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Abstract

We utilize the moving planes technique to prove the radial symmetry along with the
monotonic characteristics of solutions for a system of parabolic Laplacian equations. In
this system, the solutions of the two equations are interdependent, with the solution of one
equation depending on the function of the other. By use of the maximal regularity theory
that has been established for fractional parabolic equations, we ensure the solvability of
these systems. Our initial step is to formulate a narrow region principle within a parabolic
cylinder. This principle serves as a theoretical basis for implementing the moving planes
method. Following this, we focus our attention on parabolic systems with fractional
Laplacian equations and deduce that the solutions are radial symmetric and monotonic
when restricted to the unit ball.

Keywords: moving plane method; parabolic Laplacian systems; narrow region principle;
monotonicity; radial symmetry; counting measure
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1. Introduction

This paper sets out to examine a system of parabolic Laplacian equations within the

unit ball
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provided that s is a real number and 0 < s < 1, C; 5 serves as a positive normalization
constant, the value of which is determined by n and s. Meanwhile, P.V. indicates the
Cauchy Principal value.

For the integral to be well-defined in (1), we stipulate that u € L5 N Cllo’i, where the
function u also satisfies
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Unlike local differential operators, the fractional Laplacian is nonlocal, integrating
global information to define its value at a point. This nonlocality has made it a cornerstone
in modeling nonlocal phenomena, sparking widespread research interest in fractional
Laplacian equations [1-7]. The inherent nonlocality of the fractional Laplacian presents a
formidable barrier to its study. To overcome these difficulties, the moving plane method
has turned out to be a key way for looking into the qualitative features of solutions to
equations with nonlocal operators. For further references, see [8-10].

In our paper, we use the direct moving plane method to investigate the radial sym-
metry and monotonic characteristics of solutions of parabolic Laplacian systems. A. D.
Alexandrov originally put forward the renowned moving plane method to prove the Soap
Bubble Theorem as mentioned in [11]. From the moment it was initially proposed, the
moving plane method has undergone significant refinements and extensions by various
mathematicians, among whom Serrin’s work in 1971 [12] stands as a notable milestone.
Later on, a direct moving plane method was developed by Chen et al. [10]; researchers
used it in many applications, such as deriving monotonic, one-dimensional symmetric
solutions of equations and systems involving fractional Laplacian operators [13-16].

Liu (2025) [7] employed the direct moving plane method to prove the radial symmetric
and monotonic solutions of parabolic fractional Laplacian equations; we generalize those
results on fractional parabolic systems. In this system, the parabolic Laplacian operator
related to u is related to the function related to v, and the parabolic Laplacian operator
related to v is related to the function related to u, which has increased the complexity of the
system; more contents related with fractional parabolic systems and constraint conditions
on fractional parabolic systems can be seen in [17]. We aim to prove that the solutions
of the fractional parabolic equations in this system are radial symmetric and monotone.
We adopt the setting in [7], where u only converges almost everywhere; this setting is an
alternative or innovation to the method of setting a bound for u and making sure that u
is uniformly convergent. Based on the underlying logic of maximum regularity in [18],
we indirectly regulate the fractional Laplacian operator based on convergent conditions
of u and v, thus managing the eigenvalue of fractional Laplacian operator to ensure the
existence of solutions. Next, we use the direct moving plane method to prove this kind of
fractional parabolic system, thanks to the radial symmetric and monotonic solutions.

2. Main Results

For this kind of parabolic Laplacian system which is interrelated, our goal was to
prove the following significant theorems:

Theorem 1. Let B1(0) be a unit ball. Let 0 < «,f < 2 and suppose that u(x,t),v(x,t) €

(ClL(B1(0)) N C(B1(0))) x R are positive bounded classical solutions of

loc

Wy (=A)2u(x,t) = f(o(x,t), (xt) € Bi(0) xR,

W4 (—A)io(x,t) = g(u(x,t), (x,t) € By(0) x R,

u(x, t) %5 ug(x,t) >0, (x,t) € B1(0) x R, 2)
o(x, t) 5 vo(x, 1) >0, x,t) € B1(0) X R,

u(x,t),v(x, t) =0, x ¢ B1(0),

and assume that f(v(x,t)),g(u(x,t)) satisfy the following assumptions:
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(M1) f(+) is non-decreasing in v(-), and g(-) is non-decreasing in u(-).
(M2) f and g are characterized by uniform Lipschitz continuity with regard to the variables u
and v, i.e.:

|f(v1) = f(v2)| < clor — 02,

1§(u1) — f(u2)| < clur — .

Then, the functions u(x,t) and v(x,t) exhibit radial symmetry with respect to the origin and
demonstrate a monotone decreasing behavior as they move away from the origin.

Remark 1. The notation u(x,t) 5 ug(x,t) and v(x,t) 5 vo(x,t) signify that u(x,t) con-
verges almost everywhere to uy(x,t) and v(x,t) converges almost everywhere to vy(x,t) for
(x,t) € B1(0) x R. In our specific context, within a measure space (X, %, u) where ¥ C B1(0),
there exist sequences of functions {u, } and {v, } along with functions u and v, such that for any
€ > 0, there exists a set E € X with u(E) < e. Forall x € X\E, we have u,(x,t) — u(x,t)
and vy (x,t) — v(x, t). This implies that u,, and v, converge to u and v at all points except those
in a set of measure zero. The rationale behind imposing this condition will be elaborated upon
in Section 3.

