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Abstract

Container liner shipping companies operate within a complex environment where they
must balance profitability and service reliability. Meanwhile, evolving regulatory policies,
such as surcharges imposed on ships of a particular origin or type on specific trade lanes,
introduce new operational challenges. This study addresses the heterogeneous ship routing
and demand acceptance problem, aiming to maximize two conflicting objectives: weekly
profit and total transport volume. We formulate the problem as a bi-objective mixed-
integer programming model and prove that the ship chartering constraint matrix is totally
unimodular, enabling the reformulation of the model into a partially relaxed MIP that
preserves optimality while improving computational efficiency. We further analyze key
mathematical properties showing that the Pareto frontier consists of a finite union of
continuous, piecewise linear segments but is generally non-convex with discontinuities. A
case study based on a realistic liner shipping network confirms the model’s effectiveness in
capturing the trade-off between profit and transport volume. Sensitivity analyses show
that increasing freight rates enables higher profits without large losses in volume. Notably,
this paper provides a practical risk management framework for shipping companies to
enhance their adaptability under shifting regulatory landscapes.

Keywords: container liner shipping; bi-objective mixed-integer programming model;
totally unimodular; Pareto frontier; operational surcharges; risk management

1. Introduction
Container liner shipping is a cornerstone of global trade, enabling the efficient trans-

port of goods across continents and supporting much of the world’s economic activity [1]. In
2025, however, the transpacific shipping market and the broader containerized ocean trans-
port system are experiencing significant disruptions due to new U.S. Section 301 actions
targeting ships built in China or operated by Chinese companies [2–4]. These measures
impose phased port surcharges, effective after a 180-day grace period starting 17 April 2025,
with fees for Chinese ship owners/operators beginning at $50 per net ton per U.S. voyage
and escalating to $140 per net ton by 17 April 2028 [5]. For China-built ships operated by
non-China entities, fees start at $18 per net ton (or $120 per container unloaded) and rise to
$33 per net ton (or $250 per container) by the same date, applied up to five times annually
per ship [5]. Additionally, the policy mandates that a growing share of U.S. exports, such as
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liquefied natural gas (LNG), be carried on U.S.-operated ships, starting at 1% in 2028 and
increasing to 15% by 2047 [2]. These measures have already caused significant disruptions
across key sectors. In the coal sector, ship owners are refusing U.S. coal shipment contracts
due to the cost increases, halting $130 billion in exports within 60 days, as the fees have
raised delivered coal costs by up to 35% [6]. Agricultural exporters of corn, soybeans,
and wheat are struggling to secure ocean freight since May 2025, incurring additional
transportation costs of $372 million to $930 million annually [6]. Energy exports, including
LNG and oil, are being curtailed due to the absence of non-China-built ships, significantly
impacting shipments [6]. Operationally, carriers are suspending routes to smaller ports
like Oakland in favor of larger hubs like Los Angeles, causing congestion and equipment
misallocation [7]. Industry estimates indicate the fees are adding $600–$800 per container,
costing the shipping sector $20 billion annually and increasing consumer prices [7]. These
disruptions highlight the urgency and scale of the policy shock, underscoring the need for
stakeholders to adapt swiftly to mitigate economic fallout.

Liner operators, already navigating a highly competitive and volatile market [8], must
now grapple with these profound regulatory changes in addition to existing challenges
such as fluctuating demand, rising operating costs, and increasing ship heterogeneity
stemming from fleet expansion and alliance strategies [8,9]. This significantly complicates
key decisions in operational management [9], including ship routing, fleet deployment,
and transport demand acceptance, which must be carefully balanced to maintain compet-
itiveness [10]. The introduction of such significant port surcharges based on ship origin
and ownership fundamentally alters ship routing and deployment decisions. Prior studies
on ship routing and scheduling emphasize that changes in cost structures, such as the
imposition of new regional fees, directly affect optimal fleet routing, port call patterns, and
service frequency [4,11,12]. When operational costs increase on specific routes or port calls,
liner operators have strong incentives to adjust their deployment, potentially discontinuing
routes that include high-fee ports to minimize surcharge exposure [4]. Empirical research
and optimization models show that fleet deployment decisions are highly sensitive to regu-
latory and cost-driven shocks [13], with dynamic re-routing occurring not only in response
to fuel price shifts and emission control area (ECA) regulations, but also as shippers and
carriers seek least-cost pathways under new port or trade restrictions [14]. Consequently,
shipping lines have begun reviewing fleet composition, revisiting newbuilding strategies,
and considering detaching beneficial ownership links to avoid U.S. surcharges, potentially
transferring China-built ships to non-U.S. trades or substituting other nations’ builds into
U.S. lanes [2,4].

Against this backdrop of specific and evolving regulatory challenges, including chang-
ing cost structures, environmental rules, and geopolitical pressures, existing research has
extensively studied a wide range of operational decisions in liner shipping, particularly in
areas such as multi-route scheduling, fleet deployment under cost variability, ship speed
optimization, and port time windows. Numerous studies develop optimization models for
ship routing and scheduling, addressing both industrial and tramp segments as well as liner
shipping, and often tackle multi-ship, multi-route scenarios, variable ship speeds, and con-
straints arising from port schedules and ship heterogeneity [11,12,15–17]. These frequently
employ mathematical programming techniques like mixed-integer linear programming
(MILP), mixed-integer nonlinear programming (MINLP), and advanced heuristic meth-
ods to handle large-scale, realistic instances [12]. Given the inherent trade-offs in liner
shipping operations between economic performance, service quality, energy consumption,
and environmental regulations, multi-objective optimization frameworks have gained
prominence for addressing these complex decisions [18]. These frameworks aim to identify
effective operational strategies by considering divergent objectives like cost minimiza-
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tion, profit maximization, service coverage, and on-time delivery, with much research
dedicated to finding robust solutions in these multifaceted decision environments [18–20].
Separately, the critical role of demand acceptance in revenue management is also well
established, with numerous studies addressing its optimization, particularly for scenarios
involving transit-time-sensitive demand [21]. These studies highlight effective strategies
for maximizing revenue based on demand characteristics. While both multi-objective
optimization and demand acceptance are individually well explored, their integration within
comprehensive models for optimizing ship routing, fleet deployment, and service design,
particularly for models that must also account for dynamic slot allocation alongside peri-
odic demand structures or heterogeneous fleet operations, represents an area with ongoing
research opportunities [22]. In tackling such comprehensive models, they must incorporate
complexities like ship heterogeneity, multi-objective trade-offs, and general regulatory
constraints [12,17].

In addition, the latest U.S. measures underscore a more profound research gap: while
operational decision making under general regulatory and cost constraints has been widely
examined, most existing research on fleet deployment and ship routing does not fully
account for the specific impacts of regulatory measures like Section 301 surcharges, which
are based on a ship’s country of build or ownership [23]. Most prior studies on ship
routing and fleet deployment assume homogeneous fleets or do not explicitly model the
bi-objective trade-offs, indicating a clear lack of integrated models that simultaneously
optimize heterogeneous ship routing in the context of specific and impactful regulatory
shocks such as the Section 301 surcharges. Even when general regulatory constraints
are considered, analyses rarely examine the specific operational impacts of surcharges
differentiated by ship build country on route selection, ship assignment with particular
attention to China-built ships compared to others, and transport demand acceptance
strategies within a unified bi-objective optimization framework. Such a framework should
incorporate both operational heterogeneity and policy-driven risks. There is a clear need for
new models to investigate the consequences of these policies, especially regarding global
fleet renewal, cross-border cargo flows, and the resilience and adaptability of international
shipping networks amid shifting regulatory landscapes.

To address these gaps comprehensively, this study formulates a heterogeneous ship
routing and demand acceptance (HSR-DA) problem under the influence of U.S. regulatory
surcharges on China-built ships. The HSR-DA problem jointly optimizes route operation,
heterogeneous ship assignments, transport demand acceptance, and chartering decisions
with the dual objectives of maximizing weekly profit and total transport volume. A bi-
objective mixed-integer programming (MIP) model is developed to support integrated
decision making, incorporating practical constraints such as ship requirements, fleet avail-
ability considering chartering, accepted transport volume, and transport capacity limits. To
enhance computational efficiency, this study further introduces a partially relaxed mixed-
integer programming (PRMIP) model by leveraging the TU properties of the chartering
constraint matrices, which significantly reduces computational complexity without com-
promising optimality. Overall, the proposed bi-objective MIP model provides a practical
and implementable optimization framework for shipping companies seeking to adapt their
operations optimally in response to challenging regulatory landscapes.

In particular, the multifaceted contributions of this paper are outlined as follows:

1. We establish a bi-objective MIP model for jointly optimizing the heterogeneous ship
routing and transport demand acceptance, subject to ship requirement constraints,
fleet availability and demand acceptance limits. This formulation enables shipping
companies to effectively evaluate and strategically balance the often competing objec-
tives of maximizing weekly profit and maximizing total transport volume, thereby
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facilitating more informed decision making in their operational planning and resource
allocation under the new regulatory pressures.

2. We prove the necessity of maintaining integrality for route operation variables and
ship assignment variables and develop a computationally efficient PRMIP model
by leveraging the totally unimodular (TU) property of the chartering constraint
matrices, allowing for continuous relaxation of the ship chartering variables without
compromising optimality. The model is validated through a real-world case study,
which shows that the PRMIP model achieves identical optimal solutions to the MIP
model with significantly reduced computational time.

3. We analyze the structural properties of the Pareto frontier for the bi-objective MIP
model and find that it consists of a finite union of continuous, piecewise linear seg-
ments. We also show that the global frontier is generally non-convex and can exhibit
discontinuities due to the discrete nature of ship assignment and route operation
decisions. This structural insight provides a precise characterization of the optimal
trade-offs between profit maximization and transport volume, illuminating the set of
efficient solutions.

4. Sensitivity analyses demonstrate that as freight rates increase, the Pareto frontier shifts
to offer simultaneously improved profitability and transport volume potential. This
shift shows diminished marginal trade-offs between the two objectives, enhancing
operational flexibility.

5. A case study based on a global liner network, considering the impact of U.S. sur-
charges, yields three major managerial insights: (i) optimal fleet deployment under
the surcharges consistently involves avoiding the assignment of China-built ships to
routes serving U.S. ports to minimize regulatory cost impacts; (ii) strategic selection of
an operating point on the profit-volume Pareto frontier is crucial, as an extreme focus
on one objective leads to disproportionate sacrifices in the other, underscoring the
practical value of balanced operational strategies; and (iii) prioritizing profitability nat-
urally drives route network rationalization and selective acceptance of higher-value
cargo, which in turn reduces overall operational costs and optimizes fleet utilization.

The remainder of this paper is structured as follows. Section 2 provides an overview of
the relevant literature on liner shipping optimization, fleet deployment, demand acceptance,
and the impact of regulatory policies. Section 3 formulates the research problem as a bi-
objective MIP model and presents its theoretical properties. Section 4 details the augmented
ϵ-constraint method adopted to solve the bi-objective optimization model. Section 5 reports
the numerical results and sensitivity experiments. Finally, Section 6 concludes the paper
and outlines directions for future research.

2. Literature Review
To comprehensively understand the methodologies for ship routing, fleet deployment,

and transport demand acceptance under regulatory pressures, this review examines the lit-
erature focusing on optimization models and algorithms for HSR-DA within liner shipping
operational frameworks.

2.1. Ship Routing, Fleet Deployment, and Demand Acceptance

Several studies investigate the optimization of ship routing and fleet deployment
under complex operational constraints. Christiansen et al. provide a comprehensive
overview, addressing network design, ship routing, and speed optimization, emphasizing
the necessity of integrated decision making to enhance operational efficiency [1]. Tran and
Haasis review network optimization, highlighting that routing decisions must carefully
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account for port capacity constraints, vessel types, and market demand characteristics,
typically employing mathematical programming to minimize total operational costs [24].

To minimize costs or maximize profits, Gu et al. develop a model for fleet deployment
and speed optimization, explicitly considering fuel consumption heterogeneity, through
integrated decisions on node selection, ship assignment, and speed setting [25]. Jiang
et al. construct a MILP model to optimize route and schedule design within port time
window constraints [26]. Zheng et al. propose a MILP model combined with global opti-
mization algorithms to handle heterogeneous fleets and reduce total operational costs [18].
Multi-objective approaches are also proposed in response to environmental and regulatory
pressures. Pasha et al. introduce a tactical-level joint optimization model for hetero-
geneous fleets, balancing CO2 emissions reduction and profit maximization [27]. Zhao
et al. incorporate low-carbon operations and fuel bunkering into a cost-minimization
model for greener shipping [28]. Tran and Haasis survey various multi-objective strategies
addressing multiple performance indicators including customer satisfaction and carbon
emissions [24]. To solve large-scale container liner shipping optimization problems, re-
searchers formulate MILP or MINLP models and employ exact algorithms, heuristics, and
matheuristics [25,27–29].

Demand acceptance optimization is also receiving increasing attention. Cheaitou
et al. model time-sensitive demand using integer nonlinear programming and heuristics to
maximize profit [30]. Pasha et al. propose a holistic MILP model that integrates demand
elasticity with fleet deployment and speed optimization [10]. Xia et al. consider joint
planning of cargo allocation, speed, and fleet deployment to minimize fuel and operational
costs [31]. Lai et al. adopt a two-stage robust optimization framework under demand
uncertainty [32], while Zhao et al. summarize multi-objective planning approaches for
demand acceptance, focusing on tonnage limits and route capacity [33].

