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Abstract

Along-wavelength geoidal geometry reflects mainly lateral density variations in the Earth’s
mantle, with the most pronounced features of the Indian Ocean Geoid Low and the
West Pacific and North Atlantic Geoid Highs. Despite this spatial pattern being clearly
manifested in the global geoidal geometry determined from gravity-dedicated satellite
missions, the gravitational signature of the deep mantle could be refined by modelling
and subsequently removing the gravitational contribution of lithospheric geometry and
density structure. Nonetheless, the expected large uncertainties in available lithospheric
density models (CRUST1.0, LITHO1.0) limit, to some extent, the possibility of realistically
reproducing the gravitational signature of the deep mantle. To address this issue, we
inspect an alternative approach. Realizing that the gravity geopotential field (i.e., gravity
potential) is smoother than its gradient (i.e., gravity), we apply the integral operator
to geopotential and then investigate the spatial pattern of this functional (i.e., radially
integrated geopotential). Results show that this mathematical operation enhances a long-
wavelength signature of the deep mantle by filtering out the gravitational contribution of
the lithosphere. This finding is explained by the fact that in the definition of this functional,
spherical harmonics of geopotential are scaled by the factor 1/n (where n is the degree of
spherical harmonics), thus lessening the contribution of higher-degree spherical harmonics
in the radially integrated geopotential. We also demonstrate that further enhancement of the
mantle signature in this functional could be achieved based on modelling and subsequent
removal of the gravitational contribution of lithospheric geometry and density structure.

Keywords: disturbing potential decomposition; global forward modelling; radial integra-
tion as filter; mantle convection; sub-lithospheric mantle

1. Introduction

Since seismic surveys are still sparse and uneven in many parts of the world, remote-
sensing data acquired from synthetic-aperture radars, satellite altimetry, and dedicated
satellite-gravity missions have been used in numerous regional and global studies of the
Earth’s interior. For instance, studies of the global geoid pattern helped scientists better
understand a deep mantle structure mainly manifested in a long-wavelength geoidal
geometry (e.g., [1-11]). Gravity-dedicated satellite missions could recover the Earth’s
gravitational field with a spatial resolution up to ~80 km (in terms of a half-wavelength
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at the equator), while further refinement has been achieved by integrating ground-based,
air-borne, and sea-borne gravity measurements as well as marine gravity data from satellite
altimetry (e.g., [12]).

In the Earth’s interior studies, gravity information together with topographic, bathy-
metric, and ice-thickness datasets and additional geophysical and geological constraints
are often used to investigate geological and tectonic settings within the upper lithosphere
(e.g., [13-19]). The long-wavelength geoidal undulations are, on the other hand, more suit-
able to study deeper structures in the mantle (cf. [20]) because the global geoidal geometry
comprises mainly a long-wavelength signature of mantle density structure. In contrast, the
global gravity pattern better exhibits lithospheric signature.

Although the signature of lithospheric structure is partially filtered out in the geoidal
geometry, the gravimetric interpretation of deep mantle density structure could further be
improved by modelling and subtracting the lithospheric signature. The CRUST1.0 [21] and
LITHO1.0 [22] lithospheric density models have been used for this purpose [23]. Nonethe-
less, the current lithospheric density models have restricted accuracy and resolution. Dif-
ferent methods were, therefore, proposed based on applying spectral decomposition and
filtering techniques or using isostatic models to enhance a long-wavelength signature of
deeper sources in the geoidal geometry and gravity pattern. Besides, isostatic theories
have limitations to realistically model real compensation mechanisms within parts of the
lithosphere that are not in isostatic equilibrium, such as active orogenic belts, divergent
tectonic margins, and active volcanic formations. Spectral decomposition and filtering
techniques are, on the other hand, also inadequate because separation of gravitational
sources at different depths is not unique.

To address the theoretical and practical limitations of the above methods, we inspect
the possibility of enhancing the gravitational signature of the deep mantle by applying
the radial integral of geopotential. Whereas the geopotential (or equivalently geoidal)
geometry has a prevailing long-wavelength pattern attributed to mantle structure, its radial
derivative (i.e., gravity) exhibits a more detailed gravitational signature of lithospheric
geometry and density structure. Consequently, the application of the integral operator
to geopotential filters out lithospheric pattern while enhancing the signature of the deep
mantle because spherical harmonics of geopotential are scaled by the factor 1/n. We then
apply gravimetric forward modelling techniques to model the gravitational contribution of
lithospheric geometry and density structure, remove this contribution from the geopotential
and its radial integral, and compare both results with the mantle model.