Theorem 1, which was cited in [19], has been enhanced compared to its counterpart
in [19]. The enhancement involved the addition of convergent conditions on the variables
u and v, making the theorem more comprehensive.

To streamline the notation, we shall henceforth represent U, as U, V) as V, %) as X,
and ) as Q) to prove the subsequent Theorem; Theorem 2 is cited in [19].

Theorem 2. (Narrow region principle on a parabolic cylinder). Let Q) x (t, T| be a bounded
region in X x (t,T|, such that for A sufficiently close to —1, Q) x (t,T] is a bounded nar-
row region. For 0 < a,p < 2, assume that U(x,t) € [C:1(Q) N C(Q) N Ly] x C([t, T)),

loc

V(x,t) € [C}O’Z(Q) NC(Q) N Log] x CY([t, T)), and U(x,t), V(x,t) are lower semi-continuous

on Q x [t, T]. Ifci(x,t) > 0, i = 1,2 are bounded from below in Q) x (t,T] and c;(x,t) are
Lipschitz continuous, and

S+ (—A)%U(x,t) >cV(x, t), (x,t)eQx|tT],

Wy (—A)V(x,t) > U(xt), (vt eQx[LT],

U(x,t),V(x,t) >0, (x,t) € Z\Q x [t, T], @3)

U(xh,t) = —U(x,t), (x,t) €T x [t, T,

V(xMt) = —V(x,t), (x,t) €L x [t, T,
we have

U(x,t) > min{O,Qin[lET] U(x,t)}, (x,t) e Qx [t T, 4)
and

V(x,t) > min{0, inf V(x,t)}, (x,t) € Qx [t T]. (5)

Qx[tT]

When comparing the proof of the Maximum principle in [7] with the proof of the
narrow region principle in this paper, there are similarities in their approaches. In [20], Wu
proved that the Maximum principle can apply to domains such as Stripes, Annulus, and
Archimedean spirals, among others. Consequently, we can adapt this approach to extend
the narrow region principle to annular or more general radial domains.
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In Section 3, we introduce the basic method of moving planes. Within Section 4, we
prove the regularity of parabolic fractional equations and parabolic fractional systems;
furthermore, we show that if f is merely Holder continuous, how it would fit in the
maximal regularity. In Section 5, we provide proofs for Theorem 2. Subsequently, in
Section 6, we offer proofs for Theorem 1, which enables us to establish the radial symmetry
and monotonicity of solutions for fractional parabolic systems. We firmly believe that the
concepts and methodologies introduced herein can be readily applied to explore a wide
range of nonlocal problems encompassing more complex operators and nonlinearities.

3. Basic Set-Up

In the endeavor to prove Theorem 1, we will construct a well-organized framework to
execute the moving planes method for nonlocal problems.

We first consider one simple example on a bounded domain in one-dimensional Eu-
clidean space R!. Assume that u is a positive solution of an equation defined in a symmetric
domain ) and it equals 0 on the boundary. In addition, the equation is symmetric with
respect to (; one can refer to Figure 1 for a visual representation.

Let ) = (—1,1) and u(—1) = 0 = u(1). In one dimension, the moving plane reduces
to a point:

T) = {x|x = A}.
Let
Yy={x]|-1<x<A}

be the region to the left of T in (), and

=21 —x
be the reflection of x about T).

We compare u(x") and u(x). For simplicity, set wy = u(x") — u(x). We may expect

that when T) is sufficiently close to —1, we have

wy >0, Vx € Y- (6)

Then, we move the plane T continuously to the right as long as inequality (6) holds until its
limiting position and prove that u must be symmetric about the limiting plane. From the
Figure 1, when the plane T is moved to the T; position, inequality (6) is still valid; hence,
we can keep moving it. The T3 position is the limiting one, because after passing it, say at
the Ty position, (6) is violated.

Limiting position
Ty L 1374

I 1

Figure 1. Method of moving planes in one dimension.
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We can generalize this method to higher-dimensional symmetric domain, say By (0).
Given an arbitrary real number A, let

Ty = {x e R" | x; = A for some A € R}
be the defined moving planes, and
Yh={xeR"|x <A}
be the domain situated to the left of the plane, and
= (2A — x1, X2, o, X))
be the result of reflecting x over the plane T).
Iy ={x[x* ex)}

is the reflection of X, about the plane T); see Figure 2. Since in our research u(x,t) = 0
outside B;(0), therefore, X, only reflects the intersection part of B;(0) and X, and

Oy =X, ﬂBl(O)

be the intersection of B1(0) and £,. One can refer to Figure 3 for a visual representation.

Let u(x, t) and v(x, t) be positive solutions to Equation (2). We conduct a comparison
between the values of u(x,t) and those of u) (x,t), where u, (x,t) is defined as u(x*, ).
Similarly, we perform a comparison of the values of v(x, f) with those of v, (x, t), with
v, (x,t) being equal to v(x*, t); let

Uy (x, ) = up(x, t) —u(x,t).

