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Abstract: Achieving reliable navigation is critical for GNSS receivers subject to spoofing
attacks. Utilizing the inherent sparsity and inconsistency of spoofing signals, this paper
proposes an anti-spoofing framework for GNSS receivers to detect, classify, and recover
positions from spoofing attacks without additional devices. A sparse decomposition
algorithm with non-negative constraints limited by signal power magnitudes is proposed to
achieve accurate spoofing detections while extracting key features of the received signals. In
the classification stage, these features continuously refine each channel of the receiver’s code
tracking loop, ensuring that it tracks either the authentic or counterfeit signal components.
Moreover, by leveraging the inherent inconsistency of spoofing properties, we incorporate
the Hausdorff distance to determine the most overlapped position sets, distinguishing
genuine trajectories and mitigating spoofing effects. Experiments on the TEXBAT dataset
show that the proposed algorithm detects 98% of spoofing attacks, ensuring stable position
recovery with an average RMSE of 6.32 m across various time periods.

Keywords: GNSS receiver; spoofing attack; sparse decomposition; position recovery

1. Introduction
Global Navigation Satellite Systems (GNSS) offer worldwide coverage along with

precise, reliable, and real-time position, velocity, and timing (PVT) services [1]. At the same
time, such systems are inherently vulnerable due to the fragility of the signals [2], which
primarily stems from two factors: (i) the limited power of GNSS signals on the ground,
and (ii) the open structure of these signals. Their resulting fragility makes GNSS signals
susceptible to instances of satellite spoofing interference, including spoofing attacks on
portable GNSS receivers, unmanned aerial vehicles, and ships [3,4]. Unfortunately, most
commercial GNSS receivers are not equipped with effective countermeasures against such
spoofing attacks [5].

The main challenge faced by most commercial GNSS receivers in handling spoofing
interference is that when under attack, their tracking loops cannot resist external drag-off
from spoofing signal, resulting in continuous generation of fake position results. This
problem is further aggravated during hybrid jamming–spoofing attacks [6]. In such sce-
narios, the attacker first transmits high-power jamming signals to prevent the receiver
from acquiring authentic satellites. When acquisition is blocked, the attacker switches to
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high-power spoofing transmissions, which the receiver may mistakenly lock onto during
startup. These increasingly sophisticated spoofing strategies highlight the need for robust
countermeasures capable of detecting spoofing interference and mitigating its impact on
receiver position solutions.

Currently, the majority of anti-spoofing algorithms for GNSS receivers concentrate
on spoofing detection [7–9]. Spoofing classification was accomplished by [10] through
spoofing and authentic parameter estimation. However, merely detecting or classifying
spoofing signals is not enough; the more challenging and crucial task lies in eliminating the
impact of spoofing signals on receivers that have already been spoofed and ensuring the
generation of authentic PVT results.

To address these issues, methods based on multiple antennas that involve controlling
the antenna steering patterns have been proposed to generate nulls and eliminate spoofing
signals [11,12]. Furthermore, sensor fusion-based anti-spoofing interference techniques
were propose in [13,14]. Using a fifth-generation (5G) signal base station has also proven
helpful in spoofing mitigation [15]. However, the above approaches rely on adding extra
devices to increase information redundancy, which not only increases costs but also limits
the application scenarios of anti-spoofing algorithms for GNSS receivers [16]. The design of
an anti-spoofing framework that relies on the observed data of only a single GNSS receiver
to achieve reliable position results in generic scenarios remains an open problem worthy of
further investigation.

To avoid excessive utilization of extra devices, Receiver Autonomous Integrity Mea-
surement (RAIM) [17] provides a statistical reliability testing method which assumes a
scenario in which a single visible satellite is spoofed. While effective, RAIM cannot dis-
cern spoofing when most channels are subject to spoofing, which is often the case during
spoofing attacks. Lately, algorithms proposed by in [18,19] have employed vector track-
ing loops to estimate the magnitude, propagation delay, and carrier phase of spoofing
attacks. However, this approach relies on prior assumptions such as classifying signals with
higher amplitudes and longer delays as inauthentic, which may not be valid in common
matched-power and intermediate spoofing scenarios. To address this limitation, the design
of a Maximum Likelihood Estimation (MLE) principle with multiple correlator arrays
was presented in [20] to estimate and then mitigate GNSS spoofing attacks. In [5], the
authors introduced transitioning between multipath estimation of the delay lock loop and
coupled amplitude delay lock loop for continuously tracking of authentic signal compo-
nents. Nevertheless, the methods proposed in [5,20] both assume that the receiver operates
normally during tracking before spoofing begins. This assumption is often unrealistic, since
in practice it is difficult for a receiver to determine exactly when a spoofing attack begins.

In addition, many of the above methods [5,17–20] focus on identifying and mitigating
attacks based on self-defined prior knowledge or assumptions during the tracking stage.
These spoof mitigation strategies cannot track all contributing components simultaneously
to achieve both authentic and fake pseudo-range measurements for each satellite. As a
result, they miss opportunities to exploit redundant information deep within during the
navigation phase of position computation, making them more difficult to apply in more
general scenarios that go beyond prior assumptions.

Motivated by the above discussion, we propose a novel anti-spoofing framework
for solving the spoofing detection, classification, and position recovery problem of GNSS
receivers under frequency-locked spoofing attacks. The salient feature of our algorithm is
that it continuously tracks all the received signals’ contributing components and further
exploits the intrinsic inconsistency of the spoofing signals, thereby eliminating the need
for additional limitations such as added extra devices, prior assumptions, and specific
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initial states. Compared with the existing literature, the main contributions of this work are
highlighted as follows:

(1) Unlike methods the proposed in [7–9], which only focus on spoofing detection, we
devise a sparse decomposition algorithm with non-negative constraints limited by
received signal power magnitudes, which not only achieves accurate spoofing detec-
tion but also simultaneously extracts key features of the received signal’s contributing
components, achieving reliable spoofing classification.

