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Abstract 

Technological advancements are transforming teaching methods while offering wider 
windows into students’ learning journeys. Multi-modal Learning Analytics Dashboards 
(LADs) are tools that facilitate smart classroom orchestration by aggregating and ana-
lyzing students’ responses through sensors, such as facial expressions and heart rate, 
for real-time insights into student engagement and emotional states. In this study, 
we developed an LAD for open-ended activities in K-12 settings, where orchestra-
tion is non-linear and poses challenges for standardized evaluation methods. We 
engaged end users (e.g., educational researchers) in the process from the early design 
stages and investigated the feasibility of the LAD when used in the wild. The results 
show how affective data support greater awareness of students’ experiences, improv-
ing teachers’ orchestration through better decision-making and agency. Roadblocks 
were also identified regarding data interpretability, students’ privacy, and additional 
teacher workload, which can limit adoption and should be carefully addressed in future 
implementations. Further research should investigate students’ responses more closely 
and further develop strategies for the responsible, explainable, and unbiased use 
of student affective data in real classrooms.

Keywords:  Smart orchestration, Learning analytics, Teacher-facing dashboard, Multi-
modal data

Introduction
Across the span of a decade, technology for educational environments has evolved, 
transforming teaching approaches and unraveling learning processes. A key example 
is the rise of smart classroom orchestration, where digital tools, such as dashboards, 
empower teachers to effectively manage in-classroom experiences. Dashboards usually 
aggregate and communicate learning indicators to help teachers with high-level class-
room monitoring and tailored facilitation. To pinpoint such indicators, dashboards can 
utilize Learning Analytics (LA) to process sensor data (e.g., face detection (Giannakos 
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et al., 2019; Emerson et al., 2023), gaze direction (Lee-Cultura et al., 2023), and heart rate 
(Lee-Cultura et  al., 2023; Possaghi et  al., 2024; Malmberg et  al., 2019)) collected from 
students, providing real-time insights into their learning experiences. When data from 
multiple streams (or “modalities”) are combined in the analysis, the term Multi-Modal 
(MM) LA is used (Ochoa et  al., 2022). Sensor-driven Learning Analytics Dashboards 
(LADs) can provide highly detailed knowledge acquisition, but also students’ affective 
responses. Emotional data can be used to uncover, and subsequently support, students’ 
Self-Regulated Learning (SRL) processes during activities (Zimmerman, 2013; Tissen-
baum And Slotta, 2019).

Shifts in K-12 pedagogy amplify LADs’ relevance for classrooms. Specifically, when the 
call is for flexible support during open-ended learning activities with learning trajecto-
ries that are less predictable and more individualized (Reiser, 2013; Van Mechelen et al., 
2023). This shift is prominent in STEM subjects, including computer science, where 
instruction is framed around creative knowledge-building modules that reflect construc-
tionist principles (Ah-Nam And Osman, 2017). While offering many benefits, the non-
linear nature of constructionist activities often conflicts with standardized assessment 
(Giannakos et  al., 2020). Moreover, many current evaluation protocols are inherently 
subjective, frequently relying on self-reported records (e.g., post-activity interviews). 
In response, LADs offer a less biased alternative by enabling informed decisions based 
on students’ actual experiences rather than self-perceptions (Spikol et  al., 2017; Calvo 
and D’Mello, 2010). Moreover, constructionist activities often intersect with digital tools 
(e.g., personal computers, tablets) to support artifact building. Aside from fostering stu-
dents’ creative expression, these tools generate a great deal of data (e.g., facial record-
ings from PC camera) that can be analyzed to gain additional insights into the learning 
interaction (Ochoa et al., 2022). When extracted and processed through LA, such data, 
paired with students’ affective states, secure a  set of MM indicators for gaining unbi-
ased insights into open-ended learning experiences, where traditional methods often fall 
short (Cukurova et al., 2020). Despite the documented potential, the real-time capturing 
of student experiences in authentic educational settings remains under-explored (Gian-
nakos et al., 2021; Schwendimann et al., 2016; Järvenoja et al., 2018), most teacher-facing 
LADs rarely progress beyond the prototyping stage (Susnjak et al., 2022; Alfredo et al., 
2024), and they are seldom evaluated through a qualitative lens (Jivet et al., 2018).

Motivated by this gap, we developed and evaluated a teacher-facing LAD enabling the 
collection, analysis, and signaling of eight affective states (e.g., engagement, stress, hap-
piness) of students. The proposed LAD leverages MM data analytics to automatically 
monitor students’ states in real-time while they engage in collaborative constructionist 
activity, with programming modules, in a school setting. The LAD development is struc-
tured around a user-centric design methodology. In doing so, instructors (i.e.,  teach-
ers  and supporting teachers) and educational researchers actively drafted, designed, 
implemented, and validated the LAD. The engagement of these practitioners aimed to 
move beyond purely technical advancements, with the promise of delivering a usabil-
ity-sound technology along with actionable insights for future developments (Man-
garoska and Giannakos, 2018; Verbert et  al., 2020). However, introducing LADs to 
classroom practice has some hurdles, as teachers’ beliefs, prior experiences, and comfort 
with educational technology influence their acceptance and effective use of such tools 
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(Martinez-Maldonado, 2023). For this study, we sought to understand how instructors 
experienced incorporating the proposed LAD for affective response in a K-12 classroom 
setting by addressing the following research questions (RQs): 

1.	 What benefits or positive impacts did instructors perceive from using the LAD?
2.	 What challenges or drawbacks did instructors face when using the LAD?
3.	 Which design considerations for LADs emerge as critical for informing future, real-

world classroom implementations?

To answer these RQs, we conducted an evaluation of the proposed LAD in two K–12 
classrooms. This evaluation focused on its practical implementation from the instruc-
tors’ perspectives, based on qualitative insights triangulated with students’ question-
naire responses. In doing so, we close the user-centric design loop and offer empirical 
insights to inform the future development of educational technologies aimed at enabling 
smarter classroom orchestration. We summarize our contribution as follows: 

(a)	 We propose a real-time LAD as an intelligent tool designed to enhance K-12 in-
classroom monitoring by automatically analyzing and responding to students’ 
affective states.

(b)	 We present both qualitative and quantitative insights from an in-the-wild study, 
collecting students’ experiences with data sensors, and teachers’ impressions on the 
LAD.

(c)	 We provide research and practical implications from our findings, focusing on 
design-based directions for further improvement and validation of LADs and their 
in-classroom use.

Background and related work
With Fig. 1 we visually represent the context of our research, positioned as a subset of 
three concentric areas of existing literature: the field of classroom orchestration with 
technology, the more specific domain of descriptive dashboards tailored for K-12 teach-
ers, and the challenge of capturing and displaying affective states.

Classroom orchestration with technologies

As described by Dillenbourg, “orchestration” in education is a complex process of real-
time process bound by constraints (Dillenbourg, 2013). Those constraints are either 
“intrinsic” constraints, which refer to the concepts taught, the learners’ profile, and the 
knowledge acquisition workflow, or “extrinsic”, which characterize the learning con-
text (e.g., schedules, settings, and assessment techniques). Currently, K-12 curricular 
guidelines favor subject-specific training within a constructionist framework, which is 
known for its non-objectivist nature (O’Connor, 2022). This is particularly evident in 
the field of STEM, where programming and other computational literacies are fostered 
through a multidisciplinary approach that promotes real-world problem-solving (John-
son et al., 2016). In this context, Dillenbourg’s concept of extrinsic constraints becomes 
more pronounced because of open-ended learning environments typical of collaborative 
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constructionist settings (Dillenbourg, 2013; Martinez-Maldonado et  al., 2014). For 
instance, constraints in assessment exacerbate challenges in monitoring and evaluation, 
especially when the process is inherently dynamic and the outcomes are not predeter-
mined. As Amarasinghe et  al. (2021) pointed out, mapping open-ended tasks places 
higher cognitive demands on teachers. As a result, teachers may prioritize immediate 
educational goals (e.g., artifact creation) over paying attention to students’ internal states 
(e.g., motivation, engagement) that greatly influence their learning experiences (Amar-
asinghe et  al., 2021). Moreover, while constructionism emphasizes student-centered, 
collaborative learning journeys fostering autonomy, teachers must not be marginalized 
as secondary figures. Instead, they should shift from being knowledge transmitters to 
facilitators who promote students’ ownership of their learning (Hoover, 1996), leverag-
ing technological insights to inform their decision-making (Martinez-Maldonado, 2019).

To alleviate orchestration burdens, technological efforts have focused on giving teach-
ers access to students’ live activity feeds (Holstein et al., 2018), time-reliant automated 
scoring (Tissenbaum et  al., 2016), and tools for mistake tracking (Mangaroska et  al., 
2021). However, these measures primarily specialize in linear processes and fall short 
when confronted with open-ended learning dynamics. This poses the risk of forcing 
activities into overly structured protocols, compromising experiences given inflexible 
orchestration, and resulting in the limitation of learner-driven processes (Tissenbaum 
And Slotta, 2019; Dillenbourg et  al., 2009). Moreover, the very same introduction of 
orchestrational technologies and modern data collection protocols considerably tolls 
teachers, potentially driving them to compromise or reevaluate their pedagogical beliefs 
(Ertmer et  al., 2012). To mitigate this, Shahmoradi et  al. (2024) validated an orches-
trational dashboard tailored to a robotic constructionism activity in a primary school 
setting, addressing contextual factors (e.g., student literacy) and its relationship with 

Fig. 1  Our study (LAD design and validation) at the intersection of classroom orchestration, K-12 descriptive 
dashboards, and the capture of affective states
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teachers’ perceived usability (Shahmoradi et al., 2024). From the teachers’ perspective, 
Kessel et  al. (2025) investigate which background and contextual demands primarily 
impact dashboard use to update facilitators’ curriculum and proficiency programs for 
long-term LAD implementation in schools (Kessel et al., 2025). While these and many 
more studies validate the significance of such technologies, a critical gap persists in inte-
grating everyday facilitation approaches with diverse stakeholder perspectives into their 
design from the outset. As Martinez-Maldonado (2023) reports, underestimating edu-
cational stakeholders’ expertise can lead to designs unfit for authentic in-class use, or 
an overemphasis on technical development that discounts user experience (Martinez-
Maldonado, 2023).