Valx, t) =vp(x, t) —o(x, t).
The core aspect of the proof lies in demonstrating that
u/\(xr t) >0, V)\(xr t) >0, (X, t) € Q/\ x R. (7)

This establishes an initial condition for initiating the movement of the plane. Sub-
sequently, in the second phase, we displace the plane towards the right, continuing this
process as long as inequality (7) remains valid, until it reaches its limiting position. This is
performed to demonstrate that the functions u and v exhibit symmetry with respect to the
limiting plane. Typically, the narrow region principle is employed to establish the validity
of inequality (7), given that U) and V) are characterized as anti-symmetric functions:

U/\(xr t) = _U)L (X/\, t)/

Vi(x,t) = *VA(XA, £).

In high-dimensional spaces, if we only aim to prove properties of solutions in specific
directions, any symmetric domain can be used, as long as the equation is symmetric with
respect to this domain. For example, this applies to the semi-major axis, semi-intermediate
axis, and semi-minor axis of an ellipsoid. However, if we need to prove the radial symmetry
of solutions in any arbitrary direction x;, then a unit ball must be used.
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X1

X1

Figure 3. £) and ().

4. Regularity and Maximal Regularity of Solutions of Fractional
Parabolic Systems

We rely on the following theorem of Liu (2025) [7] to establish the existence of solutions
of parabolic fractional equations.

Theorem 3 (Liu, 2025, p. 3 [7]). Let B1(0) be a unit ball. Let 0 < s < 1, assuming that
u(x,t) € (CL(B1(0)) N C(B1(0))) x R is a positive bounded classical solution of

loc

{ Wy, t) + (=A)u(x,t) = f(t, |x|,u), (xt) € B(0) xR, ©

u(x,t) =0, x # B1(0),

where f is Lipschitz continuous; then, the solution of (8) satisfies the L,-L; maximal
reqularity estimate:

le™ " uell, (m,r, 8y (0y) T e V2ullL, & o (Bi0))) < Clle™ ™ FllL, @ L8 (0))) )

forany v > 0. Since f € C3°(R'L x R), and C5°(R’. x R) is dense in Lyo(R+, Lg(R™)).
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In (9), Ly(R, Ly(B1(0))) consists of functions u : R — L9(B1(0)), such that the follow-
ing norm is finite:

1
q
ull L, (R, (B, (0))) = (/R |u(t)||’£th> < o0

which does not assume time-weighted norms as shown in [21]. The exponential stability
result is derived from the analyticity of the semigroup, not from explicit weighting.

We can generalize Theorem 3 if f = f(v) is only Holder continuous. A function
f :R" — R is Holder continuous if there exist constants C > 0 and « € (0, 1], such that for
all x,y € R"

|f(v1) = f(v2)| < o1 —va]™.

A larger « implies stronger continuity for f. H°(R") is a Sobolev space where s can be a
non-integer. For s > 7, the Sobolev embedding theorem states that H* can be continuously
embedded into Holder continuous function spaces.

Theorem 4 (Sobolev embedding theorem). Ifs > 7, then H*(R") embeds continuously into
Cka(R™), where k is the largest integer satisfying k < s — %, o = s— % —k € (0,1]. Ck#
denotes the space of functions that are k-times continuously differentiable, with k-th derivatives
being a-Holder continuous. If s is not an integer and s — % € (0,1], then HS embeds into CO%(R"),
where x = s — 7.

The solution u in the maximal regularity (9) often belongs to a space like
u € Wyl (R, Ly(B1(0))) N Ly(R, W21(B1(0))),

which is a Sobolev-type space with mixed derivatives. For f tobein L,(IR, L;(B1(0))), we
do not necessarily need Holder continuity in time, but we consider f to be Holder continu-
ous in space. Specifically, if f € C%*(B1(0)), then f can be embedded into W7(B1(0)) for
s<a+ %, where 7 is the spatial dimension, provided that s > % for the embedding into
Holder spaces is held. Our goal is to show that f being Holder continuous implies that u is
in H*, and then use embedding to control u in L,. To prove that u belongs to H* when f
is Holder continuous, we would typically use the fact that the heat equation with Holder
continuous f has a solution u that is smooth in time and space by parabolic regularity
theory (see this part in [22]). Then, u satisfies the maximal regularity estimate in terms of
H?-type norms.

Then, we use the Holder continuity of f to bound the H*-norm of u in terms of the
Holder norm of f. Here is a sketch of how to bound || u|| ps:

First, we multiply u; — Au = f by u and integrate over B (0):

Ld, » 2 _
gl + IVull, = [ fud

then,

S e loelley < Nl ], -

d
‘ /31(0) fudx

This gives a basic energy estimate for ||u||r,.
For higher-order derivatives, we differentiate the PDE with respect to x to get estimates
on Vu, V2u, - -, and use energy estimates for Vu to bound ||Vu||1,, and similarly for
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higher derivatives. Then, we use interpolation inequalities to relate ||| ;s to lower-order
norms; for example, if s is an integer, then

ol sc(wnm y |aﬁu||L2).
|Bl=s

We bound each term using the energy estimates and the Holder continuity of f. For
non-integer s, we use fractional Sobolev norms and interpolation (e.g., the Gagliardo—
Nirenberg inequality).