2.2. Impact of Regulatory Policies and External Disruptions

Regulatory policies profoundly influence container liner shipping by imposing con-
straints that reshape routing, fleet deployment, and demand acceptance strategies, com-
pelling operators to balance compliance with cost efficiency. Environmental regulations,
such as sulfur emission caps and carbon reduction targets, promote sustainable practices.
Psaraftis and Kontovas demonstrate through speed optimization models how minimiz-
ing fuel costs and emissions via measures like low sulfur fuel or speed reductions can
increase operational costs by up to 20% [34]. Pasha et al. optimize tactical planning using
a model that incorporates carbon taxes and varied ship efficiencies, achieving consider-
able emission reductions alongside cost minimization [27]. Zhao et al. propose a model
for green liner shipping that balances costs and emissions through fleet deployment and
fuel bunkering, resulting in significant emission reductions [28]. Trade policies, such as
proposed U.S. surcharges on certain foreign built ships involving substantial fees per port
call, necessitate rerouting or fleet reconfiguration [3]. Bertho et al. use regression-based
econometric analysis to show that foreign investment restrictions raise shipping costs by
24–50% and reduce trade flows, necessitating adaptive routing models [35]. Notteboom
et al. and Fan et al. apply descriptive statistics and network modeling to highlight how
U.S.–China trade tensions increase operating costs by 5–10% and transit times by up to
12% on Asia–North America routes [36]. Safety regulations, for instance the International
Ship and Port Facility Security Code, extend port turnaround times by 10–20%, indirectly
increasing costs, as Bichou’s qualitative analysis indicates [37]. These studies underscore
the need for optimization models that incorporate specific regulatory constraints.

External disruptions, including pandemics, geopolitical events, and natural disasters,
exacerbate operational challenges in liner shipping, requiring resilient strategies to mitigate
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delays and costs. The COVID-19 pandemic, as Jin et al. show through AIS-driven data
analysis, reduced China’s port network connectivity by 15% due to congestion, while
Notteboom’s descriptive analysis reports a 20% rise in schedule disruptions, prompting
network reconfiguration [38]. Ksciuk et al. propose a simulation-based optimization model,
integrating simulation and optimization techniques to manage pandemic induced conges-
tion, reducing delays and costs by up to 25% through optimized ship assignments [39]. Zhu
et al. develop exact branch and bound and metaheuristic algorithms to optimize vessel de-
ployment and routing under congestion, achieving 8–12% cost savings [40]. The 2021 Suez
Canal blockage, which caused substantial daily trade losses according to Verschuur et al.’s
economic modeling, necessitated rerouting via the Cape of Good Hope, increasing transit
times by 10–14 days [41]. Elmi et al. advocate port skipping, which their review shows can
reduce delays by up to 20% [42]. Natural disasters, addressed by Zheng et al.’s distributed
predictive control model, require rapid rerouting to minimize response times [43].

2.3. Recent Trends in Multi-Objective Optimization

Recent advancements in multi-objective optimization provide methodologies that
can inspire solutions for ship routing, fleet deployment, and demand acceptance in liner
shipping. For instance, skip-stop strategies in urban rail transit optimize total travel time
and equity in service distribution. Han et al. [44] formulate a multi-objective mixed integer
nonlinear programming model to minimize both inequity and total travel time through train
stop planning and scheduling, with a case study on Seoul’s urban railways. Rajabighamchi
et al. [45] propose a robust multi-objective model for skip-stop scheduling, minimizing
travel and waiting times while ensuring equitable service through robust scheduling under
demand uncertainty. Shang et al. [46] address passenger crowding risks and revenue losses
in oversaturated networks, offering insights for port call sequence optimization in liner
shipping under congestion or regulatory constraints. Similarly, accessible routing strategies
provide inspiration for customized routing; Lee et al. [47] develop an accessible taxi routing
model based on the travel behavior of people with disabilities, using a Gaussian mixture
model to optimize routes, which can guide prioritization of ports with specialized cargo
needs. Additionally, Lee and Kim [48] develop a multi-objective model for submerged
floating tunnel routing, balancing structural safety and travel time using Non-dominated
Sorting Genetic Algorithm II (NSGA-II), achieving 9.9% to 10.5% time savings on the
Mokpo–Jeju route. These techniques can inform ship routing under complex constraints
like safety regulations or emission control areas.

Recent progress in liner shipping has focused on integrating multi-objective optimiza-
tion with heterogeneous fleet assignment under regulatory constraints. Pasha et al. [27]
propose a multi-objective MILP model for tactical-level planning in liner shipping, opti-
mizing ship deployment and routing for heterogeneous fleets while balancing costs and
CO2 emissions under carbon tax regulations, achieving up to 15% cost savings and 20%
emission reductions on a transatlantic route. Wang et al. [9] investigate co-management of
heterogeneous ship fleets in liner alliances, optimizing profit-sharing, fleet utilization, and
service reliability under emission caps, improving profit by 10% and reducing delays by
12% on an Asia–Europe route. Wen et al. [49] develop a multi-objective MILP model for
ship scheduling, addressing port congestion and environmental regulations using queuing
theory, optimizing costs, emissions, and service unreliability with improvements of 4%, 6%,
and 44% over NSGA-II, applied to Maersk’s Trans-Pacific route with nine ports and five
ships of 10,000 TEU. These studies highlight the potential of multi-objective MILP frame-
works to balance economic, environmental, and operational objectives in liner shipping
under stringent regulatory environments.
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2.4. Research Gap

Despite the significant advancements in optimization models for ship routing, fleet
deployment, and demand acceptance, several key gaps remain in the existing literature:

1. The lack of comprehensive frameworks for coordinating ship fleet management and
surging regulatory policies: While some studies have explored fleet deployment in the
context of heterogeneous fleets, few models address the origin-based cost differences
arising from regulatory policies, such as surcharges on certain foreign-built ships.
Regulatory impacts, such as the penalties imposed on China-built ships, are often
overlooked in operational models despite their significant effects on route viability
and fleet deployment decisions. Christiansen et al. [1], Gu et al. [25], and Jiang
et al. [26] investigate fleet deployment, but they do not consider regulatory policies
like U.S. surcharges on China-built ships that directly influence fleet deployment
strategies and routing decisions. Pasha et al. [27], Zhao et al. [28], and Bertho et al. [35]
explore regulatory constraints like carbon taxes or fuel efficiency but do not explicitly
incorporate surcharges based on ship origin or other regulatory policies into fleet
deployment and routing frameworks. In contrast, our work integrates these origin-
based cost differences into the optimization framework, providing a more realistic
model for ship routing and fleet deployment under such regulatory pressures.

2. The limited availability of integrated optimization models that jointly consider routing,
fleet assignment, and demand acceptance decisions: A recurring issue in the literature
is the treatment of routing, fleet assignment, and demand acceptance as separate or
loosely coupled problems. This approach limits the ability to model the intricate trade-
offs between short-term cost efficiency and long-term network viability, especially in
markets affected by volatile demand and regulatory shocks. Song et al. [18], Jiang
et al. [26], and Zhao et al. [28] develop MILP models for routing and scheduling
under specific constraints but often treat fleet deployment and demand acceptance
separately, missing the dynamic interactions between these components. Tran and
Haasis [24] review network optimization but fail to provide a unified framework
that integrates fleet deployment, routing, and demand acceptance within a single
optimization model. Wang et al. [9], Pasha et al. [10], and Cheaitou et al. [30] also
examine these components separately, limiting the scope of their models. Our model
addresses this gap by unifying routing, fleet assignment, and demand acceptance
within a single framework, enabling the consideration of trade-offs between cost, fleet
utilization, regulatory constraints, and demand acceptance in an integrated manner.

3. The challenge of balancing profitability and service scale under regulatory constraints:
A key challenge in liner shipping optimization is the trade-off between maximizing
profitability and meeting service volume targets, particularly in light of regulatory
changes such as surcharges on foreign-built ships. While multi-objective optimization
has been increasingly employed in shipping optimization, few models effectively
address the balance between cost efficiency and service scale, especially in the context
of specific regulatory pressures. Pasha et al. [27], Zhao et al. [28], and Wang et al. [9]
propose multi-objective models for fleet deployment and route optimization but fail
to fully address the conflict between profitability and service volume. Their models
typically consider cost minimization and emission reduction without taking into
account the penalties and increased costs imposed by regulatory policies. Cheaitou
et al. [30], Pasha et al. [10], and Lai et al. [32] also address demand acceptance and fleet
deployment but do not fully integrate the operational impact of regulatory changes
on the profitability–service scale balance. Wen et al. [49] optimize ship scheduling
under port congestion and environmental regulations, but their work focuses more on
service reliability and emission reduction, not on explicitly balancing profitability with
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service volume. Our research bridges this gap by explicitly modeling the bi-objective
conflict between profitability and service scale in the context of regulatory surcharges,
which significantly affect route-specific costs and margins. By incorporating regu-
latory costs into our multi-objective optimization model, we allow liner shipping
companies to make more informed decisions on how to balance profitability and
service commitments.

To bridge these gaps, we propose a bi-objective MIP model designed for the HSR-
DA problem, which integrates route operation, ship assignment, and transport demand
acceptance. This MIP model uniquely incorporates real-world cost structures, especially
surcharges such as those imposed on China-built ships. These surcharges are embedded in
the objective function and play a critical role in shaping routing and deployment decisions
across a heterogeneous fleet. The model formulation incorporates several practical con-
straints, including ship assignment limitations, fleet availability, demand-related transport
volume constraints, and transport capacity requirements. This model provides a com-
prehensive decision-support tool for operational planning under real-world regulatory
and market conditions. In particular, it provides guidance for ship routing and demand
acceptance decisions under the influence of recent policy proposals to impose substantial
surcharges on China-built ships calling at U.S. ports.

3. Problem Formulation
In this section, we first introduce the problem background and describe the challenges

in route deployment, ship assignment, and transport demand acceptance in Section 3.1.
Following that, we formulate the problem using a bi-objective MIP model in Section 3.2.
Finally, Section 3.3 provides a detailed description of model analysis.

3.1. Problem Description

Container liner operators are under constant pressure to balance network coverage,
asset utilization, and profitability. They must decide which cyclic routes to operate, how
to deploy heterogeneous ships, and how much freight demand to accept, all while facing
volatile fuel prices, charter rates, and regulatory surcharges. Recent policy proposals to
levy additional port fees on China-built ships calling at U.S. ports have further complicated
fleet planning. These surcharges specifically apply only to China-built ships above a certain
capacity threshold, while ships constructed in other countries or smaller China-built ships
are exempt [50]. As a result, carriers with mixed fleets must now carefully account for
route-dependent surcharges in their cost structure. Against this backdrop, a strategic yet
tractable planning framework is indispensable for maximizing profit without jeopardizing
service reliability.

For the shipping company, three interdependent planning tasks are of primary im-
portance: selecting a subset of candidate routes to operate, assigning a suitable mix of
ship types to each operated route to meet the required ship count, and determining how
much of the origin–destination (OD) demand to accept and how to allocate the accepted
demand across the selected network. If route deployment and fleet composition are poorly
matched to demand geography, high-yield OD pairs may be rejected, deployed ships may
be underutilized, or routes may involve China-built ships incurring avoidable penalties at
U.S. ports. In light of these considerations, it is crucial to precisely choose operating routes
based on transport demand and associated costs, including fuel cost, berthing cost, and
route-specific surcharges for certain ship types, and to allocate the fleet accordingly. Making
informed decisions on ship deployment and chartering actions, including when to charter
in and charter out ships, is vital to maintaining the cost-effectiveness and competitiveness
of the operator’s network.
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Consider the route–ship–demand allocation problem in a liner-shipping network that
provides stable containerized services over a set of predefined cyclic routes. The set of all
candidate routes is denoted by R (indexed by r). Each route represents a predefined closed-
loop trajectory involving a sequence of ports and is a candidate for service deployment
with a fixed weekly schedule. The set of OD pairs is denoted by W, where each element
(o, d) indicates an origin port o and a destination port d. For each OD pair, the subset
of feasible routes that connect the two ports is denoted by Rod ⊆ R. The set of all legs
between consecutive ports of call on route r is denoted by Lr (indexed by lr). For each leg
lr, we denote the set of OD pairs routing passes through the leg by Wlr ⊆ W. The set of
available ship types is denoted by S, where ships built in China are represented by the
subset Ŝ ⊆ S. The available fleet includes both ships owned by the shipping company and
charterable ships.

To ensure a weekly departure frequency on any operated route, a sufficient number
of ships must be deployed to maintain the required frequency, given the time needed to
complete a full loop. We assume that all ships sail at a uniform speed when deployed
on the same route, and the total number of ships required on route r, denoted by Nr, is
numerically equal to the round-trip time (in weeks) for route r, as one ship must depart
each week while another completes the full loop.

The weekly transport demand for each OD pair is denoted by Dod, and the correspond-
ing revenue earned per TEU transported is denoted by pod. The total volume of accepted
demand for each OD pair cannot exceed Dod, and the shipping company is allowed to
reject part of the demand if full acceptance leads to unprofitable operations. Each ship type
s has a capacity of Qs twenty-foot equivalent units (TEUs). The transportation cost of one
ship of type s completing a full round trip on route r includes fuel costs (Fsr), berthing costs
(Bsr), and any extra penalties specifically incurred by China-built ships when deployed
on routes calling at U.S. ports (Bextra

sr ). The company’s owned fleet includes As ships of
type s. To reduce operating costs, such as avoiding penalty fees associated with deploying
China-built ships on routes that call at U.S. ports, the company may choose to charter in
additional ships of alternative types and charter out idle ships that are not required. The
weekly cost of chartering in a ship of type s is given by cin

s , and the revenue obtained from
chartering out an idle ship of type s is denoted by cout

s .
A route represents a complete, cyclical sequence of port calls that a ship follows. A

leg is the segment of a route connecting two adjacent ports. An OD pair represents a
specific transport demand from a port of origin to a port of destination, both of which lie
on the same route. The path for fulfilling an OD pair’s demand consists of one or more
sequential legs along the route. To visually illustrate these relationships, Figure 1 presents
an illustrative diagram.