2. Theory

In this section, we first define the radial integral of disturbing potential, which is
obtained from the geopotential (i.e., actual gravity potential) after subtracting the normal
gravity potential. We then provide definitions of respective gravitational corrections to this
functional that are applied to mathematically model and remove the gravitational signature
of lithospheric geometry and density structure.

2.1. Radial Integral of Earth’s Disturbing Potential
The radial integral of the disturbing potential is defined by [24]

S = / T(r, Q) dr 1)

where T denotes the disturbing potential, i.e., the difference between the actual gravity
potential W and the normal gravity potential U (T = W — U). The 3-D position in Equation
(1) and thereafter is defined in the spherical coordinate system (7, (), where 7 is the radius
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and Q) = (¢, A) denotes the spherical direction with the spherical latitude ¢ and longitude A.
The spherical harmonic representation of the Earth’s disturbing potential T reads (e.g., [25])

T(r,0) = SM i( )M Y Tam Yam(Q) @

m=—n

where T}, , are (fully-normalized) numerical coefficients of the disturbing potential T of
degree n and order m, and the (fully-normalized) surface spherical functions Y}, ,, are
defined by

cosmAm>0
sinjm|A m <0

Ynm(Q) = Pym(sing) { 3)
with P, denoting the (fully-normalized) associated Legendre functions. Combining
Equations (1) and (2), the spherical harmonic representation of the radial integral of Earth’s
disturbing potential is given by

GM & R n+1 GM & n
/TdT—T X_:/( ) dr Z Thm Y nm —T X:: n+1/ 1y Z Tn,mYn,m(Q) 4)

m=—n m=-—n

The radial integral of "1

on the right-hand side of Equation (4) is given by
1
/ﬂ*l dr = ——r"+C (n>0) 5)

Substitution from Equation (5) back to Equation (4) yields

) —n n
[rar=—aM SR (77 4C) B Tam Yom(0) ®
n=2 m=-n

Setting the integral constant C = 0, the indefinite radial integral of Earth’s disturbing
potential in Equation (6) becomes

[rar=-auy ! ( ) Y Tam Yom(Q) )

n=2 n m=—n

As seen in the definition of the radial integral of disturbing potential in Equation (7), the
spherical harmonics of disturbing potential are scaled by 1/n, thus effectively filtering
out the contribution from higher-degree harmonic terms. Depending on the accuracy of
available global lithospheric density models, further enhancement of the mantle signature
in the radially integrated disturbing potential could be done by modelling and remov-
ing the gravitational contribution of lithospheric geometry and density structure. This
mathematical procedure is realized in several numerical steps described below.

2.2. Radial Integral of Bouguer Disturbing Potential

The radial integral of the Bouguer disturbing potential T is introduced in the
following form

B [1har (®)
p
The Bouguer disturbing potential T reads

™=1-VvI-VvB_V! ©9)
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where VT is the gravitational potential of topographic masses (i.e., the topographic po-
tential), V® is the gravitational potential of ocean density contrast (i.e., the bathymetric
potential), and V' is the gravitational potential of polar glaciers’ ice density contrast (i.e.,
the ice potential).

Substituting from Equation (9) back into Equation (8), we arrive at

%B:/Tdr—/VTdr—/VBdr—/Vldr (10)
r r r r

As seen in Equation (9), the Bouguer disturbing potential is obtained from the Earth’s
disturbing potential after removing the gravitational contribution of topography and
density contrasts of oceans and polar glaciers. The Bouguer disturbing potential thus
corresponds to a model Earth with no topography (no masses above geoid) and no oceans
(seawater replaced by solid masses of constant reference topographic density). The same
mathematical operations are applied in the definition of the radial integral of Bouguer
disturbing potential in Equation (10). The radial integrals of gravitational potentials in
Equation (10) were computed according to expressions summarized in Appendices A and B
that utilize methods for spherical harmonic analysis and synthesis of crustal density and
geometry structure.

2.3. Radial Integral of Sub-Lithospheric Mantle Disturbing Potential

In the gravimetric forward modelling scheme, the gravitational contribution of density
heterogeneities within the whole lithosphere, as well as the gravitational signature of
density contrast between lithosphere and asthenosphere, is subtracted to enhance the
signature of sub-lithospheric mantle density structure. In our computational scheme,
this procedure yields the radially integrated sub-lithospheric mantle disturbing potential
3M e,

oM = [ 1M (11)
r

%SM

The computation of the sub-lithospheric mantle disturbing potential and its radial

integral in Equation (11) is realized in numerical steps explained next.

