could assess how the model was improved. To ensure the 
robustness of the statistical analysis, we systematically 
evaluated the statistical power of the overall study. Our 
power analyses demonstrated excellent statistical power 
for detecting associations, with observed values of 1.000 
for macrovascular complications and 0.998 for microvas-
cular complications.

In phase II analysis, causal relationships were esti-
mated by applying bidirectional MR between metabo-
lites selected by LASSO-Cox regression and diabetic 
vascular complications. MR was conducted under three 
assumptions: (1) genetic instruments (IVs) are related to 
the exposures; (2) there are no other mediators between 
the genetic instruments and the outcome; (3) there are 
no correlations between the genetic instruments and the 
outcome. Any single-nucleotide polymorphisms (SNPs) 
that didn’t conform to the above assumptions were 
excluded from the study. The fulfillment of these assump-
tions was further tested by the heterogeneity test and the 
pleiotropy test. A heterogeneity test was conducted by 
applying Cochran’ s Q test, and horizontal pleiotropy was 
tested and excluded by the MR-Egger intercept test and 
Mendelian randomization pleiotropy residual sum and 
outlier (MR-PRESSO). Also, MR Steiger filtering analy-
sis was conducted to ensure the robustness of the causal 
relationship detected.

The following principles were applied to choose the 
instruments: (1) SNPs associated with metabolites at the 
threshold of P < 5*10–8 were included; (2) SNPs were fil-
tered using linkage disequilibrium (LD) tests, excluding 
those with R2 < 0.01 within a 5000  kb clumping window 
size. Heterogeneity and horizontal pleiotropy were tested 
to ensure the effectiveness at the threshold of P < 0.05; 
(3) MR-PRESSO tests were conducted to exclude out-
lier SNPs to ensure the robustness of the analysis; (4) 
MR Steiger filtering was conducted to exclude SNPs with 
false causal correlation. Heterogeneity and horizontal 
pleiotropy were tested to ensure the effectiveness at the 
threshold of P < 0.05. Five methods of MR were applied, 
including simple mode, MR Egger, Inverse weighted 
median (IVW), weighted median, and weighted mode. 
IVW applies Wald estimates to each SNP, deriving aggre-
gate genetic associations between metabolite biomarkers 
and diabetic complications. IVW was thought to be unbi-
ased and of most statistical value if no horizontal pleiot-
ropy appears [22]. To ensure the robustness of the results, 
sensitivity analyses including leave-one-out analysis, for-
est plots, funnel plots, and scatter plots were conducted. 
False discovery rate (FDR) correction was also applied to 
eliminate the bias induced by multiple testing. Detailed 
SNPs selected were listed in Supplementary Materials 2 
S1-2.

A two-sided P-value less than 0.05 was considered 
statistically significant. All statistical analyses were 

https://finngen.gitbook.io/documentation/v/r5
https://finngen.gitbook.io/documentation/v/r5
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performed using R software, version 4.4.2 (R Foundation 
for Statistical Computing).

Ethics
The data collection and utilization for this research were 
conducted under ethical guidelines. Before participa-
tion, all individuals involved have given written informed 
consent. Given the publicly accessible and anony-
mized nature of the datasets, institutional review board 
approval was waived for this particular analysis.

Role of funders
This work only represented the viewpoint of the authors. 
The funding sources had no involvement in the study 
design or implementation.

Results
Baseline characteristics
In phase I analysis, 7,711 participants with an average age 
of 59.3 ± 7.3 years (range, 40.0–70.0 years) were included. 
A total of 3,041 (39.4%) participants were female, 6,735 
(87.3%) were White, and 925 (12%) were current smok-
ers. Mean BMI was 31.3 ± 5.79  kg/m2 (range, 15.8–
61.7 kg/m2) systolic blood pressure was 139 ± 20.3 mmHg 
(range, 84.0–188.0  mmHg), diastolic blood pressure was 
80.6 ± 11.3  mmHg (range, 53.5–109.5  mmHg), plasma 
LDL cholesterol level was 2.84 ± 0.85 mmol/L (range, 0.28–
7.07 mmol/L), plasma triglyceride was 2.18 ± 1.31 mmol/L 
(range, 0.31–11.19 mmol/L).

