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Abstract

Microfluidics is a powerful tool with extensive applications, including chemical synthesis
and biological detection. However, the limited channel size and high viscosity of sam-
ples/reagents make it difficult to fully mix liquids and improve the reaction efficiency
inside microfluidic chips. Active mixing by rotors has been proven to be an effective
method to promote mixing efficiency via a magnetic field. Here, we numerically investi-
gated the mixing performance of rotors with different shapes (bar-shaped, Y-shaped, and
cross-shaped). We systematically studied the influence of the arrangement of multiple
cross-rotors and the rotation rate on mixing performance. The results are promising for
instructing the design and manipulation of rotors for in-channel mixing.
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1. Introduction

Microfluidics has been proven to be a powerful tool for various applications like bio-
logical detection, synthesis, and drug discovery [1-8]. Small volume and microscale flow in
microfluidics can reduce the reaction time and save reagents, which is desired in reactions
and analyses [9,10]. On the other side of the coin, limited channel space and high-viscosity
fluids make it challenging to achieve full mixing inside the microchannel [11], hindering
the development of microfluidics in various applications. Many efforts have been made for
mixing enhancement in microfluidics by delicately designing channel geometry [12-21],
namely passive mixing, to escalate vortex generation and liquid internal perturbations.
However, the increased structure complexity would induce new operational issues and be
ineffective for liquids with considerably high viscosity. Therefore, active mixing, which
applies external physical fields for effective mixing, has received increased attention [22,23].
These techniques apply electric, acoustic, thermal, or magnetic fields to enhance the mixing
efficiency. Electric field-driven micromixers utilize the forces exerted on charged particles
to improve mixing efficiency [24]; acoustic field-driven micromixers use vibrations induced
by sound waves [25]; thermal field-driven mixers create convective flows for mixing en-
hancement [26]; and magnetic ones employ magnetic rotors driven by an external magnetic
field [27-30]. While these methods result in mixing enhancement, electric field-driven
micromixers risk high-voltage hazards [31], acoustic designs are costly and bulky [32],
and thermal methods influence the activity of biological samples/regents [33]. Magnetic
field-driven micromixers possess biocompatibility, multifunctionality, and recyclability,
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making them ideal for sensitive biological samples [34]. Initially, magnetic particles were
employed in the micromixer, constrained by weak magnetic control, which could not
sufficiently overcome the fluid’s viscous resistance [30]. To overcome these limitations,
bar-shaped magnetic rotors were developed [27], and the impact of the rotor structure on
mixing efficiency has drawn extensive attention.

In our prior experimental work [34], we fabricated structural magnetic nanobranches
by coupling aligned Fe;O4 nanoparticles with dopamine. To investigate the influence of the
rotor structure on microfluidic mixing efficiency, magnetic nanobranches and nanochains
were introduced into the mixing of artificial saliva and reagent, actuated by a rotating
magnetic field (rotation rates 100-600 rpm). The experimental results demonstrated that
nanobranches significantly outperformed nanochains in improving mixing efficiency in-
side microfluidic chips. However, the experimental results still lack sufficient flow field
investigation to illuminate the mechanisms underlying mixing enhancement. Further-
more, constrained by the fabrication of micro-rotors, the effects of rotor size, shape, and
multi-rotor arrangements on mixing remain unexplored numerically.

Numerical simulations of micromixers mainly focus on the structural design and
parameter optimizations of passive micromixers [35-38] and the promotion of mixing
through physical fields like electric [39,40] and acoustic fields [41]. However, numerical
studies on the promotion of mixing by the structure of the rotor and the arrangement of
multiple rotors are scarce.

Here, we present a numerical study investigating the influence of rotor size, rotor
shape, rotor arrangement, and rotation rate on the mixing efficiency in a microfluidic chip.
The size of the rotor has a significant effect on the enhancement of mixing. The three micro-
rotors with different shapes (bar-shaped, Y-shaped, and cross-shaped rotors) are applied
and rotated at the contact zone of two liquids. The cross-shaped rotor shows the highest
mixing efficiency among the three rotors. We further vary the arrangement of multiple
rotors, showing the superior mixing performance of the cross-arrangement compared
to the contact line arrangement or line arrangement of the rotors. The increase in the
rotation rate (50-600 rpm) for four-rotor mixing improves the mixing efficiency, although a
diminishing marginal effect is observed. This study can function as a guide for rotor design
and mixing operation, offering great benefits for applications such as chemical synthesis
and biological detection.