(2) Distinct from the methods introduced in [5,17–20], we adopt Advanced Iterative
Hard Thresholding (AIHT) to integrate the key features extracted from our sparse
decomposition method into Auxiliary Peak Tracking (APT), enabling separate track-
ing of spoofing and authentic components of each satellite to derive the true and
spoofed pseudo-range measurements of each satellite. In this way, the intrinsic incon-
sistency of the spoofing signals can be further exploited without any extra devices and
prior assumptions.

(3) By leveraging the inherent inconsistency of spoofing properties, we incorporate the
Hausdorff distance to determine the most overlapped position sets to identify genuine
position trajectories in general scenarios. Compared with the methods proposed
in [10,18,20], this mitigates the impacts of spoofing in position recovery without
specific initial state limitations.

(4) The efficacy and advantage of the proposed anti-spoofing framework are fully illus-
trated by extensive experiments conducted on the public TEXBAT dataset, showing
that our algorithm detects 98% of spoofing attacks and guarantees stable position
recovery with an average RMSE of 6.32 m across various time periods.

The rest of this paper is organized as follows: the spoofing signal model and analysis
of the spoofed receiver correlators are provided in Section 2; Section 3 presents the design
process of the sparse decomposition-based spoofing detection, classification, and position
recovery framework; Section 4 shows the experimental results conducted with the TEXBAT
dataset; Finally, Section 6 concludes the paper.

2. Problem Background
2.1. Spoofing Signal Model

After down-conversion from radio frequency (RF), the received signals in each channel
of the receiver are composed of base-band GNSS signals and thermal noise. Without loss
of generality, the GPS L1 signal is taken as the representative of different types of satellite
signals in the following sections. The structure of a typical down-converted GPS L1 signal
in the ith channel is described as follows:

sai(mT) =
√

PaiCi(mT − τai)Di(mT)ej(2π fimT+θai) (1)

where the subscript label ∗a usually refers to parameters of an authentic satellite signal, ∗i

refers to the parameters of the ith channel in the receiver, Pai is the power of the received
authentic signal, m is the discrete sample index of the tracking start time, T is the sampling
period defined in a software receiver, τai and fi respectively denote the code phase and
Doppler frequency, θai is the carrier phase parameter, and Ci and Di represent the C/A
spreading code and the navigation message, respectively.

Similarly, the frequency-locked spoofing attack [10] of sai(mT), which is carried out
by intermediate spoofers and replicate authentic Doppler frequency fi, is formulated as
follows:

ssi(mT) =
√

PsiCsi(mT − τsi)Di(mT)ej(2π fimT+θsi) (2)
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where the subscript label ∗s means a counterfeit signal, while Psi, τsi and θsi respectively
represent the power, code, and carrier parameters of the spoofing signal ssi(mT) in the
ith channel. According to Equations (1) and (2), when spoofing attack exists, the received
signal si(mT) in the ith channel is modeled as

si(mT) = sai(mT) + ssi(mT) + n(mT), (3)

where n(mT) is assumed to be Additive White Gaussian Noise (AWGN) combined with
loop noise. To prevent the navigation message Di(mT) from changing during two consecu-
tive integration periods, the coherent integration period T0 is maintained at less than half
the bit duration. This ensures a constant navigation bit, and is omitted in the subsequent
discussions in this article.

2.2. Analysis of the Spoofed Receiver Correlators

In the tracking process, the local replicas are generated by GNSS receivers to contin-
uously achieve carrier and code wipe-off, and the locally constructed replica in the ith
channel is provided as follows:

r(mT, τ̂i) = Ci(mT − τ̂i)ej(2π fimT+θ̂i) (4)

where τ̂i and θ̂i represent the estimated code and carrier parameters in time, respectively.
By leveraging the local replica r(mT, τ̂i) in Equation (4), the correlator outcome in the ith
channel y(τi) is

y(τi) =
1

Nc

m+Nc−1

∑
m

si(mT)r(mT, τ̂i)
∗

=
√

PaiR(∆τai)ej∆θA +
√

PsiR(∆τsi)ej∆θS + η̃

=yA(τi) + yS(τi) + η̃

(5)

with

∆τsi = τsi − τ̂i, ∆τai = τai − τ̂i, ∆θsi = θsi − θ̂i, ∆θai = θai − θ̂i,

where Nc = fsT0 is the number of samples of the coherent integration period T0 and
fs=

1
T0

is the sampling frequency. In addition, (·)∗ denotes the complex conjugate operator,
R(·) denotes the auto-correlation function (ACF) depicted as an isosceles triangle, η̃ is the
combination of different noise components, including the thermal noise in real signals
and counterfeit signals, and yA(τi) and yS(τi) respectively denote the authentic signal
correlation component and spoofing signal correlation component.

It is worth noting that τi represents discrete time indexes, which is related to the
estimated parameter τ̂i. When τi takes different values, a sequence r(mT) of local replica
elements with incremental time delays D is constructed, forming a post-correlation vector
y = [y(τi + D) · · · y(τi + ND)]T . Here, N is the number of correlator taps, which can be
rewritten as follows:

y = yA + yS + η̃ (6)

where η̃ is the noise vector of η̃ in different taps, while yA = [yA(τi + D) · · · yA(τi + ND)]T

and yS = [yS(τi + D) · · · yS(τi + ND)]T respectively represent the ACF envelops of the real
and counterfeit signal components of y.

As shown in Equation (6), the postcorrelation vector y is composed of two main
components when the satellite signal is spoofed, namely, an authentic signal correlation
component yA and a spoofing signal correlation component yS. The same conclusion can
also be drown in any correlator outcome elements y(τi):
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y(τi) = yA(τi) + yS(τi) + η̃. (7)

Figure 1 shows how y(τi) is distorted by the spoofing component yS(τi), altering its
normal triangular shape. This figure also details the drag-off process in delay-locked loops
(DLLs) at various stages. As the code phase gap ∆τas = τai − τsi between yA(τi) and yS(τi)

widens, the DLLs are increasingly misled into locking onto yS(τi). When the drag-off
process is complete, yS gains control of the DLLs, indicating a successful spoofing attack.
In this study we focus on frequency-locked attacks, which presents a more sophisticated
challenge for detection and mitigation efforts than the unlocked attacks due to decoupling
of the carrier phase changes from code phase shifts [21].