While a 2018 lature review on LADs identified user experience’s assessment lacking in 
qualitative perspective, but still treated dashboard acceptance as a secondary research 
focus (Jivet et  al., 2018), the field’s perspective has significantly evolved. Scholarship 
now puts human responses upfront from the earliest stages of conceptualization in 
LAD research (Verbert et  al., 2020). For this study, we align with these contemporary 
views, asserting “human value” in design loops for effective digital tool implementation, 
directly addressing end-users’ needs (Mangaroska et  al., 2021; Ahn et  al., 2019). Con-
sequently, our study employs an iterative user-centered design approach, incorporating 
qualitative insights through focus groups and semi-structured interviews. This meth-
odology facilitates a continuous dialogue with key stakeholders (e.g., researchers, class-
room teachers, and instructors) to iteratively develop orchestrational technologies that 
genuinely reflect their pedagogical beliefs and the emergent needs of constructionist 
educational activities, mirroring best practices seen in studies similar in scope (Alfredo 
et al., 2024; De Vreugd et al., 2024).

Descriptive dashboards for K‑12 teachers

Among different technologies for orchestration, teacher-facing LADs peak in popularity 
with four key aspects (Amarasinghe et al., 2022; Van Leeuwen et al., 2019). First, these 
LADs mirror the classroom environment by narrating events in a digestible format, 
thereby providing teachers with straightforward insights for classroom monitoring. For 
example, complex data are translated into accessible graphical representations, helping 
teachers pinpoint events that might otherwise remain obscure (Pozdniakov et al., 2023). 
This can further be done beyond simply displaying performance metrics, such as activity 
scores. When MM data streams are captured, visual representations highlight patterns 
in cognitive, behavioral, and affective domains, revealing students’ strengths and weak-
nesses that traditional observation methods may overlook (Cukurova et al., 2020; Gian-
nakos et al., 2019). Second, these LADs, augmented with awareness mechanisms, such 
as visual or auditory cues, can even offer actionable insights to teachers (Roberts et al., 
2017). Aside from achieving better management and less cognitive effort in interpreting 
depicted information (e.g., which student is challenged), such affordances are particu-
larly useful for teachers with limited digital literacy (Martinez-Maldonado et al., 2020). 
Research findings support that dashboards with enhanced features, such as data story-
telling elements, are particularly beneficial for teachers less acquainted with data visuali-
zation, granting better-informed decisions with minimal effort (Pozdniakov et al., 2023). 
By combining machine-computed cues with a mirrored LAD, teachers gain a deeper 
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understanding of student performance and can pinpoint areas where intervention might 
be necessary. Third, LADs that incorporate real-time notifications based on student 
responses can provide teachers with timely insights. For example, Knoop-van Campen 
et al. (2023) offer a real-time classroom overview covering both punctual tasks and stu-
dents’ overall progress. Results showed teachers moving away from outcome-oriented 
feedback and instead emphasizing students’ learning processes without over-focusing on 
low-performing students. Knoop-van Campen et al. (2023); d’Anjou et al. (2019). Last, 
descriptive LADs can facilitate comparisons across different units, such as between indi-
viduals or teams, thus providing teachers with valuable insights for those who may need 
assistance or intervention (Susnjak et al., 2022; Giannakos et al., 2020; Li et al., 2020). As 
seen, previous research showed that these teacher-facing LADs can inform pedagogical 
decision-making, granting high-level classroom monitoring and diagnosing (Martinez-
Maldonado, 2019; Holstein et al., 2019; Van Leeuwen et al., 2015; Bao et al., 2021), ena-
bling ad hoc guidance for students (Cukurova et al., 2020; Spikol and Cukurova, 2020).

Despite growing interest in LADs and robust research in LA within education, their 
sustained adoption in real classrooms remains limited. This reluctance stems from an 
insufficient understanding of their value, persistent issues of trust and ethics, and a criti-
cal lack of integrated practitioner perspectives guiding their development (Paulsen and 
Lindsay, 2024; Martinez-Maldonado, 2023). To counteract this tendency, prior studies 
have involved teachers in co-developing LADs. For example, TEADASH, a LAD inte-
grated into Canvas, was co-designed with teachers to ensure its applicability in univer-
sity-level engineering and social science courses (Nguyen et al., 2024). Another instance 
is TeamSlide, a LAD based on MM data, which involved senior teaching staff in its 
design to support teacher-guided reflection in a university nursing course (Echever-
ria et al., 2024). While most LADs are designed for use in higher education, one recent 
study by Mohseni et al. (2023) explored conceptual design considerations for LADs in 
the K-12 context. In this study, teachers were engaged in interviews and co-creation of 
prototypes; however, a subsequent evaluation of these LADs in an authentic classroom 
setting was not conducted (Mohseni et al., 2023). As Verbert et al. (2020) advocate, the 
validation of usability holds equal importance to the fulfillment of functional require-
ments in order to minimize design pitfalls (Verbert et al., 2020). Building on this princi-
ple and addressing the named gaps, LAD’s potential can be leveraged to create a versatile 
and informed learning environment within the K-12 education context by carefully 
designing and empirically evaluating its effectiveness, explicitly incorporating teachers’ 
needs and voices during open-ended learning activities.

Capturing and displaying affective states

Multiple factors concur in learning processes, going beyond the sole cognitive dimen-
sion. SRL theory, for instance, posits that students experience specific affective states 
as they regulate their practices to achieve learning goals (Zimmerman, 2000). Affec-
tive states encompass emotions and feelings, described as “bodily responses” (D’mello 
And Jensen, 2017) while learning. Unlike social and cognitive factors in orchestration 
guidelines, affective states are often overlooked despite their significance, partly due 
to the difficulties in identifying them (Bosch et al., 2015). Moreover, Dillenbourg et al. 
(2009) contend that such emotional dynamics evolve alongside computer-supported 
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collaboration and SRL due to the use of new technologies, generating new needs for 
both learners and teachers (Dillenbourg et al., 2009). Nonetheless, joint efforts between 
the learning design and LA communities call for various methods for capturing affective 
responses, moving away from observation-based mapping (Ocumpaugh, 2015) in favor 
of more valid protocols that utilize face-based detectors [58] or wearable sensors (Gian-
nakos et al., 2020), among others (Sharma and Giannakos, 2021).

Extrinsic constraints also impact SRL processes. Wolters et al. (2005) state that “con-
textual features in the environment” (Wolters et al., 2005) can significantly modify stu-
dents’ responses, regulating, for example, effort when help is available. Educational 
technology contributes to this extent, since the growing reliance on digital tools in edu-
cation creates both a need for their validation and new opportunities to access diverse 
data channels (Järvelä et  al., 2016; Nasir et  al., 2021). Converging these multiple data 
streams in analysis can unravel how pupils’ learning journey unfolds and why (Cukurova 
et al., 2020), enabling a shift from subjective metrics to more germane pieces of evidence 
on SRL (Järvelä et al., 2021). As mentioned, LA has been widely researched to retrieve 
clues on regulatory processes from knowledge acquisition and collaboration perspec-
tives. Authors such as Spikol et  al. (2017) and Nasir et  al. (2021)propose that MMLA 
can unlock unique information about open-ended activities such as project-based learn-
ing. Face, hand tracking, and speech ratio have been utilized to outline components such 
as the distance between peers, hand gestures, dialogues, and gaze direction, which can 
describe the inquiry style in teamwork (Spikol et  al., 2017; Nasir et  al., 2021). Despite 
promising prospects for uncovering the complexity of learning journeys, particularly in 
the context of constructionism activities, empirical examples centered on distilling affec-
tive responses remain scarce. An exception to this is the work by Sedrakyan et al. (2020), 
who designed feedback mechanisms embedded in LADs to inform students or teach-
ers through visualizations of process-oriented regulation of learning. This work retraces 
the importance of the socioemotional context as expressed by Dillenbourg et al. (2009), 
emphasizing the need to further explore the incorporation of sensor data into LADs to 
enhance decision-making and testing the quality of biofeedback for emotional monitor-
ing and regulation (Sedrakyan et al., 2020).

Embedding MM data streams in LADs creates powerful touchpoints that transcend 
the research community and extend to all stakeholders involved in educational experi-
ences. However, the realization of LADs’ theoretical potential hinges on their design, 
with accents on necessary literacy and general sustainability for a long-term deploy-
ment (Cukurova et al., 2020). For this reason, research needs to evaluate the design of 
such dashboards in close consultation with stakeholders to ensure the fulfillment of 
users’ needs and avoid overlooking the human element (Buckingham Shum et al., 2019; 
Amarasinghe et al., 2021; Cukurova et al., 2020; Yoo And Jin, 2020; Sharma and Gian-
nakos, 2021). Ouhaichi, Holstein, and colleagues emphasize this need, noting a lack of 
LAD validation in “authentic settings” (Ouhaichi et al., 2023) and insufficient value culti-
vation with real practitioners (Holstein et al., 2018). Despite the theoretical advantages 
of LADs, MM measurements, and state-of-the-art sensors, bridging the gap between 
theory and real-world classroom implementation, especially considering teachers’ peda-
gogical beliefs, remains challenging (Wiley et al., 2024; Holstein et al., 2018; Giannakos 
et al., 2021). Given that the empirical emphasis on this domain concentrates on higher 
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education (Bond et  al., 2023), our work contributes by extending this investigation to 
K-12 settings. This presents an opportunity to provide concrete evidence of affective 
states’ significance in students’ learning experiences, which should be explored through 
in-the-wild interventions (Kaur And Chahal, 2024).