2. Computational Setup
2.1. Governing Equations

The species transport model is commonly used in the mixing of miscible fluids when
considering mass diffusion [42—44]. The continuity equation and the momentum equation
are expressed as follows [45]:

%
V-V=0 (1)
—
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where V, p, P, and p correspond to the velocity vector, the density, the static pressure, and
the kinematic viscosity, respectively. The source term S appearing in Equation (2) represents
the effects of the rotor’s rotation. The species transport equation is formulated as

—
%—erV-VC:DVzC 3)

where C is the local concentration and D denotes the mass diffusivity.
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2.2. Mixing Index

To evaluate the mixing efficiency, we apply the mixing efficiency index to characterize
the mixing performance [43,46]. The mixing index ¢ based on the normalized standard
deviation of mass fraction is calculated as follows:

¢—<1—§>x1%% 4)
0

where ¢ is the standard deviation of the mixing mass fraction in the computational domain:
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where N represents the total number of cells in the model mesh and C denotes the average
mass fraction. The maximum standard deviation oy is calculated by

0t =C(1-0C) (6)

The mixing index ¢ = 1 (¢ = 0) indicates that two fluids are completely mixed, and
¢ = 1 (0 = 0p) indicates the two fluids are completely unmixed. When the ¢ value is
high, it signifies a more consistent concentration across the sample, suggesting optimal
mixing performance.

2.3. Physical Properties

Liquid A has a density of 1006 kg/m?> and a dynamic viscosity of 20 mPa-s, similar to
saliva, a typical human body fluid; liquid B has a density of 1000 kg/m? and a dynamic
viscosity of 1 mPa-s, similar to the reagent. The mass diffusion coefficient D is assumed

as 1 x 10712 m2 /s [47]. Within the scope of our investigation, the flows in the microchan-
_ poL
R

dynamic viscosity is 7 = 10.5 mPa - s, mean fluid density p = 1003 kg/m?, fluid velocity

nels are characterized by a low Reynolds number (Re ~ 1073, where the mean

v =w X r =261 um/s, rotation of the rotor w = 100 rpm, the radius r = 25 pum, and
characteristic dimension L = 50 um) and a high Schmidt number (Sc = ﬁ% ~107). Further-
more, the Peclet number is 10* > 1 (Pe = Re x Sc), which indicates an extremely strong
advection-dominated mixing regime, where fluid motion is driven by the rotor rotation.

2.4. Numerical Schemes

The finite-volume method is used to discretize the mentioned equations in ANSYS
Fluent. The thickness of the micromixer in our case is significantly smaller and negligi-
ble relative to its other dimensions. Miniaturization also renders the impact of gravity
insignificant, and the experimentally observed mixing phenomena can be researched us-
ing a 2D model in the micromixer with the rotor [48,49]. As a result, we employed a 2D
model [50-55] of a mixing chamber with rotors in our study.

In this study, we employ the species transport model and the standard k-epsilon
model to simulate the mixing. A no-slip boundary condition is imposed on all walls,
dictating that the fluid velocity is zero at the stationary wall boundary—all three velocity
components (streamwise, spanwise, and normal) are strictly zero. A transient-state, double-
precision implicit solver is adopted, ensuring the solution’s accuracy and stability for
time-dependent flow behaviours. The rotation of the rotors is achieved by dynamic mesh,
and user-defined functions (UDFs) were integrated to keep a stable rotational speed. The
COUPLED algorithm scheme, which uses a combination of continuity and momentum
equations to derive an equation for pressure, was applied. All spatial discrete methods
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used were set as second-order upwind. The converged solution is assumed when the scaled
residuals of all variables are smaller than 10~3. In this study, with no specific mention, the
time step At is set to 0.01 s, and the calculation is carried out for 6000 time steps.