(a) Δτas<1 (b) 1<Δτas<2 (c) 2<Δτas

Figure 1. Different stages of spoofing signals attempting to take control of DLLs, where y, yA, and yS
are depicted in the red, blue, and green triangles, respectively.

3. Methodology
To recover generic positions of the GNSS receivers under spoofing attacks, the follow-

ing design procedure is provided and utilized, as shown in Figure 2:

i In the detection phase, we leverage the sparse nature of the spoofed ACF and apply the
AIHT algorithm with an additional non-negative constraint to enhance the accuracy
of spoofing interference detection;

ii During the classification stage, we introduce an AIHT-based APT method that tracks
both authentic and counterfeit components of the same satellite using dual channels,
termed a channel pair. Using code phase gap estimations from the modified AIHT,
this method allows for continuous adjustments to the channel pairs.

iii Finally, by employing different selection schemes, we obtain various position results;
we then apply Hausdorff distance to identify the most consistent result, where the
greatest number of candidate position sets overlap. This result is considered to be
the true position, and the channels within the corresponding selection scheme are
recognized for tracking authentic components.
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Figure 2. Flowchart of the proposed spoofing detection, classification, and position recovery algorithm.

3.1. Sparse Decomposition-Based Spoofing Detection

According to findings in [22], the spoofed postcorrelation vector outcome y inherently
possesses a sparse representation in the original domain, which is provided as follows:

y(τ1)
...

y(τn)


︸ ︷︷ ︸

y

=


q11 · · · q1n

...
. . .

...
qn1 · · · qnn


︸ ︷︷ ︸

Q


β1
...

βn


︸ ︷︷ ︸

β

+e
(8)

where Q is a high-resolution dictionary, β is a sparse vector, and e ∼ N (0, σ2I) represents
the observation error due to loop noise and hardware limitations, with variance σ2.

The underlying assumption of this sparse representation of y is that y exhibits sparsity
in the ACF dictionary domain, particularly under spoofing attacks. In the context of
compressed sensing, a vector x ∈ Rn is considered sparse if only a small number of its
components are significantly nonzero, i.e., ∥x∥0 ≪ n, where ∥x∥0 denotes the number
of nonzero elements. Under spoofing conditions, the ACF profile exhibits two dominant
correlation peaks, one from the authentic signal and one from the spoofed signal; all other
components are negligible, and primarily arise from thermal noise or weak multipath effects.
This results in the sparse representation in (8), where the associated sparse coefficient vector
β has only a few nonzero elements corresponding to those dominant code phases, satisfying
∥β∥0 ≪ n.

As introduced by [10], the high-resolution dictionary Q depicted in Figure 3 is
composed of N m-sequence ACF triangle vectors with different code delays, which is
modeled as follows:

Q =
[

R(0))T · · · R((N − 1)D))T
]T

(9)

where R(τi) = [R(τi) · · · R(τi − (N − 1)D)] is the ACF triangle vector of m-sequence at
code phase τi.
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(a) Dictionary matrix.

q1

qi

qm

qn

…
…

(b) Correlation triangles of different
code phases.

Figure 3. Dictionary matrix Q construction.

Given y aggregates ACF triangles of each signal component with distinct amplitude
and code phases, and understanding the role of the dictionary Q, the operation Q ∗ β aims
to reconstruct optimally y. The specific sparse vector β that minimizes the error e reveals
the amplitude, count, and phase differences of the contributing signal components, for
which the detailed explanations are as follows:

• Amplitude: The relative amplitude of each component corresponds to the element
value in β. Elements below Tth are disregarded.

• Count: When the target receiver works normally, y exhibits a single peak and β̂ has
an element exceeding Tth. During spoofing, y displays superimposed peaks from yA
and yS such that two elements in β̂ exceed Tth.

• Code Phase: With N set, the non-zero indices in β identify the code phase of the
peaks of yA and yS, denoted as τi and τj, respectively, enabling precise mapping of
contributing components’ code phases in constructing y.

Tth is a normalized threshold within the range (0, 1], and is applied after scaling the
sparse vector β̂ by its maximum value. Because the non-zero elements of β̂, representing
power magnitudes, are inherently positive, Tth must be strictly greater than zero. Collec-
tively, the detection is determined by the number of elements in the normalized β̂ exceed
Tth. If this count is less than two, the receiver is considered not spoofed; otherwise, it is
considered to be under spoofing attacks. Therefore, achieving an accurate estimation of β

is crucial for both spoofing detection and classification.

3.2. Advanced IHT Algorithm

In order to achieve the sparsest possible representation of y and find the best match of
β, Equation (8) is modified as follows [23]:

β̂= argmin
β

∥y − Qβ∥2
2 s.t. ∥β∥0 ≤ K (10)

where β̂ represents the estimated sparse vector obtained through minimization of the cost
function. In addition, the ℓ0 norm denotes the number of non-zero components in β, while
K represents the prior coefficient level.

The IHT algorithm [24] decomposes sparse signals by retaining only the K largest
absolute coefficients per iteration, setting the rest to zero. In this way, all elements in the
vector β̂ should be zero or positive regardless of spoofing. However, as shown in Figure 4a,
loop noise and hardware limitations can distort y from its ideal shape, leading the IHT
algorithm to overfit by mistaking noise for signal components. This results in a sparse
vector with negative or excessive non-zero elements.
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Furthermore, as shown in Figure 4a, the IHT algorithm reconstructs the envelope
ŷ0 = Qβ̂, closely matching the distorted outcome y affected by thermal noise, including
several negative elements. Referring to the procedure outlined by [10], if negative elements
are discarded, the two largest positive elements (red bars in Figure 4a) would be interpreted
as the code phases τi and τj of the two main signal components; however, as shown by the
green line and red bars in Figure 4a, neglecting the negative elements not only introduces
significant error into the reconstructed result ŷ, it also causes τi and τj to be inaccurate.

