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Abstract

We utilize the moving planes technique to prove the radial symmetry along with the
monotonic characteristics of solutions for a system of parabolic Laplacian equations. In
this system, the solutions of the two equations are interdependent, with the solution of one
equation depending on the function of the other. By use of the maximal regularity theory
that has been established for fractional parabolic equations, we ensure the solvability of
these systems. Our initial step is to formulate a narrow region principle within a parabolic
cylinder. This principle serves as a theoretical basis for implementing the moving planes
method. Following this, we focus our attention on parabolic systems with fractional
Laplacian equations and deduce that the solutions are radial symmetric and monotonic
when restricted to the unit ball.

Keywords: moving plane method; parabolic Laplacian systems; narrow region principle;
monotonicity; radial symmetry; counting measure
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1. Introduction
This paper sets out to examine a system of parabolic Laplacian equations within the

unit ball {
∂u
∂t + (−∆)

α
2 u(x, t) = f (v(x, t)),

∂v
∂t + (−∆)

β
2 v(x, t) = g(u(x, t)),

with

(−∆)su(x, t) ≡ Cn,sP.V.
∫
Rn

u(x, t)− u(y, t)
|x − y|n+2s dy

≡ Cn,s lim
ε→0+

∫
Rn\Bε(x)

u(x, t)− u(y, t)
|x − y|n+2s dy, (1)

provided that s is a real number and 0 < s < 1, Cn,s serves as a positive normalization
constant, the value of which is determined by n and s. Meanwhile, P.V. indicates the
Cauchy Principal value.

For the integral to be well-defined in (1), we stipulate that u ∈ L2s ∩ C1,1
loc , where the

function u also satisfies
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L2s ≡
{

u : Rn → R
∣∣ ∫

Rn

|u(x, t)|
1 + |x|n+2s dx < +∞

}
.

Unlike local differential operators, the fractional Laplacian is nonlocal, integrating
global information to define its value at a point. This nonlocality has made it a cornerstone
in modeling nonlocal phenomena, sparking widespread research interest in fractional
Laplacian equations [1–7]. The inherent nonlocality of the fractional Laplacian presents a
formidable barrier to its study. To overcome these difficulties, the moving plane method
has turned out to be a key way for looking into the qualitative features of solutions to
equations with nonlocal operators. For further references, see [8–10].

In our paper, we use the direct moving plane method to investigate the radial sym-
metry and monotonic characteristics of solutions of parabolic Laplacian systems. A. D.
Alexandrov originally put forward the renowned moving plane method to prove the Soap
Bubble Theorem as mentioned in [11]. From the moment it was initially proposed, the
moving plane method has undergone significant refinements and extensions by various
mathematicians, among whom Serrin’s work in 1971 [12] stands as a notable milestone.
Later on, a direct moving plane method was developed by Chen et al. [10]; researchers
used it in many applications, such as deriving monotonic, one-dimensional symmetric
solutions of equations and systems involving fractional Laplacian operators [13–16].

Liu (2025) [7] employed the direct moving plane method to prove the radial symmetric
and monotonic solutions of parabolic fractional Laplacian equations; we generalize those
results on fractional parabolic systems. In this system, the parabolic Laplacian operator
related to u is related to the function related to v, and the parabolic Laplacian operator
related to v is related to the function related to u, which has increased the complexity of the
system; more contents related with fractional parabolic systems and constraint conditions
on fractional parabolic systems can be seen in [17]. We aim to prove that the solutions
of the fractional parabolic equations in this system are radial symmetric and monotone.
We adopt the setting in [7], where u only converges almost everywhere; this setting is an
alternative or innovation to the method of setting a bound for u and making sure that u
is uniformly convergent. Based on the underlying logic of maximum regularity in [18],
we indirectly regulate the fractional Laplacian operator based on convergent conditions
of u and v, thus managing the eigenvalue of fractional Laplacian operator to ensure the
existence of solutions. Next, we use the direct moving plane method to prove this kind of
fractional parabolic system, thanks to the radial symmetric and monotonic solutions.

2. Main Results
For this kind of parabolic Laplacian system which is interrelated, our goal was to

prove the following significant theorems:

Theorem 1. Let B1(0) be a unit ball. Let 0 < α, β < 2 and suppose that u(x, t), v(x, t) ∈(
C1,1

loc(B1(0)) ∩ C(B1(0))
)
×R are positive bounded classical solutions of

∂u
∂t + (−∆)

α
2 u(x, t) = f (v(x, t)), (x, t) ∈ B1(0)×R,

∂v
∂t + (−∆)

β
2 v(x, t) = g(u(x, t)), (x, t) ∈ B1(0)×R,

u(x, t) a.e.→ u0(x, t) > 0, (x, t) ∈ B1(0)×R,
v(x, t) a.e.→ v0(x, t) > 0, (x, t) ∈ B1(0)×R,
u(x, t), v(x, t) ≡ 0, x /∈ B1(0),

(2)

and assume that f (v(x, t)), g(u(x, t)) satisfy the following assumptions:
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(M1) f (·) is non-decreasing in v(·), and g(·) is non-decreasing in u(·).
(M2) f and g are characterized by uniform Lipschitz continuity with regard to the variables u

and v, i.e.:

| f (v1)− f (v2)| ≤ c|v1 − v2|,
|g(u1)− f (u2)| ≤ c|u1 − u2|.

Then, the functions u(x, t) and v(x, t) exhibit radial symmetry with respect to the origin and
demonstrate a monotone decreasing behavior as they move away from the origin.

Remark 1. The notation u(x, t) a.e.→ u0(x, t) and v(x, t) a.e.→ v0(x, t) signify that u(x, t) con-
verges almost everywhere to u0(x, t) and v(x, t) converges almost everywhere to v0(x, t) for
(x, t) ∈ B1(0)×R. In our specific context, within a measure space (X, Σ, µ) where Σ ⊂ B1(0),
there exist sequences of functions {un} and {vn} along with functions u and v, such that for any
ε > 0, there exists a set E ∈ Σ with µ(E) < ε. For all x ∈ X\E, we have un(x, t) → u(x, t)
and vn(x, t) → v(x, t). This implies that un and vn converge to u and v at all points except those
in a set of measure zero. The rationale behind imposing this condition will be elaborated upon
in Section 3.

Theorem 1, which was cited in [19], has been enhanced compared to its counterpart
in [19]. The enhancement involved the addition of convergent conditions on the variables
u and v, making the theorem more comprehensive.

To streamline the notation, we shall henceforth represent Uλ as U, Vλ as V, Σλ as Σ,
and Ωλ as Ω to prove the subsequent Theorem; Theorem 2 is cited in [19].