Combining these steps, we can derive a bound of the form:

[ull s < Cllfll coa

where C depends on s,«, and the domain B;(0). The exact value of s depends on the
regularity of f and the parabolic operator. For f € C%*, we can typically bound u in H® for
supto2+a.

When considering the case where «, § € (0,2) are different and a — 04, the original
assumptions (M1) and (M2) on f and g (non-decreasing property and uniform Lipschitz
continuity) are still fundamental for guaranteeing the symmetry of the solutions 1 and
v with respect to the origin. The fractional Laplacian (—A)? has the following Fourier
transform representation:

F((=8)3u)(8) = [§1*F(u)(§),
where F is the Fourier transform. As « — 0., |¢|* — 1 for all { € R". So, the equation

ou @
5 T (=8)2ulx t) = f(o(x,t))

approaches

?Tt +u(x,t) = f(v(x,t))

as a — 04. Then, we have the following system:

()= flotx ) W

o(x t) = g(u(x, 1)),

with certain initial conditions and homogeneous boundary conditions. Now, we would
like to show the regularity of the system (10).

4.1. Weak Formulation

Let ¢ € C(B1(0) x (0, T)). Multiply the first equation aa—’f +u(x,t) = f(v(x,t)) by ¢
and integrate over Q) x (0,f) fort € (0, T:

t Ju t t
oM odxd // dxd :/ dxds,
/0/31«» 35 PAXIET ), Bl<o>u(’”S 0 BﬂO)ﬂv)Ms

using integration by parts with respect to s, we derive
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/Bl(o)u(x,t)(p(x,t)dx—/Bl() (x,0)p(x,0) dx—/ /Bl

dxds
dxd t dxd
+/0 /31(0)uq) x s—/o Bl(o)f(v)go xds.

(0,T)), we multiply the second equation 22
,t)) by ¥ and integrate over R"

For a test function ¢ € CX(B1(0)
(~8)%0(x,t) = glu(x

x (0, t), using the fact that v
outside B;(0):

// 1pdxds+// A) b ogdds = //

By 1ntegrat10n by parts with respect to s and using the properties of the fractional Laplacian:
Jen 2 )Zopdx = [pa 0

) 2dx for appropriate functions v and 1 (see the proof of this
equatlon in [23]), we have

u)pdxds.

/an(x,t)tp(x,t)dx—/ v(x,0)9p(x,0) dx—/ /
+/ /n tpdxds—/ /n u)pdxds.

4.2. Energy Estimates

Multiply the first equation 3% + u(x, )

= f(v(xrt

)) by u and integrate over By (0):

B (0)

Jdu
udx + w?dx = v)udx,
/31(0) Bl(o)f( )

we derive

1d )
d / 20y = dx.
24t Bl<o>u o Blw)u g BﬂO)ﬂU)u *

Through the Cauchy-Schwarz inequality and Young’s inequality, since |f(v)|?> < C(1 + [0]?)
because f is Lipschitz continuous, we have

1d 2 € 2 2C r 2 € [ 2
d 177/ d <7/ 1 d 7/ dx,
Zdt/81<0>u ) RO e Bl<0)( +|U|)x+2-31<0>” i

Lete =1, then

4 uzdx+/ uldx < C(1+ / v%dx).
dt JB,(0) B1(0) JB1(0)

Multiply the second equation % + (— A)g

v(x, ) = g(u(x,t

)) by v and integrate over R":
/ gvdx +/ Zde = /R" g(u)vdx,

through the non-negativity of the fractional Dirichlet form and Lipschitz continuity of g,

we derive

i < =
T andx_z/Rn(l—i—u)dx
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a 20, < 2
dt Jun dx_C(l—b—/Rnu dx).

Let E1(t) = fB1 0) u?dx and Ex(t) = [g2 v*dx; summing the two inequalities, we have

d

73 (E1(t) + E2 (1)) + (Ev (1)) = C(1+ Ex(f) + Ea(t)),

Let E(t) = E1(t) + Ex(t). Then

by Gronwall’s inequality, if E(0) = fBl(O) uddx + [, v3dx, then E(t) < (E(0) 4 Ct)eC.
This shows that # € Le (0, T; L2(B1(0))) and v € Lo (0, T; Lo (R™)).

4.3. Higher-Order Regularity

Differentiate the first equation with respect to t:

u  ou ,, 0D
FrR A AR T

multiply this equation by % and integrate over (). Using the Cauchy-Schwarz inequal-
ity, the fact that u € L«(0,T;L2(B1(0))) and the Lipschitz continuity of f/, we have
I € Loo(0, T; Ly(B1(0))). Since 2 +u = f(v) and u, 2 € Lo (0, T; L2(B1(0))), and also
f(v) € Leo(0, T; Lp(B1(0))), we can use elliptic-type estimates (in the time-dependent sense)
to show u € H'(0, T; Lo(Q)) N Lo (0, T; L(B1(0))). Differentiate the second equation with
respect to t:

0%v gov  , . Ou
FT I (—A)zg =g (”)gf

multiply this equation by 3—? and integrate over R". Using the properties of the frac-

tional Laplacian, the Cauchy-Schwarz inequality, and the Lipschitz continuity of g, we
can show that %—zt’ € Ls(0,T; L(R™)). By using the fact that % + (—A)gv = g(u) and
the regularity results for the fractional heat equation, we can show that v € H'(0,T;
Ly(R™)) N Lo (0, T;Hg (R™)). In conclusion, for the initial values 1y € L,(B1(0)) and
vo € Ly(R"), and if f, g are Lipschitz continuous, then the weak solution (u,v) of the
parabolic system satisfies

u € HY(0,T; Lo(B1(0))) N Lo (0, T; L2(QY))
and
v € HY(0, T; Ly(R™)) N Loo (0, T; HE (R™)).
Also, the minimal regularity conditions on f, g should be
f(v) € Leo(0, T; L2(B1(0)))
and

2(u) € Loo(0, T; H (R")).
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In the reference [18], Liu (2024) offered a succinct elucidation of the foundational
logic and principles that underpin the existence of maximal regularity for both parabolic
and hyperbolic differential equations. By relying on this source, we can conclude that
a necessary condition for the existence of maximal regularity in parabolic differential
equations is that the eigenvalues of the operator corresponding to the spatial variables must
be strictly less than 1. In the expression (9), we note that as oy approaches infinity and ¢ > 0,
the norm [le= "V 2u|| L,(R L (") can be bounded above by 1. Nevertheless, when 1 is not
large enough or t < 0, in order to guarantee that the eigenvalues of the nonlocal fractional
Laplacian operator stay below 1, we enforce the requirement u(x, t) *$ ug(x, t), v(x,t) %%
vo(x,t), (x,t) € B1(0) x R as shown in Theorem 1. Convergence condition is used to
regulate the growth of (—A)u(x,t) and (—A)v(x, t).

5. Narrow Region Principle in Systems of Parabolic Laplacian Equations

We present a detailed proof for Theorem 2. Subsequently, in the following sections,
we leverage Theorem 2 to contribute a comprehensive proof for Theorem 1.

In the event that Equation (4) fails to be valid, then the lower semi-continuity of U/(x, t)
on Q x [t, T| guarantees that there is at least one (x°,t°) € Q x (¢, T}, such that

U(x%t°) = min U < 0.
Qx(LT]

Given that (x°,1°) serves as the minimum point, it follows that

ol (x?, 1)

S =0 (11)

Moreover, by further analyzing condition (3), it can be inferred that the point (x°, )
lies within the interior of Q x [t, T]. Subsequently, we proceed as follows

(—a)iu(x, f")

(x to) U(y,t°)

= CuaPV. / oy
(x,t°) — U(y, t°) “U(x%,1°) — U(y, t°)

= C””‘PV{/ |x°—y|”+“ dy+./i |xo_y‘n+tx dy
(x°,t°) — U(y,t°) U(x,t°) — Uy, t°)

= ”“P V. {/ |xo y|n+zx dyd‘_/z |xo _ A‘n-&-a dy
(x°, t" U(y,t°) (x°,t%) + U(y, t°)

= C”"‘P V. {/ |n+1x d +/ A‘nﬁx dy

U(x® ,to) —U(y,t°) U(x®,t°) + U(y, )

< C”/“{_/Z |x0 — yA|nte dy + |x0 — yA |t dy

B 2U(x?, t°)

= C}’l,ﬂ( 5 |xo_y/\|n+lx

< cl(x?,t%)

N

< 0, (12)

where d denotes the distance function. If

°<T,
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ou, ,
e #2) = 0. 1
) =0 (13)
It
=T,
o, , .,
— <0. 14
(1) <0 (14)
Combining (3), (12), (13) and (14), we deduce
0 10 0 40
C1V(x0,f0) < % + (fA)ju(xol to) < Cll(;(ilx,t) < 0. (15)

Therefore, we have
V(x%,t°) < 0.
This indicates that there is at least one pair (%, ) belonging to Q) x (¢, T], satisfying

V(x,F) = min V <0,
Ox(4T]

The point (%,f) is defined as the minimum point of the function V over the domain
Q x (t,T]. This means that for all (x,t) € Q x (t,T], we have V(x,t) > V(). In the
context of calculus of variations or optimization, a necessary condition for a function to
attain a local minimum at a point is that the first-order partial derivatives of the function
with respect to its variables vanish at that point. This is a fundamental result from the
theory of critical points and can be derived from the Taylor series expansion of the function
around the minimum point. Applying this necessary condition to our function V, we
conclude that the partial derivatives of V with respect to x and t must be zero at (%, 1),
so that

1%
(x,t)‘ o, (16)
ot (D)
for convenience, we denote
oV, _ A%
at(x,t)—at(x,t)‘ =0,

(xF)
following the same argument with (12), we are able to infer that

6 V(% T)

P < 0.

(=4)2V(x,f) <
From (15), we derive

Qv (x,1°) = < U, 1),
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Combine (3) and (16), we have

N (%,F) + (—=A)2V(x,F) — coU(%, F)

— (=N)EV(E D — Uz ) >0,

we derive

0 < (=A)2V(ED - oU(xF)
< CV;’;' D _ oup
< Cvfﬂ;’ D e, )
< CV;; ) —c2(e1V (2, fo)dci)
< Y& oavien)
< ch(;;, D (1—ca d[;ﬁ ). (17)

Provided that A is in a sufficiently small neighborhood of —1, d would be remarkably small,

qx+p
00— <<1,
c
and
V(x,F) <0,
so we derive
cV(x,f) detp

B (1 —cocq 2 ) <O0.