Figure 1. OD pairs and legs on a route r.

Figure 1 shows an example circle route r that consists of four ports. The segments
connecting adjacent ports form the four legs of the route: l1, l2, l3, and l4. The figure also
illustrates two distinct OD pairs. The first is a transport demand from origin port o1 to
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destination port d1, with its path covering legs l1 and l2. The second is a transport demand
from origin port o2 to destination port d2, which is fulfilled by traversing legs l2 and l3.
This structure highlights how multiple OD demands can share capacity on common legs
within a single shipping route.

The objective of this study is formulated as a bi-objective optimization that simulta-
neously maximizes the weekly profit and maximizes the total weekly transport volume
across all OD pairs. The weekly profit consists of the total revenue from accepted trans-
port demand, minus the total transportation costs of deployed ships, minus the cost of
chartering in ships, plus the revenue generated from chartering out idle ships. To this
end, we need to decide which candidate routes to operate. This decision is represented
by the binary variable xr, which equals 1 if route r is operated, and 0 otherwise. We also
determine the fleet composition on each operated route by assigning specific ship types.
This is described by the integer decision variable nsr, which indicates the number of ships of
type s assigned to route r. In addition, we consider whether ships are rented in or chartered
out. The integer decision variable nin

s denotes the number of ships of type s chartered in
during the planning horizon, while nout

s represents the number of ships of type s chartered
out. For each OD pair (o, d) and each route r ∈ Rod, the transport volume is determined
by the continuous decision variable zodr, which specifies the amount of accepted demand
(TEUs/week) allocated to route r.

3.2. Model Formulation

In this subsection, we present a bi-objective MIP model based on the problem setting
described above. The model captures the integrated planning decisions required for route
selection, ship assignment, and demand acceptance in a container liner shipping network.
It focuses on strategic decisions for which routes to operate, the type and quantity of ships
assigned to each operated route, the amount of weekly transport demand for each OD pair
to accept, the allocation of accepted demand across the operated routes, and the number
of ships to charter in and charter out. The objective is to maximize the weekly total profit
and the total weekly transport volume across all OD pairs while adhering to practical
constraints such as ship assignment limitations, fleet availability, demand-related transport
volume constraints, and transport capacity requirements. Table 1 summarizes the notations
used in the model.

Table 1. Notations used in the model formulation.

Route and OD Pair-Related Parameters

R The set of all candidate routes, r ∈ R
Lr The set of all legs between consecutive ports of call on route r, lr ∈ Lr
W The set of OD pairs, (o, d) ∈W
Rod The subset of feasible routes connecting (o, d), Rod ⊆ R
Wlr The set of OD pairs that are routed via leg lr, Wlr ⊆W
Nr The total number of ships required to operate route r
Dod The weekly transport demand for (o, d)
pod The revenue earned per TEU transported for (o, d)

Ship-Related Parameters

S The set of all ship types, s ∈ S
Ŝ The set of China-built ship types, Ŝ ⊆ S
Qs The transport capacity of a ship of type s
As The number of ships of type s owned by the shipping company
cin

s The weekly cost of chartering in a ship of type s
cout

s The weekly revenue from chartering out a ship of type s
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Table 1. Cont.

Transport-Related Parameters

Fsr The fuel cost of one ship of type s completing one full trip on route r
Bsr The berthing cost for a ship of type s for a full round trip on route r
Bextra

sr The extra penalty cost for a ship of type s for a full round trip on route r

Decision Variables

xr Binary variable, which equals 1 if the candidate route r is operated, and 0 otherwise
nsr Integer variable, indicating the number of ships of type s assigned to route r
nin

s Integer variable, indicating the number of ships of type s chartered in
nout

s Integer variable, indicating the number of ships of type s chartered out

zodr
Continuous variable, indicating the number of accepted TEUs per week for (o, d)
on route r

The MIP model, formulated as Model (1), is developed to optimize route selection,
ship assignment, weekly transport allocation, and chartering decisions, and can be written
as follows:

max ∑
(o,d)∈W

∑
r∈Rod

pod · zodr− ∑
r∈R

∑
s∈S

nsr

Nr
(Fsr + Bsr)− ∑

r∈R
∑

s∈Ŝ

nsr

Nr
Bextra

sr − ∑
s∈S

cin
s · nin

s + ∑
s∈S

cout
s · nout

s (1-1)

max ∑
(o,d)∈W

∑
r∈Rod

zodr (1-2)

s.t. ∑
s∈S

nsr = Nr · xr ∀r ∈ R (1-3)

∑
r∈R

nsr ≤ As + nin
s − nout

s ∀s ∈ S (1-4)

nout
s ≤ As ∀s ∈ S (1-5)
∑

r∈Rod

zodr ≤ Dod ∀(o, d) ∈W (1-6)

∑
(o,d)∈Wlr

zodr ≤ ∑
s∈S

Qs · nsr

Nr
∀r ∈ R, lr ∈ Lr (1-7)

xr ∈ {0, 1} ∀r ∈ R (1-8)
nsr ∈ Z≥0 ∀s ∈ S, ∀r ∈ R (1-9)
nin

s , nout
s ∈ Z≥0 ∀s ∈ S (1-10)

zodr ≥ 0 ∀(o, d) ∈W, ∀r ∈ Rod (1-11)

The objective function (1-1) maximizes the total weekly profit, which consists of four
major components: the total revenue generated from accepted OD transport demand,
the transportation cost (including fuel, berthing, and extra penalty costs) associated with
route operation and ship assignment, the chartering cost for ships chartered in, and the
revenue earned from chartering out surplus owned ships. The objective function (1-2)
maximizes the total weekly transport volume across all OD pairs. Constraints (1-3) ensure
that the quantity of ships assigned to each operated route equals the total number of ships
required to operate that route. Constraints (1-4) ensure that the total number of ships of
each type assigned to all routes does not exceed the available fleet after chartering in and
chartering out. Constraints (1-5) require that the number of ships chartered out for each
ship type does not exceed the company’s owned fleet. Constraints (1-6) ensure that, for
each OD pair, the total accepted transport volume allocated to all routes does not exceed
the total market demand for that OD pair. Constraints (1-7) denote that, for each leg on
each operated route, the total transport volume assigned across all relevant OD pairs does
not exceed the transport capacity of that route. Constraints (1-8)–(1-11) are the domains of
the decision variables.

Figure 2 illustrates the decision-making flow of our MIP model.
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Figure 2. Illustration of Pareto frontier segments and gaps.

3.3. Model Analysis

In this section, we introduce some theoretical properties regarding the MIP model
presented in Section 3.2.

3.3.1. Integrality Necessity of Binary and Integer Variables

To improve the solving efficiency of the MIP model, we first investigate whether the
binary variables xr and integer variables nsr can be relaxed. Through meticulous analysis,
we establish Theorems 1 and 2.

Theorem 1. The binary variables xr cannot be relaxed to continuous ones as non-integer solutions
will emerge and violate practical feasibility.

Theorem 2. The integer variables nsr cannot be relaxed to continuous ones, as this would lead to
impractical fractional ship assignment.

The proofs of Theorems 1 and 2 are presented in Appendix A.1.

3.3.2. Totally Unimodular Property of the Coefficient Matrix for nin
s and nout

s

A key strategy for efficiently solving large-scale optimization problems involves relax-
ing binary or integer variables into continuous ones without compromising the integrity
of the solution. Within our proposed framework, the structure of constraints related to
vessel chartering is of particular interest. By examining the mathematical properties of the
corresponding coefficient matrix, we can identify conditions that permit such a relaxation,
thereby enhancing the model’s tractability while preserving solution validity.

The TU property holds considerable significance in Integer Linear Programming (ILP).
It enables the dropping of integer constraints without compromising optimality, thereby
simplifying the solution process [51]. In practical scenarios, an ILP problem, which is
generally NP-hard, can be solved efficiently through simpler LP techniques that work in
polynomial time. This makes the TU property highly valuable in applications like network
flows, scheduling, and resource allocation, where the underlying matrices often naturally
possess this characteristic.

We introduce the following theorem to formalize this property for the variables nin
s

and nout
s , ∀s ∈ S.

Theorem 3. For all sinS, the coefficient matrices of nin
s and nout

s are TU.

The proof of Theorem 3 is presented in Appendix A.2. Combining Theorem 3 with the
fact that the right-hand-side terms of constraints (1-4) and (1-5) are always integral allows
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for the relaxation of the integer variables nin
s and nout

s to be continuous. The integrality
of the right-hand side is assured, as these terms are constructed solely from the integer
variables nsr, ∀s ∈ S, ∀r ∈ R and the integer parameters As, ∀s ∈ S. The direct consequence
of this relaxation is a significant reduction in the model’s computational burden, achieved
without compromising the optimality of the solution.

3.3.3. Structural Properties of the Pareto Frontier

To understand the structure of trade-offs between weekly profit and transport volume,
it is essential to analyze the mathematical characteristics of the Pareto frontier generated by
the bi-objective MIP model. Unlike single-objective models, bi-objective optimization yields
a set of non-dominated solutions rather than a unique optimum. The following theorem
characterizes the geometric and continuity properties of the Pareto frontier, providing
foundational understanding for both theoretical analysis and algorithmic development.

Theorem 4. The Pareto frontier consists of a finite union of line segments, and within each segment,
the Pareto frontier is continuous and piecewise linear.

Theorem 5. The Pareto frontier is generally non-convex and exhibits discontinuities.

The proofs of Theorems 4 and 5 are presented in Appendix A.3. This structure, which is
non-convex and exhibits discontinuities due to distinct integer configurations, is illustrated
in Figure 3, which provides a visual representation of the disconnected Pareto frontier.
Each colored segment corresponds to the subset of solutions in the Pareto frontier under a
fixed-integer configuration.

Figure 3. Decision flow of the MIP model for HSR-DA problem.

3.3.4. Diminishing Returns Within Local Pareto Segments

While the global Pareto frontier of the bi-objective model is composed of discon-
nected, non-convex segments arising from distinct integer configurations (as shown in
Theorems 4 and 5), each individual segment associated with a fixed configuration exhibits
a more regular structure. In particular, when integer decisions are held constant, the remain-
ing problem reduces to a linear program over continuous variables, whose Pareto-efficient
outcomes form a convex and piecewise-linear frontier. Within such a local segment, the
trade-off between the two objectives intensifies progressively: improving one objective fur-
ther requires increasingly larger sacrifices in the other. This structural property is formally
characterized below.
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Theorem 6. The local Pareto frontier under a fixed-integer configuration becomes progressively
steeper, indicating an increasing marginal rate of substitution between the two objectives.

The proof of Theorem 6 is presented in Appendix A.4.

4. Solving Method
4.1. Bi-Objective Optimization

Consider a bi-objective maximization problem formulated as follows:
max
g∈G

f1(g)

max
g∈G

f2(g),
(2)

where the solution g belongs to a non-empty, compact set G. The two objective functions,
f1(g) and f2(g), are upper semi-continuous functions to be maximized over this set. These
objectives can be represented by a single objective vector f(g) = ( f1(g), f2(g))

T. Any such
vector generated by a solution g ∈ G is termed a feasible objective vector. The universe of all
such achievable outcomes is the set Y =

{
( f1(g), f2(g))

T
∣∣∣g ∈ G

}
. Within this framework,

the goal is to identify Pareto-optimal solutions. A feasible solution g is designated as Pareto
optimal if it generates a non-dominated objective vector. A vector f(g) ∈ Y is defined
as non-dominated if no other feasible vector in Y offers a superior outcome. Specifically,
there exists no other vector that is at least as good in all objectives (i.e., fi(g) > fi(g) for
i = 1, 2) and strictly better in at least one objective (i.e., fi(g) > fi(g) for some i). This
definition aligns with the principle that a Pareto-optimal solution cannot be improved
with respect to one objective without a simultaneous degradation in at least one of the
others [52]. The locus of all such Pareto-optimal solutions, formally described by the set
Ψ = {g ∈ G|( f1(g), f2(g)) ∈ Y}, is designated as the Pareto frontier.

In previous research, the weighted sum method has been one of the most extensively
applied approaches for addressing the multi-objective optimization problem of marine
shipping route planning and ship allocation (e.g., [53–55]). This method aggregates multiple
objectives, such as navigation risk, fuel consumption, travel time, and operational costs,
into a single objective function by assigning specific weights to each objective. These
weights reflect the relative importance of each objective and are typically determined
through expert judgment, as exemplified by standardized allocations of 0.4 for risk, 0.3
for fuel consumption, and 0.3 for travel time in one study [53]. Alternatively, weights
may be derived using systematic techniques such as the Analytic Hierarchy Process (AHP)
combined with entropy-based methods to ensure robustness in complex scenarios like
Arctic rescue operations [54]. In some cases, weights are dynamically adjusted during
algorithm execution, accompanied by sensitivity analysis to assess their impact on the
solution, as seen in hub-and-spoke network optimization for short sea shipping [55].

The weighted sum method is advantageous due to its simplicity, as it allows for an
easy assessment of the trade-offs between different objectives based on assigned weights.
It also facilitates the interaction between decision makers’ subjective preferences and the
system’s objective information through the adjustment of the weight combinations for
various objective functions. Nevertheless, this approach has certain limitations when
applied to multi-objective optimization problems. As an a priori technique, it necessitates
predetermined weights for each objective function, meaning that the optimal result obtained
is heavily dependent on these assigned weights. Therefore, when the relative importance
of each objective is uncertain or cannot be established beforehand, which is common
in hazardous waste management system planning due to the complexity of balancing
environmental risks, economic costs, and social impacts, the weighted sum method becomes
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less effective. In the context of a posteriori decision making, Das and Dennis [56] noted that
it cannot produce a well-distributed set of Pareto solutions or a comprehensive array of
points along the Pareto frontier. An example shown in Figure 4 of this study demonstrates
that the weighted sum method is unable to identify the Pareto frontier within a non-convex
feasible region, with their work providing further details about the method’s limitations.