During a follow-up of 13.06 ± 3.59  years (range, 
0.36–16.63  years) for macrovascular complications and 
12.77 ± 3.90  years (range, 0.69–16.62  years) for micro-
vascular complications, 1,457 were diagnosed with 
macrovascular complications at follow-up, and 1,635 
were diagnosed with microvascular complications at 
follow-up. Specifically, 1,149, 750, and 563 participants 
were diagnosed with CHD, HF, and stroke at follow-up, 
respectively. In addition, 1,102, 406, and 1,059 partici-
pants were diagnosed with DKD, DN, and DR at follow-
up, respectively. The baseline characteristics were further 
described in Supplementary Materials 1 Table S14 and 
S15.

Metabolic biomarkers associated with incident diabetic 
complications
In phase I analysis, among 249 metabolites quantified by 
NMR spectrum, a total of 15 and 33 metabolites were 
found to be significantly correlated with macrovascu-
lar or microvascular complications in the LASSO-Cox 
regression, respectively. A heatmap was created to dem-
onstrate the correlations between selected metabolites 
and both macrovascular and microvascular complica-
tions across participants (Fig.  2). Additionally, a Venn 
diagram was constructed to illustrate the overlapping 

patterns of metabolites selected by LASSO-Cox across 
the different complications (Fig.  3). Several metabolites 
demonstrated broad-spectrum associations across mul-
tiple diabetic complications. Notably, acetate exhibited 
universal associations with all complication types exam-
ined. Alanine demonstrated significant correlations with 
CHD, HF, DKD, DN, and DR, while albumin and creati-
nine shared identical association profiles with CHD, HF, 
stroke, DKD, and DN. Glucose metabolism alterations 
were associated with HF, stroke, DKD, DN, and DR, 
and tyrosine showed consistent relationships with CHD, 
stroke, DKD, DN, and DR.

Further, our analysis revealed complication-specific 
metabolites. For DKD, the unique metabolites included 
acetoacetate, very low-density lipoprotein (VLDL) par-
ticle average diameter, cholesteryl esters-to-total lipids 
ratio in large LDL, free cholesterol-to-total lipids ratio in 
chylomicrons and extremely large VLDL, isoleucine, leu-
cine, ω-6/ω-3 fatty acid ratio, phospholipids-to-total lip-
ids ratio in small VLDL, triglycerides-to-total lipids ratio 
in very large high-density lipoprotein (HDL), and triglyc-
erides-to-total lipids ratio in very small VLDL. In DN, the 
distinctive metabolites consisted of cholesterol-to-total 
lipids ratio in large HDL, cholesteryl esters-to-total lip-
ids ratio in large HDL, docosahexaenoic acid(DHA)-to-
total fatty acids ratio, absolute phospholipid content in 
chylomicrons and extremely large VLDL, phospholipids-
to-total lipids ratio in very large HDL, polyunsaturated 
fatty acids-to-total fatty acids ratio, total branched-chain 
amino acids (BCAAs) pool (leucine/isoleucine/valine), 
triglyceride content in large HDL, triglycerides-to-total 
lipids ratio in small VLDL, and triglycerides-to-total lip-
ids ratio in very large VLDL. Significant metabolites for 
each complication were also selected, detailed metabolic 
biomarkers were provided in Supplementary Materials 1 
Table S16-23.