The aforementioned contradiction serves as evidence that Equations (4) and (5) necessarily
hold. Up to this point, we have successfully demonstrated the validity of Theorem 2.

6. Key Steps in Proving Theorem 1

Step 1: Initiate the motion of the plane, starting from a position close to the left end-
point of B1(0) and proceeding along the x axis, ensuring that the origin is not attained during
this movement,

| < |,

v(x,t) <v(xp,t), u(x,t) <u(xp,t),
so that
v(x,t) <ovr(x,t), u(x,t) <wup(x,t).

We infer the following from Equation (2) and (M1), (M2); by Mean value theorem, U,
and V), satisfies
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aa%(x,t) + (=A)2Uy(x, 1)
= floa(x 1) = f(v(xt))
(va(x, t)) (v(x,1))
= fvz%)\(xjit) o (x,t) — fv:(x, o (x,t)
>/ égg Z)) [0 (x,£) — 0P (x, )]
e
= fol8(x, 1)) Va(x, 1), (18)
D)+ (-0) Vi)
= glup(x,t)) —g(u(x,t))
_ 8lua(x, ) g(u(x, 1))
= MKA(x,t) ui(x,t)— P(x,t) up(x,f)
> gi;‘g g) [uf (x, ) — P (x, )
= SOy s 1)
= gu(q(x,t))UA(x,t), (19)

where p is the exponent in the homogeneity assumption. As indicated by the con-
ditions in Theorem 1, f(-),g(-) are non-decreasing, f(v(x,t)),g(u(x,t)) are positive.
u(x,t) and v(x,t) are positive and bounded, since §(x,t) lies between v(x,t) and
va(x,t), ¢(x,t) is also bounded, 7(x,t) lies between u(x,t) and u)(x,t), y(x,t) is also
bounded. Therefore, ¢#~1(x,t), n7~!(x,t) are bounded below by some positive con-
stant. Combining these, f,(¢(x,t)), gu(#(x,t)) are bounded below. Since f(-),g(-) are
Lipschitz continuous, they grow at most linearly, ¢#~'(x,t),7?~'(x,t) are bounded
above; therefore, f,(&(x,t)), gu((x,t)) are bounded above. Given these considerations,
fo(&(x,1)), gu(n(x,t)) are bounded and positive.
We initially demonstrate that when A is sufficiently near to —1, the following holds:

{

Up(x,t) >0, (xt) ey xR,

20
V(o) >0, () €y xR 20

Let U,,V) be U and V in Theorem 2; we deduce

{agy (—A)fu
a% (—A)2V)

A

(x,t) = fo(G(x, ))Va(x, 1), (x,8) € Oy < [LT],

(21)
(x,8) = guln(x, U (), (x,1) € Oy x [1, T,

Since f,(&(x,t)), gu(n(x,t)) are bounded and positive, based on Theorem 2, we arrive at

the conclusion that when ), is narrow and A is sufficiently near to —1,

U/\(x, t) > min{O,iI‘lfQ)\X[gT] U/\(X,D}, (x,t) e O, x [t, T],
V)\(x, t) > min{O,ianAX[LT] V)\(x,t)}, (X, t) €0y x [l’J T].
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Let
U(x,t) = e"t=DU, (x,t), m >0, 22)
V(x, t) = etV (x,t), m >0,
from (18) and (19), we derive the following:
{ PR (-0)3 () 2 FE(u )V (), )
W 1 (=0)2V(x,8) = g (x, ) U(x, 1),

where we take f,(&(x,t))V(x,t) = "0 f(E(x,1))Vi(x,t) and g, (E(x, 1) U(x,t) =
e™t=D g (&(x, ))Ur(x,t), fo(E(x, 1))V (x,t) and gu(y(x,t))U(x,t) are still bounded and
positive. For convenience, we denote f,(&(x,t)) by c1(x,t), and §,(17(x,t)) by c2(x, t) in
the following.

Now, we begin to prove (20). Suppose otherwise, if the inequality U, (x,t) > 0 fails to
hold, then U(x, t) must be negative at some point. Consequently, there exists x° € (), and
° € [t, T), satisfying

U(x°,t°) = min U <O0.
Y x(LT]

Ife <T, aaltl(x ) =0. Ift° =T, %Lt[(x t?) < 0. By combining with Equation (23),
we deduce

(=A)2U(x°, %) > 1V (x°,1°), (24)
from (12), we also have

(—A)2U(x°,1°) < —-U(x°,1°) <0,

< £
ax
in the case where d < width (Q2,), we subsequently deduce

cU(x°,t%)

c1(x%, )V (x%,t°) < T

<0,
and

c1(x°, )V (2, 1°)

h‘%

<Uu(x’,t°) <0,
therefore, we must have
V(x°,t°) <O0.
This entails the existence of a point (%, f) € Q) x (¢, T|, satisfying
V(x,f) = Q;I;i(Ith] V <0, (25)

so as to
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Following the same argument with (12), we can derive that

