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Multimodal sensor dataset from 
vehicle-mounted mobile mapping 
system for comprehensive urban 
scenes
Shengyu Lu   1,2, Sheng Bao   1,2, Wenzhong Shi1 ✉, Yitao Wei1, Shuyu Zhang1 & Daping Yang1

Mobile mapping is the research trend in the mapping field due to its superior time efficiency compared 
to traditional fixed mapping methods. It is an important digital base for numerous applications, such 
as high-definition (HD) maps, digital twins, smart cities. However, most mobile mapping datasets 
are based on portable platforms, such as backpacks and robotics, leading to insufficient research on 
large-scale mobile mapping and autonomous driving. To change the status quo, a multimodal sensor 
dataset from a vehicle-mounted mobile mapping system for comprehensive urban scenes (MSD-
VMMS-HK) is provided. It has rich, high-precision, and large-scale multimodal sensor information, 
including high-precision (millimeter-level) light detection and ranging (LiDAR), the panoramic camera, 
and GNSS/INS. The MSD-VMMS-HK dataset features a wide variety of scenarios in Hong Kong, which 
is a representative urban area with diverse and comprehensive challenging urban scenes like mountain 
tunnels, cross-harbour tunnels, urban canyons, mountain and seaside roads. It is the first urban-level 
comprehensive urban scenes dataset that provides high-precision references for the validation of point 
clouds and image processing. Additionally, examples of various applications of the dataset, such as 
accurate mapping of urban canyons, urban infrastructure management and maintenance, and change 
detection, are provided to facilitate reference by the academic community.

Background & Summary
Mobile mapping technology1 integrates measurement techniques with mobile platforms to acquire and analyze 
geographic information and environmental data. By equipping sensors and measurement devices on mobile 
platforms, this technology has widespread applications in various fields, including navigation systems, map 
creation2,3, and urban planning. The advancement of mobile mapping technology has significantly improved 
the accuracy, real-time capabilities, and comprehensiveness of geographic information and environmental data, 
encompassing terrain, landforms, buildings, and roads. Notably, the dataset generated by mobile mapping sys-
tems plays a pivotal role in advancing research in the field. Over the past decade, many known datasets such as 
Ford Campus dataset4, ISPRS MIMAP5, UrbanNav dataset6, and PolyU-BPCoMa7 have been released to provide 
a standard algorithm benchmark and keep benefiting the mobile mapping community.

Mobile mapping systems (MMS) encompass a range of forms, including handheld devices, backpack devices, 
boats, vehicles, and robots (unmanned aerial vehicles (UAVs), unmanned ground vehicles (UGVs), and Legged 
robots8). Among various types of mapping systems, the MMS stand out with its high accuracy 3D point cloud 
data and high-dynamic-range images, as well as its wide range of application prospects. However, most mobile 
mapping datasets based on portable platforms, such as backpacks9 and robotics10, are limited in terms of the 
quantity of sensor data, the scale of measurement scenarios, and outdated in content. The vehicle-mounted 
mobile mapping systems provide a good solution to the inability to collect high-precision data for large scenes, 
by integrating cutting-edge technologies such as high-precision LiDARs, high dynamic range (HDR) panoramic 
cameras, Global Navigation Satellite System (GNSS), and inertial navigation systems (INS), however, the high 
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cost of the system limits its accessibility and results in a scarcity of high-quality vehicle-mounted mobile map-
ping datasets.

Regarding the limitations of existing vehicle-mounted mobile mapping datasets for research and appli-
cations, there are numerious challenges to be addressed. In available datasets, there is a notable shortage of 
single-line LiDAR mapping datasets for indoor environments or poor GNSS signals environments, such as park-
ing lots, mountain tunnels, cross-harbour tunnels, urban canyons11 and mountain roads. The dataset for indoor 
parking lots holds significant importance for applications such as intelligent parking systems and indoor nav-
igation12. Nevertheless, due to the enclosed GNSS-denied environments and degraded scenarios of mountain 
tunnels and cross-harbour tunnels, data collection and mapping become increasingly challenging13. One of the 
main challenges involves maintaining positioning accuracy and sensor reliability in such closed environments. 
As a result, acquiring and ensuring the accuracy of vehicle-mounted mobile mapping datasets for indoor envi-
ronments still presents challenges.

Recognizing these gaps and challenges, the MSD-VMMS-HK database is motivated to be provided, to 
address this lack of information and provide valuable insights into the field of vehicle-mounted mobile map-
ping. A comprehensive vehicle- mounted mobile mapping system dataset is introduced in this paper, which 
encompasses a diverse range of scenes, including cross-harbour tunnels, mountain tunnels, campus roads, 
urban expressways, urban canyons, highways, and indoor parking lots. This dataset holds immense value for 
both research and practical applications. The vehicle-mounted platform is equipped with cutting-edge sensors, 
including a 128-channel Velodyne VLS-128, Riegl VUX-1HA, Ladybug5+, and NovAtel SPAN CPT7. Notably, 
all these sensors have undergone time synchronization, ensuring superior sensor synchronization performance 
compared to datasets without such synchronization.