Theorem 2. (Narrow region principle on a parabolic cylinder). Let Ω × (t, T] be a bounded
region in Σ × (t, T], such that for λ sufficiently close to −1, Ω × (t, T] is a bounded nar-
row region. For 0 < α, β < 2, assume that U(x, t) ∈ [C1,1

loc(Ω) ∩ C(Ω) ∩ Lα] × C1([t, T]),
V(x, t) ∈ [C1,1

loc(Ω) ∩ C(Ω) ∩ L2s]× C1([t, T]), and U(x, t), V(x, t) are lower semi-continuous
on Ω × [t, T]. If ci(x, t) ≥ 0, i = 1, 2 are bounded from below in Ω × (t, T] and ci(x, t) are
Lipschitz continuous, and

∂U
∂t + (−∆)

α
2 U(x, t) ≥ c1V(x, t), (x, t) ∈ Ω × [t, T],

∂V
∂t + (−∆)

β
2 V(x, t) ≥ c2U(x, t), (x, t) ∈ Ω × [t, T],

U(x, t), V(x, t) ≥ 0, (x, t) ∈ Σ\Ω × [t, T],
U(xλ, t) = −U(x, t), (x, t) ∈ Σ × [t, T],
V(xλ, t) = −V(x, t), (x, t) ∈ Σ × [t, T],

(3)

we have

U(x, t) ≥ min{0, inf
Ω×[t,T]

U(x, t)}, (x, t) ∈ Ω × [t, T], (4)

and

V(x, t) ≥ min{0, inf
Ω×[t,T]

V(x, t)}, (x, t) ∈ Ω × [t, T]. (5)

When comparing the proof of the Maximum principle in [7] with the proof of the
narrow region principle in this paper, there are similarities in their approaches. In [20], Wu
proved that the Maximum principle can apply to domains such as Stripes, Annulus, and
Archimedean spirals, among others. Consequently, we can adapt this approach to extend
the narrow region principle to annular or more general radial domains.
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In Section 3, we introduce the basic method of moving planes. Within Section 4, we
prove the regularity of parabolic fractional equations and parabolic fractional systems;
furthermore, we show that if f is merely Hölder continuous, how it would fit in the
maximal regularity. In Section 5, we provide proofs for Theorem 2. Subsequently, in
Section 6, we offer proofs for Theorem 1, which enables us to establish the radial symmetry
and monotonicity of solutions for fractional parabolic systems. We firmly believe that the
concepts and methodologies introduced herein can be readily applied to explore a wide
range of nonlocal problems encompassing more complex operators and nonlinearities.

3. Basic Set-Up
In the endeavor to prove Theorem 1, we will construct a well-organized framework to

execute the moving planes method for nonlocal problems.
We first consider one simple example on a bounded domain in one-dimensional Eu-

clidean space R1. Assume that u is a positive solution of an equation defined in a symmetric
domain Ω and it equals 0 on the boundary. In addition, the equation is symmetric with
respect to Ω; one can refer to Figure 1 for a visual representation.

Let Ω = (−1, 1) and u(−1) = 0 = u(1). In one dimension, the moving plane reduces
to a point:

Tλ = {x|x = λ}.

Let

Σλ = {x| − 1 < x < λ}

be the region to the left of Tλ in Ω, and

xλ = 2λ − x

be the reflection of x about Tλ.
We compare u(xλ) and u(x). For simplicity, set wλ = u(xλ)− u(x). We may expect

that when Tλ is sufficiently close to −1, we have

wλ ≥ 0, ∀x ∈ Σλ. (6)

Then, we move the plane T continuously to the right as long as inequality (6) holds until its
limiting position and prove that u must be symmetric about the limiting plane. From the
Figure 1, when the plane T is moved to the T2 position, inequality (6) is still valid; hence,
we can keep moving it. The T3 position is the limiting one, because after passing it, say at
the T4 position, (6) is violated.

−1 1O

T1 T2 T3 T4

x x1 x2

Limiting position

Figure 1. Method of moving planes in one dimension.
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We can generalize this method to higher-dimensional symmetric domain, say B1(0).
Given an arbitrary real number λ, let

Tλ = {x ∈ Rn | x1 = λ for some λ ∈ R}

be the defined moving planes, and

Σλ = {x ∈ Rn | x1 < λ}

be the domain situated to the left of the plane, and

xλ = (2λ − x1, x2, ..., xn)

be the result of reflecting x over the plane Tλ.

Σ̃λ = {x | xλ ∈ Σλ}

is the reflection of Σλ about the plane Tλ; see Figure 2. Since in our research u(x, t) = 0
outside B1(0), therefore, Σ̃λ only reflects the intersection part of B1(0) and Σλ, and

Ωλ = Σλ ∩ B1(0)

be the intersection of B1(0) and Σλ. One can refer to Figure 3 for a visual representation.
Let u(x, t) and v(x, t) be positive solutions to Equation (2). We conduct a comparison

between the values of u(x, t) and those of uλ(x, t), where uλ(x, t) is defined as u(xλ, t).
Similarly, we perform a comparison of the values of v(x, t) with those of vλ(x, t), with
vλ(x, t) being equal to v(xλ, t); let

Uλ(x, t) = uλ(x, t)− u(x, t).

Vλ(x, t) = vλ(x, t)− v(x, t).

The core aspect of the proof lies in demonstrating that

Uλ(x, t) ≥ 0, Vλ(x, t) ≥ 0, (x, t) ∈ Ωλ ×R. (7)

This establishes an initial condition for initiating the movement of the plane. Sub-
sequently, in the second phase, we displace the plane towards the right, continuing this
process as long as inequality (7) remains valid, until it reaches its limiting position. This is
performed to demonstrate that the functions u and v exhibit symmetry with respect to the
limiting plane. Typically, the narrow region principle is employed to establish the validity
of inequality (7), given that Uλ and Vλ are characterized as anti-symmetric functions:

Uλ(x, t) = −Uλ(xλ, t),

Vλ(x, t) = −Vλ(xλ, t).

In high-dimensional spaces, if we only aim to prove properties of solutions in specific
directions, any symmetric domain can be used, as long as the equation is symmetric with
respect to this domain. For example, this applies to the semi-major axis, semi-intermediate
axis, and semi-minor axis of an ellipsoid. However, if we need to prove the radial symmetry
of solutions in any arbitrary direction xi, then a unit ball must be used.
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Tλ

xλ
x

Σ̃λ

O x1

Figure 2. Reflection about the moving plane.

Tλ

x xλ

Ωλ

Σλ

O x1

Figure 3. Σλ and Ωλ.

4. Regularity and Maximal Regularity of Solutions of Fractional
Parabolic Systems

We rely on the following theorem of Liu (2025) [7] to establish the existence of solutions
of parabolic fractional equations.

Theorem 3 (Liu, 2025, p. 3 [7]). Let B1(0) be a unit ball. Let 0 < s < 1, assuming that
u(x, t) ∈

(
C1,1

loc(B1(0)) ∩ C(B1(0))
)
×R is a positive bounded classical solution of{

∂u
∂t (x, t) + (−∆)su(x, t) = f (t, |x|, u), (x, t) ∈ B1(0)×R,
u(x, t) ≡ 0, x ̸= B1(0),

(8)

where f is Lipschitz continuous; then, the solution of (8) satisfies the Lp-Lq maximal
regularity estimate:

∥e−γtut∥Lp(R,Lq(B1(0))) + ∥e−γt∇2u∥Lp(R,Lq(B1(0))) ≤ C∥e−γt f ∥Lp(R,Lq(B1(0))) (9)

for any γ ≥ 0. Since f ∈ C∞
0 (Rn

+ ×R), and C∞
0 (Rn

+ ×R) is dense in Lp,0(R+, Lq(Rn)).
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In (9), Lp(R, Lq(B1(0))) consists of functions u : R → Lq(B1(0)), such that the follow-
ing norm is finite:

∥u∥Lp(R,Lq(B1(0))) =

( ∫
R
∥u(t)∥p

Lq
dt
) 1

q

< ∞

which does not assume time-weighted norms as shown in [21]. The exponential stability
result is derived from the analyticity of the semigroup, not from explicit weighting.

