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Simple Summary

Nasopharyngeal carcinoma (NPC) is a type of cancer that often requires radiation therapy
as a primary treatment. During therapy, some patients may experience anatomical changes
that make adaptive radiation therapy (ART) necessary to improve treatment outcomes.
However, identifying which patients will need ART is usually carried out only after treat-
ment has started, which can be time consuming and resource intensive. In this study,
we developed a deep learning model that combines medical imaging and clinical data to
predict ART eligibility before treatment begins. This early prediction has the potential to
help clinicians to better plan therapy in advance, reduce unnecessary delays, and make
more efficient use of medical resources. By identifying suitable ART candidates ahead
of time, our approach has the potential to improve personalized cancer care and support
faster clinical decision-making.

Abstract

Background: Adaptive radiation therapy (ART) can improve prognosis for nasopharyngeal
carcinoma (NPC) patients. However, the inter-individual variability in anatomical changes,
along with the resulting extension of treatment duration and increased workload for the
radiologists, makes the selection of eligible patients a persistent challenge in clinical practice.
The purpose of this study was to predict eligible ART candidates prior to radiation therapy
(RT) for NPC patients using a classification neural network. By leveraging the fusion of
medical imaging and clinical data, this method aimed to save time and resources in clinical
workflows and improve treatment efficiency. Methods: We collected retrospective data
from 305 NPC patients who received RT at Hong Kong Queen Elizabeth Hospital. Each
patient sample included pre-treatment computed tomographic (CT) images, T1-weighted
magnetic resonance imaging (MRI) data, and T2-weighted MRI images, along with clinical
data. We developed and trained a novel multi-modal classification neural network that
combines ResNet-50, cross-attention, multi-scale features, and clinical data for multi-modal
fusion. The patients were categorized into two labels based on their re-plan status: patients
who received ART during RT treatment, as determined by the radiation oncologist, and
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those who did not. Results: The experimental results demonstrated that the proposed multi-
modal deep prediction model outperformed other commonly used deep learning networks,
achieving an area under the curve (AUC) of 0.9070. These results indicated the ability of
the model to accurately classify and predict ART eligibility for NPC patients. Conclusions:
The proposed method showed good performance in predicting ART eligibility among NPC
patients, highlighting its potential to enhance clinical decision-making, optimize treatment
efficiency, and support more personalized cancer care.

Keywords: nasopharyngeal carcinoma; adaptive radiation therapy; convolutional neural
network; vision transformers; medical image classification

1. Introduction

Nasopharyngeal carcinoma (NPC) is a highly aggressive tumor of the head and neck,
and the most prevalent cancer originating in the nasopharynx which is an anatomical
region located at the posterior part of the nasal cavity connected to the pharynx. The inci-
dence of NPC varies significantly across the globe, with the highest prevalence observed
in populations from southern China and Southeast Asia [1]. Due to the close proximity of
NPC tumors to vital organs and cervical lymph nodes, surgical intervention is seldom used.
Instead, radiotherapy (RT), particularly intensity modulated radiation therapy (IMRT), has
become the standard treatment modality for NPC management [2—4]. IMRT enables precise
targeting of tumors while minimizing exposure to surrounding healthy tissues. However,
anatomical changes that occur during radiation therapy, such as weight loss and tumor
shrinkage [5,6], may affect dose distribution and compromise treatment accuracy [7,8].
Adaptive radiotherapy (ART) offers a solution by using image-guided updates to account
for anatomical variations and modify the treatment plan, improving tumor control and
reducing toxicity to critical structures [9]. Anatomical changes, along with dosimetric
deviations, imaging findings, and clinical responses are important factors considered in the
evaluation of whether adaptive radiotherapy is necessary, and the influence of these factors
also makes it difficult to establish a standardized ART protocol that can be universally
adopted. Simultaneously, implementing ART is resource-intensive, requiring substantial
manpower, imaging time, and manual intervention [10,11]. Therefore, developing auto-
mated classification methods to identify ART eligible patients prior to treatment is critical
for improving clinical efficiency and optimizing resources.