Thus, an Advanced IHT (AIHT) is designed to ensure non-negative output estimation:

β̂
+
= argmin

β+

∥∥y − Qβ+
∥∥2

2 s.t. ∥β∥0 ≤ K (11)

where β+ is the sparse vector with non-negative elements and β̂+ is the estimated result
of β+. To solve the optimization problem shown in Equation (11), the following iterative
algorithm is adopted:

βn+1 = H+
K

(
βn + QH(y − Qβn)

)
(12)

where βn+1 represents the estimated sparse vector β+ in nth iteration and we have

H+
K (βi) =

0, if βi < λ0.5
K (β+),

βi, if βi ⩾ λ0.5
K (β+),

(13)

where λ0.5
K (β+) is set to the Kth largest value of βn + QH(y − Qβn). If less than K values

are positive, then we define λ0.5
K (β+) to be the smallest value of the positive coefficients.
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(a) Conventional IHT algorithm, where
ŷ = Q ∗ [positive elements of β̂].
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(b) Proposed AIHT algorithm, where
ŷAIHT = Q ∗ β̂AIHT.

Figure 4. Comparison of reconstruction performance between the conventional IHT algorithm and
the proposed AIHT algorithm.

Next, we explain theoretically why the proposed AIHT is less likely to include false
estimation of τi and τj due to noise e. Suppose that the estimated support Ŝ of β+ is
defined as

Ŝ = {i | βi ̸= 0} (14)

and that S is the real support of β. For any atom qj within Q that is not in the true support
S, the project zj reduces to

zj = q⊤
j y = q⊤

j (Qβ + e) = q⊤
j e ∼ N (0, σ2∥qj∥

2), (15)
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i.e., the projection is approximately Gaussian, since qj is approximately orthogonal to the
dictionary of real support QS under low-coherence assumptions [25].

In classical IHT, support selection is based on the top K largest magnitudes |zj|,
meaning that large negative projections due to noise can be incorrectly included. In
contrast, AIHT excludes negative projections by design and selects only the top K positive
ones. Therefore, the probability of a false atom being included in the support is strictly
lower under AIHT. The probabilities of false support estimation under the classic IHT and
AIHT methods can be compared by examining the tail of the Gaussian distribution:

PIHT(false support) = P(|zj| > Tth) = 2Q

(
Tth

σ∥qj∥

)
(16)

while the probability of it exceeding Tth in the positive direction (as used in AIHT) is

PAIHT(false support) = P(zj > Tth) = Q

(
Tth

σ∥qj∥

)
. (17)

Here, Q(x) is the Gaussian tail function, defined as Q(x) = 1√
2π

∫ ∞
x e−t2/2dt, which

provides the probability of a standard normal random variable exceeding x. Clearly,
PAIHT < PIHT, meaning that AIHT is less likely to include false atoms due to noise.

In addition, we can consider the reconstruction error bound. Because AIHT always
chooses the top non-negative K components and the signal amplitude is also non-negative,
the correct support is preserved throughout the iterations. Therefore, the error bound from
IHT carries over to AIHT as follows [25]:

∥y − Qβ⋆∥ ≤
λ0.5

K (β⋆)

α(Q)
(18)

where the positive constant α(Q) denotes the condition number of Q and β⋆ denotes the
vector β+ at any fixed point.

As depicted by the green line in Figure 4a, negative elements overlooked by the
IHT algorithm result in substantial deviations in the reconstructed ŷ and estimated τA

and τS within a satellite. Conversely, by incorporating a non-negative constraint of β+,
compared to β in Equation (10), as indicated by the blue line and red bars in Figure 4b,
our AIHT algorithm not only significantly reduces the reconstruction error of ŷ but also
precisely determines τi and τj, which aligns more accurately with the signal components
yA and yS. Thus, AIHT provides enhanced accuracy in the detection and classification of
spoofing signals.

3.3. Spoofing Classification via AIHT-Based APT Algorithm

The primary objective of spoofing classification is to ensure a stable APT process for
each satellite. To achieve this, our AIHT algorithm accurately extracts the respective code
phases βi and βj of both the spoofing and genuine signal components from the combination
of postcorrelation peaks y. Therefore, an AIHT-based APT algorithm is designed to estimate
code phases τi and τj while separately achieving steady tracking of each satellite’s signal
components yA and yS. Let us assume i > j and that a spoofing signal is successfully
detected. Then, the iterative correction steps of the proposed AIHT-based APT algorithm
are as follows:

(1) Initial Correction: Since it remains unclear which of the two elements corresponds
to yA, we begin by recovering the correlation peaks ŷi and ŷj, which represent two
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distinct components of the overall received signal ŷ from the pth spoofed satellite.
This is done using the coefficients βi and βj from β̂

+
:{

ŷi = Qβ̂
+
i

ŷj = Qβ̂
+
j

(19)

where β̂
+
i = [ 0 · · · 0︸ ︷︷ ︸

1×(i−1)

, βi, 0 · · · 0︸ ︷︷ ︸
1×(r−i)

] and β̂
+
j = [0 · · · 0︸ ︷︷ ︸

1×(j−1)

, βj, 0 · · · 0︸ ︷︷ ︸
1×(r−j)

] denote that the matrices

only contain the non-zero element at the estimated code phase βi and βj, indicating
the specific peaks extracted from the overall signal.

(2) Channel Allocation for Tracking: Two separate channels, referred to as a channel pair, are
allocated to track the pth spoofed satellite. For a GNSS receiver tracking P satellites, a
total of P channel pairs, comprising 2P independent digital channels, are required:

{[C1,1, C1,2], · · · , [CP,1, CP,2]} (20)

where [Cp,1, Cp,2] represents a channel pair tracking different components of a single
satellite for p = 1, 2, · · · , P. Each channel within a pair is dedicated to one of the
two corrected correlation peaks, ŷi and ŷj, ensuring simultaneous tracking of both
signal components. Specifically, Cp,1 tracks ŷi, associated with βi, while Cp,2 tracks ŷj,
associated with βj.

(3) Continuous Update and Tracking: AIHT-based correction is continuously repeated to
update coefficients βi and βj in each channel, guaranteeing continuous correlation
peak corrections and consequently steady tracking across all tracking pairs.