We can generalize Theorem 3 if f = f (v) is only Hölder continuous. A function
f : Rn → R is Hölder continuous if there exist constants C > 0 and α ∈ (0, 1], such that for
all x, y ∈ Rn

| f (v1)− f (v2)| ≤ |v1 − v2|α.

A larger α implies stronger continuity for f . Hs(Rn) is a Sobolev space where s can be a
non-integer. For s > n

2 , the Sobolev embedding theorem states that Hs can be continuously
embedded into Hölder continuous function spaces.

Theorem 4 (Sobolev embedding theorem). If s > n
2 , then Hs(Rn) embeds continuously into

Ck,α(Rn), where k is the largest integer satisfying k < s − n
2 , α = s − n

2 − k ∈ (0, 1]. Ck,α

denotes the space of functions that are k-times continuously differentiable, with k-th derivatives
being α-Hölder continuous. If s is not an integer and s − n

2 ∈ (0, 1], then Hs embeds into C0,α(Rn),
where α = s − n

2 .

The solution u in the maximal regularity (9) often belongs to a space like

u ∈ W2,1
p (R, Lq(B1(0))) ∩ Lp(R, W2,q(B1(0))),

which is a Sobolev-type space with mixed derivatives. For f to be in Lp(R, Lq(B1(0))), we
do not necessarily need Hölder continuity in time, but we consider f to be Hölder continu-
ous in space. Specifically, if f ∈ C0,α(B1(0)), then f can be embedded into Ws,q(B1(0)) for
s < α + n

p , where n is the spatial dimension, provided that s > n
q for the embedding into

Hölder spaces is held. Our goal is to show that f being Hölder continuous implies that u is
in Hs, and then use embedding to control u in Lq. To prove that u belongs to Hs when f
is Hölder continuous, we would typically use the fact that the heat equation with Hölder
continuous f has a solution u that is smooth in time and space by parabolic regularity
theory (see this part in [22]). Then, u satisfies the maximal regularity estimate in terms of
Hs-type norms.

Then, we use the Hölder continuity of f to bound the Hs-norm of u in terms of the
Hölder norm of f . Here is a sketch of how to bound ∥u∥Hs :

First, we multiply ut − ∆u = f by u and integrate over B1(0):

1
2

d
dt
∥u∥2

L2
+ ∥∇u∥2

L2
=

∫
B1(0)

f udx,

then, ∣∣∣∣ ∫B1(0)
f udx

∣∣∣∣ ≤ ∥ f ∥L∞∥u∥L1 ≤ ∥ f ∥L∞∥u∥L2 .

This gives a basic energy estimate for ∥u∥L2 .
For higher-order derivatives, we differentiate the PDE with respect to x to get estimates

on ∇u, ∇2u, · · · , and use energy estimates for ∇u to bound ∥∇u∥L2 , and similarly for
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higher derivatives. Then, we use interpolation inequalities to relate ∥u∥Hs to lower-order
norms; for example, if s is an integer, then

∥u∥Hs ≤ C
(
∥u∥L2 + ∑

|β|=s
∥∂βu∥L2

)
.

We bound each term using the energy estimates and the Hölder continuity of f . For
non-integer s, we use fractional Sobolev norms and interpolation (e.g., the Gagliardo–
Nirenberg inequality).

Combining these steps, we can derive a bound of the form:

∥u∥Hs ≤ C∥ f ∥C0,α

where C depends on s, α, and the domain B1(0). The exact value of s depends on the
regularity of f and the parabolic operator. For f ∈ C0,α, we can typically bound u in Hs for
s up to 2 + α.

When considering the case where α, β ∈ (0, 2) are different and a → 0+, the original
assumptions (M1) and (M2) on f and g (non-decreasing property and uniform Lipschitz
continuity) are still fundamental for guaranteeing the symmetry of the solutions u and
v with respect to the origin. The fractional Laplacian (−∆)

α
2 has the following Fourier

transform representation:

F((−∆)
α
2 u)(ξ) = |ξ|αF(u)(ξ),

where F is the Fourier transform. As α → 0+, |ξ|α → 1 for all ξ ∈ Rn. So, the equation

∂u
∂t

+ (−∆)
α
2 u(x, t) = f (v(x, t))

approaches

∂u
∂t

+ u(x, t) = f (v(x, t))

as a → 0+. Then, we have the following system:{
∂u
∂t + u(x, t) = f (v(x, t)),
∂v
∂t + (−∆)

β
2 v(x, t) = g(u(x, t)),

(10)

with certain initial conditions and homogeneous boundary conditions. Now, we would
like to show the regularity of the system (10).

4.1. Weak Formulation

Let φ ∈ C∞
c (B1(0)× (0, T)). Multiply the first equation ∂u

∂t + u(x, t) = f (v(x, t)) by φ

and integrate over Ω × (0, t) for t ∈ (0, T]:

∫ t

0

∫
B1(0)

∂u
∂s

φdxds +
∫ t

0

∫
B1(0)

uφdxds =
∫ t

0

∫
B1(0)

f (v)φdxds,

using integration by parts with respect to s, we derive
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∫
B1(0)

u(x, t)φ(x, t) dx −
∫

B1(0)
u(x, 0)φ(x, 0) dx −

∫ t

0

∫
B1(0)

u
∂φ

∂s
dx ds

+
∫ t

0

∫
B1(0)

uφ dx ds =
∫ t

0

∫
B1(0)

f (v)φ dx ds.

For a test function ψ ∈ C∞
c (B1(0) × (0, T)), we multiply the second equation ∂v

∂t +

(−∆)
β
2 v(x, t) = g(u(x, t)) by ψ and integrate over Rn × (0, t), using the fact that v = 0

outside B1(0):∫ t

0

∫
Rn

∂v
∂s

ψdxds +
∫ t

0

∫
Rn
(−∆)

β
2 vφdxds =

∫ t

0

∫
Rn

g(u)ψdxds.

By integration by parts with respect to s and using the properties of the fractional Laplacian:∫
Rn(−∆)

β
2 vψdx =

∫
Rn v(−∆)

β
2 ψdx for appropriate functions v and ψ (see the proof of this

equation in [23]), we have

∫
Rn

v(x, t)ψ(x, t) dx −
∫
Rn

v(x, 0)ψ(x, 0) dx −
∫ t

0

∫
Rn

v
∂ψ

∂s
dx ds

+
∫ t

0

∫
Rn

v(−∆)
β
2 ψ dx ds =

∫ t

0

∫
Rn

g(u)ψ dx ds.

4.2. Energy Estimates

Multiply the first equation ∂u
∂t + u(x, t) = f (v(x, t)) by u and integrate over B1(0):∫

B1(0)

∂u
∂t

udx +
∫

B1(0)
u2dx =

∫
B1(0)

f (v)udx,

we derive

1
2

d
dt

∫
B1(0)

u2dx +
∫

B1(0)
u2dx =

∫
B1(0)

f (v)udx.