2.5. Grid Independence Study

The 2D model is meshed using ANSYS Meshing. We perform the grid independence
study first. The grid sizes are listed in Table 1. The relative error (RE) influenced by grid

size can be described as
M x 100% 7)
04

RE =

where 0; is the standard deviation in the ith case. Figure 1a shows the relationship between
the mixing time and standard deviation with various grid sizes. When the grid size is 1 pm,
the relative error is below 0.5% compared to a grid size of 0.8 pm, showing that the grid
size has a negligible influence on the simulation results (Figure 1b, Table 1). Therefore, the
1 um grid size is applied.

Table 1. Grids with different grid sizes.

Number Grid Size (um) Number of Grids Mixing Index (%) Relative Error (%)
1 2.0 6204 64.67 1.08
2 1.5 11,252 64.43 0.70
3 1 23,340 64.25 0.42
4 0.8 35,126 63.98 0
(@) (b)
7! 1.2

Relative error (%)
o
o

1‘0 2‘0 3‘0 4‘0 5.0 60 2.0 1 f5 1.0
t(s) Cell size (pm)

Figure 1. Grid independence study. (a) The mixing index with various cell sizes; four grid meshes

with triangular cells were used: 6204 cells, 11,252 cells, 23,340 cells, and 35,126 cells. The chosen grid

is that of 23,340 cells. (b) The relationship between cell size and relative error.

3. Results and Discussions
3.1. Single Rotor

As shown in Figure 2a, the left part of the microfluidic chamber is liquid A, and the
right part is liquid B. The rotor is at the centre of the square chamber (size 100 x 100 pm).
We first investigate the mixing performance of rotors with three different lengths.
Three rotors were set, with lengths of 50 um, 20 um, and 10 um and the same width of
0.5 pm. The rotors rotate inside the chamber with a rotation rate of 100 rpm. The sequence
of images in Figure 3a illustrates the distribution of the mass fraction of liquid A during
the process of mixing. The rotor with a size of 50 pm x 0.5 um has a more pronounced
effect on the mixing of the two liquids than the rotor with a size of 20 pm x 0.5 um and
the rotor with a size of 10 pm x 0.5 um. This enhanced mixing effect is further supported
by the time-dependent mixing index, as depicted in Figure 3b,c. With the 50 pm x 0.5 pm
rotor, the mixing index reaches 81.56% within 60 s, which is approximately 42% greater
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than that of the 10 pm x 0.5 um rotor, highlighting the impact of rotor size on the mixing
efficiency. Additionally, the velocity field images captured during rotation, as shown in
Figure 4, reveal a higher flow velocity surrounding the rotor (50 pm x 0.5 pm), contributing
to a higher mixing efficiency.

Wall
(@) (b)
Liquid A Liquid B
(c)
r — g.
5 oS g | 1
20 pm =~
(d)
+
Wall
100 pm

Figure 2. Schematic images of the mixing chamber and the rotors. (a) Schematic diagram of the micro-
chamber; the size of the square chamber is 100 um x 100 um. The left part of the chamber is liquid A,
and the right part is liquid B. (b) Bar-shaped rotor (left), grid of bar-shaped rotor (right). (c) Y-shaped
rotor (left), grid of Y-shaped rotor (right). (d) Cross-shaped rotor (left), grid of cross-shaped rotor
(right). The mesh around the rotor has been encrypted with a three-tiered grid refinement strategy to
capture the detailed mixing dynamics.
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Figure 3. Rotor length-dependent mixing. (a) Sequential mass fraction distributions of rotors
with different lengths during mixing. The length of the rotors is set as 10 um, 20 um, and 50 pm.
(b) Temporal mixing index with rotors of different lengths. (c) The mixing indexes with rotors of
different lengths at 60 s.
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Figure 4. Rotor length-dependent velocity distributions during mixing. The figures overlay the

50 pm x 0.5 pm

velocity magnitude and streamlines within the flow field.