Most vehicle-mounted mobile mapping datasets rely on GNSS or Inertial Navigation System (INS) fusion 
to provide ground truth. While GNSS ensures global consistency within the absolute world coordinate system, 
the resultant real-world trajectory lacks local accuracy due to the factors like satellite signal loss or reacquisition. 
This is particularly evident in non-exposed spaces such as indoor environments, tunnels, and densely built 
urban canyons14. For instance, the KITTI15 dataset’s odometry benchmark excludes evaluations at length scales 
below 100 meters to avoid this issue. To address these challenging scenarios, a GNSS + INS + Simultaneous 
Localization and Mapping (SLAM) approach has been implemented, which optimizes the GNSS odometry and 
the LiDAR odometry by factor graph to obtain the optimized odometry, and the experiments prove that this 
method significantly improves the positioning accuracy in the non-exposed space.

The primary contributions of this paper are as follows:

	 1.	 A comprehensive urban multimodal mobile mapping dataset MSD-VMMS-HK is provided. This dataset 
encompasses a wide range of scenarios, especially non-exposed spaces and GNSS-challenged spaces such 
as mountain tunnels, cross-harbour tunnels, urban canyons, parking lots, mountain and seaside roads. It 
provides researchers with valuable data for various applications in these fields.

	 2.	 Full-element perception sensor equipments. This dataset comprises 2 TB of cutting-edge sensor data, 
including 128- channel LiDAR, single-line LiDAR (millimeter-level accuracy), panoramic imagery, GNSS/ 
inertial navigation system (INS) data. All sensors have undergone time synchronization.

	 3.	 A benchmark is provided to evaluate the mapping accuracy for a multimodal vehicle-mounted mobile 
mapping system. Besides, a variety of sample applications are introduced to inspire how to use this dataset.

In conclusion, we provide the academic community with a multimodal, high-precision, multi-scenario, 
application-rich in-vehicle-mounted mobile mapping dataset to contribute to the research in the field of mobile 
mapping, which also near-field applications such as SLAM, localization, autonomous driving, and point cloud 
processing.

Methods
In recent years, the development of mobile mapping technology and the rise of autonomous driving research 
have led to the emergence of a multitude of vehicle-mounted mobile mapping datasets16. Previously, localization 
and mapping datasets were primarily focused on environments involving robots17 or small-scale vehicles18, with 
particular emphasis on indoor or controlled outdoor scenes. However, the increasing progress in autonomous 
driving and intelligent transportation systems has created a growing demand for vehicle-level localization and 
mapping datasets. Consequently, the latest datasets have shifted their focus towards encompassing a wider range 
of road and traffic scenarios, including urban roads, highways, and complex urban environments. These datasets 
offer more challenging scenes, enabling researchers to assess and enhance the performance of vehicle localiza-
tion and mapping algorithms.

Furthermore, modern datasets are not limited to localization and mapping, but provide valuable support for 
a variety of downstream tasks. While traditional datasets were primarily used for evaluating localization and 
mapping algorithms, the datasets now offer extensive annotation information. This includes object detection19 
and tracking, semantic segmentation, road segmentation20. Such comprehensive annotations allow researchers 
to explore multiple tasks using a single dataset, fostering cross-domain collaboration and driving innovation.

Here the MSD-VMMS-HK dataset is proposed, a comprehensive multimodal urban sensing resource.In the 
following sections, an overview of vehicle-mounted mobile mapping datasets is provided, focusing on datasets 
designed specifically for localization and mapping, as well as those tailored for autonomous driving applications.

The vehicle-mounted data acquisition platform.  The data acquisition platform is a mobile mapping 
vehicle developed by our team, which is shown in Fig. 1. The platform integrates a 128-channel LiDAR Velodyne 
VLS-128 with accuracy of 3 cm. A single-line LiDAR, namely the Riegl VUX-1HA, whose accuracy is up to 3 mm. 
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It is also equipped with a Ladybug5+, a 6-lens panoramic camera with outstanding image quality. The NovAtel 
SPAN CPT7, a high-performance GNSS positioning and Inertial INS system with accuracy of centimeter-level 
and output frequency up to 100 Hz, is mounted on the platform. The extrinsic parameters between the GNSS/INS 
and LiDAR are calibrated using the method21.

