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Abstract

Smartphone-embedded inertia sensors are widely available nowadays. We have developed
a smartphone application that could assess temporal gait characteristics using the built-in
inertia measurement unit with the aim of enabling mass screening for gait abnormality. This
study aimed to examine the test-retest reliability and concurrent validity of the smartphone-
based gait assessment in assessing temporal gait parameters in level-ground walking.
Twenty-six healthy young adults (mean age: 20.8 + 0.7) were recruited. Participants
walked at their comfortable pace on a 10 m pathway repetitively in two walking sessions.
Gait data were simultaneously collected by the smartphone application and a VICON
system during the walk. Gait events of heel strike and toes off were detected from the
sensors signal by a peak detection algorithm. Further gait parameters were calculated
and compared between the two systems. Pearson Product-Moment Correlation was used
to evaluate the concurrent validity of both systems. Test-retest reliability was examined
by the intraclass correlation coefficients (ICCs) between measurements from two sessions
scheduled one to four weeks apart. The validity of smartphone-based gait assessment was
moderate to excellent for parameters involving only heel strike detection (r = 0.628-0.977),
poor to moderate for parameters involving detection of both heel strike and toes off
(r = 0.098-0.704), and poor for the proportion of gait phases within a gait cycle. Reliability
was good to fair for heel strike-related parameters (ICC = 0.845-0.388), good to moderate
for heel strike and toes-off-related parameters (ICC = 0.827-0.582), and moderate to fair
for proportional parameters. Validity was adversely affected when toe off was involved in
the calculation, when there was an insufficient number of effective steps taken, or when
calculating sub-phases with short duration. The use of smartphone-based gait assessment
is recommended in calculating step time and stride time, and we suggest collecting no less
than 100 steps per leg during clinical application for better validity and reliability.

Keywords: gait; sensor; accelerometer; wearable; smartphone; temporal parameters

1. Introduction

Level walking is one of the fundamental activities of daily living which depends on the
functioning of the complicated, multi-level locomotion system. Normal walking involves
the contribution of the higher center of the brain, cerebellum, proprioceptive receptors,
motor control of muscles, joint movements, and the adaptation of the skeletal system [1].
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Impairment in such may produce an abnormal gait, or even severely hinder our mobility at
home and in the community, hence adversely affecting social participation and quality of
life [2,3].

While the extent and nature of gait abnormality vary in different medical conditions,
clinical gait analysis as a diagnostic test may enhance patient management by identifying
the details of gait deficits, hence contributing to treatment decision-making and patient
outcomes in different patient populations [4-8]. For example, accurate detection of gait
impairments could help to identify the early stage of cognitive decline with a slow gait
speed [9,10], evaluate the severity of motor impairment and adapt treatment recommenda-
tions in children with cerebral palsy [11,12], and predict prospective falls in older adults
with an area under curve value of 0.82 when combined with other traditional screen
tests [13].

Time-based quantitative gait assessment and balance evaluation are common to mea-
sure physical function, such as timed-up-and-go test and gait speed [14]. However, these
assessments do not evaluate the quality of movement and fail to provide details of gait
deficit. On the other hand, qualitative gait assessments are usually carried out by phys-
iotherapists using scoring scales, such as the Dynamic Gait Index [15]. However, the
accuracy of such a method is questionable as it depends on the subjective judgment of
the assessor [16]. Other instrumental methods for measuring gait parameters with higher
accuracy and objectiveness, including force-sensitive plates or sensors and optoelectronic
stereophotogrammetry [17], are available in clinical and laboratory settings. Yet, those
gait analysis tools may be hardly applicable in the healthcare system, due to the high cost,
low portability, labor-intensive operation, and time-consuming procedures. Introducing a
convenient and easy-to-use gait assessment tool can be a new option for community-based
gait and balance assessment, allowing patients to self-monitor their own performances, as
well as sharing timely data with caregivers, hence further utilize the anomaly-detecting
and treatment-planning function of gait assessment in the community. Therefore, a cost-
effective, portable, easy-to-use, and accurate gait assessment method is urged to be devel-
oped and deployed to cope with the surging demand of the overstretched public healthcare
system in a few decades.

Under technological advancement, the development of wearable sensors for health
data collection has surged recently [18-20]. One of the major domains is the use of portable
devices for gait analysis. Inertial sensors, which derive acceleration and angular veloc-
ity signals, can provide real-time gait information with a lower cost, higher practicality,
and fewer restraints on the testing environments, giving them great potential to replace
traditional quantitative gait analysis tools in specialized centers [21]. Previous studies
have investigated the effectiveness of wearable accelerometers in gait assessment [22-25].
However, multiple sensors were placed on the lower body, including the foot, shank, and
thigh, which would interfere with natural walking and limit its application to the daily
life of individuals [26]. A single sensor on the lower trunk can be an alternative to such
methods in measuring gait events to further simplify its application [27,28]. Furthermore,
the single sensor attached at the waist showed the best reliability and validity compared to
other placement locations [29]. It was also the most common location used in gait analysis
in the scientific community [30-32].