Figure 4. Graphical comparison of the Pareto frontier for an example: (a) weighted sum method with
evenly distributed weight combinations. (b) ϵ-constraint method with evenly distributed ϵ.

4.2. The Augmented ϵ-Constraint Method

Given the limitations of the weighted sum method, especially in scenarios where
objective importance is unclear or in a posteriori decision making, it becomes necessary
to explore alternative approaches. As an a posteriori method, the ϵ-constraint method
has been extensively employed in the literature for approximating the Pareto frontier in
multi-objective problems [52]. In this approach, one objective is selected as the primary
goal, with the remaining objectives reformulated as constraints. However, identifying
extreme value points typically requires sorting, expansion, and compression steps, which
are time-consuming and make it difficult to estimate the maximum attainable value of the
objective to be maximized. To address the bi-objective MIP model, we utilize the augmented
ϵ-constraint approach, which enhances the standard method by adding a penalty term to
the objective function. This innovation brings multiple key advancements over classical
ϵ-constraint techniques. In contrast to the basic ϵ-constraint method, which often generates
weakly efficient solutions that allow one objective function to be improved while keeping
the other objective functions unaffected, the augmented ϵ-constraint method effectively
eliminates such weak solutions by integrating both objectives into a single penalized
objective function. Specifically, non-Pareto-optimal solutions require manual removal
through pairwise comparisons. The augmented approach integrates both objectives into a
single optimized function, inherently filtering out non-Pareto-optimal candidates during
computation and eliminating the need for post-processing steps. Additionally, the penalty
term’s design allows dynamic adjustment of the tolerance level ϵ, enabling more flexible and
precise control over solution density. For instance, when objective functions take integer
values, setting ϵ < 1 ensures the augmented method captures the full set of non-dominated
objective vectors, making it particularly suitable for complex scenarios like transportation
route optimization where fine-grained management of trade-offs between objectives (such
as time and risk) is critical [57]. This improvement not only helps to better manage infeasible
solutions but also accelerates convergence toward the Pareto frontier. Moreover, compared
with traditional ϵ-constraint variants (such as the revised or improved revised methods)
that require solving two separate single-objective models for each iteration, the augmented
method achieves equivalent results with only one model, significantly reducing redundant
calculations and boosting computational efficiency. Overall, this approach effectively
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balances solution quality and computational efficiency while maintaining the theoretical
rigor of Pareto optimality. The augmented ϵ-constraint method is elaborated as follows.

Based on the bi-objective optimization model (2), let f max
1 := max

g∈G
f1(g) and f max

2 :=

max
g∈G

f2(g). Let f min
1 := max

g∈G
f1(g) subject to f2(g) ≥ f max

2 , g ∈ G. Let ϵ be a small positive

number such that f max
1 − f min

1 is an integer multiple of ϵ. Define a multiset Ω := ∅, where
Ω represents a multiset composed of obtained solutions by the augmented ϵ-constraint
method. Define K as the parameter that determines the maximum number of iterations
in the subsequent iterative process. It essentially quantifies how many discrete steps can
be taken based on the chosen ϵ. K :=

(
f max
1 − f min

1
)
/ϵ. Set k← K where k is an iteration

counter initializing to the value of K. In each iteration of the algorithm, the value of k will
be updated based on the results of the optimization in that iteration. We solve the following
single-objective optimization model:

max

{
f2(g) + ϵ

f1(g)− f min
1

f max
1 − f min

1

}
(3)

subject to
f1(g) ≥ f min

1 + kϵ, g ∈ G, (4)

Then, we let
.
g(k) be an optimal solution obtained by (2) and Ω← Ω ∪

{ .
g(k)

}
in each itera-

tion. Let k̂ be the largest integer satisfying f min
1 + k̂ϵ < f1

( .
g(k)

)
. If k̂ < 0, return Ω and stop.

Conversely, if k̂ ≥ 0, we update the value of k by k← k̂ . Then, the procedure of solving (2)
is repeated. This iterative process continues until k̂ < 0, gradually refining and expanding
the set of optimal solutions stored in Ω. Through this iterative mechanism, the algorithm
systematically explores the solution space of the bi-objective optimization problem, aiming
to converge at the Pareto-optimal set. Compared to classical scalarization techniques, this
method provides a balance between exploration and efficiency by embedding trade-off
control directly into the objective function and requiring only one model to be solved per
iteration, making it especially suitable for large-scale or computation-intensive bi-objective
optimization problems.

The pseudocode for the augmented ϵ-constraint method is shown in Algorithm 1.

Algorithm 1 Augmented ϵ-constraint method

1: Calculate f max
1 = max

g∈G
f1(g)

2: Calculate f max
2 = max

g∈G
f2(g)

3: Calculate f min
1 = max f1(g) subject to f2(g) ≥ f min

2 , g ∈ G
4: ϵ←a small positive number such that f max

1 − f min
1 is an integer multiple of ϵ

5: k←
(

f max
1 − f min

1
)
/ϵ

6:
.
g(k)← null

7: Ω← ∅
8: k̂← 0
9: while k̂ ≥ 0 do
10: Solve the model (14), and obtain an optimal solution

.
g(k).

11: Ω← Ω ∪
{ .

g(k)
}

12: Calculate the largest integer k̂ satisfying f min
1 + k̂ϵ < f1

( .
g(k)

)
.

13: k← k̂
14: end while
15: Return Ω.
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5. Experiments
To validate the performance of our proposed model, this section presents a series of

computational experiments. All numerical tests were conducted on a desktop equipped
with a 13th Generation Intel Core i7 CPU and 32 GB of RAM. All codes are computed in
Python (version 3.11.5) and the mathematical models are solved by Gurobi (version 10.0.1).
The experiment section contains mainly two parts: a case study based on the real shipping
network, where we established a baseline of results by assigning initial values to the
model’s parameters, and detailed sensitivity analyses on critical parameters, through which
we systematically investigate how variations in these parameters influence the outcomes.

5.1. Experiment Settings

The parameters are divided into three categories as follows:

• Ship-Type-Related Parameters. Three ship capacities (12,000-TEU, 15,000-TEU, and
20,000-TEU) and two types of countries of construction (China and other countries)
are considered, resulting in six distinct ship types. The weekly charter-in prices cin

s
for the 12,000-TEU, 15,000-TEU, and 20,000-TEU ships are set at 0.6 million USD,
0.7 million USD, and 1 million USD, respectively. The corresponding charter-out
prices cout

s are fixed at 80% of the charter-in prices, i.e., cout
s = 0.8cin

s . Based on
operational data detailing the CMA CGM‘s owned fleet deployed in Asia, Europe,
and North America [58–61], and in line with reports indicating that and 64% of its
newbuilding capacity was on order at Chinese yards [62], we consider 15 China-
built 12,000-TEU ships, 25 China-built 15,000-TEU ships, 41 China-built 20,000-TEU
ships, 10 non-China-built 12,000-TEU ships, 13 non-China-built 15,000-TEU ships, and
23 non-China-built 20,000-TEU ships. The specific technical parameters corresponding
to these six categories are presented in Table 2.

• Rout-Related Parameters. In this study, we select 20 candidate routes, including their
ports of call and the corresponding number of ships required to ensure a weekly
departure frequency on each operated route [62–68]. The routes and their weekly
departure frequencies are detailed in Table 3.

• Transport-Related Parameters. We select a set of OD pairs and estimate the pairs’
weekly transport demand Dod for each OD pair. To ensure these estimations are
grounded in realistic market conditions, they are carefully calibrated. This calibration
is based on aggregated containerized cargo flow data from [69] and insights into global
shipping trends from [70], ensuring that the demand volumes and their distribution
are representative of actual trade patterns. The weekly transport demand of these
OD pairs Dod are detailed in Table 4. The involved ports are classified into three
geographic regions: East Asia and Southeast Asia, Europe and the Mediterranean, and
North America. Based on [71–73] we further estimate the freight rate per transported
TEU for each OD pair, which is detailed in Table 5.

Table 2. The parameters for the six types of ships.

ID Countries of Construction Qs(TEUs) cin
s (Million USD) cout

s (Million USD) As

1 China 12,000 0.6 0.48 15
2 China 15,000 0.7 0.56 25
3 China 20,000 1.0 0.80 41
4 Other countries 12,000 0.6 0.48 10
5 Other countries 15,000 0.7 0.56 13
6 Other countries 20,000 1.0 0.80 23
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Table 3. The parameters for the 20 routes.

ID Nr Ports of Call Includes
U.S. Port

1 9 Qingdao→ Shanghai→ Ningbo→ Xiamen→ Yantian→ Singapore→ Felixstowe→
Zeebrugge→ Gdynia→Wilhelmshaven→ Singapore→ Yantian→ Qingdao No

2 8 Tianjin→ Dalian→ Qingdao→ Shanghai→ Ningbo→ Singapore→ Rotterdam→
Hamburg→ Antwerp→ Shanghai→ Tianjin No

3 9 Qingdao→ Ningbo→ Yantian→ Tanjung Pelepas→ Antwerp→ Gdynia→ Gdansk→
Klaipeda→ King Abdullah Port→ Singapore→ Qingdao No

4 15

Yokohama→ Busan→ Shanghai→ Ningbo→ Yantian→ Hong Kong→ Singapore→ Port
Klang→ Laem Chabang→ Haiphong→Manila→ Kaohsiung→ Suez Canal→ Piraeus→
Valencia→ Barcelona→ Genoa→ Salerno→ Naples→ Gioia Tauro→ Istanbul→
Alexandria→ Algeciras→ Suez Canal→ Chennai→ Tanjung Pelepas→ Yokohama

No

5 9 Yokohama→ Tokyo→ Kobe→ Nagoya→ Busan→ Kaohsiung→ Singapore→ Suez
Canal→ Piraeus→ Valencia→ Barcelona→ Suez Canal→ Singapore→ Yokohama No

6 6 Singapore→ Suez Canal→ Genoa→ Rotterdam→ Hamburg→ Antwerp→ Suez
Canal→ Singapore No

7 9
Hamburg→ Rotterdam→ Antwerp→ Le Havre→ Felixstowe→ Gdansk→ Oslo→
Copenhagen→ Stockholm→ Piraeus→ Barcelona→ Genoa→ Valencia→ Salerno→
Naples→ Istanbul→ Alexandria→ Algeciras→ Haifa→ Hamburg

No

8 4 Hamburg→ Rotterdam→ Antwerp→ Le Havre→ Piraeus→ Barcelona→ Genoa→
Valencia→ Hamburg No

9 9 Tokyo→ Shimizu→ Kobe→ Nagoya→ Singapore→ Suez Canal→ Damietta→
Rotterdam→ Hamburg→ Le Havre→ Suez Canal→ Singapore→ Tokyo No

10 8 Busan→ Tanjung Pelepas→ Southampton→ Le Havre→ Hamburg→ Rotterdam→ Port
Klang→ Busan No

11 8 Southampton→ Antwerp→ Rotterdam→ Bremerhaven→ Le Havre→ New York→
Norfolk→ Baltimore→ Southampton Yes

12 6 Antwerp→ Rotterdam→ Bremerhaven→ Liverpool→ Newark→ Savannah→
Everglades→ North Charleston→ Antwerp Yes

13 9
Laem Chabang→ Singapore→ Colombo→ Suez Canal→ Halifax→ New York→
Savannah→ Jacksonville→ Norfolk→ Halifax→ Suez Canal→ Jebel Ali→ Singapore→
Laem Chabang

Yes

14 9
Busan→ Gwangyang→ Shanghai→ Xiamen→ Yantian→ Hong Kong→ Tanjung
Pelepas→ Singapore→ Jakarta→ Surabaya→ Jakarta→ Tanjung Pelepas→ Singapore→
Subic→Manila→ Kaohsiung→ Tokyo→ Busan

No

15 9 Penang→ Singapore→ Laem Chabang→ Danang→ Busan→ Long Beach→ Oakland→
Yokohama→ Ningbo→ Shanghai→ Xiamen→ Yantian→ Singapore→ Penang Yes

16 8 Danang→ Haiphong→ Yantian→ Ningbo→ Shanghai→ Qingdao→ Busan→ Seattle→
Prince Rupert→ Vancouver→ Busan→ Danang Yes

17 6 Haiphong→ Xiamen→ Nansha→ Yantian→ Los Angeles→ Haiphong Yes
18 6 Qingdao→ Shanghai→ Ningbo→ Los Angeles→ Oakland→ Busan→ Qingdao Yes

19 8 Haiphong→ Yantian→ Ningbo→ Shanghai→ Seattle→ Los Angeles→ Yokohama→
Xiamen→ Haiphong Yes

20 7 Xingang→ Qingdao→ Gwangyang→ Ningbo→ Yantian→ Tanjung Pelepas→
Algeciras→ Bremerhaven→ Xingang No



Appl. Sci. 2025, 15, 8582 19 of 44

Table 4. The weekly transport demands of the OD pairs.