Sensors.  The vehicle-mounted mobile mapping system is a sophisticated integrated system comprised of mul-
tiple key components and sensors. Below, the basic architecture of the vehicle-mounted mobile mapping system 
is enumerated and its key sensors and devices are highlighted:

Velodyne VLS-128: The Velodyne VLS-128 is a long-range 3D LiDAR sensor. The detection range is up to 
300 m with 3 cm typical range accuracy. Its 128-channel laser beams provide [−25 degree, +15 degree] vertical 
and 360 degree horizontal field of views (FOVs). It can collect 2,300,000 points per second in the single return 
mode.

Riegl VUX-1HA: The Riegl VUX-1HA High Accuracy kinematic LiDAR sensor is a high speed, non-contact 
profile measuring system using a narrow laser beam and a fast line scanning mechanism, enabling full 360 
degree beam deflection. The Riegl VUX-1HA is a single-line LiDAR, whose accuracy is up to 3 mm. The scan 
speed of Riegl VUX-1HA is up to 250 and can take up to 1,800,000 measurements per second.

FLIR Ladybug5+: The Ladybug5+ is a 360 degree spherical camera which provide 30 Megapixels 
(2464 × 2048 × 6) image resolution with a 3.45 m pixel size and a 12-bit analog-to-digital converter. And the 
camera operates in the readout manner of global shutter. In this dataset, Ladybug5 + directly outputs stitched 
panoramic images from the six lenses at 8192 × 4096@15 Hz FPS.

NovAtel SPAN CPT7: A high-performance GNSS positioning and INS system. The NovAtel SPAN CPT7 
integrates a GNSS receiver that receives signals from GPS, GLONASS, Galileo, and other global positioning 
satellites for precise vehicle positioning information. And the performance parameters of the GNSS receiver 
include positioning accuracy, positioning velocity, and signal reception sensitivity. The NovAtel SPAN CPT7 
also integrates an INS to provide more precise positioning and attitude information. The INS utilizes sensors 
such as gyroscopes and accelerometers to measure the vehicle’s acceleration, angular velocity, and directional 
changes, enabling estimation of the vehicle’s position and attitude. Performance parameters of the INS include 
attitude accuracy, acceleration measurement accuracy, and angular velocity measurement accuracy. Fusing 
GNSS and INS data enables the NovAtel SPAN CPT7 to provide centimeter-level accuracy with output frequen-
cies up to 100 Hz.

The Time Synchronization.  The time synchronization functionality of sensors during data acquisition is essen-
tial to improve the accuracy of data fusion between sensors. It is worth mentioning that in our dataset, the 
timestamps of all sensors have been synchronized, including the Velodyne VLS-128, Riegl VUX-1HA, and 
Ladybug5+, with the GPS time of the NovAtel SPAN CPT7.

By utilizing the Pulse Per Second (PPS) time synchronization functionality, nanosecond level precision in the 
time differences between different sensors’ data can be achieved22. However, using the Robot Operating System 
(ROS) time on the computer as the time reference for the sensors, the time synchronization accuracy between 
the sensors is about 100 microseconds23. This level of synchronization would create difficulties in aligning data 
from sensors operating at different frequencies, such as the Riegl VUX-1HA with a 250 Hz working frequency 
and the NovAtel SPAN CPT7 with a 100 Hz working frequency. Non-alignment introduces systematic errors 
that affect the accuracy of sensor data fusion as well as the accuracy of localization and mapping. Therefore, it is 
crucial to synchronize the timestamps of all sensors. By ensuring accurate time synchronization of sensor data, 
a higher quality dataset is provided, offering a more reliable foundation for autonomous driving and localization 
and mapping research.

Fig. 1  Sensor positioning of the data acquisition platform. The sensor configuration combines LiDAR, 
panoramic cameras, and GNSS/INS for comprehensive data collection.
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Calibration.  The vehicle-mounted mobile mapping system was implemented with rigorous geometric cali-
bration during installation to ensure measurement consistency and system reliability. As illustrated in Fig. 1, 
the Ladybug5+, Velodyne VLS-128, and NovAtel SPAN CPT7 sensors are all horizontally positioned, with 
their centers aligned along the same axis, differing only in height. Specifically, the height difference between 
Ladybug5+ and NovAtel SPAN CPT7 is 462.0 mm, while the height difference between Velodyne VLS-128 and 
NovAtel SPAN CPT7 is 277.0 mm. And the Riegl VUX-1HA sensor is inclined and positioned with a horizontal 
tilt angle of 15°. The vertical and horizontal distances between the Riegl VUX-1HA and NovAtel SPAN CPT7 
are 107.8 mm and 270.3 mm, respectively. These parameters can be used to calibrate the sensors after the relative 
positions of all the sensors have been measured.