Smartphones, which have built-in micro-electro-mechanical sensors (MEMSs) like
accelerometers and gyroscopes, could be a solution to developing a gait assessment tool
with high accessibility and massive popularity among citizens. By sensing the linear and
rotational orientation of the phone, the data of the embedded sensors could be translated
into various gait parameters for measuring body motion [33,34]. With sensors embedded
in portable devices like smartphones, motion-tracking gait analysis would be more cost-
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effective, convenient, and user-friendly. Even when the feasibility of measuring gait
parameters with an accelerometer placed on the lower trunk during walking has been well
established by Zijlstra and Hof [35], previous works have rarely employed such a method
with a single sensor or smartphone. More often, multiple sensors and smartphones were
used to improve the validity of different walking outcomes generated [36,37]. However,
this would limit its applicability in the community [38,39].

Therefore, the present study aimed to investigate whether a single smartphone-
embedded accelerometer on the lower trunk can capture valid temporal gait parameters,
including sub-phase duration within the gait cycle in level walking, and establish the
reliability of the smartphone-based gait assessment. The target variables of our smartphone
application include stride time, swing phase duration, and double support duration, which
are all relevant indicators of pathological gait [40] and predictors of fall [41]. This study
is expected to contribute to the development of a potential gait assessment tool that is
convenient, highly accessible, and affordable in different settings, thus enhancing health
monitoring and clinical application.

2. Materials and Methods
2.1. Participants

Twenty-six healthy adults were recruited from the Hong Kong Polytechnic University.
To be included in the study, the participants have to be healthy adults without specific
conditions that affect the gait pattern. Exclusion criteria of participants were (1) an existing
or a history of musculoskeletal, peripheral, or central nervous system condition(s) that
limit their independent ambulation, (2) a history of psychiatric illness or neurological
disorder that affects their compliance, and (3) skin diseases which hinders the attachment
of reflective markers on their skin.

All participants joined this study voluntarily and were briefed about their right to
withdraw from the study. Ethics approval for this study was granted by the authority
of the Human Subjects Ethics Sub-committee of The Hong Kong Polytechnic University
(HSEAR20230726003) and informed consent was obtained from all participants.

2.2. Experimental Procedure

The data collection procedure was conducted at the Gait and Motion Analysis Lab-
oratory of the Hong Kong Polytechnic University. Participants attended two assessment
sessions that lasted for approximately one hour each.

Participants were asked to wear comfortable and well-fitting outfits with their usual
footwear for outdoor walking in both data collection sessions. This attire could facilitate the
usual gait pattern and accurate placement of VICON markers on their bodies. Loose-fitting
clothes will be secured with cloth tape. Any reflective material on the clothing or footwear
was taped to prevent interference with the VICON motion capturing system.

A 10 m path was used for the walking trials, and 150 total steps were expected to be
obtained from each subject to calculate an accurate clinical result. Each subject was asked to
walk in a straight line from one point to another at their normal speed following the tester’s
instructions (Supplementary Materials File S1, Figure S1). Each subject would take 30 trials
to capture the expected step counts. Gait parameters during the walk were captured by
the VICON system and the smartphone system simultaneously. An Arduino-produced
analogue signal was sent to the VICON system from the smartphone via Bluetooth to
synchronize the start time of both systems.
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2.3. VICON Motion Capture System

To capture and measure the kinematic data of participants in gait, a sixteen-camera
3D motion capture system (VICON Nexus 2, VICON NexusTM, VICON Motion System
Ltd., Oxford, UK) was used. As a well-established tool for gait analysis, the VICON motion
capture system has demonstrated high accuracy and reliability in previous studies and was
used as the criterion measure for gait analysis [42—44]. Therefore, it is considered to be a
‘gold standard’ for gait analysis.

To record the kinematic characteristics, a system with sixteen VICON cameras in the
laboratory was calibrated in accordance with the standardized protocol from VICON at
the beginning of each data collection session. Thirty-nine pearl hard reflective markers
with a diameter of 14 mm were then attached to the anatomical landmarks of a participant
according to the plug-in gait full body model for 3D movement tracking and analysis
during walking (Supplementary Materials File S1, Figure S2) [45]. All data collected would
be used to reconstruct motion for gait analysis.