Several studies have investigated ART eligibility prediction using features extracted
from clinical images [12-14]. These traditional methods rely on handcrafted radiomic
features extracted from the computed tomographic (CT) and magnetic resonance imaging
(MRI) scans, such as first-order, shape, and texture features. For example, Yu et al. [12]
applied least absolute shrinkage and selection operator-based logistic regression to ra-
diomic features from pre-treatment MRI images and achieved area under the curve (AUC)
values ranging from 0.75 to 0.93. Lam et al. [14] investigated the predictive role of radiomic
features extracted from pre-treatment CT, MRI, organ contours, and dose distributions,
applying ridge regression and multi-kernel learning for classification, and subsequently
developed multiple multi-omics models. However, these handcrafted feature-based meth-
ods have some limitations. They heavily rely on manually engineered features, which
may fail to capture the complex spatial structures and high-level semantic information
present in medical images; thus, effectively utilizing improved feature representation to
accurately predict tumor variability remains a persistent challenge [15]. Additionally, ra-
diomic features are sensitive to variations in imaging acquisition parameters, reconstruction
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algorithms, and preprocessing procedures, which compromises reproducibility. Moreover,
traditional methods often involve multi-stage processing pipelines, making end-to-end
optimization challenging.

Deep learning techniques like convolutional neural networks (CNNs) have been
widely applied for classification tasks, providing potential solutions for medical diagnosis
and analysis [16]. These networks can automatically extract complex and hierarchical
features from medical imaging data, which enables them to achieve better performance
than the traditional methods [17]. The Vision Transformer (ViT) [18] and CNNs have
emerged as two leading architectures for image analysis. Specifically, architectures such
as Inception v1-v4 [19,20], ResNet [21], and DenseNet [22] have demonstrated strong
performance in medical image diagnostics. Specifically, Inception networks progressively
integrate residual connections and batch normalization techniques, while ResNet addresses
the vanishing gradient problem through skip connections. DenseNet enhances learning
by interconnecting all layers to promote feature reuse. ViT relies on self-attention mecha-
nisms and has shown competitive performance in medical imaging, although it typically
requires large datasets for effective training, which is a significant challenge in the med-
ical domain [23]. Additionally, feature fusion and multi-modal learning have garnered
increasing research interest as effective means to improve predictive accuracy. Feature
fusion strategies can compensate for missing information and enhance the expressiveness
of deep models [24]. Among these approaches, feature-level fusion has demonstrated
consistently strong performance, outperforming both classifier-level and decision-level
fusion [25]. Multi-modal models can form more comprehensive representations [26]. Par-
ticularly, multi-scale fusion techniques, such as feature pyramid networks [27], improve
feature representation by hierarchically integrating semantic information across multiple
layers that possess varying spatial resolutions. Additionally, attention mechanisms offer the
capability to dynamically modulate feature responses based on contextual relevance, which
allows neural networks to prioritize the most informative components of the input data [28].
Several attention modules have been proposed to operationalize this mechanism, including
the convolutional block attention module [29], the squeeze-and-excitation module [30],
and dual attention networks [31], all of which have been incorporated into deep learning
frameworks to enhance the internal representation of features through both channel-level
and spatial-level reweighting strategies. When compared to conventional machine learning
methods, deep models that incorporate attention mechanisms tend to exhibit significantly
improved performance [32]. Furthermore, the cross-attention-based transformer employs a
cross-attention strategy [33] that enables the model to simultaneously capture and integrate
diverse feature representations derived from multiple modalities in the task of multi-modal
learning, which contributes to more comprehensive feature interaction and more effective
fusion across modalities.