2.3.1. Radial Integral of Crust-Stripped Disturbing Potential

In Equation (10), the radially integrated Bouguer disturbing potential [ TPdr was
computed by applying topographic, bathymetric, and ice corrections to the Earth’s disturb-
ing potential. To remove the gravitational contribution of density heterogeneities within
the whole crust, the corrections due to sediments and consolidated crust were applied,
yielding the radially integrated crust-stripped disturbing potential, [ TCSdr, ie.,

/Tcsdr:/TBdr—/VSdr—/VCdr (12)
r r .r r

The crust-stripped disturbing potential corresponds to a model Earth with no topogra-
phy (no masses above geoid) and a homogenous crust globally between the geoid and the
Moho boundary.

2.3.2. Radial Integral of Mantle Disturbing Potential

The gravitational signature of Moho geometry has to be modelled and removed from
the crust-striped result. This procedure yields the radially integrated mantle disturbing
potential. Following numerical procedures proposed in [23], the radially integrated mantle
disturbing potential | TMdr was realized by subtracting the radially integrated gravita-
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tional potential of the Moho geometry | VM gy (see Appendix C) from the radially
integrated crust-stripped disturbing potential [ T dr. We then write

/ ™ dr — / TCS dr — / VMBS g (13)
T

r r

The mantle (Moho-stripped) disturbing potential corresponds to a model Earth with
no topography (no masses above geoid), a homogenous crust globally below the geoid,
and the boundary between the crust and mantle (Moho) having no morphology.

2.3.3. Radial Integral of Lithosphere-Stripped Disturbing Potential

The radially integrated mantle disturbing potential |, TMdr, computed in Equation
(13), optimally comprises a gravitational signal of the whole mantle. Depending on avail-
able mantle density models, additional corrections can be applied to reveal a gravitational
signature of a particular mantle structure. Following this principle, the gravitational contri-
bution of the lithospheric mantle [, V:Mdr (see Appendix D) was computed and subtracted
from [ TMdr, obtaining the radially integrated lithosphere-stripped disturbing potential
/. TCLdr, ie.,

/ TCL qr — / ™ dr — / VLM gy (14)
r

r r

The lithosphere-stripped disturbing potential corresponds to a model Earth with no
topography (no masses above geoid), a homogenous crust globally between the geoid
and the crust-mantle boundary of no morphology, and a homogenous lithospheric mantle
between the crust-mantle boundary of no morphology and the lithosphere-asthenosphere
boundary (LAB).

2.3.4. Radial Integral of Sub-Lithospheric Mantle Disturbing Potential

The radially integrated lithosphere-stripped disturbing potential [, T<Ldr comprises
the gravitational signature of the lithosphere-asthenosphere boundary (LAB) that has to
be removed to enhance the gravitational signature of sub-lithospheric mantle. By analogy
with the computation of the radially integrated mantle disturbing potential (Section 2.3.2),
this numerical procedure was realized by stripping the lithosphere with respect to the
density contrast between the reference lithospheric density and the asthenosphere density
in the computation of the gravitational potential of LAB geometry (see Appendix E). This
numerical step yields the radially integrated sub-lithospheric mantle disturbing potential
/ . T5Mdr; see also Equation (11). We then write

oM [1Mdr— [1dr— [vEAE g (15)

r r r

The sub-lithospheric mantle (LAB-stripped) disturbing potential corresponds to a
model Earth with no topography (no masses above geoid), a homogenous crust globally
between the geoid and the crust-mantle boundary of no morphology, and a homoge-
nous lithospheric mantle between the crust-mantle boundary of no morphology and the
LAB boundary of no morphology. It is dominated by the gravitational signal of lateral
heterogeneities within the sub-lithospheric mantle and its radial integral.

3. Data Acquisition

In numerical modelling, we used the global gravitational model EIGEN-6C4 [26] to
compute the gravity field quantities. For computation of the topographic, bathymetric, and
ice corrections to gravity field quantities, we used the topographic, bathymetric, and glacial
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bedrock relief data from Earth2014 [27] together with the global lateral topographic density
model UNB_TopoDens [28] to better represent the density variations within topography. To
model the density structure and geometry within the whole lithosphere, we used the total
sediment thickness data for the world’s oceans and marginal seas [29], the CRUST1.0 [21]
global seismic crustal model, and the LITHO1.0 [22] global seismic lithospheric model.
The gravity field quantities and respective corrections for topography and lithospheric
density structure were computed globally with a spatial resolution up to degree 180 of
spherical harmonics.