Dashboard design and implementation
Being aware that the creation of LADs entails a multidisciplinary approach encompass-
ing Human-Computer Interaction (HCI), software development, learning, and user 
experience design (Mangaroska et al., 2021; Xie et al., 2019), we referred to the LATUX 
(Learning Awareness Tools - User eXperience) workflow to integrate stakeholders’ per-
spectives in the development of our LAD. As proposed by Martinez-Maldonado et al. 
(2015), this workflow is a tailored process for developing awareness and assistance 
enhancers for educational environments with respect to teachers’ needs (Martinez-Mal-
donado et al., 2015). Moreover, we draw from the steps followed by user-centered meth-
odologies from literature similar in scope (Holstein et al., 2019, 2017; Lee-Cultura et al., 
2023; Yoo And Jin, 2020). The following paragraphs describe the design steps enacted to 
create our LAD.

Initial guidelines for LAD design

As a preliminary step to our workflow (Fig. 2), we conducted a literature review to iden-
tify significant research in LA and sensor data usage within educational environments. 
This review grounded our research gap in empirical implications and solidly framed our 
contribution. By investigating the state-of-the-art, we were able to develop initial design 
guidelines for our LAD. We summarized 21 relevant papers, considering the measure-
ments considered, sensor data employed, communication methods (e.g., what to display 
and how), and ethical recommendations. The resulting guidelines are reported in detail 
in Table 6 in the Appendix.

After analyzing the selected literature, educational researchers were involved in the 
process of selecting the most crucial requirements. Efforts were chosen to be directed 
toward a design for: a. accessing a real-time overview of students’ affective states at the 
classroom level via a real-time analysis of their experiences, b. intuitive signaling system, 
c. possibility of narrowing down the monitoring at the group or individual level, and d. 
customization of the spatial layout. Moreover, the system’s interoperability and usabil-
ity were valued for creating a dashboard that can easily integrate with other platforms 

Fig. 2  The LATUX workflow adapted to our research
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and does not require technical competence for management beforehand. Finally, the 
literature review showed that research involving K-12 stakeholders (i.e., students and 
teachers) remains marginalized, and when this population is addressed, studies focused 
primarily on students’ experiences (Bond et al., 2023). This frames our contribution to 
providing a more holistic approach, including also the teachers’ perspectives, as valuable.

Sensors and measurements chosen

The systematic summarization informed our directions in choosing sensor data and 
expected measurements. Our LAD integrates different sensors to collect MM data. We 
employ the Empatica E4 wristband to gather Electrodermal Activity (EDA) via accel-
erometer (ACC) and Heart Rate Variability (HRV) to retrieve measurements about 
students’ physiological stress and engagement (Lee-Cultura et  al., 2021). Along with 
wristband sensors, we employed the laptop’s embedded camera to collect students’ facial 
expressions (Sharma et  al., 2022). This was done by running a Python package called 
PyEmotion to map students’ affective states through facial features. Via these data, we 
extract measurements defining seven emotions: anger, fear, happiness, sadness, surprise, 
disgust, and a neutral state. The consideration of this batch of emotions is grounded in 
D’Mello and Gressner’s implications on SRL (D’mello and Graesser, 2012), as well as 
their consistent reference in the literature (Possaghi et  al., 2024; Sharma et  al., 2022; 
Pekrun, 2006).

The first round of feedback

To create a usable digital touch point to bridge facilitation with MMLA, we engaged 
authentic stakeholders from the earliest stages of the LAD design. The session lasted two 
hours, and we collected notes on the open discussion among the participants and two 
facilitators. Firstly, we shared system images illustrating the proposed MMLA’s interface 
and functionality with a K-12 teacher and five educational researchers. By presenting 
these visuals, we aimed to elicit valuable insights regarding educators’ specific needs and 
challenges in their daily practices (First round of feedback in Fig. 2). Participants were 
then prompted to discuss the requirements drawn from the literature and their prelimi-
nary incorporation into the LAD’s system mockups. This phase resulted in four design 
decisions.

•	 Real-Time Affective Monitoring Instead of performance outcomes (e.g., exercise cor-
rectness), the decision was to display students’ affective states in real-time. The goal 
is to monitor students’ positive or negative responses to the educational experience 
to prevent lowered performance and support teachers’ fast action in adapting facili-
tation.

•	 Reactive Descriptive System We chose to develop a reactive system. Namely, a 
descriptive system mirrors in-classroom events and signals to the teacher if some 
students’ status needs attention according to analyzed data in real-time. While devel-
oping a predictive system for affective states based on computed data would be ben-
eficial, educational researchers value the opportunity to uncover students’ emotional 
states that often go unrecognized through mere observation. In fact, teachers seek 
dashboards that collect, organize, and present classroom information clearly and 
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meaningfully without requiring extensive UI interpretation. Descriptive LADs can 
assist educators in processing this information.

•	 Plain Signaling with visual cues We explored whether the system should offer spe-
cific suggestions or alerts for students in critical states. Ultimately, both the teacher 
and educational researchers favored a descriptive LAD with plain signaling without 
prompts, allowing teachers to assess emotional states while still providing the flex-
ibility to determine the most appropriate course of action. For example, pictorial 
notifications as dashboard feedback redirect the teacher’s attention toward students 
facing challenges without embedding textual information, which could lead to con-
tent overload and misinterpretation.

•	 Seating Layout Correspondence Ensure direct correspondence between the class 
and the displayed layout. This facilitates the teacher’s understanding of the map-
ping between students on the dashboard and their real-world seating arrangements. 
We opted against embedding data visualizations due to teachers’ potential difficulty 
interpreting charts and graphs (Pozdniakov et al., 2023). Instead, we chose to use pic-
torial references for more straightforward communication.

Second round of feedback on a low‑fidelity prototype

These design decisions guided the development of the low-fidelity LAD prototype, 
as shown in Fig. 3. Following this, we conducted another session with the same K-12 
teacher and educational researchers to facilitate an iterative refinement of the sys-
tem, referred to as the Second Round of Feedback in Fig.  2. This dashboard proto-
type, developed using Figma, was presented to the stakeholders to validate the design 
choices made thus far. Again, based on notes from the discussion, the insights gath-
ered from this session can be categorized into three main action points:

Fig. 3  Low-fidelity prototype with feedback
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•	 Granularity of Data Display: The low-fidelity prototype reflects the physical class-
room layout, prioritizing the display of affective states at the group level. However, 
the teacher and educational researchers expressed a desire to navigate between 
different levels of granularity, allowing them to switch from aggregated data at the 
group level to more detailed insights at the individual level.

•	 Data Filtering Preferences: Educational researchers emphasized the need to filter 
which data from the various affective states can be displayed on the LAD. This capa-
bility would enable them to concentrate on critical insights without feeling over-
whelmed by excessive information.

•	 Disclosing Both Ups and Downs: Our design initially focused solely on signaling 
changes in negative affective states, specifically highlighting adverse events. However, 
the teacher also strongly supported disclosing positive affective states, such as high 
engagement. This addition would enrich the understanding of emotional dynamics, 
allowing facilitators to recognize when challenges arise and when students are thriv-
ing.

Third round of feedback on a high‑fidelity prototype

After an agreement on the UI was reached to finalize its high-fidelity, the Figma proto-
type was updated, as shown in Fig. 4.

The front page

The front page enables the teacher to customize the dashboard layout. The number of 
students and the number of students per group (thus interacting with the same shared 
device) can be customized. This feature creates a stronger parallelism between the actual 
classroom and the layout shown, easing the teacher’s interpretation of what is displayed 
on the screen (d’Anjou et al., 2019). The display of measurements allowed or prevented 
in the dashboard can also be customized to manage content display and prevent infor-
mation overload (Sedrakyan et al., 2020).

The class view

The teacher can access the customized class view once preferences are submitted. 
Students are represented as pictorial icons configured accordingly, with the selected 

Fig. 4  The finalized dashboard design
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measurements displayed below. To access all measurements at any time during the 
activity, the group can be clicked to open an overlay window displaying the complete 
set of measurements without going back to the configuration panel Fig. 4b. The red 
and green icons next to each measurement vary according to the student’s response 
(as calculated in the back end) to signal the teacher that attention is needed. For 
example, if a student has abnormally high stress values for a specific time window, 
the icon for the “stress” measurement will turn red. The circle will change to green 
when the measurement falls within normal values. The signaling is also enabled at 
the group level. Here, the communication is no longer binary (red and green) but is 
based on three levels of attention required, determined by the number of measure-
ments exceeding predefined thresholds for the two students combined. Namely, no 
visual cue (fewer than 4 measurements), an orange visual cue (between 5 and 6 meas-
urements), and a red visual cue (7 or more measurements), as illustrated in Fig. 4a.

The high-fidelity prototype was subjected to a final UI testing by educational 
researchers for its navigation, which was indicated as the Third round of feedback 
in our process. The outcome defined the user journey through the various layers of 
interactions as minimal to serve its purpose Fig. 5. Specifically, users can easily switch 
between the front page (measurements and group configurations) and the class view. 
They can access an overlay window to visualize the complete set of measurements 
from a group’s participants.