Effectively integrating information from multiple modalities is a fundamental chal-
lenge in multi-modal learning. Traditional fusion strategies, such as early fusion and late
fusion, have been widely adopted in previous work. Early fusion approaches concatenate
low-level features from different modalities at the input stage, enabling joint modeling but
often suffer from information redundancy and are sensitive to missing or noisy modali-
ties. Late fusion merges predictions from independently trained modality-specific models,
which increases robustness to modality-specific noise, but lacks the ability to capture cross-
modal interactions during representation learning [34]. In contrast, the cross-attention
strategy allows models to learn complex semantic alignments between modalities. This
flexible and adaptive fusion enables more expressive multi-modal representations, which
has the potential to address the limitations of static early or late fusion strategies [35].
Therefore, the cross-attention strategy could provide an effective proposal for multi-modal
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integration, making it a flexible choice for scenarios where capturing intricate inter-modal
relationships is essential.

The aim of this study is to enhance the accuracy of ART eligibility prediction for pa-
tients with NPC from multi-modal data by developing a deep learning model. Specifically,
the proposed model utilizes ResNet as the backbone network and incorporates multiple
modules to process features across different imaging modalities, multi-scale image represen-
tations, and clinical data, thereby capturing complementary information. This end-to-end
method is designed to enhance predictive accuracy and provide radiation oncologists
with an effective auxiliary diagnostic tool, reducing the demand on medical resources and
promoting more individualized ART workflows.

2. Materials and Methods
2.1. Dataset

The patient data utilized in this study consists of 305 NPC patients who received
radiotherapy (RT) at Queen Elizabeth Hospital in Hong Kong for retrospective analysis.
Patients included in this study were those with biopsy-confirmed primary NPC without
distant metastasis or other concurrent malignancies at diagnosis, who received helical
tomotherapy. Exclusion criteria included lack of administration of contrast agents for
planning contrast-enhanced CT or MRI, or incomplete clinical and imaging data. Therefore,
each patient had imaging data including CT images, pre-treatment contrast-enhanced T1-
weighted (CET1-w), T2-weighted (T2-w) MR images, and clinical data. We collected clinical
data including demographic information (gender, age, BMI), tumor characteristics (T stage,
N stage, histological subtype), and tumor volume, as shown in Table 1. Patients were
categorized into two groups based on their replan status—whether or not they received
ART during their course of RT, as determined by the radiation oncologist. Patients who
underwent ART were labeled as positive samples, while those who did not were labeled as
negative samples.

Table 1. Description of clinical data used in this study for ART eligibility prediction.

Parameter Description Data Acquisition
Gender 0 = Female Demographic
1 =Male
Age Patient age (Years) Demographic
BMI Patient body mass index Demographic
T stage 1 = Tumor confined to nasc(;[‘alli\:\;ynx or oropharynx/nasal Classified in the hospital
2 = Parapharyngeal extension
3 = Invasion of bony structures or paranasal sinuses
4 = Intracranial extension and/or involvement of cranial
nerves, hypopharynx, orbit, or infratemporal fossa
= 1 <
N stage 1 = Unilateral lymph ngde(s), <6 c¢m, above the Classified in the hospital
supraclavicular fossa
2 = Bilateral or contralateral lymph nodes, <6 cm
3 = Lymph node(s) >6 cm and/or involvement of
supraclavicular fossa
Histological subtype 1 = Keratinizing squamous cell carcinoma Classified in the hospital

Tumor volume

2 = Differentiated keratinizing differentiated carcinoma

3 = undifferentiated carcinoma
Estimated from the longest and

i 1 )
. shortest diameter of the tumor.
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2.2. Data Preprocessing