The disturbing potential and its radial integral were computed using the EIGEN-
6C4 model, while the normal gravity component was evaluated by adopting the GRS80
model [30]. The gravitational contributions of topography, bathymetry, and polar glaciers
were subtracted from the disturbing potential and its radial integral. This procedure yields
the refined Bouguer disturbing potential and its radial integral. The average topographic
density of 2670 kg/m?3 (cf. [31,32]) was used to compute the gravitational contribution of
uniform topographic density, and the anomalous topographic density contribution was
evaluated using the UNB TopoDens density data. For the computation of ice contribution
to gravity field quantities, we used a glacial density of 917 kg/m? (cf. [33]). A depth-
dependent seawater density model [34] was used to evaluate the gravitational contribution
of ocean density contrast (i.e., the bathymetric correction).

The gravitational contributions of continental sediments and consolidated crust
were evaluated using the CRUST1.0 model, updated Antarctic crust structure [35]. A
5 x 5 arc-min dataset of the total sediment thickness for the world’s oceans and marginal
seas was used to compute the contribution of marine sediments. The Moho signature was
modelled using the CRUST1.0 Moho depth, used to remove the gravitational signature
of the crust-mantle density interface. The LITHO1.0 uppermost mantle density data were
used to model and consequently remove the density variations within the lithospheric
mantle. We also removed the gravitational signature of LAB geometry to enhance the
gravitational signature of the sub-lithospheric mantle.

4. Results

The disturbing potential and its radial integral were computed according to the
following expressions, respectively.

N{l% n

( T Z Z Tnm Ynm ) (16)
=2m=—n
180 1 2

=GM Z Z Tnm nm ) (17)

As seen in Equation (17), the values of the radially integrated disturbing potential are
computed in spectral form from the spherical harmonics T}, ,; of disturbing potential scaled
by the factor 1/#n. This scaling factor lessens the contribution of higher-degree spherical
harmonics so that their combined contribution in the radial integral of Earth’s disturbing
potential becomes significantly smaller than that of the Earth’s disturbing potential. The
smoothing effect is demonstrated in Figure 1, where we plotted the Earth’s disturbing
potential and its radial integral, both computed globally on a 1 arc-deg equiangular grid
from the EIGEN-6C4 coefficients up to degree n = 180. A spatial pattern and spectrum of
the radial integral of the disturbing potential were investigated and compared with other
parameters of the gravity field in [24]. They acquired that this smoothing is explained
by the fact that more detailed features in the disturbing potential (mainly attributed to
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a gravitational signature of lithospheric density structure and geometry) are filtered out
proportionally with increasing degree of spherical harmonics in this functional.

180°  120°W  60°W 120°E 180°

200 400 600

180°  120°W  60°W  0°  60°E  120°E  180°

B e

-15 -1.0 -0.5 0.0 0.5 1.0
b

Figure 1. Global maps of: (a) the Earth’s disturbing potential, and (b) the radial integral of Earth’s
disturbing potential.

We further inspected the possibility of enhancing the signature of the deep mantle
by subtracting the gravitational contribution of the lithospheric geometry and density
structure from the Earth’s disturbing potential and its radial integral. Results are presented
in Figures 2-5, with statistical summaries of results in Tables 1-4. In Figure 2, we plotted
the gravitational potentials of lithospheric density and geometry structure components
subtracted from the Earth’s disturbing potential to obtain the sub-lithospheric mantle
disturbing potential. The intermediate results after subtracting individual gravitational
contributions and the final solution, i.e., the sub-lithospheric mantle disturbing potential,
are plotted in Figure 3. The corresponding corrections and results for the radially integrated
values are shown in Figures 4 and 5, respectively.
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Figure 2. Gravitational potentials of: (a) topography (vT), (b) bathymetry (VB), (¢) ice (V1), (d) sedi-
ments (V5), (e) consolidated crust (V°), (f) Moho geometry (VMBS (g) lithospheric mantle (VLM
and (h) LAB geometry (VLAB),

Table 1. The statistics of gravitational potentials of lithospheric geometry and density structure
components used to compute the sub-lithospheric mantle disturbing potential. For notation used, see

legend in Figure 2.
Gravitational Min [m2s-2] Max[m?2s2] Mean[m%s-2] STD [m?s 2]
Potential
vT 2226 8494 3589 1114

VB —28,533 —16,402 —22,386 3185
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Table 1. Cont.
Gravitational Min [m?s2] Max[m?s2] Mean[m?s-2] STD [m?s2]