Technical implementation and preliminary pilot testing

Following the LAD’s UI design and user experience consolidation, development pro-
ceeded from a technical standpoint. The final system architecture comprises three 
core components: a. Frontend, b. Backend, and c. Database. The following section 
provides a detailed account of the LAD’s assembly and its technological specifications.

Frontend

The application’s frontend serves as a dashboard interface for the end user, typically 
a teacher, which dynamically adapts based on sensor data stored in the database. The 
UI design was described in previous sections. React with TypeScript was utilized to 
build the framework, facilitating smooth deployment and enhanced readability for 
developers.

Fig. 5  User interface and user experience flow
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Backend

The backend is responsible for real-time data processing, managing sensor connectiv-
ity, executing measurement calculations, and handling data aggregation and signaling. 
The interaction between the backend and the database is illustrated in Fig.  6. Python 
was employed with the Django framework due to its ease of use and robust server-side 
capabilities. A detailed description of how the backend manages sensor data is provided 
below.

Data from wristbands: The Empatica E4 streaming server was used to process wrist-
band data in real-time. The connection between Empatica wristbands and the laptop 
running the Django framework was established via Bluetooth Low Energy (BLE). The 
Django backend maintained an independent socket connection with each wristband, 
ensuring that any issues encountered with one device did not affect others. The Django 
application processed signals received from the wristbands, and features such as EDA 
were used to calculate stress and engagement levels in real-time. Each stress or engage-
ment calculation was sent to the database, allowing for real-time teacher signaling and 
data storage for later analysis.

Data from the camera Facial recognition was used to map students’ emotional states 
through the PyEmotion package. This process continuously computed the emotions of 
individuals seated in front of the computer, classifying their emotional state into one of 
the seven aforementioned emotions (Possaghi et al., 2024; Sharma et al., 2022; Pekrun, 
2006). Since emotional mapping happened in real time, video recordings were not stored 
for later analysis, ensuring anonymity by avoiding the use of participants’ facial capture. 
Like stress and engagement data, emotional state information was sent to the database 
for storage and immediate signaling purposes. The PyEmotion package was modified to 
return multiple emotions and allow an analysis of emotional feedback from multiple stu-
dents using a single camera, enabling the system to process emotional data for students 
working in pairs.

Data processing Besides raw data collection, the system aggregates data in real-time 
to alert the teacher if any metrics appear unusually high or low. A five-second window 
was chosen for data retrieval from the database to determine the appropriate signals 
based on the values collected. PyEmotion processed numerical data from the Empatica 
E4 wristbands. Namely, the mean and standard deviation were calculated for the entire 
session to establish a baseline for stress and engagement, which were then compared 
with the mean of recent measurements. For effective states computed via PyEmotion, 
the analysis focused on data from the previous five minutes (Possaghi et al., 2024; Tisza 
et al., 2022; Sharma et al., 2021), calculating the fraction of time spent in each emotional 

Fig. 6  Architecture overview



Page 14 of 34Possaghi et al. Smart Learning Environments           (2025) 12:53 

state. A signal was sent to the teacher if the fraction of a particular emotion exceeded or 
fell below a predefined threshold. Each backend instance directly communicated with 
the database to maintain data integrity, eliminating the need for API endpoints.

Database

System interoperability was achieved through the Firebase database, which served as 
the central repository for both raw and aggregated data. Each participant was assigned 
a unique ID to prevent personal data collection and facilitate subsequent analysis. As 
depicted in Fig. 6 was organized into two main nodes: raw sensor data and aggregated 
signaling data for each student. Each backend event and its timestamp were saved in the 
raw data node, enabling the correlation of specific events, such as elevated stress levels, 
with specific learning activities.

Five educational researchers conducted a pilot evaluation of the functional LAD pro-
totype to ensure system robustness. The session lasted approximately two hours and was 
designed to recreate an in-school scenario. The evaluation focused on identifying issues 
related to time management, technology orchestration, and activity delivery, intending 
to refine the system for future in-class validation.

Validation and performance evaluation in‑the‑wild
As a final step of our process (Fig. 2), we conducted a case study in a real-world class-
room setting to assess the challenges and opportunities of deploying the MMLA dash-
board and demonstrate its feasibility. The school was informed beforehand about the 
nature of the intervention, and participants’ approval through parent or guardian con-
sent was requested. Sikt  (Norwegian Agency for Shared Services in Education and 
Research) approved our intervention, data collection, and data handling plan.

Participants

The proposed activity engaged two classes with a total of 44 students who were in the 
8th grade from a secondary school in the Vestfold region of Norway. The students were 
either 13 or 14 years old (M=13.39, SD=0.49), and identified themselves as either boy 
(27), girl (16), or other (1). The context of the open-ended group activity is described 
below. It is worth mentioning that although some participants had prior experience with 
in-school programming, none of them were familiar with the specific platform or activity 
that we proposed. Given the limited supply of wristbands, 32 of the 44 randomly selected 
students who were participating in the activity wore them during the activity. Facilitators 
provided the groups wearing wristbands with a computer equipped with a camera for 
facial data collection and installed the Empatica Web Application. No employment of 
school devices was required. The class activity was inclusive, and everyone could partici-
pate without being part of the data collection (by not wearing wristbands and avoiding 
camera capture) if they had not been provided consent by their parents or guardians, 
without affecting their engagement. Students were free to withdraw their assent to data 
collection verbally at any time. The facilitation team, consisting of one teacher (who was 
mainly responsible for the class) and three supporting teachers, was present for both 



Page 15 of 34Possaghi et al. Smart Learning Environments           (2025) 12:53 	

classes. The LAD was presented to all instructors before the lesson started to familiarize 
them with it.

A design thinking activity on sustainability

The activity was in the form of an activity and lasted six hours, spanning over three days 
for each of the two classes, and was held in the classroom setting, following the school’s 
regular schedule. Students who participated in the activity were divided into dyads. The 
topic of this Design Thinking activity covered the importance of recycling and framing 
it as a sustainability issue for the community. The activity followed the five phases of a 
Design Thinking process (empathize, ideate, define, prototype, and test) and was struc-
tured based on the Exten.(D.T .)2 activity plan1 Using a block-based coding platform, 
we posed the accent on the prototype phase. Specifically, the platform GearsBots2 for 
robotic simulations was leveraged to create a parallelism between a gamified and real-
life experience to achieve awareness of the recycling challenge. The activity’s structure 
encouraged collaboration among team members and between teams, allowing for peer 
feedback and prompting iterative improvements on the proposed design solutions in 
GearsBots.

Method

For this in-class intervention, we used a mixed-method research design, combining the 
elements of quantitative and qualitative research, with emphasis on the latter. The study 
was qualitatively driven, as our primary aim was to understand the instructors’ experi-
ence in depth (Hesse-Biber et al., 2015). The whole DT experience was considered for 
assessment. Still, it was more focused during the prototype phase. This phase involved 
real-time LAD testing as students participated in a programming task, which was at the 
core of the DT experience and required extended collaborative computer interaction.

Data collection

The quantitative strand comprised a thirteen-item individual questionnaire using a Lik-
ert scale with values from 1 = strongly disagree to 5 = strongly agree. It was administered 
post-activity to evaluate students’ (a) response toward the experience, (b) perceptions of 
wearing the wristband, and (c) reactions to the presence of the camera. The question-
naire items are listed in Tables 1, 2, and 3. Since not all students experienced wearing 
the Empatica wristband, the items concerning perceptions of wearing the wristband (b) 
were answered by only 32 students out of 44, while the other questionnaire items were 
answered by all students.

For the qualitative strand, insights from the facilitation perspective were gathered 
through in-depth semi-structured interviews with the teachers (T1) and support-
ing teachers (ST1, ST2, ST3) conducted after the three-day intervention. The inter-
views lasted between 1.5 and 2  h. The semi-structured format allowed additional 
topics to emerge while maintaining focus on topics relevant to the research scope (Yin, 
2009). Additionally, feedback was collected after each day of the intervention through 

1  European Project Extend(DT)2: https://​exten​dt2.​eu/.
2  https://gears.aposteriori.com.sg/

https://extendt2.eu/
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1-hour-long joint discussions among the teachers (T1) and supporting teachers (ST1, 
ST2, ST3), as illustrated in Fig. 7. Such feedback notes were included as part of the data 
corpus, complementing the insights from the interviews. Combining multiple qualitative 
data sources helped us address our research questions on the LAD’s effectiveness in the 
learning environment as an auxiliary tool for teaching, and provided a comprehensive 
perspective on monitoring the process.

Fig. 7  Data collection for qualitative data

Table 1  Descriptive statistics for the set of items a, with a scale from 1 to 5

Values in parentheses show the standard deviation (SD) from 44 students

Post-activity questionnaire: set of items a. Mean (SD)

1. The activity was exciting 3.15 (1.09)

2. The activity was fun 3.06 (1.06)

3. The activity was useful 3.33 (1.14)

4. The activity was difficult 3.44 (1.11)

5. I was stressed during the activities 2.07 (1.18)

6. I was engaged during the activities 3.34 (1.23)

Table 2  Descriptive statistics for the set of items a, with a scale from 1 to 5

Values in parentheses show the standard deviation (SD) from 32 students

Post-activity questionnaire: set of items b. Mean (SD)

7. I was bothered by the wristband during task solving 2.13 (1.09)

8. I liked the learning process more with the use of smart wristbands 3.14 (1.05)

9. I could use a smart wristband on more occasions related to learning 3.50 (1.02)

10. I behaved differently because of the smart wristband 2.00 (1.24)

Table 3  Descriptive statistics for the set of items a, with a scale from 1 to 5

Values in parentheses show the standard deviation (SD) from 44 students

Post-activity questionnaire: set of items c. textbfMean (SD)

11. I was bothered by the web camera during task solving 1.89 (1.21)

12. I could use a web camera on more occasions related to learning 2.43 (1.25)

13. I was bothered by the thought that the teacher could see what I felt 2.49 (1.19)
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Data analysis

For the students’ questionnaires, we analyzed the responses, calculating the means, scor-
ing on a scale ranging from a theoretical maximum of 5 to a minimum of 1. As afore-
mentioned, items related to students’ response to the experience (a) and reactions to 
the presence of the camera (c) were calculated on the basis of responses from 44 stu-
dents, while items concerning perceptions of wearing the wristband (b) were calculated 
on 32 students. Next, we used a Spearman correlation analysis to identify relationships 
between these sets of items. Specifically, we calculated correlations between students’ 
responses to the experience (a) and perceptions of wearing the wristband (b), as well 
as between students’ responses to the experience (a) and reactions to the presence of 
the camera (c). We opted for Spearman’s rank correlation since the 5-point Likert-scale 
questionnaire produced ordinal data. Moreover, the Shapiro-Wilk test indicated devia-
tion from normality (see details in the Appendix Tables 7, 8, 9).