We next examine the mixing performance of a single rotor with different shapes. We
studied the mixing performance of three kinds of rotors: bar-shaped, Y-shaped, and cross-
shaped rotors with similar sizes (~20 um x 0.5 pm, Figure 2b—d), and investigated the
natural diffusion case without the rotor as a control. The sequential images in Figure 5a
show the mass fraction distributions during mixing. The cross-shaped rotor shows greater
influence on the mixing of two liquids compared to a bar-shaped and Y-shaped rotor, which
can be further evidenced by the time-dependent mixing index (Figure 5b,c). The mixing
index with the cross-shaped rotor can achieve 71% within 60 s, about 7% higher than the
bar-shaped rotor and 57% higher than the natural diffusion case without the rotor, showing
the influence of the rotor structure on mixing and the superior mixing enhancement of
the cross-shaped rotor. The velocity field images during the rotations (Figure 6) show the
higher flow velocity due to the cross-shaped rotor, resulting in higher mixing efficiency. The
streamlined images (Figure 6) show a larger mixing extent of fluid around the cross-shaped
rotor, enhancing the mixing efficiency. The bigger separating vortex would be generated
with the bar-shaped rotor, causing lower mixing efficiency compared to the Y-shaped and
cross-shaped rotors.

3.2. Multiple Cross-Shaped Rotors

We further study the mixing performance of multiple cross-shaped rotors. The
four-time expanded square chamber (size 200 pm x 200 pm) is chosen as the mixing
space, and four cross-shaped rotors (size 20 um x 0.5 pm) with different arrangements in
the chamber are tested for mixing enhancement. We use five arrangements, Arrangements
1-5 (Figure 7a), to study the influence of rotor arrangement on the mixing enhancement
and determine the optimized rotor distribution. We tested all five rotor arrangements:
rotors are all at the contact line between two liquids (Arrangement 1), all in low-viscosity
liquid (liquid B, Arrangement 2), all in high-viscosity liquid (liquid A, Arrangement 3),
two in low-viscosity liquid and two in high-viscosity liquid (Arrangement 4), and cross-
distributed arrangement (Arrangement 5). As shown in Figure 7, the arrangement of rotors
vastly influences the mixing performance, even though the size, structure, and number
of the rotors are the same for all cases. When all rotors are at the contact line between
two liquids (Arrangement 1), the lowest mixing efficiency among the five arrangements is
observed, achieving a mixing index lower than 42% after a 60 s rotation (Figure 7c). When
all rotors are in low-viscosity liquid, the mixing index is about 43%. When all rotors are in
high-viscosity liquid, the mixing index is about 44%, which is still relatively low. When
two rotors are in low-viscosity liquid and two rotors are in high-viscosity liquid, the mixing
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index is about 53%, and when the rotors are in the cross-distributed arrangement, the best
mixing efficiency, about 63%, is observed. Distinctly, Arrangement 1 and Arrangement 5
showed lower mixing performance in the beginning because the distribution of rotors in
the contact line of two miscible fluids hindered the diffusion.

(@)

Time (s)

Mass
fractlon
1
Passive diffusion

L muum

Cross-shaped

(b) (c)

80 80
Natural mixing
70 '—;B(ar;‘shazed = 7
| —Y-shape A o
60 Cross-shaped 60
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a0 )
s S

20
14

10 20 30 40 50 60
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X oto! 3 voro*
watrd m‘Bar s\““"ed s\’\a"edé 555 nap®

Figure 5. Rotor shape-dependent mixing. (a) Sequential mass fraction distributions of passive
diffusion by bar-shaped, Y-shaped, and cross-shaped rotors during mixing. (b) Temporal mixing
index of mixing with different rotors. (c) Mixing indexes of mixing with different rotors at 60 s. The
mixing index with the cross-shaped rotor is higher than the bar-shaped rotor, which is in agreement
with the mass fraction distributions.