Potential

V! —3472 —312 —731 729

VS —10,405 —6051 —8207 977

Ve —25,077 —11,529 —15,661 2741

yMAp™ 46,423 69,885 55,734 5832

yLM 174,276 262,661 213,366 17,795

VLAB —244 558 —168,987 —203,311 16,194

180° 120°W 60°W  0° 60°E  120°E  180°

[m?¥/s?]
10,000 15,000 20,000 25.000
a
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[m?¥s?]
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Figure 3. Disturbing potentials: (a) Bouguer (T?), (b) crust-stripped (T¢°), (c) mantle (TM),

(d) lithosphere-stripped (TCLY), and (e) sub-lithospheric mantle (TSM).
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Figure 4. Radially integrated gravitational potentials (those of Figure 2) of: (a) topography,
(b) bathymetry, (c) ice, (d) sediments, (e) consolidated crust, (f) Moho geometry, (g) lithospheric
mantle, and (h) LAB geometry.

Table 2. Statistics of disturbing potentials. For notation used, see legend in Figure 3.

])I’l(s;::rrllt)il:lg Min [m?s2] Max[m?s2] Mean[m?s—2] STD [m?s~2]
T —1036 833 -8 284
TB 9002 26,971 19,657 3858
TCS —14,811 9079 —1369 5769
™ 52,335 57,176 54,455 954
TCL 228,091 319,453 268,166 18,230

M 62,079 81,743 70,517 3649
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Figure 5. Radially integrated disturbing potentials (those of Figure 3): (a) Bouguer, (b) crust-stripped,
(c) mantle, (d) lithosphere-stripped, and (e) sub-lithospheric mantle.

Table 3. The statistics of the radially integrated potentials presented in Figure 4, used to compute the
radial integral of the sub-lithospheric mantle disturbing potential.

G:'{aav(;::ﬂzi::;%;aefgal Min [m3 s—2] Max [m3 s—2] Mean [m3 s—2] STD [m3 s—2]
[VvTar —2.3878 x 10° 3.8872 x 10° —1.6962 x 1077 8.2504 x 10%
erB dr —6.7750 x 10° 8.5480 x 10° —3.6462 x 1077 2.7199 x 10°
rfvf dr —2.8656 x 108 2.9741 x 108 —1.3294 x 1010 5.5653 x 107
}VS dr —9.7560 x 10® 5.5993 x 108 —1.2702 2.7608 x 108
]VC dr —3.6042 x 10° 2.6121 x 10° 48.9703 1.1868 x 10°

I VrM,Apc/’” dr —1.0518 x 1010 1.3199 x 1010 1.0145 x 10~8 4.3710 x 10°
' [ VEM gr —4.8607 x 1010 4.5146 x 10' —1.8737 x 1078 1.5163 x 1010
fVLAB dr —2.3878 x 10° 3.8872 x 10° —1.6962 x 10~° 8.2504 x 108

r
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Table 4. Statistics of the radially integrated disturbing potentials presented in Figure 5.
Radially Integrated . 3.9 3.9 3.2 3.2
Disturbing Potential Min [m” s—2] Max [m° s—2] Mean [m® s—2] STD [m° s—2]
[Tadr —1036 833 —8 284
r
[ TBdr —1.1818 x 10% 9.4317 x 10° —119.97 3.6716 x 10°
r
[ TS ar —1.5103 x 100 1.2340 x 101 —76.70 4.8540 x 10°
y
[ T™ dr —4.1926 x 10° 3.0366 x 10° —274.68 1.2042 x 10°
y
[ TCE ar —5.2214 x 1010 4.6829 x 10™ —2894.21 1.5935 x 1010
r
[ TM dr —1.8577 x 1010 1.3109 x 1010 —3182.16 5.3405 x 10°

r

5. Discussion

The Earth’s topography is primarily controlled by the lateral density variations within
the lithosphere as well as tectonic motions and lithospheric stresses, while global mantle
flow induces deformations of its surface, leading to dynamic topography. As seen in
Figure 6, where we plotted the dynamic topography model prepared by Rubey et al. [36],
the deep mantle structure is dominated by two large antipodal low shear-velocity provinces
at the base of the mantle (e.g., [5]). More detailed features involve large negative anomalies
along active convergent margins, including oceanic subductions and continental collisions.
It is worth noting that dynamic topography models prepared by other authors generally
exhibit a pattern that is similar to that seen in Figure 6. A similar pattern is apparent in
the Earth’s disturbing potential. As seen in Figure 1a, the Earth’s disturbing potential is
manifested by two large positive anomalies that are coupled by large negative anomalies
attributed to mantle downwelling in mantle convection. A similar pattern is seen in
the radially integrated disturbing potential (see Figure 1b), with more detailed features
attributed to the lithospheric density structure filtered out after applying the integral
operator. Consequently, the radially integrated disturbing potential is more suitable to
interpret the deep mantle than the disturbing potential (or the geoid).