ID (o, d) Dod (TEUs/Week) ID (o, d) Dod (TEUs/Week)

1 (Shanghai, Rotterdam) 35,000 31 (Nagoya, Rotterdam) 10,500
2 (Ningbo, Felixstowe) 28,000 32 (Shimizu, Hamburg) 7000
3 (Ningbo, Antwerp) 28,000 33 (Laem Chabang, Savannah) 7000
4 (Shanghai, Piraeus) 21,000 34 (Singapore, Jacksonville) 10,500
5 (Yantian, Barcelona) 14,000 35 (Colombo, Halifax) 3500
6 (Yokohama, Piraeus) 3500 36 (Rotterdam, Savannah) 17,500
7 (Busan, Valencia) 2800 37 (Bremerhaven, Newark) 17,500
8 (Singapore, Genoa) 4200 38 (Liverpool, Everglades) 14,000
9 (Kaohsiung, Barcelona) 2450 39 (Antwerp, North Charleston) 17,500

10 (Port Klang, Salerno) 1750 40 (Tanjung Pelepas, Gdansk) 10,500
11 (Laem Chabang, Istanbul) 1400 41 (Antwerp, Klaipeda) 14,000
12 (Haiphong, Gioia Tauro) 1750 42 (Gdynia, King Abdullah Port) 7000
13 (Manila, Algeciras) 1050 43 (Busan, Tokyo) 7000
14 (Hamburg, Piraeus) 5600 44 (Singapore, Tokyo) 10,500
15 (Rotterdam, Barcelona) 7000 45 (Xiamen, Kaohsiung) 14,000
16 (Antwerp, Genoa) 4900 46 (Yantian, Subic) 10,500
17 (Le Havre, Valencia) 4200 47 (Hong Kong, Jakarta) 14,000
18 (Felixstowe, Istanbul) 2800 48 (Tanjung Pelepas, Surabaya) 7000
19 (Gdansk, Alexandria) 2100 49 (Singapore, Manila) 10,500
20 (Oslo, Naples) 1400 50 (Manila, Kaohsiung) 7000
21 (Copenhagen, Algeciras) 2450 51 (Long Beach, Shanghai) 2300
22 (Stockholm, Haifa) 1750 52 (Shanghai, Seattle) 5500
23 (Tokyo, Rotterdam) 10,500 53 (Ningbo, Seattle) 3800
24 (Busan, Rotterdam) 14,000 54 (Busan, Seattle) 2000
25 (Singapore, Rotterdam) 17,500 55 (Xiamen, Los Angeles) 8000
26 (Rotterdam, New York) 21,000 56 (Ningbo, Los Angeles) 10,000
27 (Antwerp, New York) 21,000 57 (Ningbo, Bremerhaven) 5000
28 (Le Havre, New York) 17,500 58 (Yantian, Algeciras) 4000
29 (Colombo, New York) 7000 59 (Tanjung Pelepas, Bremerhaven) 3500
30 (Kobe, Rotterdam) 10,500 60 (Xingang, Bremerhaven) 3700

Table 5. Profit parameters of OD pairs.

ID Origin Destination pod (USD/TEU)

1 East Asia and Southeast Asia Europe and the Mediterranean 1101
2 Europe and the Mediterranean East Asia and Southeast Asia 232
3 East Asia and Southeast Asia North America 1445
4 North America East Asia and Southeast Asia 1295
5 North America Europe and the Mediterranean 421
6 Europe and the Mediterranean North America 1021
7 East Asia and Southeast Asia East Asia and Southeast Asia 353
8 Europe and the Mediterranean Europe and the Mediterranean 250
9 North America North America 1500

All ships use very low-sulfur fuel oil (VLSFO). Referring to [74], the daily consumption
(ton/day) of ships of type s sailing on route r at speed v is expressed as follows:

fsr(v) = asr·vbsr , (5)

where asr and bsr are parameters related to ship types and sea conditions on the route. The
fuel cost parameters for ships with different capacities are presented in Table 6, with asr

and bsr derived from the median of the value ranges provided in [74].
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Table 6. The fuel cost parameters for ships of different capacities.

Qs (TEUs) asr bsr

12,000 0.01210 2.947
15,000 0.00433 3.314
20,000 0.02420 2.914

The sailing speed is uniformly set to v = 20 knots. The round-trip time required for
one ship to complete the full loop at speed v is denoted by tr (weeks), which is numerically
equal to Nr. Thus, the fuel cost of one ship of type s completing one full trip on route r is
calculated by Fsr = 7tr·c f · fsr(v), where c f is the unit fuel price, set as 574 USD/ton based
on global bunker prices [75].

The berthing cost for one ship of type s per port visit is denoted by cberth
s , specifically

0.3 million USD, 0.4 million USD, and 0.5 million USD for the 12,000-TEU, 15,000-TEU, and
20,000-TEU ships, respectively. Given the number of ports visited on route r (denoted by
Pr), the berthing cost for a ship of type s for a full round trip on route r is calculated as
Bsr = cberth

s ·Pr.
The extra penalties specifically incurred by China-built ships when deployed on routes

calling at U.S. ports are based on [50]. Specifically, only China-built ships with capacities
above 4000 TEUs incur an extra fee of 120 USD/TEU per rotation or per string of U.S. port
calls. China-built ships below 4000 TEUs and ships built in other countries are exempt from
this fee when calling at U.S. ports. As all China-built ship types considered in this study
have capacities exceeding 4000 TEUs; they are all subject to this extra fee when sailing on
routes which include U.S. port calls.

After establishing the parameter settings, we use these values to derive the basic
results, and then we conduct a sensitivity analysis on a key parameter.

5.2. Basic Results

This section presents the detailed basic results derived from the proposed bi-objective
MIP model using the augmented ϵ-constraint method, with ϵ =

(
f max
1 − f min

1
)
/20.

Section 5.2.1 provides a comprehensive bi-objective optimization analysis, during which
three representative Pareto-optimal solutions were identified along the Pareto frontier.
Section 5.2.2 analyzes these three Pareto-optimal solutions in terms of route operation strat-
egy, ship charter strategy, and route assignment, as well as transport demand assignment.

5.2.1. Bi-Objective Optimization Results Analysis

Figure 5 shows the optimal results of the bi-objective MIP model. Figure 5a shows
the Pareto frontier, with the x-axis representing the total weekly profit (Obj 1) and the
y-axis representing the total weekly transport volume (Obj 2). In Figure 5b–d, the x-axis
represents k, tracking increasing values of Obj 1. The y-axis of Figure 5b–d corresponds to
the values of indicators, including the number of operated routes (ORN) and the average
freight rate (AFR) of accepted transport demand, the total fuel cost (TFC) and the total
berthing cost (TBC) of all ships, and the revenue from chartering out idle ships minus the
cost of chartering in ships (COIR).
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Figure 5. Pareto-optimal solutions of the bi-objective MIP model. (a) Obj 1 and Obj 2 of instance.
(b) ORN and AFR of instance. (c) TFC and TBC of instance. (d) COIR of instance.

The Pareto frontier depicted in Figure 5a demonstrates the inherent trade-off between
Obj 1 and Obj 2. The Pareto frontier provides a powerful decision-making reference for
shipping managers by revealing two distinct layers of choice. The first layer concerns major
strategic decisions. For a shipping company, these correspond to discrete, high-impact
actions, for example, activating an entire service route or reallocating a specific ship type.
This structure indicates that when the company wants to pursue one objective significantly,
such as substantially increasing profit, it must make these major adjustments to its route
operations and fleet deployment. This is fundamentally different from making small-scale
adjustments to accepted cargo while the network structure remains fixed. In situations
where only minor fine-tuning between profit and transport volume is desired, keeping
the activated routes and deployed ships constant while adjusting cargo acceptance is the
more effective strategy. This clear distinction between major structural changes and minor
operational adjustments provides a practical validation of Theorem 5, which establishes
that the frontier’s overall structure is fundamentally determined by the integer decision
variables governing the network design. At the operational level, within each of these fixed
strategic configurations, the convex shape of the frontier illustrates the law of diminishing
returns. For a shipping manager, this signifies that pushing for an extreme on one objective
comes at a disproportionately high cost to the other. This phenomenon of a progressively
steepening trade-off is formally established in Theorem 6. Therefore, the frontier serves as
a practical guide for finding the optimal trade-off based on current corporate priorities. For
instance, if the primary goal is to expand market share, a decision maker would select a
solution from the frontier that prioritizes higher transport demand acceptance. Conversely,
if the immediate need is to improve profitability and strengthen cash flow, a solution
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yielding higher profit would be chosen, even at the expense of some volume. The frontier
quantifies these choices, enabling managers to make informed decisions that align their
network strategy with their most pressing business objectives.

Figure 5b shows that ORN decreases as Obj 1 increases. This reduction in ORN enables
the company to concentrate resources on the most profitable transport services rather
than dispersing them across marginally profitable ones. The strategic elimination of less
profitable routes directly contributes to cost reduction and operational efficiency. This cost
reduction is clearly demonstrated in Figure 5c, where both TFC and TBC decrease as Obj 1
increases. Simultaneously, AFR rises from approximately 900 USD/TEU to 1000 USD/TEU
as Obj 1 increases, demonstrating that the company prioritizes transport demand with high
pod (such as from Asia to North America) while rejecting lower-value shipments (such as
from Europe to Asia). This selective approach to transport demand acceptance significantly
reduces transport cost and increases the total profit.

Figure 5d illustrates the COIR increases as Obj 1 increases, indicating that the fleet size
required diminishes as ORN decreases. As accepted transport demand decreases, more
ships become available for chartering out. The combination of reduced charter-in costs and
increased charter-out revenue creates a substantial positive impact on profitability. Table 7
shows the optimal results of the model.

Table 7. Pareto-optimal solutions of the bi-objective MIP model.

k Obj 1
(Million USD)

Obj 2
(TEUs) ORN AFR

(USD)
TFC

(Million USD)
TBC

(Million USD)
The Extra

Penalty Cost
COIR

(Million USD)

1 79.26 315,250 18 918 74.44 110.79 0 −24.92
2 90.26 313,250 17 916 71.45 105.59 0 −19.52
3 99.44 311,250 16 911 68.46 100.39 0 −15.20
4 101.18 310,250 16 910 67.73 99.61 0 −13.88
5 104.84 308,217 16 909 66.24 97.95 0 −11.16
6 108.47 306,064 16 909 64.77 96.48 0 −8.52
7 112.16 303,203 16 914 63.69 94.94 0 −6.44
8 115.74 300,231 16 919 62.59 93.33 0 −4.28
9 119.47 294,231 15 937 62.32 88.89 0 −4.88

10 123.13 291,675 15 941 61.10 87.50 0 −2.68
11 126.80 289,120 15 945 59.87 86.10 0 −0.48
12 130.36 283,642 15 958 58.60 84.61 0 1.88
13 134.06 273,564 14 964 56.42 78.17 0 5.00
14 137.64 267,675 14 952 53.52 73.30 0 9.76
16 141.28 251,997 13 1027 53.77 73.20 0 9.44
19 144.96 247,189 13 997 50.34 65.90 0 14.72
20 148.58 232,016 13 1015 45.57 61.42 0 20.08

Notably, the extra penalty cost specifically incurred by China-built ships when de-
ployed on routes calling at U.S. ports is equal to 0 in every Pareto-optimal solution, indicat-
ing that the model effectively avoids the extra penalty cost. The extra fee, amounting to
120 USD/TEU per rotation or per string of U.S. port calls for China-built ships with capaci-
ties above 4000 TEUs [50], is evidently substantial. Consequently, the model strategically
assigns these China-built ships to routes excludes U.S. ports.

5.2.2. Representative Solutions Analysis

Based on the analysis of the Pareto frontier, three representative Pareto-optimal solu-
tions are strategically selected for analysis in terms of route operation strategy, ship charter
strategy, and route assignment, as well as transport demand assignment. These solutions,
corresponding to k = 1, k = 11, and k = 20, were chosen to capture distinct positions along
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the trade-off curve between maximizing Obj 1 and Obj 2. Specifically, the solution at k = 1
represents a strategy characterized by the highest accepted transport demand among the
non-dominated set. Conversely, the solution at k = 20 corresponds to the highest total
weekly profit. The solution at k = 11 serves as an intermediate point, reflecting a balanced
compromise between the competing objectives. The route operation strategy of the three
selected optimal solutions is detailed in Table 8.

Table 8. Route operation strategy of the selected Pareto-optimal solutions.

k ID of Operated Routes Total Number of Operated Routes

1 1–17, 20 18
11 1–4, 6, 8–14, 16, 17, 20 15
20 1–3, 6, 8–13, 16, 17, 20 13

Table 8 shows that the 13 routes selected for operation when k = 20 are also part of
the operational set for k = 1 and k = 11, indicating these routes are economically attractive,
as the OD pairs on these routes offer higher freight rates or the ships deployed on these
routes incur relatively lower transport costs.

Table 9 details the ship charter and route assignment strategy for the three selected
Pareto-optimal solutions. When k = 1, the strategy prioritizes maximizing Obj 2. This
is reflected in significant charter-in activity, particularly charting in 28 20,000-TEU ships,
suggesting an effort to expand the average transport capacity of available fleet. Conversely,
when k = 20, the strategy prioritizes maximizing Obj 1. For this instance, 17 units of owned
China-built 20,000-TEU ships (Type 3), 8 units of owned China-built 12,000-TEU ships
(Type 1), and 7 units of owned China-built 15,000-TEU ships (Type 2) are chartered out.
This indicates a smaller operational scale consistent with a profit-maximization approach.