The following metabolites were positively associ-
ated with the incidence of macrovascular complications 
in the multivariate Cox proportional hazards regres-
sion: creatinine (HR = 1.32, 95% confidence interval 
[CI]: 1.17–1.50, P < 0.001), glutamine (HR = 1.08, 95% 
CI 1.01–1.15, P = 0.020), lactate (HR = 1.07, 95% CI 
1.01–1.14, P = 0.023), and phospholipids to total lipids in 
small LDL (HR = 1.10, 95% CI 1.01–1.19, P = 0.023). Con-
versely, albumin (HR = 0.87, 95% CI 0.81–0.94, P < 0.001), 
tyrosine (HR = 0.91, 95% CI 0.85–0.96, P = 0.001) were 
negatively linked with the incidence of macrovascular 
complications. The following metabolites were positively 
associated with its incidence in the multivariate Cox pro-
portional hazards regression: glucose (HR = 1.25, 95% CI 
1.18–1.33, P < 0.001), valine (HR = 1.21, 95% CI 1.08–1.36, 
P = 0.001), free cholesterol to total lipids in very small 
VLDL (HR = 1.28, 95% CI 1.10–1.49, P = 0.001), alanine 
(HR = 1.08, 95% CI 1.01–1.15, P = 0.022). Conversely, 
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tyrosine (HR = 0.86, 95% CI 0.80–0.92, P < 0.001), con-
centration of very large HDL particles (HR = 0.78, 95% CI 
0.68–0.90, P = 0.001), albumin (HR = 0.92, 95% CI 0.86–
0.99, P = 0.027), and isoleucine (HR = 0.89, 95% CI 0.80–
1.00, P = 0.041) were negatively linked with the incidence 
of microvascular complications (Fig. 4).

The inclusion of metabolites improved the predictive 
effectiveness of the conventional models for all diabetic 
complications (all P < 0.05, Fig. 5). In macrovascular com-
plications, the merged model improved predictive accu-
racy (P < 0.001), with the AUC increasing from 0.672 
(95% CI 0.656–0.687) to 0.687 (95% CI 0.672–0.702), NRI 
of 0.112, relative IDI of 0.222, absolute IDI of 0.005, and 
C-index rising from 0.649 (95% CI 0.635–0.663) to 0.662 
(95% CI 0.649–0.672). For microvascular complications, 
AUC increased from 0.639 (95% CI 0.623–0.657) to 0.680 
(95% CI 0.665–0.695, P < 0.001), NRI reached 0.140, rela-
tive IDI was 0.588, absolute IDI was 0.012, and C-index 
improved from 0.614 (95% CI 0.600–0.628) to 0.649 (95% 

CI 0.635–0.662). Specific diseases including CHD, HF, 
stroke, DKD, DN, and DR all showed varying degrees of 
improved predictive performance, with notable enhance-
ments in DKD (AUC 0.760, 95% CI 0.745–0.776; 0.787, 
95% CI 0.782–0.802, P < 0.001), DN (AUC 0.637, 95% 
CI 0.610–0.665; 0.726, 95% CI 0.703–0.750, P < 0.001), 
and DR (AUC 0.568, 95% CI 0.550–0.587; 0.631, 95% 
CI 0.613–0.648, P < 0.001). Detailed NRIs, relative and 
absolute IDIs, and AUCs for different Cox models after 
adding metabolomics as a predictor were shown in Sup-
plementary Materials 1 Table S24.

Metabolic biomarkers causally related to the diabetic 
vascular complications
It showed that metabolomics had a more notewor-
thy effect on the development of CHD after FDR cor-
rection. Detailed information was demonstrated in 
Table  1. To be specific, for CHD, the ratio of phospho-
lipids to total lipids in small LDL (odds ratio [OR] = 1.96, 