As an initial step in data preparation, CT and MRI images were registered to ensure
spatial alignment. As CNNs operate solely in voxel space for image analysis tasks, they
may overlook the actual physical size information present in the real-world spatial domain.
All CT and MRI images were resampled to a voxel spacing of 1 x 1 x 1 mm? to address this
issue. For each case, CT and MRI images were cropped into volumetric region of interest
patches with dimensions of 196 x 128 x 128, encompassing the primary tumor as well
as the ipsilateral and contralateral parotid glands. These regions were then normalized
using Z-score normalization and served as input for subsequent analysis. Additionally, the
continuous variables in the clinical data (age, BMI, and tumor volume) were standardized.
The dataset was split into training and testing sets in an approximate 8:2 ratio. Specifically,
there were 180 negative cases and 53 positive cases in the training set, and 52 negative cases
and 20 positive cases in the testing set. To increase the robustness of the model and the
reliability of the results, we randomly select the train set three times and report the average
result from three test sets. For avoiding overfitting, data augmentation techniques [36],
including flipping, noise addition, and rotation, were applied to the training dataset.

2.3. Model Architecture

In this study, we designed a multi-modal deep feature learning network to predict pa-
tient eligibility by incorporating medical images and clinical data, as illustrated in Figure 1.
The features extracted from the shared parameters backbone were passed into the multi-
modal feature fusion module, which combined information from different modalities by re-
allocating weights and highlighting key features. To further enhance feature representation,
the multi-scale feature aggregation module was utilized to integrate features from different
stages of the backbone network. Additionally, the self-attention module was applied to
capture correlations among clinical variables, thereby assisting in outcome prediction.

Backbone Multimodal Feature
CT Fusion Module
5 B ! Query .
H H H Multi-Head
: g CrossAttentlon
1 B o T L.
— I — N — - /.
i i il Key

N ﬁa-i —~m—m- II

CEm )

Multi-scale Feature Aggregation Module

* $._._._.,-_-.-.-.-.

A

> Output
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<nn:nn 2288
[Gennii

[% Clinical Data ] —> —> Self-Attention Module —

Figure 1. Overview of the proposed method.

2.3.1. Backbone and Multi-Modal Feature Fusion Module

The backbone of our network adopted the ResNet-50 architecture as the image feature
extractor, which consisted of five main blocks (conv1l to conv5, as shown in Figure 2).
We leveraged pre-trained weights from the MedicalNet [37] to prevent overfitting during
training. This strategy allowed the model to utilize knowledge learned from a large-scale
dataset, thereby improving feature representation [38]. Specifically, conv1l served as a
preprocessing step for the input image, while conv2 through conv5 were composed of
bottleneck structures with a similar design. Each bottleneck block consisted of three convo-
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lutional layers that performed dimensionality reduction, captured spatial information, and
restored feature map dimensions to provide higher-level abstract representations. Batch
normalization and non-linear activation functions were applied after these convolutional
layers to enhance the representational capacity of the network and reduce sensitivity to
variations in the input data distribution.
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Figure 2. Schematic of the architecture of the backbone network.

Subsequently, the structure of our multi-modal feature fusion module was illustrated
in Figure 3. After extracting high-level features from each image modality using the
backbone network, we first embedded the features and then utilized two cross-attention-
based transformers to perform deep cross-modal interaction. While cross-attention-based
transformers typically assigned the query (Q) from one modality and the key and value
(K, V) from another, we assigned Q, K, and V to three different modalities in each branch,
as inspired by recent work [39-41], to fully exploit the complementary and high-order
relationships among different image types. Specifically, we selected MRI modalities (CET1-
w and T2-w image features), which may contain predictive biomarkers for tumor shrinkage
following cancer treatment, as queries in the two branches, while using CT features as the
value. This approach allowed the model to actively focus on the relevant information from
MRI while still integrating complementary anatomical details from CT images. Specifically,
the cross-attention output, denoted as Mq T1, was mathematically expressed as:

T
Mg T = SoftMax(%)V—i—FTl (1)

where Q = FriWq, K = FroWk, V = FcrWy, d is the dimension of Q, K,V features, and
Wq, Wk, Wy are learnable weights. The final output of the cross-attention operation is
computed as the sum of the attention result and the original input features. For the other
cross-attention branch output, Mg T2, we exchange Fr; and Fr; as Q and K. Then, the

output feature maps from these two branches were subsequently aggregated via element-
wise matrix addition.