Regarding the semi-structured interviews, we approached the data inductively to allow 
patterns to emerge directly from the data. Recorded dialogues from the teacher (T1) 
and supporting teachers (ST1, ST2, ST3) were transcribed and subjected to a thematic 
analysis (Peel, 2020). During this process, meaningful segments of dialogue were organ-
ized into preliminary categories through descriptive coding. These categories were then 
refined iteratively through thematic coding, resulting in a set of eight finalized themes.

Results
Students questionnaires

As a first step, we provide a statistical description of the students’ responses to the post-
activity individual questionnaire. Results in terms of means are reported in Tables 1, 2, 
3. As seen, students wearing the wristband during tasks rated their level of distraction 
as mild on average. Additionally, they reported a higher level of enjoyment when wear-
ing the wristband. When asked whether their behavior would have changed without the 
wristbands, students’ responses suggested a slight inclination toward affirming that it 
might not have made a significant difference. Students expressed a mild concern about 
the mounted camera tracking their facial expressions during their learning experience. 
Finally, a low mean describes the average response when asked if bothered by the pos-
sibility of the teacher getting an insight into their feelings.

In Table 4 , we present Spearman correlation coefficients between students’ responses 
to the experience (a) and students’ perceptions of wearing the wristband (b). The 
results show that Item 8 is positively correlated with Item 1 ( ρ = 0.55, p < 0.01 ), Item 2 

Table 4  Spearman correlations between set of items a. and set of items b 

Bold indicates p < 0.05

Set of items a. Item 7 Item 8 Item 9 Item 10

Exciting (Item 1) 0.25 (p = 0.16) 0.55 (p<0.01) 0.41 (p=0.02) −0.06 (p = 0.72)

Fun (Item 2) 0.28 (p = 0.12) 0.54 (p<0.01) 0.37 (p=0.04) −0.11 (p = 0.56)

Useful (Item 3) 0.21 (p = 0.25) 0.44 (p=0.01) 0.22 (p = 0.23) −0.04 (p = 0.83)

Difficult (Item 4) −0.02 (p = 0.92) −0.34 (p = 0.06) −0.08 (p = 0.67) −0.08 (p = 0.66)

Stressed (Item 5) −0.21 (p = 0.25) −0.04 (p = 0.83) 0.03 (p = 0.86) 0.23 (p = 0.21)

Engaged (Item 6) 0.24 (p = 0.18) 0.49 (p<0.01) 0.25 (p = 0.16) −0.14 (p = 0.45)



Page 18 of 34Possaghi et al. Smart Learning Environments           (2025) 12:53 

( ρ = 0.54, p < 0.01 ), Item 3 ( ρ = 0.44, p = 0.01 ), and Item 6 ( ρ = 0.49, p < 0.01 ), indi-
cating that higher scores on these positive experience perceptions tend to align with 
higher enjoyment of the experience when wearing the wristband. Item 9 shows weaker 
but still significant positive correlations with Item 1 ( ρ = 0.41, p = 0.02 ) and Item 2 
( ρ = 0.37, p = 0.04 ), suggesting some relationship between excitement and fun and the 
willingness to use the wristband in learning activities. No significant correlations were 
observed between Item 7 and Item 10, despite Item 7 showing a trend toward a negative 
correlation with the perceived difficulty of the task (Item 4), approaching significance 
( ρ = −0.34 p = 0.06). The heatmap in Fig. 8 visually summarizes the results.

Next, we report in Table 5 the correlations’ results between participants’ self-reported 
experiences during the activity, set of items (a), and their perceptions related to webcam 
use, set of items (c). Participants who rated high in positive responses (Item 1, Item 2, 
Item 3, and Item 6) were significantly more prone to use a webcam on future learning 
occasions (Item 12). For example, fun (Item 2) showed a strong positive association with 
willingness to use the webcam again ( ρ = 0.64 , p = 2.9e−6), as did excitement (Item 1; 
ρ = 0.54 , p = 0.00017), perceived usefulness (Item 3; ρ = 0.43 , p = 0.0035) and engage-
ment (Item 6; ρ = 0.57 , p = 4.6e−5). By contrast, no significant correlations were found 
between positive activity experiences and feeling bothered by the webcam (Item 11) 
or concerned about being observed emotionally by the teacher (Item 13), except for a 
weaker positive link between “fun” and Item 13 ( ρ = 0.32 , p = 0.033). The heatmap in 
Fig. 9 visually summarizes the results.

Teachers perspectives

The following sections detail the eight themes from the recorded interviews with the 
teacher (T1) and supporting teachers (ST1, ST2, ST3), hereafter referred to as either 
“teachers” or “facilitators”. The main findings are classified under themes, as seen below.

Reflecting the facilitators’ intuitions

During the activity, facilitators could compare their intuitions with the insights displayed 
by the LAD. One teacher expressed contentment when realizing that the dashboard 

Fig. 8  Heatmap of correlations between students’ activity perceptions and wristband-related responses
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allowed for a correct and accurate in-time representation of students’ states: “I wanted 
to verify with you if the one blinking red on the dashboard was the exact student I was 
suspecting to be disengaged and the data was correct!” (T1). Guided by the dashboard, 
one teacher gave feedback to students flagged as disengaged, even when they denied it if 
questioned about it. After providing guidance, the dashboard indicated a rise in engage-
ment: “After providing feedback and instructions, the dashboard data confirmed a rise in 
his interest in the task! It was super nice to have an input!” (T1). Moreover, one teacher 
underscored the value of mapping students’ states in real-time, not just after the finished 
activity, allowing her to access a complete overview of the classroom’s experience: “It 
was exciting, and [the mapping] was extremely correct!” (T1). One facilitator also noted 
that although the LAD signals where attention is needed, “we still maintain authority 
over how to intervene if someone is struggling with the task” (ST2).

Interaction footprints

The interaction with the system granted the facilitators access to students’ digital foot-
prints. This affordance prompted reflective dialogues throughout the activity, as facilita-
tors noted: “We had a starting point to reflect with students on why they were engaged 
or not, using it as a foundation to start a conversation about their experiences” (ST1 and 
ST2). One teacher brought up the increasing information requirement on how students 
perform and act in the school environment. This would expand the scope of automated 

Table 5  Spearman correlations between set of items a. and set of items c 

Bold indicates p < 0.05

Set of items a. Item 11 Item 12 Item 13

Exciting (Item 1) 0.16 (p = 0.29) 0.54 (p= 0.00017) 0.19 (p = 0.23)

Fun (Item 2) 0.16 (p = 0.31) 0.64 (p = 2.9e −6) 0.32 (p = 0.033)
Useful (Item 3) −0.03 (p = 0.84) 0.43 (p = 0.0035) 0.22 (p = 0.15)

Difficult (Item 4) −0.08 (p = 0.59) −0.15 (p = 0.35) 0.09 (p = 0.56)

Stressed (Item 5) −0.15 (p = 0.34) −0.05 (p = 0.75) 0.21 (p = 0.16)

Engaged (Item 6) 0.13 (p = 0.40) 0.57 (p= 4.6e −5) 0.28 (p = 0.06)

Fig. 9  Heatmap of correlations between students’ activity perceptions and webcam-related responses
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data collection, making it a possible supplement to existing documentation: “It would be 
a good addition for us at the school to see from another perspective and gain an idea of 
how children possibly work together” (T1). Moreover, these interaction footprints can be 
leveraged for student pairing and overall activities facilitation: "We can keep track of who 
is excited to participate in the lesson and who is less engaged. This can inspire us to rear-
range, for example, the seating layout for better conditions for collaboration" (T1).

Hidden clues uncovered

When inquired about the range of emotions and states chosen as measurements, the 
main teacher described them as valuable to have a comprehensive picture of the stu-
dent’s experience and its changes. Among the other measurements, the main teacher 
indicates engagement as a valuable indicator of students’ focus on the programming 
task. Additionally, the same teacher indicates that the LAD can be a tool for ‘ìnvestigat-
ing” students’ experience with a tailored approach: "If I want to know more about good 
dynamics, I can concentrate on the pupils with positive and good values and try to iden-
tify the factors contributing to their success” (T1) Facilitators point out how the same 
strategy can be applied to the more disengaged and challenged pupils to pinpoint where 
the difficulty lies: “In this way, I understand the problem. I compare their experiences to 
those of other students and see if other groups share the same issue” (ST3).