Fig. 2  Heatmap showing the correlations between selected metabolites and macrovascular/microvascular complications. Colors represent the mean 
level of corresponding metabolites after natural logarithmic transformation(ln[x + 1]) and scaled by Z transformation. To simplify complex terminology, 
we standardized data labels by using abbreviations. Lipid size categories were abbreviated as follows: "very small" to "XS", "small" to "S", "medium" to "M", 
"large" to "L", "very large" to "XL", and "extremely large" to "XXL". For lipid types, "free cholesterol" to "FC","cholesterol" to "C", "cholesteryl esters" to "CE" , 
"triglycerides" to "TG", "total lipids" to "TL","high-density lipoprotein" to "HDL", "low-density lipoprotein" to "LDL", "very low-density lipoprotein" to "VLDL" 
and "phospholipids" to "PLs". For fatty acids, "fatty acids" to "FA", "docosahexaenoic acid" to “DHA".
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95% CI 1.33–2.88, P = 0.015) proved to be substantially 
hazardous.

Reverse MR demonstrated the reverse causal effect of 
complications on metabolomics levels. DN was relevant 
to decreased level of serum ratio of DHA to total fatty 
acids (OR = 0.97, 95% CI 0.95–0.99, P = 0.019), increased 
ratio of triglycerides to total lipids in very large VLDL 
(OR = 1.03, 95% CI 1.01–1.05, P = 0.019), and pyruvate 
(OR = 1.03, 95% CI 1.01–1.05, P = 0.046). The main results 
of MR analysis were demonstrated in Supplementary 
Materials 2 S3.

To ensure the assumptions of MR analysis were satis-
fied, analyses including a heterogeneity test, Steiger filter-
ing analysis, and a pleiotropy test were conducted. The 
results were demonstrated in Supplementary Materials 
2 S4-S6. Further, sensitivity analyses including leave-one-
out analysis, forest plots, funnel plots, and scatter plots 

were calculated and demonstrated in Supplementary 
Materials 1 Figure S1-S47.

Discussion
The findings suggested that certain plasma metabolites, 
including acetate, alanine, creatinine, glucose, phospho-
lipid ratios, fatty acids, albumin, and tyrosine and so on, 
may contribute to the development of diabetic vascular 
complications and could serve as common biomarkers or 
therapeutic targets for these conditions.

Acetate demonstrated significant associations with all 
diabetic complications examined in this study. This find-
ing was supported by the established research indicating 
an inverse relationship between circulating acetate levels 
and insulin resistance [23]. Further, studies have found 
that acetate can prevent heart and kidney from nicotine-
induced cardiorenal dysmetabolism [24]. Collectively, 

Fig. 3  Venn diagram showing the LASSO-Cox selected metabolites in different diabetic vascular complications. DKD = diabetic kidney disease; DN = dia-
betic neuropathy; DR = diabetic retinopathy; CHD = coronary heart disease; HF = heart failure.

 



Page 9 of 14Li et al. Cardiovascular Diabetology          (2025) 24:341 

these observations suggest that acetate dysregulation may 
play a fundamental role in the pathogenesis of diverse 
diabetic complications through its modulation of sys-
temic metabolism.

Alanine was found to be associated with CHD, HF, 
NEP, NEU and DR. There was established evidence 
linking impaired alanine catabolism to metabolic 

dysregulation [25, 26]. Specifically, hepatic alanine catab-
olism contributes to gluconeogenesis, thereby exacer-
bating hyperglycemia [25]. Also, the ratio of alanine to 
glycine was reported as a significant predictive factor for 
diabetes [26]. Therefore, serum level of alanine may affect 
the level of serum glucose, thus influencing the prognosis 
of diabetes.