After performing initial coarse calibration of the sensors, the further calibration has been conducted using 
calibration algorithms for the Ladybug5+ and Velodyne VLS-128. Through experimental validation, we con-
firmed that the calibration accuracy of all sensors meets the required standards. By calibrating the system, the 
accurate relative positions and orientations between the sensors can be obtained, enabling precise data align-
ment and fusion. This is crucial for subsequent tasks such as localization and mapping, and environment per-
ception. The accuracy of system calibration ensures data consistency and reliability, providing a solid foundation 
for the applications.

Data Records
The vehicle-mounted mobile mapping system dataset encompasses a wide range of scenarios, especially 
non-exposed spaces such as mountain tunnels, cross-harbour tunnels, urban canyons, and parking lots. Prior 
to data collection, it is vital to plan the collection path. Path planning should take into account the efficient and 
complete collection of data, the selection of representative scenarios, and the requirements for path length.

For the urban road environments, the prominent Central District in Hong Kong was selected as it is char-
acterized by towering buildings, which can pose challenges due to limited sky view obstructing GNSS signals. 
This, in turn, affects the mapping accuracy and presents an interesting scenario for analysis. Tunnels, due to their 
enclosed nature, experience extended periods without GNSS signal reception and often exhibit reduced scene 
complexity, making mapping using SLAM methods challenging. To address this, the data from both moun-
tain tunnels and cross-harbour tunnels has been collected to create a diverse dataset for researchers to use. 
Indoor parking lots were also selected as representative areas for mapping. The lack of GNSS signal reception in 
these indoor environments makes it challenging to rely primarily on LiDAR and IMU data for localization and 
mapping.

In summary, the data collection paths in this dataset encompass various significant locations, which is shown 
in Fig. 2, including Central District, Tsim Sha Tsui, Cross-Harbour Tunnel, Eastern Harbour Crossing, Western 
Harbour Crossing, Ho Man Tin, Fat Kwong Street, How Ming Street, Hong Kong High Speed Way, Stubbs Road, 
Wan Chai Bypass, Western Kowloon, The Hong Kong Polytechnic University on-campus parking lot, Hong 
Kong Science Park and Tate’s Cairn Tunnel. It is worth mentioning that the data collection paths in Central 
District encompass multiple temporal acquisitions, including Central District, Central District_2, and Central 
District_3, captured respectively on December 5, 2023; July 25, 2024; and September 19, 2024. The distinct vari-
ations in building facades, road infrastructure, vehicular traffic, and pedestrian flow among these three datasets 
render them highly suitable for change detection analysis. The Table 1 provides specific details on capture length, 
acquisition time, and data obtained from Panoramas, Velodyne VLS-128, and Riegl VUX-1HA for partial data 
collection paths.

Data structure.  The data types within a dataset are crucial for application domains. The more diverse 
the data types in a dataset, the higher the potential for cross-domain applications. It’s worth noting that the 
vehicle-mounted mobile mapping system dataset in this paper primarily comprises four types of data: point 
cloud, IMU data, GNSS data, and panoramic images, shown in Fig. 3.

Point cloud data is further divided into point cloud data from the 128-channel Velodyne VLS-128 LiDAR 
and point cloud data from the single-line Riegl VUX-1HA LiDAR. The point cloud data from Velodyne VLS-
128, namely Velo- dyne_Points/Points.bag. Acquired through the horizontally mounted laser scanner, repre-
sents a collection of three-dimensional coordinate points that depict the geometric shape and structure of the 
surrounding environment. This point cloud collection can be utilized for mapping, localization, object recogni-
tion and classification, semantic segmentation. This paper focuses on the application of the 128-channel LiDAR 
point cloud for aiding in localization and mapping in areas with poor GNSS signal reception.

The point cloud data from Riegl VUX-1HA, obtained through a tilted laser scanner, also represents a col-
lection of three-dimensional coordinate points, namely Riegl_Points/Points.csv. And the scan data and map-
ping data are supplied as Riegl_Points/Scans, Riegl_Points/Mapping, respectively. This point cloud is able to be 
employed for mapping, and the generated point clouds can be utilized for object recognition and classification, 
semantic segmentation, creation of colored point clouds. In this paper, the utilization of single-line LiDAR point 
cloud for mapping and semantic segmentation is mainly discussed.

Panoramic image data is captured using the Ladybug5+ panoramic camera, which captures 360-degree pan-
oramic images. The raw data captured by the Ladybug5 + (i.e. Ladybug.pgr) and GPS information for each 
image (i.e. Lady- bug_frame_gps_info.txt) is provided. These data provide detailed visual information and can 
be used to colorize the point clouds. Additionally, the images captured by the Ladybug5+ panoramic camera can 
also be applied in applications such as object detection and semantic segmentation.