V :]
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Figure 3. Multi-modal feature fusion module for images features.

2.3.2. Multi-Scale Feature Aggregation and Self-Attention Modules

Building on the features extracted at different stages of the backbone, we introduced
the multi-scale feature aggregation module shown in Figure 4 to further enhance modality
integration. At each selected stage of the backbone network (conv3, conv4, and conv5),
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we obtained feature maps corresponding to the three imaging modalities. For each stage,
these feature maps were concatenated, which preserves the unique information from each
modality and prevents early loss of modality-specific features. A convolutional layer with a
kernel size of 1 was then applied to each concatenated map to reduce the channel dimension.
To achieve effective multi-scale fusion, the fused feature maps from different stages were
further aggregated. Specifically, the output of each convolutional operation was combined
with the corresponding feature map from the next stage through element-wise addition,
which can be formulated as:

Lysf = Add(conv(Add(conv(S1),52)), S3) ()

where [,sr denotes the final output of the multi-scale feature aggregation module,
Sm = Cat ( fl] ), with fl] representing the feature map of modality iatstagej(i € {CT, T1,T2},
j € {3, 4, 5}); Cat denotes the concatenation operation, and conv denotes the convolution
operation. This hierarchical aggregation strategy enabled the module to integrate the
information from different receptive fields, thereby enhancing the representational capacity
of the network.

G Concatenate
Operation

@ Matrix Addition

Figure 4. Structure of multi-scale feature aggregation module.

Alongside the image features, the clinical data were first preprocessed such that
categorical variables (gender, T stage, N stage, histological subtype) were transformed into
binary vectors using one-hot encoding, thereby converting each category into a distinct
binary feature. Continuous variables (age, BMI, and tumor volume) were included in their
standardized form, as previously described. The resulting clinical feature vector was then
input into a transformer-based module composed of three stacked encoder layers, each
containing a single-head self-attention mechanism and a feed-forward neural network. The
final output vector of this module was subsequently passed through fully connected layers
to generate the final prediction.

2.4. Implementation Details and Evaluation Metrics

All experiments were implemented using PyTorch 2.0.1 on a Windows 10 operating
system. The training and evaluation procedures were conducted on a workstation equipped
with an Intel(R) Core (TM) i9-13900 CPU (Intel Corporation, Santa Clara, CA, USA) and an
INNO3D RTX 4090 GPU (InnoVISION Multimedia Limited, Hong Kong). Table 2 shows
the summary of hyperparameters applied for this model. The Adam optimizer was used
for parameter optimization, with the initial learning rate set to 1 x 10~3. A StepLR learning
rate scheduler was applied, where the learning rate was decayed by a factor of 0.9 every
five epochs. And the cross-entropy loss function was used. The batch size for training was
set to 2, and all models were trained for a maximum of 150 epochs.

Table 2. Hyperparameters of the proposed method used for the ART eligibility prediction.

Hyperparameter Value

Batch size 2
Maximum epochs 150




Cancers 2025, 17, 2350

8 of 14

Table 2. Cont.

Hyperparameter Value
Initial learning rate 1x1073
Optimizer Adam
Learning rate scheduler StepLR
Step size 5
Learning rate decay rate 0.9
Loss function Cross-entropy

We evaluated model performance using four classification metrics: sensitivity, speci-
ficity, accuracy, and AUC. Sensitivity measures the proportion of actual positive cases
correctly identified by the model, while specificity refers to the proportion of actual nega-
tive cases correctly identified. Accuracy quantifies the overall correctness of the model’s
predictions. AUC reflects the overall ability of the model to distinguish between positive
and negative cases. The formulas for these evaluation metrics are as follows:

e TP
Sensitivity = TP EN 3)
e TN
Specificity = TN+ ED 4)
TP+TN
A =
Y = TP Y FN+ TN + FP ©)

where TP denotes correctly classified positive samples; FN denotes positive samples incor-
rectly predicted as negative; FP denotes negative samples incorrectly predicted as positive;
TN denotes correctly classified negative samples.