Table 9. Ship charter and route assignment strategy.

k The ID of Ship Types ID of Assignment Routes Charter in Quantity Charter out Quantity

1

1 5, 10 0 4
2 7, 10, 20 0 5
3 1–4, 14 9 0
4 15–17 13 0
5 8 0 11
6 6, 8, 9, 11–13, 20 19 0

11

1 10 0 13
2 4, 10, 14 0 3
3 1–3, 6, 8, 9 0 0
4 16, 17 4 0
5 4, 14, 20 0 0
6 1, 11–14, 20 6 0

20

1 10, 20 0 8
2 1, 10, 20 0 7
3 2, 3, 6, 9 0 17
4 16, 17 4 0
5 8, 9 0 0
6 11–13 0 0

A noteworthy pattern observed across all three Pareto-optimal solutions (k = 1, 11,
and 20) is the simultaneous chartering out of owned China-built 12,000-TEU ships (Type 1)
and the chartering in of non-China-built ships of the same 12,000-TEU capacity (Type 4).
For example, even at k = 1, while pursuing maximum volume, 4 owned Type 1 ships
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are chartered out, and 13 Type 4 ships are chartered in. This consistent swap suggests
a deliberate operational tactic to manage the fleet composition, likely to avoid the extra
penalty cost associated with deploying specific ship types (China-built) on certain routes,
by substituting them with exempt alternatives.

Table 10 presents the total volume of accepted transport demand and the average
freight rate of the transported cargo.

Table 10. Total volume of accepted transport demand and the average freight rate of the trans-
ported cargo.

k Total Volume of Accepted Demand (TEU) Average of pod (USD)

1 315,250 918
11 289,120 945
20 232,016 1015

5.3. Sensitivity Analysis

By conducting sensitivity analysis experiments, we further analyze the sensitivity of
our model to the changes in input parameters, including the freight rate, the surcharge
intensity, the charter-in cost and charter-out revenue of ships, and the transport demand.

5.3.1. Sensitivity Analysis on the Freight Rate Ratio

In this section, we further analyze the sensitivity of our bi-objective MIP model to
the changes in the freight rate per transported TEU. Generally, we conduct 6 experiments,
aiming to illustrate the performance of the bi-objective MIP model in solving instances with
different freight rate ratio. The ratio is denoted as α, where the original freight rate is pod,
the actual freight rate is pactual

od , and α = pactual
od /pod. To investigate the impact of varying

the freight rate ratio of all OD pairs on the model’s effectiveness, we design instances by
altering the freight rate ratio from 0.7 to 1.2 with a step size of 0.1 while keeping other
parameters unchanged. Figure 6 shows the Pareto frontiers of all instances.

The results of our bi-objective optimization model are presented as a series of Pareto
frontiers. The concept of Pareto frontiers is derived from the work of economist Vilfredo
Pareto and is a powerful tool for visualizing the trade-offs between two or more conflicting
objectives [76]. A solution is considered to be Pareto optimal if it is not possible to improve
one objective without making at least one other objective worse. The Pareto frontier is a
graph that plots all these optimal, non-dominated solutions. In the context of our study, as
shown in Figure 6a, the Pareto frontier illustrates the inherent trade-off between maximizing
profit and maximizing transport volume. Here is how to interpret the graph:

1. Each point is an optimal strategy: every blue point on the curve represents a complete,
viable, and optimal operational plan (i.e., a specific set of decisions about which routes
to open, which ships to deploy, and which transport demands to accept).

2. The curve shows the trade-off: The downward slope of the frontier demonstrates
the conflict. To make more profit (moving to the right along the curve), the shipping
company must accept less transport volume (moving down). Conversely, to increase
market share by accepting more volume (moving up), the company must sacrifice
some profit (moving to the left).

3. The “frontier” is the limit of achievable performance: Any point below and to the
left of the curve represents a suboptimal, inefficient strategy. Any point above and to
the right of the curve is an unattainable goal given the current model constraints and
resources. The frontier itself represents the best possible outcomes.
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Figure 6. The Pareto frontiers with different freight rate ratios.

As the freight rate ratio increases from 0.7 to 1.2, reflecting higher revenue per trans-
ported TEU, the Pareto frontier consistently moves upwards and towards the right, indicat-
ing improved profitability for the same or greater transport volumes. At lower freight rates
(α = 0.7), the Pareto frontier indicates limited profitability, constraining operators to accept
relatively lower transport volumes as many OD pairs become economically unviable. As
the freight rate ratio rises, higher profitability allows operators greater flexibility, enabling
them to accept more transport demand selectively, thereby significantly increasing total
profit and volume simultaneously.

The progressive outward shift of the Pareto frontier as the freight rate ratio α increases
illustrates a critical change in the operational landscape: diminishing marginal trade-offs
between profit and transport volume. At lower freight rates, increasing Obj 1 often necessi-
tated significant reductions in Obj 2, as lower freight rates for specific OD pairs frequently
failed to cover transport costs along particular routes. Consequently, enhancing Obj 1 re-
quires selectively shedding these less profitable services, leading to a pronounced trade-off.
However, as α rises, the revenue per TEU increases, transforming previously unprofitable



Appl. Sci. 2025, 15, 8582 26 of 44

transport demands into financially viable options. This improved baseline profitability
means that operators can now pursue higher profit levels with smaller sacrifices in total
transported volume or expand transport volume with less detriment to their profit. The
frontier, therefore, not only moves to a more favorable position but its slope, representing
the rate of substitution between the two objectives, becomes less steep, indicating that
higher freight rates grant operators greater flexibility to enhance profitability with smaller
volume compromises.

To compare computational efficiency, Table 11 presents the required solution time
across different α for two key comparisons: the MIP model against the PRMIP model, and
the augmented ϵ-constraint method against the basic ϵ-constraint method.

Table 11. Comparison of computational efficiency for MIP and PRMIP models using two different
ϵ-constraint methods.

Model Type α
CPU Time (s)

(Augmented ϵ-Constraint)
CPU Time (s)

(Basic ϵ-Constraint)

MIP

0.7 9.7 161.7
0.8 9.8 188.5
0.9 9.1 149.2
1.0 8.5 136.4
1.1 9.0 142.6
1.2 9.1 154.2

PRMIP

0.7 3.7 59.5
0.8 3.9 62.4
0.9 3.7 71.2
1.0 3.6 50.0
1.1 3.6 50.7
1.2 3.4 57.6

Table 11 details the computational performance of the proposed models. Using the
augmented ϵ-constraint method, the average CPU time for the full MIP model is 9.2 s,
whereas the PRMIP model, with its relaxed ship chartering variables, significantly reduces
this computation time to an average of just 3.7 s. This efficiency is benchmarked against the
standard basic ϵ-constraint method, which required substantially more time on average:
155.4 s for the MIP and 58.6 s for the PRMIP on average. Consequently, the average solution
time of the augmented method is merely 5.9% of the basic method’s time for the MIP
model, and 6.3% for the PRMIP model. This highlights a critical gain in computational
performance by selecting the more advanced solution technique. In summary, these results
confirm that the PRMIP model is significantly more computationally efficient than the MIP
model without surrendering solution quality, which aligns with Theorem 3. Furthermore,
the dramatic performance gain from using the augmented ϵ-constraint method validates
its suitability for solving large-scale, practical problems efficiently.

Computational experiments conducted with real-world-inspired scenarios highlight
the practical effectiveness of the proposed PRMIP model compared to the MIP model, as
well as our augmented ϵ-constraint method compared to the basic ϵ-constraint method.

5.3.2. Sensitivity Analysis on the Surcharge Intensity

In this section, we conduct 6 experiments, aiming to illustrate the performance of
our proposed model in solving instances with different surcharge intensities. We design
instances by altering the unit penalty surcharge cp from 0 to 100 with a step size of 20 while
keeping other parameters unchanged. Figure 7 shows the Pareto frontiers of all instances.
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Figure 7. The Pareto frontiers with different freight surcharge intensities.

As the unit penalty surcharge cp increases from 0 to 100, the Pareto frontier remains
largely consistent, indicating that the shipping line can maintain a similar level of perfor-
mance in terms of both profit and transport volume. This stability indicates that the model
is effective at finding potent mitigation strategies. The model achieves this by effectively
navigating the complex trade-off between maximizing profit, increasing transport volume,
and mitigating the extra penalty. It strategically reconfigures the fleet, for instance by
systematically chartering out penalized China-built ships from U.S. routes and chartering
in compliant ships to take their place, thereby preserving the core trade-off between Obj 1
and Obj 2.

To quantitatively dissect this mitigation strategy and reveal the underlying economic
trade-offs, we analyze the total penalty paid across all Pareto-optimal solutions for each
surcharge level. The results are summarized in Table 12.
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Table 12. Analysis of total penalty cost incurred under different surcharge intensities.

k cp = 0 cp = 20 cp = 40 cp = 60 cp = 80 cp = 100

1 0 0.12 0.24 0.36 0.00 0
2 0 0.12 0.24 0.36 0.00 0
3 0 0.12 0.24 0.36 0.00 0
4 0 0.12 0.24 0.36 0.48 0
5 0 0.12 0.24 0.36 0.00 0
6 0 0.12 0.24 0.36 0.00 0
7 0 0.12 0.24 0.36 0.48 0
8 0 0.12 0.24 0.36 0.00 0
9 0 0.12 0.24 0.36 0.00 0

10 0 0.12 0.24 0.36 0.00 0
11 0 0.12 0.24 0.36 0.00 0
12 0 0.12 0.24 0.36 0.00 0
13 0 0.12 0.24 0.36 0.48 0
14 0 0.12 0.24 0.36 0.00 0
15 0 0.12 0.24 0.36 0.00 0
17 0 0.12 0.24 0.36 0.48 0
20 0 0.11 0.21 0.32 0.43 0

It is observed that as cp rises from 20 to 60, the total penalty incurred generally
increases. This indicates that at these lower levels, it is often optimal to accept the surcharge
for certain highly profitable routes where the additional cost of chartering ships to avoid
using a penalized ship would exceed the penalty itself. A significant strategic shift becomes
evident at cp = 80. At this level, some of the Pareto-optimal solutions show a total penalty
of zero, indicating that for a wide range of strategies, complete avoidance has become the
more profitable choice. This trend culminates at cp = 100, a level at which the unit penalty
cost becomes so high that the total penalty across all Pareto-optimal solutions drops to zero.
This illustrates the model’s sophisticated decision making, which involves calculating the
most profitable strategy: paying a manageable fee on certain routes or altering fleet and
route assignments to completely avoid the penalty once the cost becomes prohibitive.

5.3.3. Sensitivity Analysis on the Charter Ratio

In this section, we conduct 6 experiments, aiming to illustrate the performance of
the bi-objective MIP model in solving instances with different charter ratios. The ratio is
denoted as σ, where the original weekly charter-in cost and charter-out revenue for a ship of
type s is cin

s and cout
s , respectively. The actual charter-in cost and chareter-out revenue is ĉin

s
and ĉout

s , respectively. Then, σ = ĉin
s /cin

s = ĉout
s /cout

s . To investigate the impact of varying
the charter ratio of all ship types on the model’s effectiveness, we design instances by
altering σ from 0.6 to 1.6 with a step size of 0.2 while keeping other parameters unchanged.
Figure 8 shows the Pareto frontiers of all instances.

The sensitivity analysis on the charter ratio reveals a distinct transformation in the
shape of the Pareto frontier. As the charter ratio increases, the frontier becomes progres-
sively flatter. When the charter ratio is low (e.g., σ = 0.6), the frontier is steep, meaning
that achieving a higher profit requires giving up a large amount of transport volume. In
contrast, when the charter ratio is high (e.g., σ = 1.6), the frontier is much flatter, allowing
the company to improve its profit with a smaller reduction in volume. This change is
driven by the direct link between charter-in costs and charter-out revenues. In a low charter
ratio environment, chartering out yields less revenue. Therefore, the company’s strategy
focuses on deploying its fleet to serve a broad range of transport demands, resulting in
higher transport volume. To improve profit from this state, the company must forgo large
quantities of accepted demand, which explains the steep trade-off. In contrast, in a high
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charter ratio environment, chartering out a ship becomes a very attractive alternative. As a
result, the company’s optimal strategy shifts: it serves only the demand that generates more
profit than simply chartering out a ship. This reveals that a high charter ratio fundamentally
changes the business priority from focusing on transport volume to strategically managing
the fleet as a portfolio of assets, where chartering ships out can be a more profitable decision
than using them to serve all but the most sufficiently valuable transport demands.

Figure 8. The Pareto frontiers with different charter ratios.

5.3.4. Sensitivity Analysis on the Transport Demand Ratio

In this section, we conduct 6 experiments, aiming to illustrate the performance of the
bi-objective MIP model in solving instances with different transport demand ratios. The
ratio is denoted as φ, where the original weekly transport demand for an OD pair is Dod,
the actual transport demand is Dactual

od , and φ = Dactual
od /Dod. To investigate the impact

of varying the transport demand of all OD pairs on the model’s effectiveness, we design
instances by altering φ from 0.6 to 1.6 with a step size of 0.2 while keeping other parameters
unchanged. Figure 9 shows the Pareto frontiers of all instances.
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Figure 9. The Pareto frontiers with different transport demand ratios.

The sensitivity analysis with respect to the transport demand ratio demonstrates the
profound impact of market size on the shipping line’s operational scale and profitability. As
the transport demand ratio increases from 0.6 to 1.6, representing a market shift from low
to high demand, the Pareto frontier exhibits a significant and consistent outward expansion.
The entire set of non-dominated solutions moves upwards and to the right, indicating
that a high-demand market environment enables the simultaneous achievement of both
higher total profits and greater transport volumes. At low demand levels (e.g., φ = 0.6),
the frontier is tightly constrained, positioned close to the origin, reflecting a market where
limited cargo availability severely caps the potential for both revenue and service scale.
Conversely, as demand grows, the frontier expands dramatically, unlocking a much larger
space of high-performance strategic options.