IMU data and GNSS data are acquired through the NovAtel SPAN CPT7, providing three-axis attitude data 
and GNSS positioning data. The Riegl VUX-1HA point cloud data is precisely mapped using the data from 
NovAtel SPAN CPT7. GNSS and IMU data are additionally stored in.txt files. For GNSS data, both WGS84 and 
local ENU coordinates are provided with a corresponding timestamp and a covariance matrix. The covariance 
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Fig. 2  Recording Zone. This figure shows the GPS traces of our recordings in the MSD-VMMS-HK dataset.  
(a). the GPS traces of the Hong Kong Hung Hom cross-harbour Tunnel, Western District cross-harbour Tunnel, 
Central District, (b). the GPS traces of Tsim Sha Tsui, (c). the GPS traces of Ho Man Tin, (d). the GPS traces of 
Tate’s Cairn Tunnel, and Science Park, where the green triangle in each image indicates the start of the track and 
the red circle indicates the end.

Environment Length
Acquisition 
time

Panoramas 
(frame)

Velodyne VLS-128 
points (million)

Riegl VUX-1HA 
points (million)

Central District 1.5 km Daytime 6, 043 882.2 513.8

Central District_2 2.6 km Daytime 3, 268 — 752.7

Central District_3 1.4 km Daytime 563 991.1 482.7

Tsim Sha Tsui 1.5 km Daytime 4, 915 730.7 442.1

Cross-Harbour Tunnel 1.8 km Daytime 5, 146 975.8 570.7

Eastern Harbour Crossing 2.3 km Daytime 7, 965 1, 241.8 631.2

Western Harbour Crossing 2.0 km Daytime 2, 312 619.3 363.3

Ho Man Tin 2.5 km Daytime 6, 088 637.8 426.8

Fat Kwong Street 3.0 km Daytime — 1, 880.0 873.4

How Ming Street 1.3 km Daytime 2, 929 1, 584.0 766.3

Hong Kong High Speed Way 1.6 km Daytime 4, 063 730.5 317.9

Stubbs Road 1.5 km Daytime 3, 135 789.1 359.6

Wan Chai Bypass 6.4 km Daytime 3, 520 — 690.5

Western Kowloon 0.9 km Daytime 1, 712 361.6 145.8

The Hong Kong Polytechnic 
University on-campus 
parking lot

0.3 km Daytime 2, 303 305.1 166.1

Hong Kong Science Park and 
Tate’s Cairn Tunnel 8.3 km At night fall 22, 520 9, 028.7 1, 884.3

Table 1.  Details of the MSD-VMMS-HK dataset. The Table provides specific details on capture length, 
acquisition time, and data obtained from Panoramas, Velodyne VLS-128, and Riegl VUX-1HA for partial data 
collection paths.
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matrix is used to represent the accuracy of the RTK positioning. For the IMU measurement and GNSS data, 
timestamp, orientation in quaternion, angular velocity, linear acceleration, their corresponding covariance 
matrices, and raw data (i.e. Trajectory.txt) are provided.

Technical Validation
In the MSD-VMMS-HK dataset, the ground truth of positioning is provided by a NovAtel SPAN-CPT24, a GNSS 
(GPS, GLONASS, and BeiDou) RTK/INS (fiber-optic gyroscope [FOG]) integrated navigation system. The base-
line between the rover (SPAN-CPT) and the GNSS base station is within 7 km. According to the specifications 
of the NovAtel SPAN-CPT, centimeter-level accuracy can be obtained when the RTK correction is available with 
the correct fixed solution. However, accuracy is not guaranteed in urban canyons with inferences from building 
reflections. Therefore, the raw measurements is collected from the SPAN-CPT and postprocess the data using 
state-of-the-art Inertial Explorer software from NovAtel, which maximizes the accuracy of the trajectory by 
processing forward and backward in time, performing a backward smoothing step, and combining the results. 
Inertial Explorer can significantly improve the overall accuracy of the ground truth of positioning.