Through the Cauchy–Schwarz inequality and Young’s inequality, since | f(v)|2 ≤ C(1 + |v|2)
because f is Lipschitz continuous, we have

1
2

d
dt

∫
B1(0)

u2dx + (1 − ϵ

2
)
∫

B1(0)
u2dx ≤ 2C

ϵ

∫
B1(0)

(1 + |v|2)dx +
ϵ

2

∫
B1(0)

u2dx,

Let ϵ = 1, then

d
dt

∫
B1(0)

u2dx +
∫

B1(0)
u2dx ≤ C(1 +

∫
B1(0)

v2dx).

Multiply the second equation ∂v
∂t + (−∆)

β
2 v(x, t) = g(u(x, t)) by v and integrate over Rn:

∫
Rn

∂v
∂t

vdx +
∫
Rn

v(−∆)
β
2 vdx =

∫
Rn

g(u)vdx,

through the non-negativity of the fractional Dirichlet form and Lipschitz continuity of g,
we derive

1
2

d
dt

∫
Rn

v2dx ≤ C
2

∫
Rn
(1 + u2)dx
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d
dt

∫
Rn

v2dx ≤ C(1 +
∫
Rn

u2dx).

Let E1(t) =
∫

B1(0)
u2dx and E2(t) =

∫
R2 v2dx; summing the two inequalities, we have

d
dt
(E1(t) + E2(t)) + (E1(t)) ≤ C(1 + E1(t) + E2(t)),

Let E(t) = E1(t) + E2(t). Then

dE
dt

≤ C(1 + E),

by Gronwall’s inequality, if E(0) =
∫

B1(0)
u2

0dx +
∫
Rn v2

0dx, then E(t) ≤ (E(0) + Ct)eCt.
This shows that u ∈ L∞(0, T; L2(B1(0))) and v ∈ L∞(0, T; L2(Rn)).

4.3. Higher-Order Regularity

Differentiate the first equation with respect to t:

∂2u
∂t2 +

∂u
∂t

= f ′(v)
∂v
∂t

,

multiply this equation by ∂u
∂t and integrate over Ω. Using the Cauchy–Schwarz inequal-

ity, the fact that u ∈ L∞(0, T; L2(B1(0))) and the Lipschitz continuity of f ′, we have
∂u
∂t ∈ L∞(0, T; L2(B1(0))). Since ∂u

∂t + u = f (v) and u, ∂u
∂t ∈ L∞(0, T; L2(B1(0))), and also

f (v) ∈ L∞(0, T; L2(B1(0))), we can use elliptic-type estimates (in the time-dependent sense)
to show u ∈ H1(0, T; L2(Ω)) ∩ L∞(0, T; L2(B1(0))). Differentiate the second equation with
respect to t:

∂2v
∂t2 + (−∆)

β
2

∂v
∂t

= g′(u)
∂u
∂t

,

multiply this equation by ∂v
∂t and integrate over Rn. Using the properties of the frac-

tional Laplacian, the Cauchy–Schwarz inequality, and the Lipschitz continuity of g′, we

can show that ∂v
∂t ∈ L∞(0, T; L2(Rn)). By using the fact that ∂v

∂t + (−∆)
β
2 v = g(u) and

the regularity results for the fractional heat equation, we can show that v ∈ H1(0, T;

L2(Rn)) ∩ L∞(0, T; H
β
2 (Rn)). In conclusion, for the initial values u0 ∈ L2(B1(0)) and

v0 ∈ L2(Rn), and if f , g are Lipschitz continuous, then the weak solution (u, v) of the
parabolic system satisfies

u ∈ H1(0, T; L2(B1(0))) ∩ L∞(0, T; L2(Ω))

and

v ∈ H1(0, T; L2(Rn)) ∩ L∞(0, T; H
β
2 (Rn)).

Also, the minimal regularity conditions on f , g should be

f (v) ∈ L∞(0, T; L2(B1(0)))

and

g(u) ∈ L∞(0, T; H
β
2 (Rn)).
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In the reference [18], Liu (2024) offered a succinct elucidation of the foundational
logic and principles that underpin the existence of maximal regularity for both parabolic
and hyperbolic differential equations. By relying on this source, we can conclude that
a necessary condition for the existence of maximal regularity in parabolic differential
equations is that the eigenvalues of the operator corresponding to the spatial variables must
be strictly less than 1. In the expression (9), we note that as γ approaches infinity and t > 0,
the norm ∥e−γt∇2u∥Lp(R,Lq(Rn) can be bounded above by 1. Nevertheless, when γ is not
large enough or t < 0, in order to guarantee that the eigenvalues of the nonlocal fractional
Laplacian operator stay below 1, we enforce the requirement u(x, t) a.e.→ u0(x, t), v(x, t) a.e.→
v0(x, t), (x, t) ∈ B1(0) × R as shown in Theorem 1. Convergence condition is used to
regulate the growth of (−∆)su(x, t) and (−∆)sv(x, t).

5. Narrow Region Principle in Systems of Parabolic Laplacian Equations
We present a detailed proof for Theorem 2. Subsequently, in the following sections,

we leverage Theorem 2 to contribute a comprehensive proof for Theorem 1.
In the event that Equation (4) fails to be valid, then the lower semi-continuity of U(x, t)

on Ω × [t, T] guarantees that there is at least one (xo, to) ∈ Ω × (t, T], such that

U(xo, to) = min
Ω×(t,T]

U < 0.

Given that (xo, to) serves as the minimum point, it follows that

∂U(xo, to)

∂t
= 0. (11)

Moreover, by further analyzing condition (3), it can be inferred that the point (xo, to)

lies within the interior of Ω × [t, T]. Subsequently, we proceed as follows

(−∆)
α
2 U(xo, to)

= Cn,αP.V.
∫
Rn

U(xo, to)− U(y, to)

|xo − y|n+α
dy

= Cn,αP.V.
{∫

Σ

U(xo, to)− U(y, to)

|xo − y|n+α
dy +

∫
Σ̃

U(xo, to)− U(y, to)

|xo − y|n+α
dy

}
= Cn,αP.V.

{∫
Σ

U(xo, to)− U(y, to)

|xo − y|n+α
dy +

∫
Σ

U(xo, to)− U(yλ, to)

|xo − yλ|n+α
dy

}
= Cn,αP.V.

{∫
Σ

U(xo, to)− U(y, to)

|xo − y|n+α
dy +

∫
Σ

U(xo, to) + U(y, to)

|xo − yλ|n+α
dy

}
≤ Cn,α

{∫
Σ

U(xo, to)− U(y, to)

|xo − yλ|n+α
dy +

U(xo, to) + U(y, to)

|xo − yλ|n+α
dy

}
= Cn,α

∫
Σ

2U(xo, to)

|xo − yλ|n+α

≤ cU(xo, to)

dα

< 0, (12)

where d denotes the distance function. If

to < T,
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∂U
∂t

(xo, to) = 0. (13)

If

to = T,

∂U
∂t

(xo, to) ≤ 0. (14)

Combining (3), (12), (13) and (14), we deduce

c1V(xo, to) ≤ ∂U(xo, to)

∂t
+ (−∆)

α
2 U(xo, to) ≤ cU(xo, to)

dα
< 0. (15)

Therefore, we have

V(xo, to) < 0.