E

P
L

(a) Before tracking peak ŷj

E

P

L

(b) After tracking peak ŷj

E

P L

(c) Before tracking peak ŷi

E

P

L

(d) After tracking peak ŷi

Figure 5. The early (E), prompt (P) and late (L) values selected by the DLL; here, δE−L means the
early–late separation.

Based on the aforementioned iterative correction steps, as shown in Figure 5a,b, ŷj
represents the green correlation triangle, which the DLL progressively tracks. Similarly,
in Figure 5c,d, ŷi represents the red correlation triangle, and the second channel tracks it
after correction. Thus, two separate channels within a pair track the genuine and spoofing
peak components of a spoofed satellite signal. This simultaneous tracking enables the
possibility of exploiting the inherent inconsistencies in spoofing signals, providing an
essential foundation for designing position recovery methods.
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3.4. Position Recovery

In the position recovery stage, by evaluating the position sets generated by different
channel selection schemes, we identify specific channels that only track the authentic
component yA of each satellite. The results can be extended to guarantee an accurate
position solution.

First, one channel is selected from each channel pair [Cp,1, Cp,2] which has completed
tracking. In total, P − 1 channels are chosen from all P channel pairs. Therefore, the
channel selection scheme Gg = [C1,x, C2,x, · · · , CP·2P-1,x], where x = 1 or 2, has a total of
CP−1

P (A1
2)

P - 1 = P · 2P-1 possibilities. Then, each channel selection scheme Gg produces
different pseudo-ranges for each satellite. Different channel selection schemes result in
varying pseudo-ranges for each satellite. Finally, during the receiver’s PVT estimation stage,
the Extended Kalman Filter (EKF) is applied to integrate these pseudo-ranges, yielding
varying position results.

Because the receiver calculates position periodically, each Gg produces different posi-
tion trajectories over time. These trajectories, representing discrete position solutions, form
unique sets. In Figure 6, each set is labeled Si, where i = 1, 2, . . . , P · 2P−1 corresponds to
a particular channel selection scheme; thus, there are P · 2P−1 distinct sets, with each set
representing a specific selection scheme. Among all these selection schemes, there exist
three different scenarios:

(1) Authentic selection schemes (P sets): Composed of channels that exclusively track gen-
uine signals; when P > 4, these sets tend to produce consistent position results.

(2) Fake selection schemes (P sets): Made up of channels that only track spoofed signals;
these sets exhibit varied position outcomes due to the spoofing signals’ inability
to continuously generate drag-off phases while simultaneously ensuring a uniform
position across all satellites.

(3) Mixed selection schemes (P · (2P−1 − 2) sets): Consisting of channels tracking both
genuine and spoofed signals, the position results from these sets also vary significantly.

…
𝟏,𝟏

𝟏,𝟐

𝟐,𝟏

𝟐,𝟐
𝑷ି𝟏,𝟐

𝑷,𝟏

𝑷,𝟐…

𝑷ି𝟏,𝟏

𝟐

𝟏

Figure 6. Formation of distinct position sets Si based on different channel selection schemes.

Collectively, there are P overlapping position sets Si, corresponding to authentic
position solutions generated by authentic selection schemes. The remaining position
sets produced by fake and mixed schemes are scattered, with relatively large distances
between them.

In order to range the distance and compare the similarity between two sets between
different position sets, the Hausdorff distance dH [26] is adopted. Let the bth and cth
channel selection scheme corresponds to position set Sb and Sc, respectively, where b, c =
1, 2, · · · , P · 2P−1 and b ̸= c. Then, the Hausdorff distance between Sb and Sc is defined as

dH(Sb, Sc) = max{h(Sb, Sc), h(Sc, Sb)},
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while the shortest distance h(Sb, Sc) from Sb to Sc is

h(Sb, Sc) = max{min{d(pb, pc)|pb ∈ Sb}, pc ∈ Sc},

where pb and pc are arbitrary points in Sb and Sc, respectively, and d(pb, pc) represents the
distance between any two points in Sb and Sc.

To evaluate the similarity between two different output result sets, we normalize
the Hausdorff distance between any two candidate sets Sb and Sc by dividing it by the
maximum pairwise distance:

d̃H(Sb, Sc) =
dH(Sb, Sc)

maxb ̸=cdH(Sb, Sc)
. (21)

A normalized threshold Dthre is then applied to determine valid overlaps. If d̃H(Sb, Sc)

between Sb and Sc is less than Dthre, then sets Sb and Sc are considered to overlap approx-
imately. By calculating the Hausdorff distance dH between each pair of sets, a distance
matrix F can be constructed as

F =


d̃H(1, 1) · · · d̃H(1, P · 2p−1)

d̃H(2, 1) · · · d̃H(2, P · 2p−1)
...

. . .
...

d̃H(P · 2p−1, 1) · · · d̃H(P · 2p−1, P · 2p−1)

. (22)

As shown in Figure 7, the distance matrix F is symmetric, and each row (or column)
of matrix F corresponds to the normalized distance d̃H between the current set of positions
and other sets of positions. By identifying the gth row (or column)

F(g, :) =
[
d̃H(g, 1), · · · , d̃H(g, P · 2P−1)

]
or F(:, g) =

[
d̃H(1, g), · · · , d̃H(P · 2P−1, g)

]
with the maximum number of overlapping sets, all channels included in the gth selection
scheme Gg are able to track the true signal, thereby obtaining the correct position solution
Sg for the receiver.

1 2 3 4 5 6 7

1

2

3

4

5

6

7

Hd D

Figure 7. Distance matrix F with color-coded elements: blue for values below Dthre and yellow for
values above.

3.5. System Overview

Collectively, the pseudocode of implementation for the proposed spoofing detection,
classification and position recovery algorithm is summarized in Algorithm 1. Under differ-
ent channel selection schemes, the receiver’s operating state can be analyzed as follows:
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• If our algorithm is initiated before spoofing attacks, it confirms that the target receiver
is not under spoof, and no further steps are implemented unless the outcome of the
AIHT algorithm suggests an opposite decision.

• If our algorithm is run after spoofing attacks, the receiver switches to alarm mode
to perform classification and position recovery. The authentic position solution Sg

is identified by selecting the gth row (or column) of the distance matrix F with the
highest number of overlapping sets.