3. Results
3.1. Comparison with Other Deep Learning Networks

We conducted a comparison between our proposed network and several deep learning
models that use only images as input, including DenseNet121, ResNet50, SE-ResNet50,
BoTNet18, and ViT. DenseNet121 represents a classic densely connected convolutional net-
work, SE-ResNet50 integrates squeeze-and-excitation modules into ResNet50 to recalibrate
channel-wise feature responses, BoTNet18 replaces the standard 3 x 3 convolution with
multi-head self-attention to enhance global context modeling, and ViT adopts transformer-
based architecture for image representation learning. For all these models, images from
multiple modalities were provided as input, ensuring a fair comparison with our pro-
posed method.

The comparative results across all evaluation metrics are summarized in Table 3.
DenseNet121 and ResNet50 exhibited relatively lower sensitivities, with values of 0.6377
and 0.6806, respectively, suggesting a higher rate of missed positive cases. SE-ResNet50 and
BoTNet18 showed moderate performance in sensitivity and specificity, achieving 0.6778
and 0.6611 for sensitivity and 0.8831 and 0.8767 for specificity, but neither surpassed ViT,
which achieved 0.7095 for sensitivity and 0.8962 for specificity. However, our image branch
attained the highest sensitivity and specificity, reaching 0.7579 and 0.9157, respectively,
indicating improved detection of positive cases and more reliable exclusion of negatives.
In terms of accuracy, our model also led with 0.8704, outperforming ViT at 0.8426 and
all other baseline models, which ranged from 0.8009 to 0.8241. In addition, our approach
achieved the highest AUC of 0.8908, reflecting the best overall discriminative capability
among all models. These results demonstrate that our image branch achieves the most
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effective balance of sensitivity and specificity, as well as the highest overall accuracy and
AUC, underscoring its clinical potential for medical image classification.

Table 3. Performance comparison between the proposed method and other classic models.

Models Sensitivity ~ Specificity =~ Accuracy AUC
DenseNet121 0.6377 0.8545 0.8009 0.7521 (0.7381-0.7661)
ResNet50 0.6806 0.8435 0.8056 0.8215 (0.8172-0.8258)
SE-ResNet50 0.6778 0.8831 0.8241 0.8266 (0.8055-0.8477)
BoTNet18 0.6611 0.8767 0.8148 0.8304 (0.8219-0.8389)
ViT 0.7095 0.8962 0.8426 0.8359 (0.8191-0.8527)
Our Image Branch 0.7579 0.9157 0.8704 0.8908 (0.8873-0.8943)

3.2. Ablation Study

Clarifying the contribution of each module is important for validating the overall
network design; therefore, ablation experiments were performed to assess both individual
and combined effects. For consistency and fairness, all experiments used ResNet50 as
the backbone with identical pretrained weights for initialization. The results for each
experimental configuration are shown in Table 4. In this table, Blockl denotes the multi-
modal feature fusion module, Block2 means the multi-scale feature aggregation module,
and Block3 presents the self-attention module.

Table 4. Ablation study results of the proposed method.

Modules Sensitivi Soecifici A

Model Blockl Block2 Block3 ensitivity pecificity ccuracy AUC

1 X X X 0.6806 0.8435 0.8056 0.8215 (0.8172-0.8258)
2 v X X 0.7168 0.8651 0.8287 0.8498 (0.8445-0.8548)
3 X v X 0.6570 0.8826 0.8148 0.8342 (0.8313-0.8371)
4 X X v 0.6967 0.8620 0.8132 0.8287 (0.8262-0.8312)
5 X v v 0.7271 0.8758 0.8380 0.8425 (0.8366—0.8484)
6 v X v 0.7093 0.8705 0.8194 0.8531 (0.8485-0.8577)
7 v v X 0.7579 0.9157 0.8704 0.8908 (0.8873-0.8943)
8 v v v 0.8132 0.9237 0.8935 0.9070 (0.9047-0.9093)