Ground truth of positioning in GNSS-denied scenarios: One of our datasets involves scenarios in a tunnel, 
where GNSS positioning is not available. As a result, the NovAtel SPAN-CPT cannot collect reliable GNSS meas-
urements for the tunnel dataset. Fortunately, the NovAtel SPAN-CPT involves high-accuracy INS, which can 
provide low-drift dead-reckoning. To this end, the NovAtel SPAN-CPT is initialized from an open area in which 
the GNSS-RTK can easily obtain a fixed solution. As a result, the INS bias can be effectively calibrated. Then, the 
data collection vehicle enters the tunnel and exits the tunnel within 7 min. Next, the fixed GNSS-RTK solution 
can be obtained again by the NovAtel SPAN-CPT. In short, high-accuracy positioning can be achieved imme-
diately before and after the data collection vehicle enters and exits the tunnel. Finally, the Inertial Explorer soft-
ware is used to postprocess the collected raw data from the NovAtel SPAN-CPT to obtain reliable ground truth 
positioning. We carefully check the ground truth positioning of the tunnel data from the NovAtel SPAN-CPT 
based on the geodetic map from the Hong Kong government. At least meter-level accuracy can be guaranteed 
for the challenging urban roads and tunnel dataset. As demonstrated in the Table 2, the positioning accuracy 
of the point cloud data was rigorously evaluated using approximately 40 government-provided control points 
along both Fat Kwong Street and How Ming Street. The assessment revealed that the point cloud map of Fat 
Kwong Street achieved a mean horizontal positioning error of 0.329 m and a mean vertical positioning error of 
0.344 m. Similarly, the point cloud data for How Ming Street exhibited comparable accuracy levels, with mean 

Fig. 3  Data structure of the MSD-VMMS-HK dataset.

Location Error Type RMSE/m Mean/m STD/m Max/m

Fat Kwong Street
Horizontal position error 0.370 0.329 0.169 0.728

Vertical position error 0.382 0.344 0.111 0.612

How Ming Street
Horizontal position error 0.656 0.629 0.342 1.302

Vertical position error 2.842 2.793 0.528 3.342

Table 2.  Horizontal and vertical position errors of point cloud data.
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errors remaining within acceptable thresholds. This meter-level precision provides a reliable spatial reference 
framework suitable for various applications including: high-definition map generation, urban infrastructure 
inspection and autonomous vehicle localization.

GNSS reference station data: The Hong Kong government provides GNSS reference station service, named 
the Hong Kong Satellite Positioning Reference Station Network (SatRef). SatRef consists of 16 reference stations 
and 2 integrity monitoring stations evenly distributed throughout Hong Kong. SatRef provides raw data for 
postprocessing in receiver independent exchange format (RINEX) format for web or file transfer protocol (FTP) 
download; details can be found at https://www.geodetic.gov.hk/en/satref/satref.htm. This resource provides both 
RINEX 2 and 3 versions, with a file length of 1 h or 24 h. For RINEX 3.02, the file length of 1 h provides a data 
interval of 1 s or 5 s; for 24 h, only a data interval of 30 s is provided.

Usage Notes
The introduction and usage of the MSD-VMMS-HK dataset.  The MSD-VMMS-HK dataset offers 
the comprehensive data source among the listed categories of vehicle-mounted mobile mapping datasets in 
Tables 3, 4. By utilizing two different type of laser scanners, 360-degree coverage of the full scene is realized and 
provides point cloud data of varying accuracy for different applications in positioning and mapping. The INS 
measurement frequency for acceleration, angular velocity, and orientation is set at 100 Hz. The RTK-GNSS data is 
also provided for georeferencing and benchmarking mileage measurements. One of the most impressive features 
of our dataset is the collection of panoramic images at a frequency of 8192 × 4096@15 Hz, capturing nearly half 
billion RGB pixels per second. This aspect proves highly valuable for various downstream applications such as 

Dataset Year Envrnmt LiDAR Camera IMU Ground Truth

Darpa Urban38 2010 outdoor
12 SICK
LMS291@75 Hz
Velodyne
HDL-64E@15 Hz

Point Grey: 4 × 376 × 240@10 Hz
1 × 752 × 480@22.8 Hz

Applanix
POS-LV 220 GPS + INS

Ford Campus4 2011 outdoor
Velodyne
HDL-64E@10 Hz 
2 Riegl LMS-Q120

Ladybug 3: 6 × 1600 × 600@8 Hz Applanix
POS-LV 420 GPS + INS

UrbanNav6 2021 outdoor Velodyne
HDL 32E@10 Hz

Fisheye camera: 1920 × 1200@10 Hz
Monocular camera

GNSS/INS: NovAtel SPAN-CPT 
IMU: Xsens MTI10@100 Hz GPS + INS

Our Dataset 2024 outdoor + indoor

Velodyne
VLS-128@10 Hz
Riegl
VUX-
1HA@250 Hz

Ladybug 5 P+: 8192 × 4096@15 Hz GNSS/INS: NovAtel SPAN-CPT7 GPS + INS + SLAM

Table 3.  Datasets for localization and mapping.