This indicates that there is at least one pair (x̄, t̄) belonging to Ω × (t, T], satisfying

V(x̄, t̄) = min
Ω×(t,T]

V < 0,

The point (x̄, t̄) is defined as the minimum point of the function V over the domain
Ω × (t, T]. This means that for all (x, t) ∈ Ω × (t, T], we have V(x, t) ≥ V(x̄, t̄). In the
context of calculus of variations or optimization, a necessary condition for a function to
attain a local minimum at a point is that the first-order partial derivatives of the function
with respect to its variables vanish at that point. This is a fundamental result from the
theory of critical points and can be derived from the Taylor series expansion of the function
around the minimum point. Applying this necessary condition to our function V, we
conclude that the partial derivatives of V with respect to x and t must be zero at (x̄, t̄),
so that

∂V
∂t

(x, t)
∣∣∣∣
(x̄,t̄)

= 0, (16)

for convenience, we denote

∂V
∂t

(x̄, t̄) =
∂V
∂t

(x, t)
∣∣∣∣
(x̄,t̄)

= 0,

following the same argument with (12), we are able to infer that

(−∆)
β
2 V(x̄, t̄) ≤ cV(x̄, t̄)

dβ
< 0.

From (15), we derive

c1V(xo, to)
dα

c
≤ U(xo, to).
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Combine (3) and (16), we have

∂V
∂t

(x̄, t̄) + (−∆)
β
2 V(x̄, t̄)− c2U(x̄, t̄)

:= (−∆)
β
2 V(x̄, t̄)− c2U(x̄, t̄) ≥ 0,

we derive

0 ≤ (−∆)
β
2 V(x̄, t̄)− c2U(x̄, t̄)

≤ cV(x̄, t̄)
dβ

− c2U(x̄, t̄)

≤ cV(x̄, t̄)
dβ

− c2U(xo, to)

≤ cV(x̄, t̄)
dβ

− c2(c1V(xo, to)
dα

c
)

≤ cV(x̄, t̄)
dβ

− c2(c1V(x̄, t̄)
dα

c
)

≤ cV(x̄, t̄)
dβ

(1 − c2c1
dα+β

c2 ). (17)

Provided that λ is in a sufficiently small neighborhood of −1, d would be remarkably small,

c2c1
dα+β

c2 << 1,

and

V(x̄, t̄) < 0,

so we derive

cV(x̄, t̄)
dβ

(1 − c2c1
dα+β

c2 ) < 0.

The aforementioned contradiction serves as evidence that Equations (4) and (5) necessarily
hold. Up to this point, we have successfully demonstrated the validity of Theorem 2.

6. Key Steps in Proving Theorem 1
Step 1: Initiate the motion of the plane, starting from a position close to the left end-

point of B1(0) and proceeding along the x1 axis, ensuring that the origin is not attained during
this movement,

|xλ| < |x|,

v(x, t) < v(xλ, t), u(x, t) < u(xλ, t),

so that

v(x, t) < vλ(x, t), u(x, t) < uλ(x, t).

We infer the following from Equation (2) and (M1), (M2); by Mean value theorem, Uλ

and Vλ satisfies
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∂Uλ

∂t
(x, t) + (−∆)

α
2 Uλ(x, t)

= f (vλ(x, t))− f (v(x, t))

=
f (vλ(x, t))

vp
λ(x, t)

vp
λ(x, t)− f (v(x, t))

vp(x, t)
vp(x, t)

≥ f (v(x, t))
vp(x, t)

[vp
λ(x, t)− vp(x, t)]

=
f (v(x, t))
vp(x, t)

pξ p−1(x, t)Vλ(x, t)

:= fv(ξ(x, t))Vλ(x, t), (18)

∂Vλ

∂t
(x, t) + (−∆)

β
2 Vλ(x, t)

= g(uλ(x, t))− g(u(x, t))

=
g(uλ(x, t))

up
λ(x, t)

up
λ(x, t)− g(u(x, t))

up(x, t)
up(x, t)

≥ g(u(x, t))
up(x, t)

[up
λ(x, t)− up(x, t)]

=
g(u(x, t))
up(x, t)

pηp−1(x, t)Uλ(x, t)

:= gu(η(x, t))Uλ(x, t), (19)

where p is the exponent in the homogeneity assumption. As indicated by the con-
ditions in Theorem 1, f (·), g(·) are non-decreasing, f (v(x, t)), g(u(x, t)) are positive.
u(x, t) and v(x, t) are positive and bounded, since ξ(x, t) lies between v(x, t) and
vλ(x, t), ξ(x, t) is also bounded, η(x, t) lies between u(x, t) and uλ(x, t), η(x, t) is also
bounded. Therefore, ξ p−1(x, t), ηp−1(x, t) are bounded below by some positive con-
stant. Combining these, fv(ξ(x, t)), gu(η(x, t)) are bounded below. Since f (·), g(·) are
Lipschitz continuous, they grow at most linearly, ξ p−1(x, t), ηp−1(x, t) are bounded
above; therefore, fv(ξ(x, t)), gu(η(x, t)) are bounded above. Given these considerations,
fv(ξ(x, t)), gu(η(x, t)) are bounded and positive.

We initially demonstrate that when λ is sufficiently near to −1, the following holds:{
Uλ(x, t) ≥ 0, (x, t) ∈ Ωλ ×R,
Vλ(x, t) ≥ 0, (x, t) ∈ Ωλ ×R.

(20)

Let Uλ,Vλ be U and V in Theorem 2; we deduce{
∂Uλ
∂t + (−∆)

α
2 Uλ(x, t) ≥ fv(ξ(x, t))Vλ(x, t), (x, t) ∈ Ωλ × [t, T],

∂Vλ
∂t + (−∆)

β
2 Vλ(x, t) ≥ gu(η(x, t))Uλ(x, t), (x, t) ∈ Ωλ × [t, T].

(21)

Since fv(ξ(x, t)), gu(η(x, t)) are bounded and positive, based on Theorem 2, we arrive at
the conclusion that when Ωλ is narrow and λ is sufficiently near to −1,{

Uλ(x, t) ≥ min{0, infΩλ×[t,T] Uλ(x, t)}, (x, t) ∈ Ωλ × [t, T],
Vλ(x, t) ≥ min{0, infΩλ×[t,T] Vλ(x, t)}, (x, t) ∈ Ωλ × [t, T].
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Let {
U(x, t) = em(t−t)Uλ(x, t), m > 0,
V(x, t) = em(t−t)Vλ(x, t), m > 0,

(22)

from (18) and (19), we derive the following:{
∂U(x,t)

∂t + (−△)
α
2 U(x, t) ≥ f̄v(ξ(x, t))V(x, t),

∂V(x,t)
∂t + (−△)

β
2 V(x, t) ≥ ḡu(η(x, t))U(x, t),

(23)

where we take f̄v(ξ(x, t))V(x, t) = em(t−t) fv(ξ(x, t))Vλ(x, t) and ḡu(ξ(x, t))U(x, t) =

em(t−t)gu(ξ(x, t))Uλ(x, t), f̄v(ξ(x, t))V(x, t) and ḡu(η(x, t))U(x, t) are still bounded and
positive. For convenience, we denote f̄v(ξ(x, t)) by c1(x, t), and ḡu(η(x, t)) by c2(x, t) in
the following.