We first analyze the results from the perspective of AUC to compare the performance
improvements contributed by each module. Modell, which uses ResNet50 as the back-
bone network and takes the concatenation of images as input, achieves an AUC of 0.8215.
The introduction of single modules in Model2, Model3, and Model4 produces observable
enhancements. Specifically, Model2 utilizes the multi-modal feature fusion module to
integrate features from different modalities and achieves a higher AUC value (0.8498),
effectively supplementing and fusing high-level representations from various sources. Sim-
ilarly, by employing the multi-scale feature aggregation module to integrate image features
from multiple receptive fields, Model3 achieves better results than Modell. Although the
addition of clinical data features provides a relatively smaller improvement (Model4), this
module supplements imaging features with clinically relevant information. Furthermore,
the combination of modules in Model5, Model6, and particularly Model7, which attains
an AUC of 0.8908, further improves performance, highlighting the synergistic effects of
integrating different modules. Specifically, the joint use of the multi-modal feature fusion
module and the multi-scale feature aggregation module enables the model to pay attention
to both local and global features of the images, enhancing its ability to capture relationships
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at different levels of representation. Finally, Model8 is the proposed method, and it achieves
the highest AUC of 0.9070, validating the effectiveness of the proposed architecture.

Moreover, as illustrated in Figure 5, the following observations can be made: (1) The
sensitivity results show a consistent upward trend with the addition of modules. It is worth
noting that when the multi-scale feature aggregation module (Model3) is added alone,
sensitivity decreases compared to the baseline (from 0.6806 in Modell to 0.6570 in Model3).
This may be due to the emphasis of this module on multi-scale feature extraction. While
enhancing overall feature diversity, it may also lead to the dilution of highly discriminative
features necessary for correctly identifying positive cases. However, this negative impact
is mitigated when combined with other modules, and overall sensitivity is significantly
improved. (2) Specificity and accuracy also improve, with specificity rising from 0.8435
to 0.9237 and accuracy from 0.8056 to 0.8935. These findings collectively highlight that
module addition and combination can enhance model performance to an extent, improving
the discriminative ability of the model. (3) Further comparison of Model7 and our proposed
model, Model8, reveals that the inclusion of clinical data increases AUC by 1.82% and
sensitivity by 7.29%. This demonstrates that clinical features can provide some valuable
complementary information for classification. Although the contribution of clinical data
may be limited by its lower dimensionality compared to image features, incorporating it
with the self-attention mechanism improves model performance.

Average Performance of Different Models (Ablation Study)

0.951

0.90 1

0.85

Sensitivity
Specificity
Accuracy
AUC

Score
o
©
o

0.75 4

0.70 9

0.65 q

1 2 3 4 5 6 7 8
Model

Figure 5. Performance of different models in ablation study.

4. Discussion

The application of ART in NPC is important for maximizing treatment outcomes
while minimizing toxicity to normal tissues. The prediction of ART eligibility can reduce
clinical workload and hospital resource consumption by enabling personalized adjustments
to the patient’s treatment strategy in a timely manner. In this study, we developed and
evaluated a deep learning method. Deep learning enables direct prediction learning
and can automatically extract features from images, independent of subjective feature
engineering. Deep learning models can reduce the complexity of building multi-stage
processing pipelines and do not rely on pre-defined features or rules, thus simplifying the
learning process and allowing direct optimization for the final task.