Usability at ease

Overall, facilitators reported low effort in navigating the system and in elaborating 
information as a foundation for decision-making. Going more in detail, one facilitator 
pointed out the straightforward relationship between abstract representations in the 
LAD and the real-world scenario: “[…] Even if the representation is minimal in details, I 
can recognize the classroom setting. It is like, you know, when you use the maps app and 
relate what is on the screen with what you actually see!” (ST3). Additionally, how affec-
tive responses were shown on the LAD left little room for ambiguity, as teachers were 
already accustomed to managing the range of available emotions: “Here [on the screen], 
it is not crowded, and I see that what you mean by engagement is close to what I mean as 
engagement.” (T1).

Positive change in learning strategies

The facilitators stated that embedding technological support in the classroom can boost 
the students’ motivation and interest. For example, they believe that students are more 
likely to be attentive and committed to tasks when they perceive that technology plays a 
crucial and significant role. “It seems that pupils stay more focused and attentive if they 
perceive that the activity is regulated by a “high-tech” tool. It makes it more serious for 
them to attend the task rigorously” (ST3). Similarly, the main teacher witnessed that the 
system could inspire their students to increase their efforts, responding positively to 
support integrating the systems into standard real-life teaching practices: "I trust that 
everything new and can help the learning process is super important, as implementing 
new tools for the scope" (T1).
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Meaningful energy and time allocation

According to our interview, facilitation can not be completely revolutionized. For exam-
ple, teachers will still need to circulate the classroom to observe student engagement: “If 
you are a teacher, you will walk around in the classroom. It is not possible for you to just 
stand at the front because you need to see what pupils are up to” (T1). However, both the 
teacher and supporting teachers commented on how the LAD can provide insights to 
follow to guide their interventions: “The dashboard is an effective complement to practice 
since it can make the teacher have to walk less around because you know right away who 
you have to assist” (T1). This enabled facilitators to allocate their time more strategically, 
focusing on students who needed the most support. Additionally, one facilitator stated 
how the LAD prevented the same students from being repeatedly approached when they 
were not struggling or disengaged: “[...] sometimes students do not want to be checked on, 
especially if they are in the middle of a “creative” phase and they need room for elabora-
tion” (ST3).

Teachers can not be substituted

The teacher states that a digital tool can not solely interpret the learning process. The 
role of the human facilitator in the classroom can not be substituted by a dashboard 
only, and the teaching strategy can not be fully delegated to the machine: “Even if it can 
ease the burden of monitoring the students altogether, the dashboard alone can not sub-
stitute the teacher’s role” (ST2). Moreover, the teachers expressed concerns about relying 
solely on digital tools for mediation, stating: “It makes me a little worried for the future. 
Tools should be complementary, but humans must interpret their feedback in the class-
room or individual student context” (T1). At this stage of our technology’s maturity, the 
teacher compared the dashboard to a young teacher assistant: “[with your dashboard] it 
is like having a substitute teacher with you in the class. They are really good at reporting 
how pupils are doing, but the classroom’s responsible teacher should double-check their 
observations to determine how to intervene” (T1).

Sustainability in deployment

Both the teachers and the educational researchers pointed out the sustainability con-
straints regarding costs. Moreover, another facilitator expressed how more workforce 
would be needed in the class: “Managing the technology and all its components alone is 
not straightforward” (ST1). The concern specifically addresses the preliminary prepara-
tion (e.g., running the backend), while the sole UI interaction was deemed intuitive and 
free from interpretative burdens. Moreover, such expensive technology would inevita-
bly burden children with being responsible while wearing them. However, the teacher 
underscores the potential instructional value in empowering students with wristband 
management: “It can be an opportunity for them to learn how to be responsible in bor-
rowing a really important piece of equipment from the school.”. One facilitator echoed 
this observation by adding, “If explained how the wristbands work, learners can take 
ownership of their technology and even troubleshoot minor issues” (T1), referring to the 
episode where one student notified the facilitator of a malfunctioning device.
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Digital surveillance

Constant monitoring may result in a possible drawback to dashboard employment. 
Although specifying few in number, the teachers reported that some students were 
reluctant to wear the E4 Empatica wristband: “They may have felt a little uneasy about 
privacy, which is why there were one or two who said no to participating because of the 
data gathering” (T1). Another facilitator noted this attitude, specifying how: “[...] chil-
dren do not feel uneasy in front of the camera, but they dislike the idea of constantly being 
observed. This fueled higher self-consciousness, stifling, for example, the natural inter-
action with their team” (ST3). Moreover, the idea of being always monitored can pres-
sure students to feel perpetually evaluated, according to the teacher: “Some of them were 
scared to show that they were not able to perform 100% correctly, even if the dashboard 
was not showing their performance, but just their feelings” (T1).

Discussion
This paper presents a teacher-facing LAD that integrates multiple sensor data streams 
to capture, analyze, and visualize students’ affective states in real time, offering a digital 
“window” into their learning journeys (Giannakos et al., 2019). Findings from its deploy-
ment in a classroom setting reveal both encouraging opportunities and important chal-
lenges that must be addressed to better support teachers in facilitating open-ended K-12 
learning activities. In the following sections, we discuss the key opportunities and con-
cerns identified through our study, followed by implications for future LAD design in 
response to the three RQs guiding this work (see “Introduction” section).

Coordinate confidence and control: unpacking LAD’s opportunities for educator autonomy

To answer RQ1, the LAD raised facilitators’ confidence by granting “superpowers” to 
probe into students’ experiences from otherwise inaccessible angles (Holstein et  al., 
2019, 2017; van Leeuwen And Rummel, 2022). These findings align with prior literature, 
which emphasizes awareness of students’ affective states as a key indicator in classroom 
orchestrations (Lee-Cultura et al., 2023; Papamitsiou et al., 2020). In our case, this aware-
ness stemmed from the pairing of emotion-related data streams with their temporal 
transparency, reinforcing targeted support (Sung et al., 2023). Teachers involved in in-
the-wild evaluation positively commented on sensor data accuracy in measuring affec-
tive responses (Giannakos et al., 2019): the LAD’s reliability in displaying students’ states 
was unanimously attested, particularly in identifying disengaged learners in a timely 
manner. Such immediate insights were seen as affirming teachers’ intuitions, thereby 
enhancing their self-confidence and sense of agency in classroom orchestration. Spe-
cifically, the alignment between intuitions and LAD’s feedback validated the “effective-
ness of their [teachers] own help-giving” (Holstein et al., 2017), finding their instructional 
decisions in pieces of evidence. Referring to Holstein et al. (2018) orchestration tutoring 
agenda (Holstein et al., 2019), the LAD enhanced facilitators’ sense of agency, enabling 
more effective resource allocation for students’ management and adjusting their support 
based on identified moments of challenge. In practice, assistance was evenly distributed 
throughout the classroom, rather than being directed solely towards low-performing 
groups (Knoop-van Campen et al., 2023). For instance, facilitators expressed enthusiasm 
as the engagement icon turned green, following encouragement for students to adopt 
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new programming solutions, substantiating the LAD’s utility in informing real-time 
action (Sedrakyan et al., 2020; Gao et al., 2020; Papamitsiou et al., 2020).

It is well documented that learners voice themselves in diverse ways (Lee-Cultura et al., 
2023; Holstein et al., 2019), and our study offers a similar perspective. For example, when 
challenged, students may struggle to communicate or even miscommunicate through 
spoken words, leading to a flawed understanding of their emotional state. MM data 
gathered via physiological and facial decoding can help address the lack of (or inauthen-
tic) verbal and emotional expression without pressuring students to alter their behavior 
(Giannakos et al., 2020). On the other hand, data must be critically interpreted to pro-
mote a more intentional, self-directed approach to both collaboration and individual stu-
dent progress. Relying exclusively on raw quantitative information, oftentimes, leads to 
oversimplified conclusions that fail to capture the nuanced realities (Lee-Cultura et al., 
2023). On this count, teachers who operated the LAD envisioned a potential in elicit-
ing self-assessment from individual learners or the whole team (Kasepalu et  al., 2022; 
Holstein et al., 2019). For example, the LAD’s feedback on students’ stress responses can 
be instrumental as reflection prompts. This meta-exercise can help students unfold the 
relationship between their emotional states, experiences, and performance. Further-
more, it can clarify whether the stress response was a motivating factor coupled with 
engagement or a contributor to frustration that slowed down their progress during the 
activity (d’Anjou et al., 2019). While these visions may appear contradictory, they reflect 
a complex classroom ecology that is amenable to effective support through the tailored 
application of the LAD (Graesser, 2020; D’Mello et  al., 2014). These affordances reso-
nate with implications from Holstein et al. (2018) on the importance of granting a high 
degree of information interpretability (Holstein et al., 2019). In our case, teachers could 
contextualize the LAD’s feedback within the classroom culture without interfering with 
their situational understanding (An et al., 2020). This interpretive flexibility empowered 
facilitators to decide on the optimal timing and approach for interventions, respecting 
students’ individual pacing in their creative processes, minimizing unnecessary inter-
ruptions (Sung et  al., 2023). Ultimately, this balance between data-driven insights and 
contextualized pedagogy can foster a more holistic approach to orchestration.