(-0)#v(eh < Lo <o,
we derive

0 < (~0)iV(5h -l hU(h
< YOD e nT
< YED o pTie, )
< YED o hiae 70t
< YED o pat 7DD
< YED 0 ey(x,ner (0,0 D). 26)

_ x+p
(%, F)er (2, 17) —5— << 1, (27)
combining (25)-(27), we derive
cV(x,F) detp

0< (1 —co(x,F)c1(x°,t%)) 2 ) <0,

das

since this amounts to a contradiction, we can conclude that
U(x,t) > min{0, irg U(x,t)}, V(x,t) € Q) x (£, T),
xel)y
so as to

"D (x, 1) > min{0, inf Uy (x,t)},
XEQA

Uy (x, 1) > e ™D min{0, inf U, (x,t)}. (28)
XGQ/\

Suppose (x*,t) is the minimum point such that

min{0, xiel})f,\ Up(x,t)} = JCiergA Uy (x,t) = g}li’lt Uy =Uy(x"t) <0,

from (28), we have
Up(x, t) > e ™01, (%, 1), (29)

we take the partial derivative to the right side of (29) with respect to t and derive

ou,

me O, (2 1) o0

(x%,1), (30)
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since

* _ aminQszu/\ _
W(X /t) - T - 0/ (31)

Lett — —oo,

lim —me ™D 0,
t——o0

resulting in (30) approaches to 0 with t — —oo, so that e~ (!, (x*, 1) is also a minimum
point with t — —oo; combining this with (28), we have

U,\(x, t) —> 0. (32)
U, (x,t) is bounded from below. Substitute (32) back to (21); it is easy to deduce
Vi(x,t) =>0.

Consequently, provided that () is narrow, the validity of equation (20) is established.

Step 2: The inequality (20) serves as an initial basis. Starting from this basis, we can proceed
with the transition of the plane. We will continuously shift the plane to the right until it reaches its
limiting position, provided that inequality (20) remains valid.

Define

Ag =sup{A <0 | Uy(x,t) >0, Vy(x,t) >0,V(x,t) € Q xR, u <A},

we shall establish the result that Ay = 0.
Alternatively, in the case where A9 < 0, we shall demonstrate that T} is capable of
being translated further to the right, and consequently, we will obtain

Ur(x,t) >0, Va(x,t) >0, (x,t) €y, xR, VAg <A < Ag+e.

Assume that Ag < 0; we first aim to prove

{ Uy (x,8) >0, (x,1) € Oy, xR, @3

V/\O(X, t) >0, (x, i’) c Q/\O x R.

Assume, for the sake of contradiction, that the inequality U, (x,t) > 0 does not hold.
In this case, there must exist a point (x°,1°) € ), x R satisfying U, (x°,t°) = 0. Given
that, as demonstrated in step 1, U, (x,t) > 0 within the region (), x R, the point (x°, t°)

. . . . .ol (x080)
constitutes a minimum point. Consequently, the partial derivative —5;—— equals zero;

following the same computation with (12), we derive

(=8) U, (,#) < Uy (x°,°) = 0, (34)

on the other hand, following from (18), we have
(—A) 23U (X, 1°) > fol(E(x%, 1)) V3o (x°,£7) > 0,
this implies

Uy, (x%,t°) =0, (35)
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we arrive at a contradiction because the plane T, fails to reach the origin. Once x° is
on the curved part 9Q)), then its reflection point x°% is in the interior of the ball—see
Figure 4—hence, Uy, (x°,1°) = u(x°%, 1) — u(x°,#°) > 0, which contradicts (35). There-
fore, U,,(x,t) > 0 in (33) is proved. The proof for V) (x,t) > 0 in (33) follows the

same procedure.

Ty, 1To

reflection of (),

Figure 4. The geometric transformation that mirrors the curved segment of the boundary 0Q2,,.

However, since for all x € X\E, u,(x,t) — u(x,t), v,(x,t) = v(x,t), we proceed to
establish U, (x,t) and V) (x, t), which are bounded away from zero:
inf Uy, (x,t) > ¢co >0, (x,t) € V,—s xR, (36)

infVy (x,t) >co >0, (x,t) € Qy,_s xR,

Assume that the condition inf U, (x,t) > ¢, > 0 is not satisfied. In this case, there
exists a sequence (xy, tx) belonging to (), _s x R for which U, (x, t) converges to 0 as
k tends to infinity. By applying the Bolzano-Weierstrass theorem, without any loss of
generality, we can extract a subsequence of the sequence x; (for the sake of simplicity,
we continue to use the notation x; for this subsequence) such that the subsequence x;
converges to a point x° € ) _.