-1200 -800 -400 ] 400 800 1200

Figure 6. Global model of the dynamic topography prepared by Rubey et al. [36].

We further compared the dynamic topography model, shown in Figure 6, with the
results obtained after removing the gravitational contribution of the lithospheric geometry
and density structure (including the LAB geometry) from the Earth’s disturbing potential
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and its radial integral. As seen in Figures 3e and 5e, the sub-lithospheric mantle disturbing
potential and its radial integral more closely replicate the dynamic topography than the
Earth’s disturbing potential and its radial integral. Nevertheless, we also observe some
significant discrepancies between the dynamic topography and our two results (i.e., the
sub-lithospheric mantle disturbing potential and its radial integral). The negative anomaly
in the dynamic topography along America is systematically shifted westwards in both
refined results, and with a similar systematic shift of the positive anomaly over Africa.
The margins of the Pacific positive anomaly, on the other hand, coincide quite closely in
the West Pacific, but completely disagree over Australia, where the dynamic topography
reaches minimum values, while values in both refined results there reach local maxima.

As seen in Figure 3e, the lithospheric signature is still strongly manifested in the
sub-lithospheric mantle disturbing potential, particularly along active divergent tectonic
margins, while this pattern is filtered out in the radially integrated sub-lithospheric mantle
disturbing potential (see Figure 5e). Consequently, the application of the integral operator
to disturbing potential and mathematical removal of the respective gravitational contri-
bution of the lithospheric geometry and density structure provides the result that most
closely agrees with the dynamic topography and appears the most suitable for gravimetric
interpretation of lateral density distribution within the deep mantle.

The results presented in this study depend on the accuracy of global gravitational and
lithospheric density models used for numerical realization. The errors in the computed
values of the disturbing potential and its radial integral due to uncertainties of the global
gravitational model (EIGEN-6C4) are negligible when compared to much larger errors
attributed to uncertainties of lithospheric density models (CRUST1.0, LITHO1.0). The
uncertainties of both lithospheric density models were assessed in [37]. According to their
estimates, relative errors up to 10-20% could be expected in results presented through
Figures 2-5, given that errors in the density values propagate almost proportionally to
errors in the computed gravity field quantities. Moreover, the errors typically increase with
depth due to increasing uncertainties of estimated rock densities from tomographic surveys.
It is important to note that despite several functional relations between rock density and
seismic velocities that have been developed based on the analysis of tomographic data
while incorporating geophysical, geochemical, and geothermal constraints, these density
models might be widely inaccurate due to several reasons. A major limiting factor is
insufficient coverage in many parts of the world by tomographic surveys. The refinement
of 1D reference density models by incorporating 2D or 3D lithospheric density models is
then complicated. Furthermore, the direct relation between seismic velocities and mass
densities does not exist because density distribution depends on many other factors (such
as temperature, mineral composition, and pressure).

6. Summary and Concluding Remarks

We have investigated the possibility of interpreting lateral density distribution within
the deep mantle by applying the integral operator to the disturbing potential. In the defini-
tion of the radially integrated disturbing potential, spherical harmonics of the disturbing
potential are scaled by the factor 1/n, thus reducing the contribution of higher-degree
spherical harmonic terms. Consequently, the radially integrated disturbing potential better
enhances the long-wavelength signature of the deep mantle than the disturbing potential.
This integral operator can then be used as an effective filtering technique together with the
spherical harmonic decomposition. In other words, the scaling factor 1/ is first applied to
spherical harmonic terms of the disturbing potential, for n > 0. Note that the radial integral
of the zero-degree term GM/r is a In function. The spherical harmonic decomposition
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can then be applied to select a maximum degree of spherical harmonics of the radially
integrated disturbing potential used for the gravimetric interpretation of the deep mantle.

We further investigated the possibility of enhancing the signature of the deep mantle
by subtracting the gravitational contribution of lithospheric geometry and density structure
from the disturbing potential and its radial integral. Both results (i.e., the sub-lithospheric
mantle disturbing potential and its radial integral) exhibited better agreement with the
dynamic topography model than the corresponding results before applying this refinement
(i.e., the disturbing potential and its radial integral). Nevertheless, our numerical findings
indicate that the radially integrated sub-lithospheric mantle disturbing potential is the most
suitable for gravimetric interpretation of lateral density variations within the deep mantle.
The main reason is that the sub-lithospheric mantle disturbing potential still comprises
the gravitational signature of the lithosphere, particularly along active divergent tectonic
margins, while this pattern was completely filtered out in its radially integrated solution.