We posited our design on two premises: first, that feedback-displaying LADs can sig-
nificantly inform instructional decisions (Martinez-Maldonado, 2019; Holstein et  al., 
2019; Van Leeuwen et al., 2015; Bao et al., 2021), and second, that pertinent feedback 
does not inherently depend on traditional performance metrics (Sedrakyan et al., 2020). 
Our results support that alternative indicators such as biomarkers and facial data can 
suffice in interpreting students’ SRL processes, provided their display is comprehensive 
(Pozdniakov et al., 2023; Martinez-Maldonado et al., 2020). Specifically, the freedom in 
customization through on-demand content selection (i.e., which state(s) to display on 
the LAD) gave teachers a finer-tuned awareness of how specific affective states influence 
students’ learning processes. A set of measurements capturing both positive and nega-
tive affective responses afforded this insight, balancing the approach to the diverse emo-
tions that arose during open-ended programming tasks (Sung et al., 2023). Interestingly, 
a teacher noted that only a few combined measurements might be adequate for this com-
prehension (Sharma et al., 2022), thereby reducing cognitive effort during the activity’s 
facilitation (Sedrakyan et  al., 2020). This closely relates to visualization literacy, which 
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remains challenging to address in the LA community for seamless incorporation into 
authentic contexts (Pozdniakov et al., 2023). Faulty communication between the system 
and the user inevitably undermines effective interaction, and the LAD’s contextual value 
becomes difficult to grasp. In our validation, insights from engaged facilitators suggest 
a promising outlook from a usability perspective, despite their low self-reported knowl-
edge of digital tools. The LAD’s minimal visual clutter enabled straightforward interpre-
tation, reducing cognitive load for acting on the information displayed (Sedrakyan et al., 
2020). Moreover, employing terminology and visual elements familiar to teachers (e.g., 
utilizing terms such as “anger” or “sadness” for affective states) proved beneficial, as it 
ensured a direct correlation between what was being measured and its manifestation in 
the classroom (e.g., high heart rate visualized as a high-stress indicator) (Kasepalu et al., 
2022).

Overall, learning footprints were made visible to teachers through the LAD to coun-
teract a poor awareness of students’ workflows (Dillenbourg et  al., 2011). Yet, it also 
prompted changes in teachers’ behaviour, promoting the "wandering facilitator" strat-
egy. As described by Tissenbaum and Slotta (2019), a wandering facilitator is a teacher 
who, instead of leading from the front, supports collaborative learning by moving among 
individual students or teams. Because these facilitators need to take physical action in 
the classroom, they may be unable to remain fixed in front of the LAD (Giannakos et al., 
2020). Therefore, visualizing the classroom at different granularities, coupled with its 
simple red-green color coding for signaling, proved instrumental in identifying strug-
gling groups, preventing unsubstantiated assumptions, and guiding interventions, all 
while leaving room for facilitators’ subjective interpretation during intervention (Li 
et al., 2020; d’Anjou et al., 2019; Schwendimann et al., 2016).

LADs under scrutiny: addressing privacy, control, and over‑reliance on data

Despite positive feedback on the LAD’s usability, challenges emerged that informed 
our response to RQ2. Firstly, digital literacy appears to be an unavoidable requirement 
at this stage to, for instance, verify proper device functioning throughout the activity. 
Moreover, managing the infrastructure and handling troubleshooting may all require 
more than one facilitator on-site. Aside from proper technology orchestration, digital 
literacy is essential to correctly inform students about the procedure (Lee-Cultura et al., 
2023). In fact, students may distrust the data collection process if they perceive teachers 
as lacking confidence, understanding, or clarity in explaining the LAD technology. Effec-
tive communication is a crucial enabler for students to become active participants in the 
learning process rather than merely passive data providers (Giannakos et al., 2020).

The facilitators’ acceptance of LAD was high, as it augmented their presence in 
the educational environment (An et  al., 2020). Still, a common skeptical sentiment 
emerged from the interview insights. Since they know their learners best, facilitators 
worry that full delegation of monitoring responsibilities to a machine-based moni-
toring system could be unsuitable. This position aligns with An et al. (2020) work on 
the delicate balance between teacher autonomy and orchestration automation, where 
over-reliance on computed outcomes risks reducing a teacher’s role to that of a mere 
executor (An et al., 2020). In our case, it was reassuring that teachers wished to col-
laborate with technology without being put on the sidelines, since the proposed LAD 
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asks for active mediators who elaborate on the information accessed. We observed 
positive commentaries, such as the automation of student state detection, which 
boosted teacher confidence (Bao et al., 2021) and validated their hypotheses in mul-
tiple instances. This approach maintained facilitators’ freedom to practice according 
to their pedagogical beliefs without forcing them into practice changes. According 
to them, while occasional faults may occur in LADs, the “severity” of consequences 
largely depends on the facilitator’s understanding of and reliance on these systems. 
On this count, a teacher also expressed low concern for data accuracy, explaining that 
a layer of human mediation should always be present (Sharma and Giannakos, 2021). 
In fact, inaccuracies would inevitably distort events. Therefore, the teacher’s critical 
thinking should always be maintained in decision-making to mitigate machine errors 
(Lee-Cultura et al., 2023). Going back to existing research (Holstein et al., 2019; van 
Leeuwen And Rummel, 2022), this insight of ours corroborates instructors’ willing-
ness to remain in charge of the system and not be data-dependent. Further steps to 
build effective reliance on LADs shouldn’t aim to transfer authority from the teacher 
to the machine for blind trust. Instead, they should seek to achieve stronger align-
ment with the context and greater clarity in the displayed content to support teachers’ 
professional judgment. This concept is recurrent in the learning design and HCI fields 
and closely relates to the importance of situational factors when inquiring about SRL 
(Järvenoja et al., 2018). For example, phases involving affective states often perceived 
as negative (e.g., stress and confusion) are expected during SRL processes (Pekrun, 
2011). However, they might lead to unnecessary assistance if feedback is poorly con-
textualized, especially in open-ended and collaborative activities that follow construc-
tivist principles (Possaghi et al., 2024; Sung et al., 2023).

As observed in previous studies (Jones et  al., 2020; Gao et  al., 2020; Sung et  al., 
2023; Mangaroska et  al., 2021), “data surveillance” is a concern for both facilitators 
and students’ perspectives alike. In limited instances, students reported feeling ever 
monitored, leading to increased pressure and reduced sense of autonomy. While 
some students were uncomfortable with the presence of cameras mounted on the 
PC, this discomfort stemmed not from image acquisition itself, but from their use 
in the classroom setting (Sharma et  al., 2022). This point is critical to elaborate on, 
as the organic nature of in-team dynamics may diminish if students feel compelled 
to uphold a facade of “seriousness”, concerned that their informal interactions will 
be scrutinized or judged (Giannakos et  al., 2020; de  Arriba-Pérez et  al., 2017). The 
correlation between students’ questionnaire responses regarding their feelings and 
their perceptions of wearing a wristband or being recorded by the camera did not 
reveal any remarkable patterns of negative experiences. Interestingly, a link exists 
between perceiving the activity as “fun” and feeling bothered by teachers’ access to 
their emotions via LAD. This suggests that “having fun” may have made students 
more conscious of the teacher’s observational capabilities, thereby connecting 
stronger emotional expression with greater awareness of surveillance, accompanied 
by a slight sense of discomfort. Our system, however, did not capture student images 
or broadcast any footage to the facilitator as it focused solely on mapping emotional 
states. In retrospect, clarifying this distinction would have alleviated concerns and 
dispelled misconceptions about intrusive technology (Sharma and Giannakos, 2021; 
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Sharma et al., 2022). This might also explain why we observed differences in students’ 
acceptance of cameras versus wristbands from the questionnaire’s results. In fact, 
wristbands were highly tolerated, likely because teachers spent more time explain-
ing their purpose and data collection, given their novelty as classroom tools. As such, 
transparent communication about the role and function of orchestration technologies 
should parallel efforts in technology integration, thereby preserving authentic learn-
ing dynamics (Giannakos et al., 2020).

Finally, the employment of LADs can be argued to contribute to the further centrali-
zation of the teacher’s role (Morrison, 2014). This inherently creates friction with con-
structivist learning approaches that posit learners as the core of educational experiences. 
We aimed to balance the “sage on the stage” archetype by keeping the facilitator unob-
trusive (intervening only when necessary) while also preventing a detached monitoring 
role (An et al., 2020). Therefore, it’s crucial to conceptualize LAD use as a touchpoint: 
aligning the facilitator’s perspective with students’ experiences, enhancing proximity to 
their learning journeys, and dispelling ambiguity about their learning. Overcoming this 
tension is essential in building a connection founded on learning process transparency, 
rather than fostering detachment.

Considerations for LAD design

From our study, we applied an MMD approach that reinforces models of learning (Cuku-
rova et al., 2020) based on children’s responses. Ethical concerns, technical competence, 
and usability are the three main factors drawn from our results that overlap with existing 
literature. As pointed out by Shibani et al., the engagement of teachers in the loop can 
result in design materials that are potentially applicable to future projects (Shibani et al., 
2020). To answer our RQ3, we now present several implications for overcoming scale-
down hurdles when designing LAD systems for authentic environments: 

1.	 Greater practitioner involvement in the design process can enhance the ability of the 
LAD system to be authorable (Martinez-Maldonado, 2023; Verbert et al., 2020).

2.	 Prioritizing customizable affordances in the LAD system to mitigate the sense of 
technology overshadowing the human practice, fostering a feeling of teacher agency 
(Shibani et  al., 2020). For example, define the level of LAD’s automation for the 
degree of human and machine-driven assessment and facilitation decisions (Sailer 
et al., 2024).

3.	 Leveraging real-world interventions as a context for validating and generating empir-
ically-driven design insights relevant to the classroom ecology (Susnjak et al., 2022).

4.	 Cultivating usability enhances the effectiveness of LADs as a touchpoint between 
stakeholders and as a tool for transversal communication and interpretation (Verbert 
et al., 2020; De Vreugd et al., 2024).