2.4. Smartphone-Based Gait Assessment

The model of the smartphone used in this study was the Samsung Galaxy S22 (SM-
59010, Samsung Electronics, Suwon, Republic of Korean). The smartphone with built-in
sensors including accelerometer and gyroscope (LSM6DSO, STMicroelectronics, Plan-les-
Ouates, Switzerland) was placed horizontally on the waist of the participants at the level of
L4-L5 with the screen facing outward, and the top edge (front camera) oriented toward
the participant’s left side. A semi-elastic belt that wrapped snugly around the waist was
used to attach the smartphone to the lower back (Figure 1). The adjustable sliders of the
belt were tensioned to ensure the secure fixation of the smartphone. The acceleration and
gyroscope data were collected during walking in three orthogonal anatomical axes, i.e.,
the anterior-posterior, mediolateral, and vertical axes, using a custom application. The
application originally requested the data from sensors in over 400 Hz sampling frequency
and downsampled it to 100 Hz for calculation efficiency. The sensor precision is 0.002 m/s?
with a range of +£78.453 m/s? for the accelerometer and 0.0006 rad/s with a range of
+17.453 rad/s for the gyroscope.

Capture Data

Accelerometer

Capture

Figure 1. Smartphone placement and orientation with the running custom application interface.
While clicking the ‘START” button, the application will continuously collect the data of acceleration
and gyroscope until the ‘STOP’ button is clicked. The application will send a signal to the VICON
motion capture system for synchronization upon clicking the ‘SEND MARKER’ button.
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In order to address the test-retest reliability of the smartphone-based accelerome-
ter, each participant was asked to attend another session within a month and at least a
week after their first session. The protocol and task conditions were kept identical to the
first session.

2.5. Data Processing
2.5.1. VICON Data

All the marker trajectories were labeled using the software of VICON Nexus 2, and
processed with the full-body plugin gait pipelines. The gait events (i.e., the instant of
heel-strike and toe off) of the footsteps that fell on the force plate in the middle of the
path were automatically detected by VICON Nexus 2. The gait events of the rest footsteps
during the walking trial were generated using the analysis function of “Autocorrelate
Events”. Further temporal parameters related to the walking trial were calculated using
the generated CSV file with the gait events data.

2.5.2. Smartphone Data

To extract the data, acceleration and gyroscope signals collected by the smartphone ap-
plication were uploaded to the computer and processed in the MATLAB software (R2021a,
Mathworks, Natick, MA, USA). The initial and last three steps of each trial were excluded
from the analysis to eliminate the acceleration and deceleration phases during gait initiation
and termination. The gait events of heel-strike and toes off of each foot were then identified
by the method validated in a standalone sensor [28,46]. This algorithm was adopted as it
was the few open-source algorithms that estimate heel strike and toes off based on waist
acceleration. This method is also suitable for smartphones with lower processing powers,
compared with other algorithms that require more complicated computation [47]. During
the data processing, a smoothed anterior—posterior acceleration signal was first generated
by using a Butterworth filter (4th order, cut-off frequency 2 Hz). Using the minimum peaks
of the smoothed signal as the reference, the minimum peaks of the raw anterior-posterior
signal that are nearest to the reference minimum peaks are defined as the gait events of
the heel strike [28]. The maximum peaks of the raw anterior—posterior acceleration signal
that are the closest to the maximum peaks of the reference signals are defined as the gait
events of the toes off [46]. Secondly, the gyroscope data of the anterior—posterior axis was
used to define the left or right step for the detected gait events of the heel strike. The raw
gyroscope data were filtered by a Butterworth filter (4th order, cut-off frequency 2 Hz),
which generated a smooth signal showing the pelvic rotation movement during walking.
The heel strikes falling on the positive threshold value are defined as right heel strikes while
the ones on the negative threshold value are left heel strikes. The gait events detection
procedure is shown in Figure 2. The identification of the heel strike and toes off allowed the
calculation of temporal gait parameters (i.e., step time, stride time, stance duration, swing
duration, single/double support duration, Table 1).

Table 1. Definition and derivation of duration parameters.

Parameter Definition
Parameters Derived from the Gait Events of Heel Strike
Step time of both legs Mean time between two consecutive heel strikes of reciprocal legs for each subject.
Left step time Mean time from a right heel strike to the next left heel strike for each subject.
Right step time Mean time from a left heel strike to the next right heel strike for each subject.

Stride time

Mean time between two consecutive right heel strikes for each subject.
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Table 1. Cont.

Parameter Definition
Parameters Derived from the Gait Events of Heel Strike and Toes Off
Right stance phase duration Mean time from a right heel strike to the following right toe off for each subject.
Left stance phase duration Mean time from a left heel strike to the following left toes off for each subject.
Double support I duration Mean time from a right heel strike to the following left toe off for each subject.

Right single support/Left swing
phase duration
Double support II duration Mean time from a left heel strike to the following right toe off for each subject.
Right swing phase/Left single
support duration

Mean time from a left toe off to the following left heel strike for each subject.

Mean time from a right toe off to the following right heel strike for each subject.