Thus, from the process in Algorithm 1, it can be found that there is no limitation in the
start time when applying our algorithm.

In the following, we further analyze the computational complexity in Algorithm 1 to
illustrate the practicality of our results. Recall that the signal data length J and P satellites
can be tracked, the computational complexity of the tracking loops is O(P × J), and the
AIHT’s complexity mirrors that of the conventional IHT algorithm, which is O(K × N).
Consequently, the cumulative complexity of the proposed AIHT algorithm before position
recovery amounts to O(P × K × N × J). In the position recovery process, assuming that
the EKF operation of the PVT estimation has a computational complexity of O(E), the
iterative process is conducted (P × (2P − 1)) times in various channel selections, and a
pair of tracking loops needs to be calculated for each satellite. Thus, the computational
complexity post-spoofing detection is O(P × K × N × J) + O(P × (2P − 1)× E), which can
be run by most commercial GNSS receivers.

Algorithm 1 The proposed spoofing detection, classification and position recovery algorithm.
Input: Satellite number P, correlation outputs yp, prior coefficient level K, reconstruction error ε, threshold Tth

and Dthre.
Output: Receiver state, selection scheme Gg of (F(g, :)) or column (F(:, g)) in F.
1: Initializing 2P digital channels
2: while t < tend do
3: if No spoofing signals are detected then
4: for p = 1, 2, · · · , P do
5: Initializing dictionary Q

6: while
(∥∥∥yp − Qβ+

∥∥∥2

2
> ε

)
do

7: β̂
+
= argmin

β+

∥∥y − Qβ+
∥∥2

2, s.t. (∥β∥0 ≤ K)

8: end while
9: if ∄βi which βi ≥ Tth then

10: No existence of spoofing.
11: else if ∃βi, βj which βi, βj ≥ Tth then
12: Receiver under spoofing attack
13: end if
14: end for
15: else
16: if P > 4 then
17: Activating position recovery
18: for p = 1, 2, · · · , P do
19: Obtaining corrected ŷpi

, ŷpj
by AIHT-based APT method

20: Tracking ŷpi
and ŷpj

within channel pair [Cp,1 and Cp,2]

21: end for
22: Form selection scheme Gg from different channel pairs Gr = [C1,x, C2,x, · · · , CP·2P−1 ,x ], x ∈ {1, 2}
23: end if
24: end if
25: end while
26: for r = 1, 2, · · · , P · 2P−1 do
27: Form position set Sr under scheme Gr
28: Calculate F(r, :) or F(:, r)
29: end for
30: Form the matrix F
31: Identify vector F(g, :) or F(:, g) with each normalized elements smaller than Dthre.
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4. Experimental Results
In this section, we consider a GNSS receiver which suffers from spoofing attacks.

The proposed anti-spoofing algorithm in Algorithm 1 is deployed to achieve spoofing
detection, classification, and position recovery. The public TEXBAT dataset provided by
the University of Texas at Austin containing GPS L1 base-band spoofing data [21,27] is
utilized in the experiments. The dataset is postprocessed using FGI-GSRx, which is an
open-source GPS software-defined receiver (SDR) developed by the Finnish Geospatial
Research Institute (FGI) [28]. Extensive experiments are conducted to fully illustrate the
efficiency and advantages of each stage of the proposed spoofing algorithm.

4.1. Performance Analysis of AIHT Algorithm

In this subsection, scenario 4 in TEXBAT is utilized to evaluate the proposed AIHT
detection algorithm’s performance. As shown in Figure 8, the spoofing attack begins to
distort the channel at the 190-s mark.
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(a) position errors caused by spoofing signals.
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(b) Receiver trajectory under spoofing attack.

Figure 8. Position results of a GNSS receiver under spoofing interference in scenario 4 of the TEXBAT
dataset.

Moreover, to illustrate the efficiency and advantage of our algorithm, we further ana-
lyze it in comparison with some related methods, including a traditional IHT algorithm [25]
and a Least Absolute Shrinkage and Selection Operator (LASSO)-based spoofing detection
algorithm [10].

Figure 9a compares the detection accuracy of our AIHT algorithm against the conven-
tional IHT and LASSO methods. To achieve 90% accuracy, AIHT can detect spoofing for
delays as small as ∆τ > 0.71 chips, whereas both IHT and LASSO require ∆τ > 0.8 chips
under the same criterion. Figure 9b displays the root mean square error (RMSE) between y
and the reconstructed result ŷ under different algorithms. Collectively, the proposed AIHT
algorithm not only maintains a satisfying detection rate in a small code phase gap between
the authentic and spoofing peak components, it also has the smallest reconstruction error,
implying outstanding ability to recognize the corresponding code phases β̂

+
i and β̂

+
j of

different signal components.
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(a) Spoofing interference detection accuracy.
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(b) Signal reconstruction results.

Figure 9. Comparison of spoofing detection accuracy and reconstruction RMSE across algorithms for
various code phase intervals.
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4.2. Robustness Analysis of DLL Under AIHT-Based APT Algorithm

In this section, the fluctuation of the DLL is analysed over different time periods to
evaluate the stability of DLL loop calibration under our AIHT-based APT algorithm. Again,
we use scenario 4 in the TEXBAT dataset.

As shown in Figure 10, during the time periods of 195–215 s, 220–250 s and 250–280 s,
the oscillation amplitude DLLerr decreases and the DLL loop tends to stabilize after tracking
and alignment with the target signal component ŷi or ŷj. Upon detection of spoofing signals,
AIHT-based APT algorithm begins. Figure 11 depicts the actual DLL correction process of
the proposed AIHT-based APT algorithm for different values of ∆τij. The tracking process
in channels Cp,1 and Cq,1, illustrated in Figure 11a,c, respectively, gradually locks onto ŷi,
while the tracking process in channels Cp,2 and Cq,2, detailed in Figure 11b,d, respectively,
gradually locks onto ŷj, p ̸= q.
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(a) Discriminator oscillation from 195 s to 210 s.