Dataset Year Envrnmt LiDAR Camera IMU Ground Truth

Darpa Urban38 2010 outdoor
12 SICK
LMS291@75 Hz
Velodyne
HDL-64E@15 Hz

Point Grey: 4 × 376 × 240@10 Hz
1 × 752 × 480@22.8 Hz

Applanix
POS-LV 220 GPS + INS

Ford Campus4 2011 outdoor
Velodyne
HDL-64E@10 Hz 2 
Riegl LMS-Q120

Ladybug 3: 6 × 1600 × 600@8 Hz Applanix
POS-LV 420 GPS + INS

KITTI15 2013 outdoor Velodyne
HDL 64E@10 Hz

Point Grey
(2 gray + 2 RGB): 4 × 1392 × 512@10 Hz

OXTS
RT3003 GPS + INS

Oxford RoboCar39 2017 outdoor
2 SICK
LMS151@50 Hz SICK
LD-MRS@12.5 Hz

BumbleBee XB3: 2 × 1280 × 960@16 Hz
3 Grasshoper2: 3 × 1024 × 1024@11.1 Hz

GNSS/INS: NovAtel 
SPAN-CPT GPS + INS + VO

SemanticKITTI40 2019 outdoor Velodyne
HDL 64E N/A N/A N/A

Oxford Radar 
RobotCar41 2020 outdoor

2 HDL-32E@20 Hz
2 SICK 
LMS151@50 Hz

BumbleBee XB3: 2 × 1280 × 960@16 Hz
3 Grasshoper2: 3 × 1024 × 1024@11.1 Hz

GNSS/INS: NovAtel 
SPAN-CPT GPS + INS + VO

NuScenes Dataset42 2019 outdoor Velodyne
HDL 32E@20 Hz

6 cameras
Basler acA1600-60gc
@12 Hz
@12 Hz

IMU + GPS GPS + INS + Monte Carlo 
Localization scheme

ApolloScape43 2018 outdoor Riegl
VMX-1HA VMX-CS6 camera system (3384 × 2710) IMU/GNSS GPS + INS

WHU-Urban3D44 2024 outdoor N/A N/A N/A N/A

Our Dataset 2024 outdoor + indoor
Velodyne
VLS-128@10 Hz
Riegl
VUX-1HA@250 Hz

Ladybug 5 P + : 8192 × 4096@15 Hz GNSS/INS: NovAtel 
SPAN-CPT7 GPS + INS + SLAM

Table 4.  Datasets for autonomous driving.

https://doi.org/10.1038/s41597-025-05471-1
https://www.geodetic.gov.hk/en/satref/satref.htm


8Scientific Data |         (2025) 12:1411  | https://doi.org/10.1038/s41597-025-05471-1

www.nature.com/scientificdatawww.nature.com/scientificdata/

color mapping, modeling, semantic segmentation, and object detection. To enhance localization accuracy, we 
employ a GNSS + INS + SLAM approach. This method combines GNSS, INS, and SLAM technologies, effectively 
improving the accuracy and stability of vehicle positioning.

In addition, the dataset of vehicle-mounted mobile mapping system presented in this paper can be applied 
to wide range of domains to solve potentially challenging problems in various fields due to its accuracy of local-
ization and reliability of point cloud and image data. For example, it can be applied in areas such as mapping of 
urban roads, autonomous driving, high-definition maps, semantic segmentation, change detection, and digital 
twins. The following section describes in detail the application areas of the dataset and the potential problems it 
can contribute to solving.

Mapping of urban scenes.  To begin with, the vehicle-mounted mobile mapping dataset can be utilized for 
the creation and updating of three-dimensional digital maps, encompassing information such as road networks, 
buildings, terrain, and other geographical features. These maps play a vital role in various applications, including 
traffic planning25, navigation systems, urban planning, and emergency management, high definition (HD) map-
ping26, virtual reality (VR)27, digital twin28, and so on.

Inaccurate IMU odometry calculations were frequently encountered in the datasets of Hong Kong Central 
District and the Hong Kong Polytechnic University campus parking lots. This issue arises from the poor or inter-
rupted GNSS reception, there are many tall buildings in Central, Hong Kong, which block the GNSS signals, 
resulting in poor GNSS reception. Consequently, prolonged periods of GNSS data loss contribute to the gradual 
accumulation of errors in the IMU odometry. Without GNSS data for trajectory correction, the IMU odometry 
drifts over time, such as distorted road curvatures (as depicted in Fig. 4) and height discrepancies in the trajec-
tory (as shown in Fig. 5). To overcome this challenge, the SLAM techniques were employed to rectify the IMU 
odometry. By utilizing SLAM-derived LiDAR odometry for mapping single-line LiDAR point clouds, significant 
improvements were observed in these situations. For example, in the Hong Kong Central District dataset, the 
optimization of the odometry using SLAM techniques improved the accuracy of the positioning from the meter 
level to the decimeter level.