Proportion Parameters

Right stance phase proportion Right stance phase duration divided by stride time
Left stance phase proportion Left stance phase duration divided by stride time
Double support I proportion Double support I duration divided by stride time

Right single support/Left swing
phase proportion
Double support II proportion Double support II duration divided by stride time
Right swing phase/Left single
support proportion

Right single support/Left swing phase duration divided by stride time

Right swing phase/Left single support duration divided by stride time
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Figure 2. An example of the data processing of the smartphone data for gait events. (A) Gait events
including the heel contact (heel strike) and toes off were defined based on the reference signal.
(B) Left and right were detected based on the reference gyroscope signal. (C) Compare the results
of smartphone with the gold standard of the VICON motion capture system. AP, anterio-posterior.
SHC, smartphone heel contacts. STO, smartphone toes off. SRHC, smartphone right heel contacts.
SLHC, smartphone left heel contacts. SRTO, smartphone right toes off, SLTO, smartphone left toes
off, VRHC, VICON right heel contact, VLHC, VICON left heel contact, VRTO, VICON right toes off.
VLTO, VICON left toes off.
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2.5.3. Generating Temporal Parameters

The gait events generated from the VICON system and smartphone were first labeled
as specific numbers for further calculation in MATLAB software. Right foot heel contact,
left foot toes off, left foot heel contact, and right foot toes off were labeled as “1”, “2”, “3”,
and “4”, respectively. All the walking trials would start at a detected right foot heel contact
and end with the right foot toes off (Figure 3). This alignment method labeled the gait
events in an orderly time series and enhanced computational efficiency, but it resulted
in the number of left steps being more than the number of right steps, as the first step is
always initiated by the left foot. Temporal parameters, including the duration of double
support I, right foot single support/left foot swing phase, double support II, right foot
swing phase/left foot single support, right stance phase, step time, stride time, and the
proportion of these sub-phases would be generated for all the walking trials. Mean values
were used to represent the gait characteristics of each participant. Proportional parameters
were calculated based on the above values (Table 1).

1 Right foot heel strike

Detected walking trial R 2 Left foot toes off
Three detected cycles e 3 L?ﬁ foot heel strike
(1~2~3~4~1~2~3~4~1~2~3~4) 4 Right foot toes off
1 2 3 4 1 2 3 4 1 2 3 4
- | o | - |
(A i i L | i L
i [ b i L i
| | e—— | — | |
i (S S

|

J
I
I
|

@8 Double support | (2-1) @ Right single support / left swing phase (3-2) (| Double support Il (4-3)
@ Right swing phase / left single support (1-4) @ Right stance phase (4-1) @ Left stance phase (2'-3)
@ Right step time (3-1) @ Left step time (1°-3) () Stride time (1’-1)

Figure 3. Gait events and gait parameters identification and definition. The comma superscript
represents the gait event of the next gait cycle.

2.6. Statistical Analysis

Statistical analysis was performed using SPSS statistical software (IBM®, SPSS® Statis-
tics, Version 25). The normality of the data was verified using the Shapiro-Wilk test. Means
and standard deviations were calculated for each parameter for both systems over all the
walking trials.

To examine the validity, the Pearson Product-Moment Correlation was used to com-
pare the data captured by the VICON system and the smartphone, examining the correla-
tion between both methods. For non-parametric parameters, Spearman Rank Correlation
was used instead of Pearson Product-Moment Correlation. Validities of parameters were
classified as excellent (r > 0.90), good (0.75 < r < 0.90), moderate (0.50 < r < 0.75), fair
(0.25 <r £ 0.50), or poor (r < 0.25 or p > 0.05) based on their correlation coefficients [48].
Bland—Altman plots with 95% limits of agreement were generated to determine the de-
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gree of agreement between the two systems. Percentage bias was calculated based on the
Bland—-Altman plots with VICON as reference [49].

To examine the test-retest reliability of the accelerometer, the intraclass correlation
coefficients (ICCj3 1) between measurements from the two sessions were calculated. Relia-
bilities of parameters were classified as excellent (ICC > 0.90), good (0.75 < ICC < 0.90),
moderate (0.50 < ICC < 0.75), fair (0.25 < ICC < 0.50), or poor (ICC < 0.25 or p > 0.05)
based on their ICC value [50]. Statistical significance (p-value) for all tests was determined
at the level of 0.05 [51].

3. Results

In total, 26 participants completed the first session of assessment for validity (Figure 4;
13 male, 13 female, age = 20.8 £ 0.7 years). In total, 1 subject dropped out of the second
session and 25 participants completed the second session of assessment for reliability
(Table 2; 13 male, 12 female, age = 20.8 &= 0.7 years).

Subjects participated in
assessment session 1,n =26

—DI Subject dropped out, n = 1 I

y

Subjects participated in
assessment session 2, n =25

Figure 4. Flow diagram of study subjects.