This outward expansion is driven by a fundamental shift in the company’s core
challenge, which necessitates a corresponding shift in management strategy. In a low-
demand scenario, the primary challenge of the shipping company is to find enough cargo
to fill its ships, often forcing it to accept less profitable OD pairs to maintain fleet utilization.
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In a high-demand scenario, the market offers more cargo than the fleet can physically
transport. This surplus of demand grants the shipping company a powerful strategic
advantage by enabling it to prioritize more profitable OD pairs.

Given that the PRMIP model yields optimal solutions identical to those of the full
MIP model (as established in Section 3.3), the detailed numerical results for the two most
extreme scenarios of each of the four sensitivity analyses are presented for the PRMIP
model in Tables A1–A8 in Appendix B.

6. Conclusions
Container liner shipping companies operate within a complex environment where they

must balance profitability and service reliability, all while navigating evolving regulatory
policies such as surcharges imposed on China-built ships calling at U.S. ports. These
challenges complicate strategic planning related to route deployment, ship assignment,
and demand acceptance, requiring integrated decision-making frameworks.

To address these challenges, this study develops a bi-objective MIP model for the
HSR-DA problem. We establish a series of theorems to analyze the mathematical structure
of the model. Specifically, we prove that the route operation decision variables and ship
assignment variables must remain integers due to the practical infeasibility of fractional
route operation and ship assignment, while the chartering constraints form a TU matrix,
which allows the corresponding variables to be relaxed to continuous values without loss of
integrality. Additionally, we demonstrate that the Pareto frontier consists of a finite union of
line segments. Within each segment, it is continuous and piecewise linear, while generally
being non-convex and exhibiting discontinuities. Based on these theorems, we reformulate
the original MIP into a PRMIP model. We demonstrate that the PRMIP model can generate
the same optimal objective value as the one obtained by the MIP model when solving the
same instance, while significantly improving computational efficiency. Furthermore, we
can always find an optimal solution to the PRMIP model such that it is equivalent to an
optimal solution to the MIP model. These theoretical insights provide a solid foundation
for enhancing solution efficiency and understanding the structural characteristics of the
Pareto frontier.

Computational experiments conducted with real-world-inspired scenarios highlight
the practical effectiveness of the proposed model. The results demonstrate a clear trade-off
between maximizing profitability and maximizing transport volumes, represented through
an explicitly characterized Pareto frontier. Notably, the model consistently avoids costly
surcharges for China-built ships through strategic fleet assignment and chartering deci-
sions, underscoring its ability to inform operational strategies under complex regulatory
constraints. In scenarios prioritizing profit maximization, the accepted transport volume
decreases while the average freight rate increases, confirming the necessity of targeted and
strategic route selection and demand acceptance. Sensitivity analysis further reveals that
variations in freight rates significantly affect the structure of optimal decisions. Higher
freight rates provide greater flexibility, allowing operators to selectively expand transport
volumes while enhancing profitability simultaneously. Conversely, lower freight rates ne-
cessitate stringent selectivity in demand acceptance, reinforcing the importance of adaptive
decision making in response to market fluctuations.

Future work can extend our model by addressing several key areas to enhance its
robustness and practical applicability:

1. Incorporating transshipment and empty container repositioning: The current model
excludes transshipment and empty container repositioning, which are critical for
operational efficiency. Future work can optimize cargo routing and empty container
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flows, potentially using foldable containers or leasing strategies to reduce costs and
improve container utilization [77–79].

2. Incorporating variable sailing speeds: Allowing speed to be a decision variable can
build a more comprehensive framework. This extension can capture the critical
trade-off between fuel costs and service efficiency by directly linking sailing speed to
operational fuel expenses and strategic ship allocation. Higher speeds increase fuel
consumption, while lower speeds extend voyage times, which may require additional
ships to maintain fixed service frequencies. Recent studies provide valuable insights
in this field. For example, a holistic optimization model was developed [10] that
integrates sailing speed optimization with port service frequency, fleet deployment,
and ship schedule design, demonstrating the benefits of joint tactical planning. Simi-
larly, a multi-objective mixed-integer linear programming model was proposed [27]
to optimize sailing speed, as well as fleet deployment and routing under carbon tax
regulations, achieving cost savings of up to 15% and emission reductions of 20% on
a transatlantic route. A hybrid dynamic model with receding horizon speed opti-
mization was introduced [80], emphasizing schedule reliability and energy efficiency
when port handling times are uncertain. In addition, the focus was on sailing speed
optimization for near-sea shipping services, integrating container routes to improve
operational efficiency [81]. With these advancements, future work can co-optimize
shipping networks, fleet deployment, and sailing speeds, providing in-depth insights
into how shipping companies can balance strategic and operational strategies while
adapting to external policies to maintain economic and environmental sustainability.

3. The challenge of expanding models to accommodate multinational regulatory com-
pliance and carbon pricing mechanisms: The current fleet deployment model can
be extended to incorporate either multinational regulatory compliance or carbon
pricing mechanisms to enhance its applicability in a globalized market. Dynamic
fleet reallocation can further support these extensions by enabling real-time adjust-
ments to ship assignments in response to varying regulatory requirements or carbon
pricing impacts [82]. Multi-objective optimization models have been proposed to
incorporate the EU Emissions Trading System (EU ETS) into China–Europe liner
shipping, optimizing speed to balance emissions and costs [83]. Frameworks for
carbon and cost accounting under EU ETS focus on operational adjustments like
fuel choice and speed optimization to ensure compliance [84]. Bi-level programming
models incorporate carbon taxes into network design, addressing route planning and
fleet deployment under environmental constraints [85]. Compliance with diverse
international standards, such as those for sustainable maritime operations, has also
been explored to ensure operational feasibility across jurisdictions [86]. Future work
could extend the current fleet deployment model to incorporate either compliance
with multinational regulations, such as EU ETS and other global standards, or carbon
pricing mechanisms into strategies like speed optimization, fuel choice, and route
planning. These models could explore collaborative agreements or standardized
practices to address regulatory variations across jurisdictions, ensuring cost-effective
compliance and sustainability in a globalized market.
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Appendix A
Appendix A.1. Proofs of Theorems 1 and 2

Proof of Theorem 1. We demonstrate this via a synthetic counterexample. Assume that
there is only one candidate route r1, which excludes U.S. ports and needs three ships
for operation, i.e., Nr1 = 3. There is only one OD pair (o, d), and its weekly transport
demand is 2000 TEUs, i.e., Dod = 2000 TEUs. The revenue earned per TEU for this OD
pair is set as pod = 800 USD. Consider that the company owns three ships of the same
type, s1 (|S| = 1), i.e., As1 = 3. The transport capacity of each ship is 6000 TEUs, i.e.,
Qs1 = 6000 TEUs. The transportation cost incurred by each ship deployed on route r1

consists of the following components: the fuel cost Fs1r1 = 0.6 million USD, the berthing
cost Bs1r1 = 0.6 million USD, and the extra penalty cost of Bextra

s1r1
= 0, since the route does

not include any U.S. ports. The weekly cost for chartering in a ship of type s1 is set as
cin

s1
= 0.5 million USD, and the weekly revenue from chartering out one idle ship is set

as cout
s1

= 0.4 million USD. Then, for the original model, there will be two possible route
operation and ship assignment solutions: (1) Operating no route, i.e., xr1 = 0. This solution
is feasible, and the company can charter out all three ships to earn revenue. The weekly
profit in this case is cout

s1
nout

s1
= 0.4× 3 = 1.2 million USD, which is the first objective of the

model. The total weekly transport volume for the second objective in this case is zodr1 = 0.
(2) Operating route r1, i.e., xr1 = 1. In this case, the company deploys all three owned ships
on the route, i.e., ns1r1 = 3, and no ship is chartered in or out, i.e., nin

s1
= nout

s1
= 0. Since

the demand is 2000 TEUs and each ship has a capacity of 6000 TEUs, the demand is fully
satisfied. Then, the weekly profit in this case can be calculated as follows:

podzodr1 − ns1r1 /Nr1(Fs1r1 + Bs1r1)− ns1r1 /Nr1 ·Bextra
s1r1

= 800/106 × 2000− (0.6 + 0.6)− 0 = 0.4 million USD.

The total weekly transport volume in this case is 2000 TEUs. It is notable that strategy
(1) yields a higher weekly profit (1.2 million USD), but the transport volume is zero. In
contrast, strategy (2) results in a lower weekly profit (0.4 million USD), yet it fully satisfies
the demand, achieving a transport volume of 2000 TEUs. These two solutions represent
trade-offs between the two conflicting objectives of the model. Therefore, both solutions
constitute a set of Pareto-optimal solutions under the original MIP model.

However, if we relax the binary variable xr to be continuous, xr1 = 1/3 will also
satisfy the weekly operation requirement, as the number of required ships becomes
Nr1 xr1 = 3× 1/3 = 1. The company can assign one owned ship to route r1, i.e., ns1r1 = 1,
and charter out the remaining two idle ships, i.e., nout

s1
= 2. Since the ship capacity is

6000 TEUs and the weekly transport demand is 2000 TEUs, Dod = Qs1 ns1r1 /Nr1 . Therefore,
the demand of the OD pair can be fully transported, i.e., zodr1 = 2000 TEUs, and thus
constraint (1-7) can be satisfied. The first objective function value, then, can be calculated
as follows:

podzodr1 − ns1r1 /Nr1(Fs1r1 + Bs1r1)− ns1r1 /Nr1 ·Bextra
s1r1

+ cout
s1

nout
s1

= 800/106 × 2000− 1
3 (0.6 + 0.6)− 0 + 0.4× 2 = 2.0 million USD.
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The second objective is 2000 TEUs. This relaxed linear programming (LP) solution improves
both objectives compared to strategy (1) with the integer solution xr1 = 1, and achieves a
higher value in the first objective while keeping the second objective unchanged compared
to strategy (2). Critically, xr1 = 1/3 is practically invalid as we cannot operate only one-
third of the route. Hence, the LP relaxation of xr inherently produces non-integer solutions
conflicting with the real-world integer operation requirement, proving xr cannot be freely
relaxed. □

Proof of Theorem 2. We demonstrate this via a synthetic counterexample. Assume that
there is only one candidate route r1, which excludes U.S. ports and needs three ships for
operation, i.e., Nr1 = 3. There is only one OD pair (o, d), and its weekly transport demand
is 3500 TEUs, i.e., Dod = 3500 TEUs. The revenue earned per TEU for this OD pair is set
as pod = 800 USD. Consider there are two ship types, s1 and s2. The company now owns
one ship of type s1 and two ships of type s2, i.e., As1 = 1, As2 = 2. Ship type s1 has a
capacity of Qs1 = 6000 TEUs, a charter-in cost cin

s1
= 0.5 million USD, a charter-out revenue

cout
s1

= 0. 4 million USD, and a transport cost of Fs1r1 + Bs1r1 = 2.7 million USD. Ship type
s2 has a capacity of Qs2 = 3000 TEUs, a charter-in cost cin

s2
= 0.25 million USD, a charter-out

revenue cout
s2

= 0.2 million USD, and a transport cost of Fs2r1 + Bs2r1 = 0.9 million USD.
Since the route does not include any U.S. ports, the extra penalty costs are zero. Then, for
the original model, there will be multiple possible route operation and ship assignment
solutions. Through calculation, the two solutions that maximize the first objective and the
second objective, respectively, are in the Pareto-optimal solutions as follows: (1) Operating
route r1, i.e., xr1 = 1. In this case, the company deploys three ships of type s2, i.e., ns1r1 = 0,
ns2r1 = 3; then, one ship of type s1 is chartered out and one ship of type s2 is chartered
in, i.e., nin

s1
= nout

s2
= 0, nin

s2
= nout

s1
= 1. Since Qs1 · ns1r1 /Nr1 + Qs2 · ns2r1 /Nr1 = 6000× 0 +

3000× 3/3 = 3000 TEUs, the weekly accepted transport demand is zodr1 = 3000 TEUs.
Then, the weekly profit in this case can be calculated as follows:

podzodr1 − ns1r1 /Nr1(Fs1r1 + Bs1r1)− ns2r1 /Nr1(Fs2r1 + Bs2r1)

−ns1r1 /Nr1 ·Bextra
s1r1
− ns2r1 /Nr1 ·Bextra

s2r1
+ cout

s1
nout

s1
− cin

s2
nin

s2

= 800/106 × 3000− 0− 0.9− 0− 0 + 0.4− 0.25 = 1.65 million USD.

The total weekly transport volume in this case is 3000 TEUs. (2) Operating route r1, i.e.,
xr1 = 1. In this case, the company deploys one ship of type s1 and two ships of type s2,
i.e., ns1r1 = 1, ns2r1 = 2, and no ship is chartered in or chartered out, i.e., nin

s1
= nin

s2
=

nout
s1

= nout
s2

= 0. Since Qs1 · ns1r1 /Nr1 + Qs2 · ns2r1 /Nr1 = 6000 × 1/3 + 3000 × 2/3 =

4000 TEUs > Dod, the demand is fully satisfied. Then, the weekly profit in this case can be
calculated as follows:

podzodr1 − ns1r1 /Nr1(Fs1r1 + Bs1r1)− ns2r1 /Nr1(Fs2r1 + Bs2r1)

−ns1r1 /Nr1 ·Bextra
s1r1
− ns2r1 /Nr1 ·Bextra

s2r1

= 800/106 × 3500− 1
3 × 2.7− 2

3 × 0.9− 0− 0 = 1.3 million USD.

The total weekly transport volume in this case is 3500 TEUs. It is notable that strategy
(1) yields a higher weekly profit (1.65 million USD), but its transport volume is lower
(3000 TEUs). In contrast, strategy (2) results in a lower weekly profit (1.3 million USD),
yet it fully satisfies the demand, achieving a transport volume of 3500 TEUs. These two
solutions represent trade-offs between the two conflicting objectives of the model.