Now, we begin to prove (20). Suppose otherwise, if the inequality Uλ(x, t) ≥ 0 fails to
hold, then U(x, t) must be negative at some point. Consequently, there exists xo ∈ Ωλ and
to ∈ [t, T], satisfying

U(xo, to) = min
Ωλ×(t,T]

U < 0.

If to < T, ∂U
∂t (xo, to) = 0. If to = T, ∂U

∂t (xo, to) ≤ 0. By combining with Equation (23),
we deduce

(−∆)
α
2 U(xo, to) ≥ c1V(xo, to), (24)

from (12), we also have

(−∆)
α
2 U(xo, to) ≤ c

dα
U(xo, to) < 0,

in the case where d ≤ width (Ωλ), we subsequently deduce

c1(xo, to)V(xo, to) ≤ cU(xo, to)

dα
< 0,

and

c1(xo, to)V(xo, to)
dα

c
≤ U(xo, to) < 0,

therefore, we must have

V(xo, to) < 0.

This entails the existence of a point (x̄, t̄) ∈ Ωλ × (t, T], satisfying

V(x̄, t̄) = min
Ωλ×(t,T]

V < 0, (25)

so as to

∂V
∂t

(x̄, t̄) = 0.
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Following the same argument with (12), we can derive that

(−∆)
β
2 V(x̄, t̄) ≤ cV(x̄, t̄)

dβ
< 0,

we derive

0 ≤ (−△)
β
2 V(x̄, t̄)− c2(x̄, t̄)U(x̄, t̄)

≤ cV(x̄, t̄)
dβ

− c2(x̄, t̄)U(x̄, t̄)

≤ cV(x̄, t̄)
dβ

− c2(x̄, t̄)U(xo, to)

≤ cV(x̄, t̄)
dβ

− c2(x̄, t̄)(c1(xo, to)V(xo, to)
dα

c
)

≤ cV(x̄, t̄)
dβ

− c2(x̄, t̄)(c1(xo, to)V(x̄, t̄)
dα

c
)

≤ cV(x̄, t̄)
dβ

(1 − c2(x̄, t̄)c1(xo, to))
dα+β

c2 ). (26)

If λ is sufficiently near to −1, d is expected to be remarkably small,

c2(x̄, t̄)c1(xo, to)
dα+β

c2 << 1, (27)

combining (25)–(27), we derive

0 ≤ cV(x̄, t̄)
dβ

(1 − c2(x̄, t̄)c1(xo, to))
dα+β

c2 ) < 0,

since this amounts to a contradiction, we can conclude that

U(x, t) ≥ min{0, inf
x∈Ωλ

U(x, t)}, ∀(x, t) ∈ Ωλ × (t, T),

so as to

em(t−t)Uλ(x, t) ≥ min{0, inf
x∈Ωλ

Uλ(x, t)},

Uλ(x, t) ≥ e−m(t−t) min{0, inf
x∈Ωλ

Uλ(x, t)}. (28)

Suppose (x∗, t) is the minimum point such that

min{0, inf
x∈Ωλ

Uλ(x, t)} = inf
x∈Ωλ

Uλ(x, t) = min
Ωλ×t

Uλ = Uλ(x∗, t) < 0,

from (28), we have

Uλ(x, t) ≥ e−m(t−t)Uλ(x∗, t), (29)

we take the partial derivative to the right side of (29) with respect to t and derive

−me−m(t−t)Uλ(x∗, t) + e−m(t−t) ∂Uλ

∂t
(x∗, t), (30)
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since

∂Uλ

∂t
(x∗, t) =

∂ minΩλ×t Uλ

∂t
= 0, (31)

Let t → −∞,

lim
t→−∞

−me−m(t−t) → 0,

resulting in (30) approaches to 0 with t → −∞, so that e−m(t−t)Uλ(x∗, t) is also a minimum
point with t → −∞; combining this with (28), we have

Uλ(x, t) →≥ 0. (32)

Uλ(x, t) is bounded from below. Substitute (32) back to (21); it is easy to deduce

Vλ(x, t) →≥ 0.

Consequently, provided that Ωλ is narrow, the validity of equation (20) is established.
Step 2: The inequality (20) serves as an initial basis. Starting from this basis, we can proceed

with the transition of the plane. We will continuously shift the plane to the right until it reaches its
limiting position, provided that inequality (20) remains valid.

Define

λ0 = sup{λ ≤ 0 | Uµ(x, t) ≥ 0, Vµ(x, t) ≥ 0, ∀(x, t) ∈ Ωµ ×R, µ ≤ λ},

we shall establish the result that λ0 = 0.
Alternatively, in the case where λ0 < 0, we shall demonstrate that Tλ0 is capable of

being translated further to the right, and consequently, we will obtain

Uλ(x, t) ≥ 0, Vλ(x, t) ≥ 0, (x, t) ∈ Σλ0 ×R, ∀λ0 < λ ≤ λ0 + ϵ.

Assume that λ0 < 0; we first aim to prove{
Uλ0(x, t) > 0, (x, t) ∈ Ωλ0 ×R,
Vλ0(x, t) > 0, (x, t) ∈ Ωλ0 ×R.

(33)

Assume, for the sake of contradiction, that the inequality Uλ0(x, t) > 0 does not hold.
In this case, there must exist a point (xo, to) ∈ Ωλ0 ×R satisfying Uλ0(xo, to) = 0. Given
that, as demonstrated in step 1, Uλ0(x, t) ≥ 0 within the region Ωλ0 ×R, the point (xo, to)

constitutes a minimum point. Consequently, the partial derivative
∂Uλ0

(xo ,to)

∂t equals zero;
following the same computation with (12), we derive

(−∆)
α
2 Uλ0(xo, to) ≤ c

dα
Uλ0(xo, to) = 0, (34)

on the other hand, following from (18), we have

(−∆)
α
2 Uλ0(xo, to) ≥ fv(ξ(xo, to))Vλ0(xo, to) ≥ 0,

this implies

Uλ0(xo, to) ≡ 0, (35)
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we arrive at a contradiction because the plane Tλ0 fails to reach the origin. Once xo is
on the curved part ∂Ωλ0 , then its reflection point xoλ0 is in the interior of the ball—see
Figure 4—hence, Uλ0(xo, to) = u(xoλ0 , to)− u(xo, to) > 0, which contradicts (35). There-
fore, Uλ0(x, t) > 0 in (33) is proved. The proof for Vλ0(x, t) > 0 in (33) follows the
same procedure.

Tλ0 T0

reflection of ∂Ωλ0

O
x1

Figure 4. The geometric transformation that mirrors the curved segment of the boundary ∂Ωλ0 .

However, since for all x ∈ X\E, un(x, t) → u(x, t), vn(x, t) → v(x, t), we proceed to
establish Uλ0(x, t) and Vλ0(x, t), which are bounded away from zero:{

inf Uλ0(x, t) > co > 0, (x, t) ∈ Ωλ0−δ ×R,
inf Vλ0(x, t) > co > 0, (x, t) ∈ Ωλ0−δ ×R.