Table 2. Subject characteristics.

Demographics Assessment Session 1 Assessment Session 2
Number of subjects 26 25

Male (%) 13 (50%) 13 (52%)

Age (years) 208 £0.7 20.8 £0.7

Height (cm) 168.8 £ 8.5 169.2 £ 8.5
Weight (kg) 62.6 £9.9 63.1+97

Gait speed (m/s) 1.50 £+ 0.12 1.50 + 0.12

Average number of steps 177.3 + 66.3 177.8 £ 67.6

3.1. Validity

The Pearson Product-Moment Correlation coefficient (r), bias, percentage bias, and
limits of agreement for each parameter are listed in Table 3. Generally, the » values for the
measured gait parameters displayed a wide range of variability.

Duration parameters derived from the heel strike only displayed excellent to moderate
validity. Step time of both legs and stride time demonstrated excellent validity (r = 0.977,
p <0.001; r = 0.969, p < 0.001) while left and right step times demonstrated moderate
validity (r = 0.628, p < 0.001; r = 0.553, p = 0.003).

Duration parameters derived from heel strike and toe off displayed moderate to poor
validity. Right and left stance phases and right single support demonstrated moderate
validity (r = 0.704, p < 0.001; r = 0.554, p = 0.003; r = 0.461, p = 0.018) while the right
swing phase demonstrated fair validity (r = 0.467, p = 0.016). Double support I and II
demonstrated poor validity (r = 0.098, p = 0.634; r = 0.387, p = 0.051). All proportion
parameters demonstrated poor validity (r = 0.091-0.350, p > 0.05).
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Table 3. Validity of gait parameters between VICON and smartphone.

Average VICON Smartphone Percentage = Lower Upper
Parameter 8 Mean + SD Mean £ SD r Bias niag PP
Step Count (1 = 26) (1 = 26) Bias LOA LOA
Duration parameters derived from HS only (sec)
St]fgﬂ?rlzgs"f 1773 0516 +0.028  0.515+0.028 0977 * —0.001 —0.2% —0.013  0.011
Left step time 103.2 051340032 051040043  0.628* —0.003 —0.6% —0.069  0.063
Right step time 74.1 0516 +0.025  0.518 =+ 0.039 0.553 * —0.001 —0.2% —0.065  0.063
Stride time 74.1 1.028 +0.054  1.025+0.054 0969 ** —0.004 —0.4% —-0.030  0.023
Duration parameters derived from HS and TO (sec)
R‘g;‘}tlzzznce 1032 0.637 £0.045  0.595+0.043  0704*  —0.042*  —65% —0.108  0.025
Leg;:z:’ze 74.1 0.642+0.043  0.606+0053  0554*  —0.036*  —56%  —0127  0.055
SEI‘)’;::I 103.2 0.127 £0.026  0.090 = 0.035 0098t  —0035*  —27.7%  —0.116  0.045
Right single
support/Left 103.2 0388 +£0.030 041940050  0.568*% 0.032* 8.3% ~0.055  0.119
swing phase
Double
support I 103.2 0.125+0.025  0.087 & 0.036 0387t  —0039*  —313%  —0112 0033
Right
swing/Left 74.1 0391 +0.025  0.429 + 0.034 0.467 * 0.038 ** 9.8% —0.024  0.100
single support
phase
Proportion parameters
ng;‘;;zme 1032 0.620+£0.020 0581 +0.026  0244Ff  —0.039*  —62% —0.098  0.021
Leg;:;me 74.1 062440024 0591+£0043  0310f  —0033*  —53% —0120  0.054
SE;;ErlteI 103.2 0.123 +0.023  0.087 + 0.033 0091  —0034*  —278%  —0.111  0.042
Right single
support/Left 103.2 0376 +0.023  0.408 + 0.044 0.255 } 0.034 ** 9.0% —0.053  0.120
swing phase
Double 0
support I 103.2 0.121+0.022  0.085 = 0.036 0350  —0037*  —31.0%  —0.109  0.034
Right
swing/Left 741 0.380 £ 0.020  0.419 + 0.026 0.244 § 0.039 ** 10.2% ~0.021  0.098
single support
phase

Note. HS = heel strike, TO = toe off, r = Pearson correlation coefficient unless specified, bias = mean difference
(smartphone—VICON), percentage bias = bias/VICON mean, LOA = limit of agreement. * p < 0.05. ** p < 0.001.
f Spearman rank correlation coefficient is tested instead because the parameter is not normally distributed or
cannot assume normal distribution.