Summarizing our numerical findings, we argue that the application of the integral op-
erator to disturbing potential generally improves the gravimetric interpretation of the deep
mantle by filtering out the gravitational contribution of higher-degree spherical harmonic
terms, mainly attributed to the lithospheric geometry and density structure. Nevertheless,
this mathematical operation alone cannot fully remove the gravitational contribution of the
lithosphere because it occupies the whole gravity spectrum with its largest contribution at
low-degree spherical harmonics. The gravimetric forward modeling should be applied to
model and completely remove the gravitational contribution of the lithospheric geometry
and density structure. Consequently, the combined application of the integral operator and
forward modelling provides the best result for the gravimetric interpretation of lateral den-
sity variations within the deep mantle in terms of the radially integrated sub-lithospheric
mantle disturbing potential. This result agrees most closely with the spatial pattern of
dynamic topography. The sub-lithospheric mantle disturbing potential, on the other hand,
still comprises the lithospheric signature, with a redundant pattern that closely resembles
the LAB geometry as well as a thermal signature that significantly controls density varia-
tions, particularly within the lithospheric mantle. This redundant lithospheric signature is
likely due to large errors in the LITHO1.0 and CRUST1.0 datasets of lithospheric mantle
density and thickness. These errors are partially filtered out after applying the integral
operator. However, it is important to emphasize that large-scale errors in lithospheric
models remain even after applying the integral operator, especially at low-degree spherical
harmonic terms that cannot be filtered out.

Author Contributions: Conceptualization, R.T. and P.V,; methodology, R.T. and W.C.; software,
R.T. and W.C,; validation, R.T.; formal analysis, R.T. and P.V.; investigation, R.T. and W.C.; data
curation, R.T. and W.C.; writing—original draft preparation, R.T.; writing—review and editing,
P.\V,; visualization, R.T. and W.C.; All authors have read and agreed to the published version of
the manuscript.

Funding: P.V. was partially funded by the Slovak grant agency VEGA, grant No. 2/0002/23. The
APC was funded by R.T.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.



Geosciences 2025, 15, 246

15 of 19

Appendix A. Radially Integrated Topographic Potential

The radial integral of topographic potential (for a uniform topographic density distri-
bution) is defined by

/VT,p dr = —GM i i()n Y VI Yom(Q) (A1)

m=—n

with the potential coefficients

VT _ 3 pT n+2 n-+2 1 H1(11,(nt1) A
M 2n 41 pRarth &\ ko J k41 R (A2)
where pFt" = 5500 kg /m? is the mean Earth’s mass density, and p! is the average topo-

graphic density. The Laplace harmonics H;, of the topographic heights H are defined by
the following integral convolution

H(Q): 2n+1

Ha(Q), Ha(Q) = jj oTH' Py(t) dQY'= Z Hom Yom(Q),  (A3)

0 m=—n

agk

n

where H;, ,, are the topographic coefficients, P, is the Legendre polynomial for the argument
t = cosp, P being the spherical angle between the computation point (r,Q)) and the
integration point (', Q)’). The infinitesimal surface element on the unit sphere is denoted as
dQ) = cos¢'d¢rdAr, and P is the full spatial angle. The corresponding higher-order terms
in Equation (A2) are given by

HY(Q) = Z”HHH’k Po(t) dY = Y HEL Yom(Q). (Ad)

m=—n

Appendix B. Radially Integrated Crust-Stripping Potentials

In the most generalized case, the radially integrated potentials of crustal density
structures can be computed according to the technique developed by Tenzer et al. [23],
which utilizes the information about a 3-D density (or density contrast) distribution within
particular geological units, such as sedimentary basins. The generic expression for spherical
harmonic synthesis reads

L 1/R\" &
/Vdr - -GM}Y - <) Y Vam Yam(Q). (A5)
" n=0 n\r m=—n
with the potential coefficients of each volumetric mass layer given as
\ 3 i al), —cul) (A6)
nm — 1 pEart n,m Un,m

where the coefficients CI 5}311 and C u,(f)m are given by

o) :”iz n+2) (-1)F c i cud :’f n+2\ (-1)F cubm (A7)
ek Jk4+14d RO TR Ak J k140 RO

and

The coefficients C’iﬁ*i C]L‘It}n“ in Equation (A7) describe the geometry and density