Autonomous driving and intelligent traffic systems.  The vehicle-mounted mobile mapping system 
dataset provides valuable input data for autonomous driving and intelligent traffic systems, such as obstacle 

Fig. 4  (a) The trajectory comparison between the IMU-only and IMU + SLAM approaches is depicted in the 
trajectory diagram. (b) The point cloud map constructed based on IMU trajectory and single-line LiDAR point 
cloud data. (c) The point cloud map constructed based on IMU + SLAM trajectory and single-line LiDAR point 
cloud data.

Fig. 5  (a) The trajectory comparison between the IMU-only and IMU + SLAM approaches is depicted in the 
trajectory diagram. (b) The IMU trajectory. c. The IMU + SLAM trajectory.

https://doi.org/10.1038/s41597-025-05471-1
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detection29, road sign recognition30, road surface extraction31, vegetation extraction32, building extraction33, and 
traffic flow analysis.

As shown in the Fig. 6, the colorized point cloud of our vehicle-mounted mobile mapping dataset can be 
classified using a well-trained deep learning network, such as Randla-net34, the semantic segmentation network 
Randla-net was trained using the point cloud data in our dataset. Subsequently, the performance of the trained 
network was evaluated using the point cloud data from a distinct subset of our dataset. The results affirm that the 
point cloud data from our dataset is highly effective in achieving precise semantic segmentation. Different colors 
are used to represent the categories of the classified objects. The available labels include vehicles, road surfaces, 
lane markings, sidewalks, guardrails, traffic signs, streetlights, vegetation, buildings, and more. This classifica-
tion process enhances the understanding and analysis of the environment, and these above-mentioned research 
results are effectively applied in the fields of autonomous driving and intelligent traffic systems.

Infrastructure management and maintenance.  The street-level dataset generated by the 
vehicle-mounted mobile mapping system proves valuable for monitoring and managing infrastructure, includ-
ing the identification of changes in buildings and billboards35, as well as road condition assessment36. This aids in 
timely detection of potential issues, facilitating maintenance and repair work to ensure the safety and reliability of 
infrastructure. As shown in Fig. 7, panoramic images within the street-level dataset can be leveraged to identify 
road defects such as cracks and potholes, thus contributing to road maintenance efforts.

Change detection.  The point cloud data generated by the vehicle-mounted mobile mapping system can 
also be applied to detect changes in building facilities37. In the fields of urban planning and building monitoring, 
point cloud change detection plays a crucial role in monitoring changes and damages in buildings. By comparing 
point cloud data from different time, it becomes possible to detect various changes in buildings, such as expan-
sions, demolitions, and structural modifications. In the manufacturing and industrial automation sectors, point 
cloud change detection can be used to identify changes in object positions and statuses along the production line. 
Real-time analysis of point cloud data allows for the timely detection of anomalies, such as missing components 
or assembly errors. In the provided Fig. 8, two point cloud maps collected on the campus of the Hong Kong 

Fig. 6  (a) The colorized point cloud map of campus area. (b) The corresponding semantic segmentation image 
of the colorized point cloud. (c) The colorized point cloud map of high speed road. (d) The corresponding 
semantic segmentation image of the colorized point cloud. (e) The colorized point cloud map of circular 
interchange highway. (f) The corresponding semantic segmentation image of the colorized point cloud.
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Polytechnic University at different times reveal significant changes in the roadside facilities. For example, there 
are noticeable differences in the presence of a reception desk and the availability of retractable road barriers.

In summary, our dataset, employing the GNSS + INS + SLAM approach and featuring diverse scene data, 
offers robust support for improving localization accuracy. This contribution accelerates the development of 
autonomous driving technology, enhancing vehicle positioning performance across various complex driving 
scenarios.

The link to the vehicle-mounted mobile mapping dataset presented in this paper is: https://scri-platform.org/
vmms. Any updates or expansion plans will also be documented at this website, providing researchers and users 
with the latest information and resources related to this dataset.

Fig. 7  Schematic illustration of urban road defects captured by the panoramic camera of a vehicle-mounted 
mobile mapping system.

Fig. 8  (a) Initial acquisition of the point cloud map of road infrastructure. (b) Updated point cloud of road 
facilities captured in the later stage, along with annotated schematic illustrations highlighting the changed road 
facilities.
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Code availability
A specialized data processing software and code tailored for the MSD-VMMS-HK dataset is accessible on the 
website: https://github.com/yutoulu/The-code-for-MSD-VMMS-HK-dataset. This software can efficiently handle 
diverse data types mentioned in the paper, including point cloud data, IMU data, and GNSS data. Note that the 
Ladybug5+ and NovAtel SPAN CPT7 data need to be pre-processed using their respective software: Teledyne 
LadybugCapPro and Waypoint-Inertial Explorer 8.90.
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