The biases of duration parameters derived from heel strike only were close to zero
(bias = —0.001~—0.004) (Table 3). Meanwhile, the biases of other gait parameters were
comparatively greater with a magnitude of —0.042-0.038 s. Among the 16 gait parameters,
step time of both legs, left and right step time, and stride time showed small limits of
agreement while other parameters showed larger limits of agreement (Table 3). Detailed
Bland—-Altman plots are available in Figure 5.
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Figure 5. Bland—-Altman plots of different gait parameters between VICON and smartphone. (A) Step
Time of Both Legs; (B) Left Step Time; (C) Right Step Time; (D) Stride Time; (E) Duration of Right
Stance Phase in a Gait Cycle; (F) Duration of Left Stance Phase in a Gait Cycle; (G) Duration of Double
Support I in a Gait Cycle; (H) Duration of Single Support in a Gait Cycle; (I) Duration of Double
Support II in a Gait Cycle; (J) Duration of Swing Phase in a Gait Cycle; (K) Proportion of Right Stance
Phase in a Gait Cycle; (L) Proportion of Left Stance Phase in a Gait Cycle; (M) Proportion of Double
Support I in a Gait Cycle; (N) Proportion of Single Support in a Gait Cycle; (O) Proportion of Double
Support Il in a Gait Cycle; (P) Proportion of Swing Phase in a Gait Cycle. Note: Differences between
VICON and smartphone (smartphone—VICON) are plotted against means between VICON and
smartphone for different gait parameters. Dashed lines represent the means of difference between
VICON and smartphone while solid lines represent the limits of agreement (mean =+ 1.96 SD). Error
bars represent 95% confidence intervals of the means of difference between VICON and smartphone.

3.2. Reliability

Generally, the test-retest reliabilities of the smartphone gait analysis system for differ-
ent parameters were good to fair (Table 4).

Duration parameters derived from heel strike only displayed good to fair reliability.
Step time of both legs and stride time demonstrated good reliability (ICC = 0.845, p < 0.001;
ICC =0.829, p < 0.001). Left step time demonstrated moderate reliability (ICC = 0.684,
p < 0.001) while right step time demonstrated fair reliability (ICC = 0.388, p = 0.028).
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Table 4. Reliability of gait parameters between two sessions of smartphone.
Session 1 Session 2

Smartphone Smartphone

Parameter Average Step Count Mean + SD Mean + SD ICG;, ¢
(n =25) (n =25)
Duration parameters derived from HS only (sec)
Step time of both legs 177.8 0.516 £ 0.028 0.518 £ 0.037 0.845 **
Left step time 103.4 0.509 + 0.044 0.519 £ 0.039 0.684 **
Right step time 74.4 0.518 £ 0.036 0.518 £ 0.048 0.388 *
Stride time 74.4 1.027 £ 0.054 1.038 £ 0.077 0.829 **
Duration parameters derived from HS and TO (sec)

Right stance phase 103.4 0.596 + 0.044 0.604 £ 0.048 0.796 **
Left stance phase 74.4 0.608 £ 0.053 0.608 £ 0.063 0.691 **
Double support I 103.4 0.090 + 0.035 0.089 £ 0.031 0.709 **

Right single support/Left 103.4 0.419 + 0.050 0.430 = 0.043 0.827 **
swing phase

Double support II 103.4 0.087 £ 0.036 0.085 £ 0.030 0.615 **

Right swing/Left single 74.4 0.431 + 0.033 0.433 + 0.043 0.582 *
support phase
Proportion parameters

Right stance phase 103.4 0.580 + 0.026 0.582 £ 0.024 0.429 *
Left stance phase 74.4 0.592 £ 0.044 0.585 £ 0.034 0.710 **
Double support I 103.4 0.087 £ 0.033 0.085 £ 0.028 0.681 **

Right single support/Left 103.4 0.408 = 0.044 0.415 = 0.034 0.710 **
swing phase

Double support II 103.4 0.085 £ 0.036 0.082 £ 0.028 0.628 **

Right swing/Left single 74.4 0.420 + 0.026 0.418 + 0.024 0.429 *
support phase

Note. HS = heel strike, TO = toe off, ICC = intraclass correlation coefficient. * p < 0.05. ** p < 0.001.

Duration parameters derived from heel strike and toes off displayed good to moderate
reliability. The right stance phase and right single support demonstrated good reliability
(ICC =0.796, p < 0.001; ICC = 0.827, p < 0.001) while the left stance phase, double support I
and II, and right swing phase demonstrated moderate reliability (ICC = 0.691, p < 0.001;
ICC =0.709, p < 0.001; ICC = 0.615, p < 0.001; ICC = 0.582, p = 0.001).

Proportion parameters displayed moderate to fair reliability. Left stance phase, double
support I and II, and single support demonstrated moderate reliability (ICC = 0.710,
p <0.001; ICC = 0.681, p < 0.001; ICC = 0.628, p < 0.001; ICC = 0.710, p < 0.001) while
right stance phase and swing phase demonstrated fair reliability (ICC = 0.429, p = 0.016;
ICC =0.429, p = 0.016).