(or density contrast) distribution within a particular crust density layer. These coefficients
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are generated from discrete data of depth, thickness, and density (or involving an empirical
density model), using the following expressions for a spherical harmonic analysis

2n—|—1

J‘j (Cu, Q) CHHL(QY) Py (t) A
[

CLI(Ik+l+i) _ m=-n (A8)

m=—n
and o +1

n

" I p(Cu, Q) C5H Q) Pu(t) dOY
(o]
_ (k+1) 0O P
Co ) () m,Z,nCUnm Yom(Q) 1=0
Un ( ) - 2;/[ + 1 (A9)

Q) w(0 ') CEIH(QY) Py (t) dQY

- ¥ CU£?$1*1>Yn,m<o> i1 2.1

m=—n

The geometry of each volumetric mass layer is defined by depths Cy; and C, of the upper
and lower bounds, respectively. Integral convolutions in Equations (A8) and (A9) utilize a
3-D density distribution p defined by the following regression function

I
o(r,Q) = p(Cy, Q 0) ) «(Q) (R—7) forR Cu(QQ) >r>R—-Cr(Q). (A10)
i=1

where p(Cyy, Q) is the (nominal) value of a lateral density at a location () and depth Cy,
and the parameters ¢; and 8 describe a radial density change for each lateral column within
a volumetric mass layer. Alternatively, the 3-D density contrast model with respect to the
reference density p™ is defined as follows

so(r, Q) = p(r, Q) — p™f (A11)
with p(r, Q)) given by Equation (A11).

Appendix C. Radially Integrated Moho Potential

The radial integral of gravitational potential generated by the Moho geometry (for a
variable density contrast Ap®/™ at the Moho interface) is defined in the following form

/VM,APC/M — _GM Z <R> Z ApM Ynm Q) (AlZ)
T n=0 n r m—=——n
where the numerical coefficients are given by
3 k
ApM 3 ntdin + 3 ) ()
Fom = — AoM) ¥ | Al3
’ (27”1 + 1)(1’1 + 3 —Earth Z Rk ( % )n,m ( )

The Moho spherical functions and their higher-order terms (k =2, 3, ...) read

21’1+1J‘J‘ A C/m(Q/)Mk(Q/) Pn(t) 40/ = i (APM>(> Ynm(Q) (A14)

m=—n

(doM)) =
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The coefficients (ApM), "), (k) (k=1,2,...) are generated from values of the Moho depth and
the (laterally varying) Moho density contrast Ap®/™ defined as a difference between the
(laterally varying) uppermost mantle density p™ and the (constant) reference crustal density
p¢. Hence,

Bp/™(Q) = p™(Q) — (A15)

Appendix D. Radially Integrated Lithospheric Mantle Potential

For a lateral density distribution function within the lithospheric mantle, the radial
integral of the lithospheric mantle potential is defined by

/VLMdr: i Ry’
Eart 7’l—|—11’l
”

n=0

242 (~1)F 3 (k+1) (k+1)
Tt 71 AN an _Mnm Yan
k_zo( L )Rk+1(k+l)m2 (Lo , ) m(Q)

(A16)

where Mﬁl ,:; ) denote the Moho coefficients, and L(kﬂ) are the LAB coefficients. These

coefficients describe the geometry and lateral density (contrast) distribution at the Moho
and LAB boundaries, respectively. The Moho coefficients in Equation (A16) are defined by

EM Yom(Q Z"HHNM ME(QY) Pp(t) dOY (A17)

where 5" (Q)') = pM(QY') — p'M is a lateral density contrast (within the lithospheric
mantle) with respect to the adopted reference density . The LAB coefficients in Equation
(A16) are computed by applying the following integral convolution

Y LEL Yam(© 2” 1 ﬂ SUM(Q) LK (QY) Pu(t) dOY (A18)

where L is the depth of the LAB.

Appendix E. Radially Integrated LAB Potential
The radial integral of gravitational potential generated by LAB geometry is given by

. n n
M i

. pEarth = 2n+1n
’ ) (A19)
(42 —
X Q)
k; ( k Rk+1 k +1)m Z ()
The coefficients in Equation (A19) are defined by
2 1
2 £ Yom(Q) = 2 + ﬂ AV ALK(QY) Py(t) dOY. (A20)
—-n

where L is the LAB depth (see also Equation (A18)), and Ap™/4 is the LAB density contrast.
We note here that this computation can again be restricted to the third-order terms of the
binomial series.
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