170 200 230 260 290 320 350

Time (s)

-0.2

0

0.2

D
L

L
er

r

Positioning Recovery
Algorithm Start

(b) Discriminator oscillation from 220 s to 250 s.
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(c) Discriminator oscillation during 250 to 280 s.

Figure 10. The oscillation of DLLs induced by APT at different time intervals.

The tracking adjustments depicted in Figure 11 correlate with changes in the discrimi-
nator of the DLL, as shown in Figure 10. When the initial correlation peak is not the one the
channel is designated to lock onto, DLLerr undergoes significant adjustments to shift from
initially aligning with ŷ to the calibrated components ŷi or ŷj. Upon successful re-locking
onto the correct peak, DLLerr diminishes and approaches zero.
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Figure 11. Tracking status of the channel pair
[
Cp,1, Cp,2

]
when code interval ∆τij > 1 (a,b) and[

Cq,1, Cq,2
]

when code interval ∆τij < 1 (c,d).

As shown in Figure 12, different signal components of the channel pair ([Cp,1, Cp,2])

are stably tracked and calibrated, with the DLL loop aligned precisely to the assigned
correlation peak (ŷi) or (ŷj). Figure 12a,b illustrates the channel pair when the code phase
difference (∆τij) is less than 1.

Figure 12c,d shows the channel pair for (1.5 > ∆τij ≥ 1), while Figure 12e,f depicts
the channel pair for (∆τij ≥ 1.5). These figures emphasize the efficacy of AIHT-driven
code phase estimations in achieving independent channel adjustments within a channel
pair, ensuring stable AIHT-based APT tracking and minimizing fluctuations in subsequent
position recovery.
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(e) Tracking status of ŷi when
∆τij ≥ 1.5
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Figure 12. Tracking status of the calibrated ŷi and ŷj after correction, with different code delays ∆τij

between channels.

4.3. Evaluation of the Receiver’s Position Recovery Results

In this section, the position recovery performance of our algorithm is fully evaluated
under the scenario 4 in TEXBAT, where the spoofing attack is initiated at 190 s and gradually
introduces a 600 m erroneous position offset in the earth-centered earth-fixed (ECEF)
coordinates. The true coordinates of the receiver in the WGS84 coordinate system are
known to be latitude 30◦17′15.068′′N, longitude 97◦44′08.642′′E, and altitude 170 m.

Figure 13 illustrates the different position results obtained by proposed spoofed
measurement mitigation algorithm discussed in Section 3.4 for different channel selections
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among all channel pairs, from the 300 s to the 350 s. Because the receiver in scenario 4 can
receive P = 7 satellites, there are a total of CP−1

P (A1
2)

P−1 = 448 position sets for different
channel results.
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Figure 13. Different position results for different channel selections.

As shown in Equation (22), dH is calculated between each pair of the 448 position
sets, resulting in a 448 × 448 matrix F. Setting the threshold Tth = 50%, DThre = 8%, the
search for the rows F(g, :) (or columns F(:, g)) with the most overlaps in matrix F allows
for the selection of eight sets of approximately overlapping position trajectories, namely,
∑1<i<448 dH(i, g) < DThre, which are regarded as the true position solution Sg of the target
receiver. Based on these approximately overlapping position sets and the corresponding
channel selections, channel identification for tracking the true component in

[
Cp,1, Cp,2

]
can be achieved.

Figures 14–16 illustrate the identification results of the position recovery trajectories
and dimensional position error of the position recovery algorithm in different time periods.
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Figure 14. Three-dimensional trajectory and position error of spoofed and recovered navigation
solutions from 160 s to 296 s.

Figure 14 shows that when the proposed spoofing countermeasure is applied be-
fore the spoofing attack begins, the recovered position error (red line) overlaps with the
spoofed position error in the early stages before detection, as compared to Figure 8; af-
terwards, the proposed sensitive AIHT algorithm enables early detection and recovery,
stabilizing the receiver’s trajectory and preventing significant deviations in the position
results. Figures 15 and 16 display the trajectories and position errors from 245 s to 343 s
when ∆τij ≤ 1 and from 275 s to 378 s when ∆τij > 1, respectively. These figures demon-
strate that significant position resolution deviations are corrected by the position recovery
algorithm, effectively realigning the position to the true values in different time periods.



Remote Sens. 2025, 17, 2703 18 of 22

30.292

-97.738

0

30.29

Latitude (°)

-97.737

200

H
ei

gh
t 

(m
)

-97.736

Longitude (°)
30.288

-97.735

400

30.286 -97.734

600

Spoofing trajectory
Positioning recovery trajectory
Real position

Start recover

t=343s

(a) Position recovery trajectory

160 190 220 250 280 310 340Time (s)

-200
0

200
400
600

Z
 (

m
)

Recovered positioning error
Spoofed positioning error

160 190 220 250 280 310 340Time (s)
-400

-200

0

200

Y
 (

m
)

Recovered positioning error
Spoofed positioning error

160 190 220 250 280 310 340Time (s)

-200

-100

0

100

X
 (

m
)

Recovered positioning error
Spoofed positioning error

310 340

-20
0

20
40

340

-50
0

50

(b) Position error

Figure 15. Three-dimensional trajectory and position error of spoofed and recovered navigation
solutions from 245 s to 343 s.
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Figure 16. Three-dimensional trajectory and position error of spoofed and recovered navigation
solutions from 275 s to 378 s.

To evaluate the stability of our position recovery algorithm, we compute the RMSE
over different time periods in both static (scenario 4) and dynamic (scenario 6) environments.
Table 1 lists the RMSE values in the X, Y, and Z dimensions of the ECEF coordinate system
during various phases of recovery. As shown in Figures 14b–16b, the algorithm initially
shows fluctuations for the first 80 s after deployment, which then stabilize until the end.
The RMSEs for the time periods before and after 80 s from deployment are calculated
and presented in Table 1. Scenario 6 shows a larger RMSE than scenario 4 during the
first 80 s because the spoofing attack shifts the receiver farther away; in later stages, the
RMSE decreases but remains slightly higher than in scenario 4, which is due to the stronger
spoofing power causing the receiver to track the spoofed signals more persistently. We
further analyze performance across different spoofing delays ∆τij. As indicated in Table 1,
our method performs effectively for both ∆τij ≤ 1 and ∆τij > 1, with satisfyingly low RMSE
during the stabilized recovery stages from 80 s to the end of the recovery algorithm. It
is worth mention that the higher Y-axis RMSE under ∆τij > 1 in scenario 4 results from
unstable code phase estimates during the spoofing-dominant phase. This instability is
primarily caused by loop noise, which particularly affects satellites contributing along the
Y-axis.
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Table 1. RMSE (m) under our position recovery algorithm across different time periods after deploy-
ment. The values represent the RMSE for two different scenarios: scenario 4 (first value) and scenario
6 (second value).