4. Discussion

This study aimed to investigate the validity and reliability of a smartphone-embedded
accelerometer on the lower trunk in providing temporal parameters in level walking. The
results obtained showed good to moderate validity in gait parameters derived from heel
strike events only (left step time, right step time, stride time, and step time of both legs),
and a moderate to fair validity in gait parameters derived from heel strike and toes off
events (swing phase, single support, left stance phase and right stance phase). The validity
of double support I, double support II, and all proportion parameters were poor. The
test-retest reliabilities of the smartphone gait analysis system for different parameters
varied from good to fair. In general, the better the validity of the gait parameter calculated,
the better the reliability.
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4.1. Inaccuracy in Toes-off-Derived Gait Parameters

Our results showed that gait parameters derived from heel strike and toes off together
were less accurate than those derived from heel strike only (Table 3). The inaccuracy in
toes-off-derived gait parameters may be due to less accurate detection of toes off events
by smartphone. With reference to VICON, we observed larger errors of the smartphone in
detecting toes off (—0.047 to —0.043 s) than heel strikes (—0.011 to —0.012 s) in our sample
(Supplementary Materials File S1, Table S1).

Incorrect detection of toes off events by smartphone may be due to difficulty in toes
off event identification from accelerometer signal. In the anteroposterior accelerometer
signal (Supplementary Materials File S1, Figures S3 and S4), multiple peaks were noted
around the time of toes off events, leading to the difficulty in identifying the exact time
when toes off happened. The current method identifies the maximum peak as the toes
off event [46], causing potential errors in some participants. Regarding the amplitude of
the troughs (heel strike) and peaks (toes off) in the accelerometer data, heel strike events
had a larger magnitude of change than toe off, indicating that toe off is a softer and more
subtle event, making it more difficult to detect accurately. Another study also demonstrated
difficulty in identifying toes off events using an accelerometer-based sensor with a different
algorithm [52]. Such difficulty in toes off detection might explain why gait analysis research
studies often exclude toes off in their calculation of gait parameters.

Other potential reasons causing the inaccuracy in toe off detection include synchro-
nization error, slow walking speed [46], and flat-footed landing during walking. However,
given a similar level of systematic error was not noted on the detection of heel strike,
synchronization error should not be the main reason for the inaccuracy. In addition, given
the average walking speed of the young participants was 1.5 m/s?, which is relatively high,
no evidence supports the inaccuracy derived from slow gait speed and gait pattern. Future
studies should focus on modifying the accelerometer calculation algorithm to improve the
validity of toe off event identification. For example, a specific pattern wave or a specific
open-source Al filter box may be used to filter the raw data to correct the early error peaks
mentioned above to improve the accuracy of toes off detection.

4.2. A Higher Step Count Is Associated with Better Validity

Within duration parameters derived from heel strike only, our results showed that the
step time of both legs was more accurate than the isolated left or right step time. Since all
of those parameters do not involve toes off in their calculations, the difference in validity
cannot be explained by inaccuracy in toes off identification. Instead, better accuracy of
the step time of both legs over isolated left or right step time may be due to the larger
number of steps collected for the step time of both legs. To further evaluate this observation,
we divided the participants into three groups using the number of valid steps detected.
Subgroup analyses were performed on the participants with the highest number of steps
(n =9) and those with the lowest number of steps (n = 9), respectively. Participants with
more steps consistently report better correlation with VICON in step time (average step
count = 109-247, r = 0.802-0.989), compared with those with the lowest number of steps
(average step count = 43.4-114.7, r = 0.584-0.972) (Supplementary Materials File S1, Tables
52 and S3). It appears that the number of effective steps has to exceed 100 for better validity.

4.3. Gait Phases with Shorter Durations Is Associated with Worse Validity

Within duration parameters derived from heel strike and toes off, the study showed a
wide range of discrepancies in the results of validity (Table 3). Since all of those parameters
included one toes off event in their calculation, the error in toe off identification alone
cannot explain such a difference in results. In addition, the mean number of samples used



Biosensors 2025, 15, 397

13 of 17

to calculate those parameters was consistent, which denied the possibility of a difference
in the number of samples affecting the validity. The difference in duration of each gait
phase can serve as a possible explanation. As shown in Table 3, gait parameters with longer
durations showed better validity. Gait phases with shorter duration would contain a larger
proportion of errors yielded in heel strike and toe off detection, leading to poorer validity.

4.4. Inaccuracy in Proportion Parameters

Generally, the validity and reliability of proportional parameters were poorer than
those of duration parameters of the same gait phases (Tables 3 and 4). Poorer validity and
reliability in proportion parameters can be attributed to the complexity of their calculation.
This was because the calculation of proportion parameters was carried out by dividing the
duration parameters of gait phases by the stride time. This introduced errors from both
duration parameters and stride time to proportion parameters, leading to an increase in the
inaccuracy of proportion parameters compared to duration parameters.