(36)

Assume that the condition inf Uλ0(x, t) > co > 0 is not satisfied. In this case, there
exists a sequence (xk, tk) belonging to Ωλ0−δ ×R for which Uλ0(xk, tk) converges to 0 as
k tends to infinity. By applying the Bolzano–Weierstrass theorem, without any loss of
generality, we can extract a subsequence of the sequence xk (for the sake of simplicity,
we continue to use the notation xk for this subsequence) such that the subsequence xk

converges to a point xo ∈ Ωλ0−δ.
Let

Uk(x, t) = Uλ0(x, t + tk), uk(x, t) = u(x, t + tk), ck(x, t) = c(x, t + tk).

Assume that Uk(xk, 0) = Uλ0(xk, tk) and this sequence converges to 0 for a certain
sequence (xk, tk) in Ωλ0−δ ×R. Given that the sequence Uk possesses a certain compactness
characteristic, this compactness is a consequence of the Arzelà–Ascoli theorem. In particular,
if the sequence Uk is bounded within an appropriate fractional Sobolev space, then it
converges locally uniformly in the Hölder space Cα for any α > 0. Consequently, the
sequence Uk(xk, 0) converges locally uniformly to U(xo, 0), and we can conclude that
U(xo, 0) = 0. Consequently,

∂U(xo, 0)
∂t

+ (−∆)
α
2 U(xo, 0) = (−∆)

α
2 U(xo, 0) ≥ c2(xo, 0)V(xo, 0) ≥ 0, (37)
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we also have

(−∆)
α
2 U(xo, 0) = Cn,αPV

∫
Rn

−U(y, 0)
|xo − y|n+α

dy ≤ 0. (38)

(37) and (38) forces

U(y, 0) ≡ 0, ∀y ∈ Rn, (39)

by a Strong Maximum Principle proved in the Lemma 4 in [7], it is necessary to conclude
that ū(xo, 0) ≡ 0, xo ∈ Rn. Thus, uk(xk, 0) converges to 0 uniformly in Rn. The proof for
inf Vλ0(x, t) > co > 0 in (36) follows the same procedure.

According to the regularity theory pertaining to parabolic equations as presented in
reference [24], we are able to ensure the existence of an equation with the following form

∂Uk(xk, 0)
∂t

+ (−∆)sUk(xk, 0) = ck(xk, 0)Vk(xk, 0) (40)

which could converge to the form

∂U(x, 0)
∂t

+ (−∆)sU(x, 0) = c̄(x, 0)V(x, 0). (41)

With the aim of obtaining a contradiction when k is sufficiently large, let

Uk(xk, 0) ≡ Uλ0(xk, tk) = mk, (42)

which converges to 0 uniformly.
Let

ak(x, t) = Uk(x, t)− 2mkη(ϵk(t − tk)), (43)

here, η(t) ∈ C∞
0 represents a cut-off function with the property that the absolute value of

its derivative; |η′(t)| is bounded above by a constant c, i.e.,

η(t) =

{
1, |t| ≤ 1,
0, |t| ≥ 2.

The function ak(x, t) reaches its minimum value at a certain point, denoted as (x̄k, t̄k) within
the domain Ωλ0−δ × (tk − 2, tk + 2). This fact entails that

∂ak
∂t

(x̄k, t̄k) = 0. (44)

Combining (43) and (44), it also implies

∂ak
∂t

(x̄k, t̄k) =
∂Uk
∂t

(x̄k, t̄k)− 2mkϵk = 0,

and

∂Uk
∂t

(x̄k, t̄k) ∼ mkϵk,

Combining (42) and (43), it is easy to deduce

ak(xk, 0) = Uk(xk, 0)− 2mk = mk − 2mk = −mk,
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thus

ak(x̄k, t̄k) ≤ −mk.

Since we have

(−∆)
α
2 ak(x̄k, t̄k) ≤

c
[d(x̄k, Tλo )]

α
ak(x̄k, t̄k) ≤ −c1mk, (45)

where c1 > 0, this situation constitutes a contradiction. Consequently, the assertion (36)
has been proven.

Given that Uλ and Vλ are continuously dependent on λ, it follows that there exist
positive real numbers ϵ and δ with ϵ < δ, such that for every λ belonging to the open
interval (λ0, λ0 + ϵ), the following holds:{

Uλ(x, t) ≥ 0, (x, t) ∈ Ωλ0−δ ×R,
Vλ(x, t) ≥ 0, (x, t) ∈ Ωλ0−δ ×R.

(46)

We now proceed to apply the narrow region principle (Theorem 2). In the context of our
problem, the relevant narrow region is defined as follows:

Ω−
λ \Ωλ0−δ ×R,

by narrow region principle (Theorem 2), we derive{
Uλ(x, t) ≥ 0, (x, t) ∈ Ω−

λ \Ωλ0−δ ×R,
Vλ(x, t) ≥ 0, (x, t) ∈ Ω−

λ \Ωλ0−δ ×R.
(47)

By integrating the results of (46) and (47), we can draw the conclusion that for every λ

within the open interval (λ0, λ0 + ϵ), the following holds:{
Uλ(x, t) ≥ 0, (x, t) ∈ Ωλ ×R,
Vλ(x, t) ≥ 0, (x, t) ∈ Ωλ ×R,

this result is in direct contradiction to the established definition of λ0. Consequently, it is
necessary that

λ0 = 0,

and {
Uλ0(x, t) ≥ 0, ∀(x, t) ∈ Ωλ0 ×R,
Vλ0(x, t) ≥ 0, ∀(x, t) ∈ Ωλ0 ×R.

(48)

Analogously, it is feasible to move the plane Tλ in the left-ward direction starting from
λ = 1 and subsequently demonstrate that{

Uλ0(x, t) ≤ 0, ∀(x, t) ∈ Ωλ0 ×R,
Vλ0(x, t) ≤ 0, ∀(x, t) ∈ Ωλ0 ×R.

(49)

Combining (48) and (49), we have shown that

λ0 = 0,
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and {
Uλ0 ≡ 0, (x, t) ∈ Ωλ0 ×R,
Vλ0 ≡ 0, (x, t) ∈ Ωλ0 ×R.

With this, the procedure for step 2 is concluded.
Up to this point, we have established the symmetry of u and v with respect to the

plane T0. Given that the orientation of the x1-axis can be selected in an arbitrary manner,
we have, in essence, demonstrated the radial symmetry of u and v about the origin.

Given that Uλ(x, t) ̸≡ 0 for all (x, t) ∈ Tλ ×R, and for every 0 < λ < λ0, assume there
exists a point (xo, to) which serves as the minimum point. Based on the preceding analysis,
on the one hand,

(−∆)
α
2 Uλ(xo, to) ≤ 0,

on the other hand,

(−∆)
α
2 Uλ(xo, to) = 0,

this forces

Uλ ≡ 0,

this leads to a contradiction. We conclude that u is monotonically decreasing in origin. This
is the same routine for v. Until now, we have only proved Theorem 1.

7. Conclusions
This paper primarily discusses and proves the following aspects: First, we extend

the method of moving planes, which was originally used in [7] to prove properties of
solutions of the fractional parabolic equation, to the parabolic fractional Laplacian system.
Furthermore, we demonstrate the monotonicity and radial symmetry of solutions within
this system. By relaxing the regularity conditions on functions f and g, the paper explores
the scenario where f and g are merely Hölder continuous and still satisfy the conditions for
maximum regularity. Thirdly, we prove the regularity properties of both the parabolic frac-
tional Laplacian equation and its corresponding system. Finally, we relax the requirement
for u, v to be uniformly convergent when compared with using the sliding method in [25].