Let

Uk(x, t) = u)\o(xrt+tk)/ Mk(x, t) = u(xrt+tk)r Ck(x/ t) = C(xrt+tk)‘

Assume that Uy (xy,0) = U, (xx, tx) and this sequence converges to 0 for a certain
sequence (x, ty) in Qs x R. Given that the sequence U} possesses a certain compactness
characteristic, this compactness is a consequence of the Arzela—Ascoli theorem. In particular,
if the sequence Uy is bounded within an appropriate fractional Sobolev space, then it
converges locally uniformly in the Holder space C* for any « > 0. Consequently, the
sequence Ug(xg,0) converges locally uniformly to U(x°,0), and we can conclude that
U(x°,0) = 0. Consequently,

oU(x°,0)

T (—A)2TU(x%,0) = (—A)7U(x°,0) > cp(x°,0)V(x°,0) >0, (37)
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we also have
8 —U(y,0)
0 —
(—A)Z U(x ,0) = Cn,“PV . W‘iy S 0. (38)
(37) and (38) forces
U(y,0) =0, Yy € R", (39)

by a Strong Maximum Principle proved in the Lemma 4 in [7], it is necessary to conclude
that 77(x°,0) = 0, x° € R". Thus, uy(xy,0) converges to 0 uniformly in R". The proof for
inf V) (x,t) > co > 0in (36) follows the same procedure.

According to the regularity theory pertaining to parabolic equations as presented in
reference [24], we are able to ensure the existence of an equation with the following form

aL[k(xk/ 0)

5 T (—A)°Ug(xx, 0) = cx(xx,0) Vi (x%,0) (40)

which could converge to the form

ol (x,0)

S+ (=AU (x,0) = &(x,0)V(x,0). (41)

With the aim of obtaining a contradiction when k is sufficiently large, let
uk(xk/ 0) = u/\o (Xk, tk) = my, (42)

which converges to 0 uniformly.
Let

ar(x,t) = Uy (x, t) — 2myn (ex(t — t)), (43)

here, 11(t) € C§° represents a cut-off function with the property that the absolute value of
its derivative; |’ (t)| is bounded above by a constant ¢, i.e.,

1, <1,
t p—
1) { 0o, =2

The function ag(x, t) reaches its minimum value at a certain point, denoted as (%, fx) within
the domain Qs X (fx — 2, t; +2). This fact entails that

oa _
= (k) =0. (44)

Combining (43) and (44), it also implies

oar , - ou, ,
aTk@% ) = Ttk(xk, tr) — 2myer =0,

and

A, -
W(Xkr ty) ~ myey,

Combining (42) and (43), it is easy to deduce

ay(xk, 0) = Uk(xx, 0) — 2my = my — 2my = —my,
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thus
ar (T, fr) < —my.

Since we have

c

(—B)2ay (%, Fy) < mak(

T, Ir) < —cymy, (45)
where c; > 0, this situation constitutes a contradiction. Consequently, the assertion (36)
has been proven.

Given that Uy, and V) are continuously dependent on A, it follows that there exist
positive real numbers € and ¢ with € < §, such that for every A belonging to the open
interval (Ao, Ag + €), the following holds:

U)\(X,t) >0, (x,t) EQ/\O,(SXR, (46)
Valx, t) >0, (x,t) € Q/\O,(g x R.

We now proceed to apply the narrow region principle (Theorem 2). In the context of our
problem, the relevant narrow region is defined as follows:

QX \Q/\O_(g X R,
by narrow region principle (Theorem 2), we derive

, (x,1) € 4\ X R,

0
47
0, (x,£) € O; \Qy,s X R, “7)

By integrating the results of (46) and (47), we can draw the conclusion that for every A
within the open interval (A, Ag + €), the following holds:

UA(X,t) >0, (x,t) € Q/\ x R,
V,\(x,t) >0, (x,t) e O, xR,

this result is in direct contradiction to the established definition of A¢. Consequently;, it is
necessary that

and

{ Uy (x,8) >0, ¥(x, ) € Oy, X R, us)

VAO(X, t) >0, V(x,t) S Q)\g x R.

Analogously, it is feasible to move the plane T, in the left-ward direction starting from
A =1 and subsequently demonstrate that

{uangavmweQMxR 19)

VAO(.’)C, t) <0, V(X, t) S Q)\O x R.
Combining (48) and (49), we have shown that

Ao =0,
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and

Uy, =0, (x,t) € Oy, xR,
Vi, =0, (x,t) € Q/\O x R.

With this, the procedure for step 2 is concluded.

Up to this point, we have established the symmetry of u and v with respect to the
plane Ty. Given that the orientation of the x;-axis can be selected in an arbitrary manner,
we have, in essence, demonstrated the radial symmetry of u and v about the origin.

Given that U, (x,t) # O forall (x,t) € Ty x R, and for every 0 < A < Ag, assume there
exists a point (x°, t°) which serves as the minimum point. Based on the preceding analysis,
on the one hand,

(—A)ZU,(x%,1°) <0,
on the other hand,
(—A)2 U, (x°,1°) =0,

this forces

this leads to a contradiction. We conclude that u is monotonically decreasing in origin. This
is the same routine for v. Until now, we have only proved Theorem 1.

7. Conclusions

This paper primarily discusses and proves the following aspects: First, we extend
the method of moving planes, which was originally used in [7] to prove properties of
solutions of the fractional parabolic equation, to the parabolic fractional Laplacian system.
Furthermore, we demonstrate the monotonicity and radial symmetry of solutions within
this system. By relaxing the regularity conditions on functions f and g, the paper explores
the scenario where f and g are merely Holder continuous and still satisfy the conditions for
maximum regularity. Thirdly, we prove the regularity properties of both the parabolic frac-
tional Laplacian equation and its corresponding system. Finally, we relax the requirement
for u, v to be uniformly convergent when compared with using the sliding method in [25].
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