4.5. Clinical Implications and Future Direction

To be used for clinical application, an outcome measure has to be both valid and
reliable. Out of the 16 gait parameters that we have measured, high validity and good
test-retest reliability were observed in step time and stride time, which were events derived
from heel strikes and of longer duration. Therefore, our research supports the use of our
smartphone-based gait analysis system in assessing step and strike time.

Isolated left and right step time demonstrated moderate validity and moderate to fair
reliability. Since their difference in validity was only contributed by the fewer number of
effective steps, we categorize their applicability in clinical use as acceptable, but only under
the circumstance that a sufficient number of effective steps (above 100 steps in each leg)
were taken into account when calculating these parameters.

For other parameters, their validity ranged from moderate to poor due to their nature
of gait characteristics (toes off-involved events, events with short duration) or their com-
plexity in calculation (proportional parameters). Further refinement of the data processing
algorithm is required to improve their validity before clinical application.

Our study has set a foundation for developing gait assessments using a smartphone
system. Our results can also guide future studies related to smartphone gait analysis to
refine the protocol for better results. Future studies should be conducted to improve the
accelerometer calculation algorithm to address the systemic error in toes off identification.
Further exploration of the cut-off value of effective steps taken to calculate a valid result
can be carried out to improve the clinical utility of the smartphone system.

4.6. Limitations

This study exhibited several limitations. First, due to the set configuration of the
VICON system, the study was constrained to an indoor laboratory setting which would
confine the number of steps in each trial. Thus, the natural variability of walking gait could
not be reflected. In addition, as only level walking at a preferred speed was evaluated,
faster motion, turning, or other movements of daily locomotion were not assessed. To
further improve the validity of the smartphone system in gait analysis, future studies
should include more continuous steps in a single trial to assess the variability of gait and
compare the results on different walking styles or environments.

In terms of generalizability, our participants were limited to healthy young adults with
normal gait patterns and did not include populations in other age groups or populations
with pathological gait characteristics. Therefore, further validation of the smartphone
system is required with different age groups, ethnicities, and populations with pathological
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gait or motion impairment whose gait pattern displays a wider range of variations to
improve the external validity of smartphones as a gait analysis tool.

Additionally, only one smartphone model was used in our study. Previous studies
investigating the feasibility of smartphone-based gait assessment varied in smartphone
models used, such as I0S-based and Android-based smartphones [53]. Differences in
smartphone models or smartphone applications may influence the validity and reliability
of the gait parameter calculated. Since the smartphone model used by individuals may vary
among the general population, future studies should investigate the differences between
the gait parameters calculated by different smartphone models.

Furthermore, the reliability and validity presented depend highly on the algorithm
used to detect heel strikes and toes off. The results of the study could only be generalized
to the algorithm adopted.

Lastly, we did not quantify the damping characteristics of the belt which might partly
contribute to the inaccuracy. However, we tried our best to secure the smartphone on
the lower back of the participants during the assessment without causing discomfort.
We believe our experimental setup could reflect the use of smartphones in assessing gait
characteristics in real-life applications.

5. Conclusions

This study demonstrated the feasibility of using a smartphone for gait assessment
in young healthy adults. Sixteen clinically relevant gait parameters were calculated from
identifying heel strike and toe off events. Step time of both legs and stride time demon-
strated excellent validity and good reliability. Right stance phase, left stance phase and
single support showed moderate validity and good to moderate reliability. Left step time
and right step time demonstrated moderate validity and moderate to fair reliability. These
gait parameters show potential clinical applicability in gait assessment, but only when a
sufficient number of effective steps (above 100 steps in each leg) were collected for cal-
culating these parameters. For other parameters, their validity ranged from moderate to
poor due to their nature of gait characteristics (toe off-involved events, events with short
duration) or their complexity in the calculation (proportional parameters). Overall, this
study lays the foundation for the future development of smartphone-based gait analysis
technology, thus enhancing community-based healthcare service.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/bios15070397/s1. Figure S1. Setting of the laboratory and walking
path for walking trials. Figure S2. VICON markers set configuration on a subject. Figure S3. A
raw anterior-posterior acceleration signal over time collected by the smartphone. Figure S4. A raw
anterior-posterior acceleration signal over time collected by the smartphone. Table S1. Errors Between
VICON and Smartphone in Heel strike and Toes off Time. Table S2. Validity of Gait Parameters
in Subgroup with Nine Participants with the Largest Number of Steps. Table S3. Validity of Gait
Parameters in Subgroup with Nine Participants with the Smallest Number of Steps.
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