Fig. 4  Hazard ratios of significant metabolites on the incidence of diabetic complications in Cox proportional hazards regression analyses. DKD = diabetic 
kidney disease; DN = diabetic neuropathy; DR = diabetic retinopathy; CHD = coronary heart disease; HF = heart failure. To simplify complex terminology, 
we standardized data labels by using abbreviations. Lipid size categories were abbreviated as follows: "very small" to "XS", "small" to "S", "medium" to "M", 
"large" to "L", "very large" to "XL", and "extremely large" to "XXL". For lipid types, "free cholesterol" to "FC", "cholesterol" to "C", "cholesteryl esters" to "CE", 
"triglycerides" to "TG", "total lipids" to "TL", "high-density lipoprotein" to "HDL", "low-density lipoprotein" to "LDL", "very low-density lipoprotein" to "VLDL", 
and "phospholipids" to "PLs".For fatty acids, "fatty acids" to "FA", "monounsaturated fatty acids" to "MUFA", "docosahexaenoic acid" to "DHA" and "polyun-
saturated fatty acids" to"PUFA".
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Fig. 5  The conventional and merged Cox proportional hazards regression models predicting the incidence of diabetic complications. Conventional 
models were developed by using conventional risk factors: age, sex, smoking status, race, diet, blood pressure, body mass index, blood lipids (combined 
plasma triglycerides and LDL cholesterol), plasma creatinine, eGFR, and Townsend deprivation index. The merged models incorporated both conven-
tional risk factors and selected metabolomics. AUC = area under the curve; DKD = diabetic kidney disease; DN = diabetic neuropathy; DR = diabetic reti-
nopathy; CHD = coronary heart disease; HF = heart failure.
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Creatinine emerged as a prominent risk factor for 
CHD, HF, Stroke, DN and DKD. As serum creatinine is 
a well-established diagnostic marker for renal dysfunc-
tion, including DKD, its association with macrovascular 
complications likely reflects the known pathophysiologi-
cal interplay between diabetic microvascular and mac-
rovascular disease [27, 28]. Furthermore, prior studies 
have demonstrated that hyperglycemia contributes to 
elevated serum creatinine levels [29]. These collective 
mechanisms—renal impairment, systemic vascular dys-
function, and metabolic derangements—may jointly 
account for creatinine's association with multiple diabetic 
complications.

High level of glucose was reported to be toxic to neu-
rons, which appeared to be highly sensitive to hyper-
glycemia [30]. Previous studies have found that the 
consumption of glucose by neurons are independent 
from plasma insulin [31], indicating that hyperglycemia 
are directly leading to the damage of neurons by glucose-
driven oxidative stress and protein glycation [32]. Due 
to the abundance of microglia and neuron synapses in 
retina, retinopathy also appears to be highly sensitive to 
hyperglycemia [33].

The ratios of phospholipids across different lipoprotein 
subfractions were significantly associated with multiple 
diabetic complications, including CHD, DKD, DN and 
DR. This aligns with existing evidence demonstrating a 
well-established link between oxidized phospholipids and 
increased CHD risk [34, 35]. Furthermore, a recent study 
highlighted distinct phospholipid metabolic profiles in 
individuals with diabetes compared to non-diabetic con-
trols, reinforcing the potential role of phospholipid dys-
regulation in diabetes-related vascular pathology [36].

The dysregulation of fatty acid metabolism was a con-
sistent feature across multiple diabetic complications 
in this study. Specifically, elevated fatty acid ratios in 
very-small VLDL particles were significantly associated 
with increased risk of HF, DN, and DKD. Monounsatu-
rated fatty acids (MUFAs) consistently demonstrated 
adverse associations, whereas polyunsaturated fatty 
acids (PUFAs) showed protective effects. Furthermore, a 
higher ω-3 to ω-6 fatty acid ratio was positively associ-
ated with DKD progression, suggesting potential path-
way-specific mechanisms in renal complications. These 
findings collectively implicate altered lipid metabolism 
in the pathogenesis of diabetic vascular complications 
through multiple interacting pathways. These findings are 
supported by established studies concerning the correla-
tion between lipid profiles and lipophilic index of serum 
phospholipids. Such shifts promote impaired glycemic 
control, endothelial dysfunction, and chronic inflamma-
tion, all hallmarks of diabetic vasculopathy [37]. Collec-
tively, our results validate a robust association between 
the dysregulation of fatty acids and the progression of 
diabetic micro and macrovascular complications.