5.	 Given the increasing involvement of LADs in Child-Computer Interaction, ethi-
cal considerations on data handling and privacy should be prioritized as part of the 
user-centered design process (Crescenzi-Lanna, 2020; D’mello and Graesser, 2010; 
Sharma and Giannakos, 2021).
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Limitations and future work
While opportunities for in-class LAD use are promising, it is important to acknowl-
edge and elaborate on our study’s limitations to guide future research. We focused 
on the iterative design and validation of a teacher-facing LAD, specifically from the 
facilitators’ perspective, within an authentic environment. However, we recognize the 
deployment as confined to a single school setting and a narrow group of teachers. 
For a more nuanced account of the LAD’s effectiveness in classrooms, future inter-
ventions should broaden participant cohorts, expand the context of use, and extend 
the temporal scope to organize an extensive longitudinal investigation. This would 
facilitate deeper case analysis (e.g., interaction patterns over time). Despite the avail-
ability of sensor data, our analysis was based solely on qualitative impressions from 
teachers and quantitative questionnaires from students. This decision aligns with our 
RQs, prioritizing human-centered feedback for our LAD’s first validation in-the-wild. 
Nevertheless, valuable insights remain derivable from the collected MM data. For 
instance, it would be of particular interest to achieve a comparative understanding 
between MM data with self-assessment measures (e.g., self-reported stress) provided 
by students regarding their learning experience (Giannakos et  al., 2020). Shortcom-
ings of Spearman’s rank correlations are also worth addressing. First, the correlations 
found indicate associations without implying causal relationships. Second, our small 
sample size introduces statistical power caveats (e.g., limited generalizability), mak-
ing it harder to confirm the stability of findings. To counteract this, future studies can 
address larger student samples and further supplement correlations with qualitative 
insights.

As reported as a logical implication of our user-centered workflow, we built a 
descriptive system complete with signaling. There is potential for further automa-
tion, such as implementing time-stamped emotional indicators to access a high-level 
view of students’ progression (Sedrakyan et  al., 2020; Gao et  al., 2020; Papamitsiou 
et al., 2020). Moreover, future research direction could entail designing a prescriptive 
system, namely LADs, capable of giving inputs based on computed data or a predic-
tive system able to foresee students’ states based on the collected information. This 
would grant timely intervention before students reach, for example, a state of high 
stress. Closely related, the embedment of Artificial Intelligence (AI) is the next step 
to allow further automatization of data computation, potentially decreasing human 
bias by relying on automated threshold settings, depending, for example, on students’ 
affective patterns. Even if AI can communicate with teachers proactively, foreseeing 
students’ emotional states, it is not a choice exempt from challenges. Among the oth-
ers, lack of transparency can fuel further mistrust if LA is deployed as black boxes 
(Susnjak et  al., 2022; Spikol and Cukurova, 2020). Finally, our in-the-wild interven-
tion employed a project-based, open-ended learning activity, contrasting with the 
predominantly linear approaches that can be easily observed in the literature for LAD 
validation (Giannakos et al., 2020). This contribution can be a foundational perspec-
tive for further developing monitoring techniques tailored to constructionist experi-
ences within a real classroom, especially if augmented by learner input. Furthermore, 
drawing upon relevant work in the field (e.g., Silvola et  al. in higher education (Sil-
vola et al., 2021)), actively engaging students as equitable collaborators in the design 
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process would ensure comprehensive consideration of all stakeholder perspectives. 
Moreover, including students “in the loop” would raise their ownership over learning 
journeys in light of, for example, data privacy (Sharma and Giannakos, 2021; Sharma 
et al., 2022).

Conclusion
The progressive pervasiveness of technology opens up exciting opportunities for the 
digitalization of supportive systems. Inspired by the feasibility of MM measurements 
and sensors and their underrepresentation in empirical K-12 research (Holstein et al., 
2018; Susnjak et  al., 2022), we developed a real-time LAD system designed to help 
teachers reduce their orchestrational cognitive load. We followed a user-centered 
approach, involving stakeholders since the early phases of our design journey. Our 
contribution validates the feasibility of a descriptive LAD in an authentic in-school 
environment, grounding this position in teachers’ and educational researchers’ 
insights to advance educational ecosystems toward greater “smartness” (Giannakos 
et al., 2020). However, despite the overall acceptance of the system, concerns regard-
ing privacy, teacher digital literacy, and technology management highlight areas for 
improvement. We can further advance in the field, granting an even better experience 
to students if practitioners, particularly teachers, are positioned as key facilitators for 
the broader and more effective deployment of LADs.

Appendix A
See Tables 6, 7, 8, and 9.
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Table 6  Guidelines derived from reviewing the literature

Papers Guideline

 Giannakos et al. (2020, 2019); Gao et al. (2020); Manga-
roska et al. (2020); Giannakos et al. (2022)

MMLA offers a valuable opportunity to explore students’ 
learning experiences,
enhance their SRL, and assist teachers in this endeavor

 Lee-Cultura et al. (2021); Papamitsiou et al. (2020); 
Giannakos et al. (2022); de Arriba-Pérez et al. (2017); 
Gao et al. (2022)

LA addressing physiological and affective metrics can 
assess learners’ experience
more holistically, inform tailored guidance, and increase 
awareness of students’
response to the environment they are immersed in

 Gao et al. (2020); Papamitsiou et al. (2020); Giannakos 
et al. (2022); de Arriba-Pérez et al. (2017); Giannakos 
et al. (2020)
 Sharma et al. (2022); Fortenbacher and Yun (2020); 
Sharma et al. (2022)

LA analyzing heart rate and skin response data is effec-
tive in mapping stress
and emotional engagement as measurements

 Emerson et al. (2023); Papamitsiou et al. (2020); Liu 
et al. (2018); Giannakos et al. (2022); de Arriba-Pérez 
et al. (2017)

Facial recognition technology using cameras is effective 
in capturing certain
affective states, such as boredom, by decoding facial 
expressions

 Sung et al. (2023) Negative affective states, as well as positive ones, should 
not be overlooked in
data gathering to capture a more comprehensive spec-
trum of student experiences

 Sedrakyan et al. (2020); Gao et al. (2020); Papamitsiou 
et al. (2020); d’Anjou et al. (2019); Giannakos et al. 
(2022, 2020); Mangaroska et al. (2021)

Data gathering, analysis, and feedback from orchestra-
tion technologies (e.g., LADs)
should be time-reliant to ensure clear pinpointing of 
events and timely facilitators’
intervention

 Gao et al. (2020); Sung et al. (2023); de Arriba-Pérez 
et al. (2017)

Students’ monitoring and data collection via sensors 
should not be perceived as
limiting or intrusive to their experience

 Sedrakyan et al. (2020); Giannakos et al. (2020); Man-
garoska et al. (2021); Martinez-Maldonado et al. (2020)

End-user acceptance towards orchestration technolo-
gies (e.g., LADs) should
be iteratively cultivated and informed by stakeholders’ 
insights

 Sedrakyan et al. (2020) Avoid providing excessive feedback (e.g., too frequent or 
overly detailed),
as it may lead to content overload. Mitigate this risk by 
introducing user control

 Li et al. (2020); Giannakos et al. (2020) The possibility of changing the granularity of informa-
tion displayed by the LAD
(e.g., individual level, class level) improves educators 
awareness

 d’Anjou et al. (2019); Giannakos et al. (2020) Orchestrational technologies (e.g., LADs) should lever-
age facilitators’
awareness and decision-making without burdening 
cognitively

 d’Anjou et al. (2019); Holstein et al. (2019); Martinez-
Maldonado et al. (2020)

Orchestrational technologies (e.g., LADs) should detain a 
high degree of interpre-
tability to encourage facilitators’ own intuitions

 Giannakos et al. (2022); d’Anjou et al. (2019) Deploying orchestrational technologies (e.g., LADs) in 
real-world settings is essential
to ensure their convenience, accuracy, and seamless 
usability within the context

 Giannakos et al. (2022); Fortenbacher and Yun (2020); 
Mangaroska et al. (2021); Martinez-Maldonado et al. 
(2020)

Orchestration technologies (e.g., LADs) should be 
designed to maintain data privacy
at the forefront to achieve accountability in educational 
venues

 Yan et al. (2023); Giannakos et al. (2020); d’Anjou et al. 
(2019)

The design method for Orchestrational technologies 
(e.g., LADs) should be context
dependent from the early stages
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SRL	� Self-regulated learning
LA	� Learning analytics
MM	� Multi-modal
LAD	� Learning analytics dashboard
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Table 7  Shapiro–Wilk normality test results for the set of items (a) 

W statistics and p-values are reported, indicating significant departures from normality ( p < 0.05 , marked with *)

Shapiro–Wilk test Item 1 Item 2 Item 3 Item 4 Item 5 Item 6

W 0.88 0.90 0.86 0.88 0.85 0.90

p-value 0.0003* 0.0012* 7.1e−5* 0.0002* 4.3e−5* 0.0009*

N ? ¬N ¬N ¬N ¬N ¬N ¬N

N of answers 44 44 44 44 44 44

Table 8  Shapiro–Wilk normality test results for the questionnaire’s set of items (b) 

W statistics and p-values are reported, showing significant departures from normality ( p < 0.05 , marked with *)

Shapiro–Wilk test Item 7 Item 8 Item 9 Item 10

W 0.85 0.92 0.88 0.78

p-value 0.0005* 0.017* 0.0022* 2.1e−5*

N ? ¬N ¬N ¬N ¬N

N of answers 32 32 32 32

Table 9  Shapiro–Wilk normality test results for the questionnaire’s set of items (c) 

W statistics and p-values are reported, showing significant departures from normality ( p < 0.05 , marked with *)

Shapiro–Wilk test Item 11 Item 12 Item 13

W 0.75 0.88 0.90

p-value 2.3e−7* 0.0003* 0.0010*

N ? ¬N ¬N ¬N

N of answers 44 44 44
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