Funding: This research was funded in part by the CAS AMSS-PolyU Joint Laboratory of Applied
Mathematics and in part by the Natural Science Foundation in U.S.

Data Availability Statement: The original contributions presented in this study are included in the
article. Further inquiries can be directed to the corresponding author.

Acknowledgments: The author would like to express gratitude to the reviewers for providing in-
valuable feedback and suggestions, which have significantly enhanced the originality and innovation
of this paper.

Conflicts of Interest: The author declares no conflicts of interest.

References
1. Cabré, X.; Cinti, E. Sharp energy estimates for nonlinear fractional diffusion equations. Calc. Var. Partial Differ. Equ. 2014,

49, 233–269. [CrossRef]
2. Caffarelli, L.; Silvestre, L. An extension problem related to the fractional Laplacian. Comm. Partial Differ. Equ. 2007, 32, 1245–1260.

[CrossRef]

http://doi.org/10.1007/s00526-012-0580-6
http://dx.doi.org/10.1080/03605300600987306


Symmetry 2025, 17, 1112 22 of 22

3. Felmer, P.; Wang, L. Radial symmetry of positive solutions to equations involving the fractional Laplacian. Comm. Contemp. Math.
2014, 16, 1350023. [CrossRef]

4. Musina, R.; Nazarov, A.I. On fractional Laplacians. Comm. Partial Differ. Equ. 2014, 39, 1780–1790. [CrossRef]
5. Chen, W.; Fang, Y.; Yang, R. Liouville theorems involving the fractional Laplacian on a half space. Adv. Math. 2015, 274, 167–198.

[CrossRef]
6. Cabré, X.; Sire, Y. Nonlinear equations for fractional Laplacians II: Existence, uniqueness, and qualitative properties of solutions.

Trans. Am. Math. 2015, 367, 911–941. [CrossRef]
7. Liu, X. Radial Symmetry and Monotonicity of Solutions of Fractional Parabolic Equations in the Unit Ball. Symmetry 2025, 17, 781.

[CrossRef]
8. Chen, W.; Li, C. Maximum principles for the fractional p-Laplacian and symmetry of solutions. Adv. Math. 2018, 355, 735–758.

[CrossRef]
9. Chen, W.; Li, C.; Li, G. Maximum principles for a fully nonlinear fractional order equation and symmetry of solutions. Calc. Var.

Partial. Differ. Equ. 2017, 56, 29. [CrossRef]
10. Chen, W.; Li, C.; Li, Y. A direct method of moving planes for the fractional Laplacian. Adv. Math. 2017, 308, 404–437. [CrossRef]
11. Ciraolo, C.; Roncoroni, A. The method of moving planes: A quantitative approach. arXiv 2018, arXiv:1811.05202. [CrossRef]
12. Serrin, J. A symmetry problem in potential theory. Arch. Rational Mech. Anal. 1971, 43, 304–318. [CrossRef]
13. Caffarelli, L.; Silvestre, L. Regularity theory for fully nonlinear integro-differential equations. Commun. Pure Appl. Math. 2009,

62, 597–638. [CrossRef]
14. Capella, A.; Dávila, J.; Dupaigne, L.; Sire, Y. Regularity of radial extremal solutions for some non-local semilinear equations.

Comm. Partial Differ. Equ. 2011, 36, 1353–1384. [CrossRef]
15. Cho, Y.; Ozawa, T. Sobolev inequalities with symmetry. Comm. Contemp. Math. 2009, 11, 355–365. [CrossRef]
16. Cai, M.; Ma, L. Moving planes for nonlinear fractional Laplacian equation with negative powers. Disc. Cont. Dyn. Sys. 2018,

38, 4603–4615. [CrossRef]
17. Chen, W.; Li, Y.; Ma, P. The Fractional Laplacian; World Scientific Publishing Company: Singapore, 2019; pp. 1–344.
18. Liu, X. The Maximal Regularity of Nonlinear Second-Order Hyperbolic Boundary Differential Equations. Axioms 2024, 13, 884.

[CrossRef]
19. Liu, X. Method of Moving Planes and Its Applications: Radial Symmetry and Monotonicity of Solutions for Fractional Elliptic

and Parabolic Systems (Publication No. 30567473). Topics in Fractional Laplacian and Dynamical Systems. Ph.D. Thesis, Yeshiva
University, New York, NY, USA, 2023. Available online: https://hdl.handle.net/20.500.12202/9240 (accessed on 9 April 2025).

20. Wu, L.; Chen, W. Monotonicity of solutions for fractional equations with De Giorgi type nonlinearities. arXiv 2019,
arXiv:1905.09999. [CrossRef]

21. Shibata, Y.; Shimizu, S. Lp-Lq maximal regularity of the Neumann problem for the Stokes equations in a bounded domain. Adv.
Stud. Pure Math. 2007, 47, 349–362. [CrossRef]

22. Evans, L.C. Linear Evolution Equations. In Partial Differential Equations; Publishing House: New York, NY, USA, 1998;
pp. 380–388.

23. Chen, W.; Wu, L.; Wang, P. Nonexistence of solutions for indefinite fractional parabolic equations. Adv. Math. 2021, 392, 108018.
[CrossRef]

24. Fernandez-Real, X.; Ros-Oton, X. Regularity theory for general stable operators: Parabolic equations. J. Funct. Anal. 2017,
272, 4165–4221. [CrossRef]

25. Liu, X. The Maximal Regularity of Nonlocal Parabolic Monge–Ampère Equations and Its Monotonicity in the Whole Space.
Axioms 2025, 14, 491. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1142/S0219199713500235
http://dx.doi.org/10.1080/03605302.2013.864304
http://dx.doi.org/10.1016/j.aim.2014.12.013
http://dx.doi.org/10.1090/S0002-9947-2014-05906-0
http://dx.doi.org/10.3390/sym17050781
http://dx.doi.org/10.1016/j.aim.2018.07.016
http://dx.doi.org/10.1007/s00526-017-1110-3
http://dx.doi.org/10.1016/j.aim.2016.11.038
http://dx.doi.org/10.6092/issn.2240-2829/8944
http://dx.doi.org/10.1007/BF00250468
http://dx.doi.org/10.1002/cpa.20274
http://dx.doi.org/10.1080/03605302.2011.562954
http://dx.doi.org/10.1142/S0219199709003399
http://dx.doi.org/10.3934/dcds.2018201
http://dx.doi.org/10.3390/axioms13120884
https://hdl.handle.net/20.500.12202/9240
http://dx.doi.org/10.48550/arXiv.1905.09999
http://dx.doi.org/10.1515/CRELLE.2008.013
http://dx.doi.org/10.1016/j.aim.2021.108018
http://dx.doi.org/10.1016/j.jfa.2017.02.015
http://dx.doi.org/10.3390/axioms14070491

	Introduction
	Main Results
	Basic Set-Up
	Regularity and Maximal Regularity of Solutions of Fractional Parabolic Systems
	Weak Formulation
	Energy Estimates
	Higher-Order Regularity

	Narrow Region Principle in Systems of Parabolic Laplacian Equations
	Key Steps in Proving Theorem 1
	Conclusions
	References