Also, albumin was found to be widely correlated with 
both macrovascular and microvascular complications 
significantly as a protective factor. Established studies 
have found a firm correlation of glycated albumin (GA) 
with serum HbA1c and the risk of incidence of diabetes 
complications [38, 39]. Therefore, a rising level of serum 
albumin may indicate a decreasing level of serum glucose 
and glycated albumin, acting as a protective factor.

Besides, tyrosine was also found to be a significant 
protective factor for almost all complications, which 
was consistent with previous studies [40, 41]. Consider-
ing tyrosine is the precursor of dopamine, patients with 
a low level of tyrosine may face inadequate synthesis 
of dopamine [42], leading to the incidence of DR [40]. 
Furthermore, the kidney is crucial for the absorption of 
phenylalanine, its conversion to tyrosine, and the subse-
quent release. Impaired transformation of phenylalanine 
into tyrosine has been noted in renal failure [43]. Conse-
quently, lower tyrosine levels may indicate renal failure, 
potentially leading to other microvascular complications. 
Also, tyrosine appears to be inversely correlated with 

Table 1  Results of main Mendelian randomization analyses
Exposure Outcome OR 95% 

CI
P 
value

Method

Phospholipids 
to total lipids 
ratio in small 
LDL

Coronary heart 
disease

1.96 1.33–
2.88

0.015 Inverse 
variance 
weighted

Acetone Heart Failure 0.40 0.17–
0.95

0.038 Wald 
ratio

Diabetic 
neuropathy

Ratio of docosa-
hexaenoic acid to 
total fatty acids

0.97 0.95–
0.99

0.019 Inverse 
variance 
weighted

Diabetic 
neuropathy

Ratio of docosa-
hexaenoic acid to 
total fatty acids

0.97 0.95–
0.99

0.043 Weighted 
median

Diabetic 
neuropathy

Albumin 0.97 0.94–
0.99

0.049 Weighted 
median

Diabetic 
neuropathy

Pyruvate 1.03 1.01–
1.06

0.049 Weighted 
median

Diabetic 
neuropathy

Pyruvate 1.03 1.01–
1.05

0.046 Inverse 
variance 
weighted

Diabetic 
neuropathy

Triglycerides to 
total lipids ratio in 
very large VLDL

1.03 1.01–
1.05

0.049 Weighted 
median

Diabetic 
neuropathy

Triglycerides to 
total lipids ratio in 
very large VLDL

1.03 1.01–
1.05

0.019 Inverse 
variance 
weighted

Diabetic 
retinopathy

Phospholipids to 
total lipids ratio in 
very large VLDL

0.96 0.94–
0.99

0.041 Weighted 
median

OR=odds ratio; CI= confidence interval;VLDL=very low-density lipoprotein.
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HbA1c levels, which is a known risk factor for diabetic 
vascular complications [41].

Our study observed an increase in plasma triglyceride 
levels in macrovascular complications, which serves as 
a critical predisposing factor for atherosclerosis devel-
opment, the pathological foundation of macrovascular 
complications. Although the intake of plasma cholesterol 
by foam cells was considered to be a protective reaction 
[44], the rising level of circulating lipoproteins still leads 
to foam cell apoptosis in localized areas lacking oxygen 
and thus accelerates the development and progression of 
atherosclerosis [45].

Apart from those molecules mentioned above, it’s 
interesting to dig into the mechanisms related to these 
metabolites, most of which are lipids and ketone bod-
ies. Several pathways were reported to be related to the 
progression of dyslipidemia. Due to the impact of insu-
lin on regulating the expression of low-density lipopro-
tein receptors, it’s common for those patients with poorly 
controlled T1D to have increased levels of LDL choles-
terol, LDL particles, and apolipoprotein B [46]. Animal 
models have also proved that the level of plasma LDL-
cholesterol in those with diabetes increased compared to 
those without [47].