5 10 20 60 Time (s)
Magnitude
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100

Bar-shaped
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Figure 6. Rotor shape-dependent velocity distributions during mixing.
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Figure 7. Rotor arrangement-dependent mixing. Five arrangements have been studied: rotors are all
at the contact line between two liquids (Arrangement 1), rotors are all in low-viscosity liquid (liquid
B, Arrangement 2), rotors are all in high-viscosity liquid (liquid A, Arrangement 3), two rotors are in
low-viscosity liquid and two rotors are in high-viscosity liquid (Arrangement 4), and rotors are cross-
distributed (Arrangement 5). (a) Sequential mass fraction distributions with different arrangements
during mixing. (b) Temporal mixing index during mixing with different arrangements. (c) Mixing
indexes of mixing with different rotor arrangements at 60 s.
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Remarkably, the cross-distributed arrangement (Arrangement 5) shows the highest
mixing efficiency among the five cases, with a ~10% increase compared to the mixing
efficiency of Arrangement 4. This special arrangement could prompt convection between
liquid A and liquid B. The mass fraction of liquid A in Figure 7a shows that, in the
initial mixing stage via Arrangement 1 and Arrangement 5, the distribution of rotors
in the contact line of two miscible fluids hindered the diffusion, which contributed to
a lower mixing efficiency. However, during the mixing process, the rotor distributed
in the two fluids further transported the liquids to the other side, increasing the liquid
contact area [56] and greatly improving the mixing efficiency. As shown in Figure 8, for the
arrangements where the rotors are only distributed in a single fluid or only at the contact
line of two fluids, the generated vortex area for mixing is small, and the mixing area is
not greatly increased, which ultimately leads to poor mixing efficiency. When the rotor is
distributed in four corners, the mixing process lacks convective transport of the two fluids,
causing relatively low mixing efficiency.

10 20 30 60 Time (s)
I Magnitude
+ velocity (um/s)
+
+ 100
Arrangement 1
7N
AN N
@ © @ o
@ () 0

Arrangement 5

Figure 8. Rotor arrangement-dependent velocity distributions during mixing.

The rotation rate also influences the mixing efficiency. We varied the rotation rate
of the cross-shaped rotor from 50 to 600 rpm and found that a higher rotation rate can
effectively enhance the mixing index (Figure 9). However, an increase in the rotation rate
would not improve the mixing index proportionally (Figures 9b,c and 10), which means
there is a diminishing marginal effect—mixing enhancement increases at a decreasing rate
as the rotation rate increases. Other factors, like stability and energy input, should be
taken into consideration to comprehensively determine the optimum rotation rate and
experimental demand.



Micromachines 2025, 16, 806

10 of 14

Time (s)

~

v

Mass
fraction

Rotation
rate (r/min)

(b)

100

——50 r/min 80 ]t=10s
—— 100 r/min [ Jt=20s
80 |——200 r/min t=60s
——400 r/min 60 |
~——— 600 r/min i
__sof — 570 ||
S S 48
< T
40 | 36|
20l 20 F
13
0 oL | | L _| |
10 20 30 40 50 60 50 100 200 400 600
t(s)

Rotation rate (r/min)

Figure 9. Rotation rate-dependent mixing. During the numerical solution in the rotation, the time
step (At) is modified to 0.005 s to ensure the convergence of the computational results. (a) Sequential
mass fraction distributions for rotation rate 50-600 rpm during mixing. (b) Temporal mixing index
during mixing with different rotation rates. (c) Mixing indexes with various rotation rates.
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Figure 10. Rotation rate-dependent velocity distribution during mixing.

4. Concluding Remarks

The mixing performance of active mixing inside a microfluidic chip was numerically
investigated. When mixing with a single rotor, the rotor structure and size affected the
mixing efficiency, and the cross-shaped rotor showed higher mixing performance compared
to the bar-shaped and Y-shaped rotors. When mixing with multiple rotors, we further
investigated the arrangement of four rotors, finding that the cross-distributed arrangement
possessed the best mixing performance among the five typical arrangements. Increasing
the rotation rate improved the mixing performance, but the rate of improvement decreased
as the rotation speed increased. This study serves as a valuable guide for active mixing
inside microfluidics chips and can be applied to applications such as biological detection or
chemical synthesis that require effective mixing.
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