The proposed method in this study showed good potential for predicting ART el-
igibility in NPC patients. The performance of the proposed model was evaluated and
analyzed through comparative and ablation experiments. Our experiments showed that
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the proposed network can perform multi-modal fusion well and, compared with other
deep learning models, our model showed a significant improvement in sensitivity and
specificity, achieving an accuracy of 0.8935 and an AUC of 0.9070. The ablation studies
showed that the multi-modal feature fusion module using cross-attention-based transform-
ers contributed most significantly to the overall improvement of the model. Additionally,
the use of multi-scale feature aggregation, which integrates image features from different
receptive fields, and the incorporation of clinical data can also enhance the performance.

The decision to initiate adaptive radiotherapy in clinical practice is typically based
on observable changes such as tumor shrinkage or alterations in patient contour during
treatment. Our method can automatically extract representative features from both imaging
and clinical data, allowing for more objective and accurate identification of patients who
would benefit from ART. By capturing subtle yet clinically meaningful changes that may
signal the need for treatment replanning, our model enhances its predictive ability and has
the potential to optimize resource utilization in radiotherapy departments.

However, this study has several limitations. Firstly, our dataset was obtained from a
single medical center, and there exists an imbalance between positive and negative cases
in our sample. The patient sample distribution may differ across institutions, potentially
impacting the generalizability. In addition, the ground truth labels for ART necessity in
this study were determined retrospectively based on clinical decisions made by radiation
oncologists, lacking a certain degree of standardization or objectivity in the criteria. This
approach introduces potential subjectivity, raising the risk that the model may learn local
clinical preferences rather than universally applicable ART indications. Addressing this lim-
itation in future work through the adoption of standardized criteria and multi-institutional
datasets will be essential to improve the objectivity and external generalizability of the
model. Secondly, the selection of key hyperparameters was based on prior work and
preliminary experiments rather than ablation studies. While these choices are consistent
with established practices in the field, more comprehensive hyperparameter tuning in
future studies may further improve model performance. Thirdly, another limitation of our
study is the lack of model interpretability tools. The standard methods such as Grad-CAM
and SHAP are not readily applicable or lack standardized solutions in this setting due
to the complexity of our multi-modal deep learning architecture. However, as explain-
able Al methods for multi-modal models continue to develop, we plan to try to explore
and incorporate these tools in future work to improve transparency and clinical trust.
And future work may also consider incorporating additional modalities, such as patient
dosimetry maps, which have been shown in previous studies to be important factors in
radiotherapy planning and outcome prediction [42,43]. Integrating such data may help the
model better capture patient characteristics and treatment responses. In addition, some
research has demonstrated the effectiveness of leveraging both image and text information
for improved medical prediction tasks [44,45]. While our current method regards clinical
data and imaging features as separate branches, more advanced fusion strategies could be
explored and used in the future.

5. Conclusions

Our proposed multi-modal classification network achieved promising results in pre-
dicting the eligibility of NPC patients for ART. By addressing the challenge of adaptive
radiotherapy eligibility screening, our method can help clinicians more efficiently identify
patients who are likely to benefit from ART, thereby enabling timely and individualized
treatment adjustments. This has the potential to improve patient outcomes and opti-
mize resource allocation within clinical practice. To explore the interconnectivity between
multi-modal data, we employed attention-based methods and multi-scale feature fusion
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approaches to effectively combine local and global features from diverse modalities. Exper-
imental results demonstrated that the proposed method achieved satisfactory classification
performance for ART eligibility compared to other deep learning methods. Future research
should focus on expanding the dataset and optimizing the model architecture, particularly
to enhance computational efficiency and adaptability in resource-limited environments.
Moving forward, actionable next steps include conducting prospective trials to validate
the clinical utility of the model. Additionally, future research should focus on integrating
standardized ART criteria, expanding the dataset to encompass more diverse patient popu-
lations, and further optimizing the model architecture. Future work should also explore
novel multi-modal fusion strategies, particularly leveraging advances in foundation mod-
els, which hold significant potential for enhancing representational power and adaptability
in clinical applications. In general, the proposed method provides a potential solution for
developing an automatic auxiliary diagnosis system suitable for clinical adoption, which
can help to implement individualized treatment strategies for patients.
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