Dyslipidemia can damage the circulatory system, espe-
cially the macrovascular system. The pathophysiology of 
how these altered lipid profiles interact with the vascular 
system was reported previously. First, these can lead to 
endothelial dysfunction, a precursor to atherosclerosis, 
by reducing nitric oxide availability and increasing oxida-
tive stress. Dyslipidemia can impair endothelial function 
via various mechanisms, such as boosting oxygen-derived 
free radicals, activating protein kinase C (PKC), and 
worsening lipid imbalances [48]. Second, dyslipidemia is 
associated with systemic inflammation, which promotes 
atherosclerosis and plaque instability. Furthermore, ele-
vated triglycerides and altered lipoproteins can enhance 
coagulation pathways, increasing the risk of thrombosis.

Due to the similar pathological mechanisms of dia-
betic vascular complications, primarily characterized by 
endothelial dysfunction and atherosclerosis [49], there 
has been a growing recommendation for comprehensive 
management of diabetic vascular complications across 
multiple organs to improve outcomes and prognoses 
[30]. Several models within individual studies that fore-
cast multiple diabetes-related vascular complications, 
covering both macro- and microvascular issues, includ-
ing RECODe models [50], UKPDS outcomes model 1 and 
2 [51], as well as models by other research groups [52, 
53]. Notably, the RECODe system demonstrates predic-
tive generalizability across macrovascular sequelae, DR, 
DN, and DKD, relying on overlapping conventional bio-
markers. The performance of these models, indicated by 
C index values between 0.54 and 0.79, was comparable to 

our traditional models' predictive capabilities (C index 
0.649 for macrovascular complications; 0.614 for micro-
vascular complications). Furthermore, we identified sig-
nificant plasma metabolites for each condition, which 
were found to enhance the predictive performance of the 
respective disease models.

However, before applying them to clinical care, cru-
cial challenges remain unsolved. Though current NMR-
quantified metabolomics appears to be more economical 
and rapid than other mass-spectrum alternatives, the 
setbacks as sensitivity and limitations exist. Current 
NMR-spectrum mainly focuses on lipids and is limited 
by accessible endpoints information [19, 54]. At the same 
time, however, our study must acknowledge some short-
comings and limitations. First, the metabolic data of our 
study are from the UK Biobank, and the subjects in the 
sample are most British people from developed coun-
tries in Western Europe, which may limit the generality 
of our results to countries with other geographical and 
socioeconomic backgrounds. Secondly, due to the limita-
tions of the database, our study mainly focused on elderly 
and middle-aged patients with diabetes or those with 
a history of diabetes, and there was a lack of research 
and discussion on young people. Thirdly, to ensure the 
robustness of the overall analysis, the threshold of SNP 
selection in MR analysis was set to a rather strict value. 
However, in some analyses, including the reverse MR 
analysis of HF and DN, there were not enough SNPs for 
MR-PRESSO analysis or leave-one-out analysis. This 
constraint may potentially impact the precision of these 
specific analyses. Fourthly, while multiple ascertainment 
methods for endpoint diagnosis were employed, the 
potential incompleteness of data for all participants was 
not fully addressed, which might lead to bias. Fifthly, the 
improvements observed in the AUC and C-index were 
relatively modest. This limitation may stem from the fact 
that NMR-based metabolites might not fully capture the 
most critical pathological processes underlying diabetic 
vascular complications. Consequently, future studies 
should employ additional methodologies to investigate 
the roles of other metabolites or omics profiles in dia-
betic vascular complications. Finally, due to the limited 
source of longitudinal data, we have not completed exter-
nal validation of the model, even if we use MR analysis 
to explain the causal relationship, so we cannot know its 
universality and make further corrections.

Conclusions
In conclusion, our study revealed that several metabo-
lites were found to be significantly correlated with inci-
dent diabetic complications. Genetic predisposition to 
screened metabolites was also linked to diabetic com-
plications. Future research is needed to explore and 
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verify our findings in different ethnicities and larger 
populations.
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