∆τij (chip) Direction
RMSE (m)

0 s–80 s 80 s–end

non-spoofing
X 14.4, 159.1 4.9, 9.3
Y 25.6, 18.1 7.0, 8.2
Z 17.5, 49.8 6.1, 8.3

∆τij ≤ 1
X 37.8, 349.4 3.7, 9.4
Y 33.4, 76.6 5.3, 10.1
Z 71.6, 222.4 6.4, 9.8

∆τij > 1
X 13.1, 527.1 3.2, 7.4
Y 34.7, 82.3 14.1, 11.9
Z 62.4, 187.8 6.2, 10.1

5. Discussion
The two main objectives of this article are to achieve accurate detection of spoof-

ing interference and to ensure stable position recovery results under different spoofing
conditions. To achieve the first objective, as discussed in Section 4.1, spoofing detection
accuracy is evaluated by comparing the RMSE between y and the ŷ reconstructed by the
proposed AIHT-based detection method and other algorithms, for which we use publicly
available datasets across several different scenarios. For the second objective, as outlined in
Section 4.2, the effectiveness of the position recovery algorithm is indirectly evaluated by
analyzing the tracking performance of each channel pair during the classification phase.
Because smaller DLL discriminator fluctuations indicate a more stable AIHT-based APT
algorithm, Figures 10–13 show that the discriminator quickly regains stability during loop
correction, validating the potential for successful position recovery.

The experiments in Section 4.3 visually demonstrate the effectiveness and stability
of the proposed position recovery algorithm. Figures 14–16 and Table 1 show that the
proposed spoofing detection, classification, and position recovery algorithm effectively
mitigates the impact of spoofing interference across various scenarios both before and
during spoofing attacks on the receiver while maintaining stable recovery results.

To validate the sensitivity of Dthre, we vary its value and check whether the proposed
positioning recovery method still correctly selects the authentic scheme with the maximum
number of overlapping sets in matrix F. For Scenario 4, Dthre values between 6% and 10%
are effective, as shown in Figure 17a,b. When Dthre exceeds 10%, the number of overlaps
from the authentic selection scheme no longer increases, as all relevant sets are already
included; meanwhile, overlaps from fake or mixed schemes continue to grow. Therefore, if
Dthre becomes too large, the recovery algorithm may mistakenly treats spoofed channels as
authentic, leading to positioning errors. Similarly, for scenario 6, Dthre values between 4%
and 9% are effective. Based on both cases, we set Dthre = 8% in our implementation.

Compared to prior approaches such as [5,20], our method introduces fewer assump-
tions and demonstrates better adaptability under challenging spoofing conditions. The
CADLL-based method in [5] requires a stable initialization from a preceding MEDLL
stage. If spoofing has already started before the receiver begins tracking, the loop fails
to converge and the system may diverge. The MLE-based estimator in [20] assumes that
the spoofing delay exceeds 0.75 chips. When this condition is not met, the estimation
matrix becomes ill-conditioned, often resulting in severe estimation errors. In contrast,
our method neither depends on prior authentic tracking states nor requires a minimum
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spoofing delay. Through sparse decomposition and iterative recovery, it can resolve closely
spaced correlation peaks and remain effective even when the spoofing delay is small.

1 2 3 4 5 6 7 8 9 10 11 12
0

5

10

15

20

25
Authentic selection scheme
Max (Fake or Mixed selection scheme)

(a) Scenario 4

1 2 3 4 5 6 7 8 9 10 11 12
0

5

10

15

20

25
Authentic selection scheme
Max (Fake or Mixed selection scheme)

(b) Scenario 6

Figure 17. Overlapping set counts under varying normalized Dthre values for the two different
scenarios.

Importantly, we acknowledge a critical limitation of the proposed framework in that
it requires at least five visible satellites (i.e., p > 4) in order to construct a valid position
recovery scheme. In urban canyon environments, this condition may not always be met.
To handle such scenarios, a promising approach is to integrate signals from other systems,
such as 5G localization or Low Earth Orbit (LEO)-based navigation. A recent study [15] has
shown that 5G signals can enhance spoofing resistance when GNSS signals are degraded.
Moreover, we are developing a custom-designed navigation signal for LEO dedicated
positioning [2] to ensure robust performance under limited satellite visibility. Hybrid
GNSS-LEO based anti-spoofing strategies will be explored in our future work.

6. Conclusions
This paper has investigated the issue of reliable and secure navigation for GNSS

receivers subject to spoofing attacks. We propose a sparse decomposition algorithm with
non-negative constraints limited by received signal power magnitudes, which not only
achieve accurate spoofing detection but also extracts key features of the received signal’s
contributing components. During the spoofing classification process, these features are
utilized to continuously refine receiver’s code tracking loop in order to resist drag-off by
the spoofed signal, ensuring that the contributing components of each spoofed satellite are
tracked separately within channel pairs. Moreover, leveraging the inherent inconsistency of
spoofing properties, we incorporate the Hausdorff distance to identify the most overlapped
position sets, enabling the determination of genuine position trajectories and effectively
mitigating the impacts of spoofing. The key advantage of our anti-spoofing framework is
its ability to continuously track all contributing components of received signals and further
exploit the inherent inconsistency of spoofing signals, which eliminates the need for extra
devices or specific initial conditions. The efficiency and advantages of the proposed anti-
spoofing framework are fully illustrated through extensive experimental studies conducted
on the public TEXBAT dataset.
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