However, if we relax the integer variable nsr to be continuous, as in ns1r1 = 0.5, then
ns2r1 = 2.5 will also satisfy the weekly operation requirement. Since Qs1 · ns1r1 /Nr1 +

Qs2 · ns2r1 /Nr1 = 6000× 0.5/3 + 3000× 2.5/3 = 3500 TEUs = Dod, the demand is fully
satisfied, i.e., zodr1 = 3500 TEUs. In this case, the company needs to charter in one ship
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of type s2, i.e., nin
s2
= 1, nin

s1
= nout

s1
= nout

s2
= 0. Then, the weekly profit in this case can be

calculated as follows:

podzodr1 − ns1r1 /Nr1(Fs1r1 + Bs1r1)− ns2r1 /Nr1(Fs2r1 + Bs2r1)

−ns1r1 /Nr1 ·Bextra
s1r1
− ns2r1 /Nr1 ·Bextra

s2r1
− cin

s2
nin

s2

= 800/106 × 3500− 0.5
3 × 2.7− 2.5

3 × 0.9− 0− 0− 0.25× 1 = 1.33 million USD.

This relaxed LP solution achieves a higher value in the first objective while keeping the
second objective unchanged compared to strategy (2). Critically, ns1r1 = 0.5, ns2r1 = 2.5
is practically invalid as we cannot assign a ship by half. Hence, the LP relaxation of nsr

inherently produces non-integer solutions conflicting with the real-world integer operation
requirement, proving nsr cannot be freely relaxed. □

Appendix A.2. Proof of Theorem 3

Proof of Theorem 3. For ease of explanation, we denote A as the coefficient matrix of
variables nout

s , which includes A1, associating with constraints (1-4), and A2, associating
with constraints (1-5). The structure of A can be presented as follows:

𝐴ଵ 

𝐴 ൌ 

𝐷im ൌ 2 ൈ |𝑆|

𝐴ଶ 

𝐷im ൌ  |𝑆| 

𝐷im ൌ  |𝑆| 

Firstly, according to [51], a sufficient condition for a matrix M to be TU is that row
indices of matrix M can be partitioned into two sets such that the following four conditions
are all satisfied: (i) each entry mij of M satisfies mij ∈ {0, 1,−1}; (ii) each column of M
contains at most two nonzero entries; (iii) if a column has two entries of the same sign, their
row indices are in different sets; and (iv) if a column has two entries of different signs, their
row indices are in the same set.

For our matrix A, we consider dividing it naturally into two sets, A1 and A2. For
A1 and A2, each column contains at most one 1. This implies that there are no more than
two nonzero entries per column in the matrix A, and all coefficients belong to {0, 1,−1}.
Therefore, conditions (i) and (ii) are satisfied immediately. Then, we can partition all rows
of A1 into one set and those of A2 into another, meeting criteria (iii) and (iv). Thus, we
conclude that matrix A is TU.

The coefficient matrix of variables nin
s is only associated with constraints (1-4), and

each of its columns contain at most one −1. Therefore, conditions (i) and (ii) are satisfied
immediately. Moreover, since no column has two nonzero entries, criteria (iii) and (iv),
which involve pairs of entries with the same or different signs, do not need to be considered.
Therefore, the coefficient matrix corresponding to nin

s is TU. Then, we can conclude that the
coefficient matrices of the variables nin

s and nout
s are TU. □

Appendix A.3. Proofs of Theorems 4 and 5

Proof of Theorem 4. Let P ⊂ R2 be the set of feasible objective values produced by the
bi-objective MIP model, and P ⊂ P denote the Pareto-optimal set. Let the integer decision
tuple be β =

(
xr, nsr, nin

s , nout
s

)
, where each component is bounded, resulting in a finite set

I. For a fixed β, the optimization problem reduces to a linear program (LP) in continuous
variables zodr, under constraints (1-6) and (1-7), with linear objectives f1(β, zodr), which
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denote the weekly profit, and f2(zodr), which denote the total weekly transport volume.
Let Y(β) denote the feasible region for zodr, given a fixed-integer configuration β. We stick
to this notation in the remainder of this paper. The feasible region Y(β) is defined by
linear constraints and bounds. It is a closed, convex, and bounded polyhedron, since each
zodr > 0 and each is upper bounded by demand and transport capacity. Let Eff(β) denote
the set of non-dominated points in the objective space given a fixed-integer decision tuple
β, i.e., ( f1(β, zodr), f2(zodr)) ∈ Eff(β)⇔ ∄z′ord ∈ Y(β) such that f1

(
β, z′ord

)
≥ f1(β, zodr),

f2
(
z′ord

)
≥ f2(zodr), with at least one strict point. This captures all points for which no other

feasible zodr can improve both the weekly profit and the transport volume simultaneously.
The image of Y(α) under the linear objective mapping ( f1(β, zodr), f2(zodr)) is a convex
polygon in R2, whose Pareto-efficient boundary consists of one or more line segments.
Since I is finite, the union of such segments over all α gives P =

⋃
β∈I Eff(β), where each P

is continuous and piecewise linear. Thus, P is composed of finitely many such segments. □

Proof of Theorem 5. Consider two distinct integer configurations β1 and β2 ∈ I. Let
z1 ∈ Y(β1) and z2 ∈ Y(β2) be two feasible continuous decisions such that their objective
vectors ( f1(β1, z1), f2(z1)) and ( f1(β2, z2), f2(z2)) lie in Eff(β1) and Eff(β2), respectively.
Define their convex combination in the objective space as z3 = θ( f1(β1, z1), f2(z1)) +

(1− θ)( f1(β2, z2), f2(z2)), θ ∈ {0, 1}. Since the integer configuration β cannot take frac-
tional values, there generally does not exist any feasible pair (β3, z3) satisfying constraints
(1-3)–(1-11) such that the resulting objective vector equals z3. Thus, z3 /∈ P, which implies
that P, and therefore P, are not convex.

Furthermore, since I is finite and each Eff(β) is compact in R2, define the minimal gap
between efficient frontiers:

δ = inf
u∈Eff(α1)

inf
v∈Eff(α2)

∥u− v∥2.

By the compactness and separation of distinct integer supports, this infimum is bounded
by δ > 0 [87]. Therefore, the Pareto frontier P is not only non-convex, but also globally
disconnected, with finite-length gaps between segments. □

Appendix A.4. Proof of Theorem 6

Proof of Theorem 6. Fix an integer configuration β ∈ I, which defines a convex
and bounded feasible region Y(β) in the space of continuous variables. The Pareto-
efficient frontier under bi-objective linear mapping ( f1(β, zodr), f2(zodr)) is a convex
polygonal chain composed of finite segments. For notation convenience, we denote
( f1, f2) = ( f1(β, zodr), f2(zodr)). Let the extreme efficient points be ordered by increasing
values of f1:

(
f 1
1 , f 1

2
)
,
(

f 2
1 , f 2

2
)
, . . .,

(
f m
1 , f m

2
)
. Then, the slope of each segment is defined

as follows:

dk =
f k+1
2 − f k

2

f k+1
1 − f k

1

, k = 1, 2, . . . , m− 1.

Let λ ∈ {0, 1} weight the two objectives and consider the scalarised LP:

max
zodr∈Y(α)

λ f1(zodr) + (1− λ) f2(zodr)

Since Y(β) is a bounded polyhedron, the optima occur at basic feasible solutions and vary
only at finitely many breakpoints of λ. Standard LP duality shows that the supporting
hyperplane to Y(β) with normal vector (λ, 1− λ) touches Y(β) at an efficient extreme
point whose frontier slope equals −(1− λ)/λ. As λ increases, the supporting hyperplanes
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generate efficient points with higher values of objective 1 and lower values of objective 2.
Since 0 < λ1 < λ2 < . . . < λm−1 < 1, it follows that

dk+1 = −1− λk+1
λk+1

> −1− λk
λk

= dk,

which confirms that the marginal rate of substitution between the two objectives increases
in magnitude along the local Pareto frontier. □

Appendix B

Table A1. Pareto-optimal solutions of the PRMIP model (α = 0.7).

k
Obj 1

(Million
USD)

Obj 2
(Million

USD)
ORN AFR

(USD)

TFC
(Million

USD)

TBC
(Million

USD)

The Extra
Penalty Cost

COIR
(Million

USD)

1 −7.56 315,250 18 643 74.44 110.79 0 −24.92
2 4.21 313,250 17 641 71.45 105.59 0 −19.52
3 7.65 311,583 17 640 70.23 104.29 0 −17.32
4 14.39 311,250 16 638 68.46 100.39 0 −15.20
5 17.83 309,583 16 637 67.24 99.09 0 −13.00
6 22.85 307,217 16 636 65.50 97.17 0 −9.84
7 27.83 304,098 16 638 63.96 95.35 0 −6.96
8 32.90 300,439 16 643 62.59 93.37 0 −4.28
9 38.18 293,564 15 655 61.83 88.37 0 −4.00

10 43.16 290,231 15 660 60.36 86.67 0 −1.36
11 48.04 285,392 15 664 58.58 84.81 0 1.96
12 53.09 274,903 14 654 55.99 76.10 0 5.28
13 58.14 271,500 14 659 54.53 74.29 0 7.92
14 63.17 264,342 14 665 52.05 72.10 0 11.60
15 68.26 252,633 14 671 48.46 68.39 0 15.52
16 73.27 243,175 13 697 48.60 64.45 0 16.88
17 78.31 231,496 13 707 44.91 61.02 0 20.56
19 83.38 215,175 12 743 42.79 56.96 0 23.36
20 88.42 189,667 11 741 35.82 48.71 0 32.32

Table A2. Pareto-optimal solutions of the PRMIP model (α = 1.2).

k Obj 1
(Million USD)

Obj 2
(TEUs) ORN AFR

(USD)
TFC

(Million USD)
TBC

(Million USD)
The Extra

Penalty Cost
COIR

(Million USD)

1 137.15 315,250 18 1102 74.44 110.79 0 −24.92
2 147.63 313,250 17 1099 71.45 105.59 0 −19.52
3 149.64 311,917 17 1098 70.47 104.55 0 −17.76
4 156.14 311,250 16 1093 68.46 100.39 0 −15.20
5 159.07 309,398 16 1093 67.22 99.08 0 −12.92
6 162.10 307,398 16 1092 65.75 97.52 0 −10.28
7 165.35 305,175 16 1092 64.28 95.93 0 −7.64
8 168.34 302,648 16 1098 63.45 94.65 0 −6.00
9 171.37 300,050 16 1104 62.40 93.36 0 −4.00

10 174.58 294,231 15 1124 62.32 88.89 0 −4.88
11 177.79 291,898 15 1127 61.10 87.52 0 −2.68
12 180.72 289,675 15 1133 60.12 86.39 0 −0.92
13 183.90 285,350 15 1145 58.89 85.05 0 1.14
15 186.89 273,355 14 1158 56.42 78.17 0 5.00



Appl. Sci. 2025, 15, 8582 38 of 44

Table A2. Cont.

k Obj 1
(Million USD)

Obj 2
(TEUs) ORN AFR

(USD)
TFC

(Million USD)
TBC

(Million USD)
The Extra

Penalty Cost
COIR

(Million USD)

16 190.00 267,581 14 1176 55.20 76.80 0 7.20
19 193.11 251,858 13 1233 53.77 73.20 0 9.44
20 196.39 243,300 13 1216 49.85 65.10 0 15.60

Table A3. Pareto-optimal solutions of the PRMIP model (cp = 0).

k
Obj 1

(Million
USD)

Obj 2
(Million

USD)
ORN AFR

(USD)

TFC
(Million

USD)

TBC
(Million

USD)

The Extra
Penalty Cost

COIR
(Million

USD)

1 149.06 232,016 13 1014 45.57 61.42 0.00 20.56
2 145.44 247,188 13 997 50.34 65.90 0.00 15.20
3 141.76 251,997 13 1027 53.77 73.20 0.00 9.92
4 138.12 267,675 14 951 53.52 73.30 0.00 10.24
5 134.54 273,564 14 963 56.42 78.17 0.00 5.48
6 130.84 283,641 15 957 58.6 84.61 0.00 2.36
7 127.28 289,119 15 945 59.87 86.10 0.00 0.00
8 123.61 291,675 15 940 61.10 87.50 0.00 −2.20
9 119.95 294,230 15 936 62.32 88.89 0.00 −4.40

10 116.26 300,208 16 917 62.40 93.33 0.00 −3.52
11 112.64 303,203 16 914 63.69 94.94 0.00 −5.96
12 108.95 306,064 16 909 64.77 96.48 0.00 −8.04
13 105.32 308,216 16 909 66.24 97.95 0.00 −10.68
14 101.66 310,250 16 910 67.73 99.61 0.00 −13.40
15 99.92 311,250 16 910 68.46 100.39 0.00 −14.72
17 90.74 313,250 17 915 71.45 105.59 0.00 −19.04
20 79.74 315,250 18 918 74.44 110.79 0.00 −24.44

Table A4. Pareto-optimal solutions of the PRMIP model (cp = 100).

k Obj 1
(Million USD)

Obj 2
(TEUs) ORN AFR

(USD)
TFC

(Million USD)
TBC

(Million USD)
The Extra

Penalty Cost
COIR

(Million USD)

1 148.58 232,016 13 1014 45.57 61.42 0 20.08
2 144.96 247,188 13 997 50.34 65.9 0 14.72
3 141.28 251,997 13 1027 53.77 73.2 0 9.44
4 137.64 267,675 14 951 53.52 73.3 0 9.76
5 134.06 273,564 14 963 56.42 78.17 0 5.00
6 130.36 283,641 15 957 58.6 84.61 0 1.88
7 126.80 289,119 15 945 59.87 86.1 0 −0.48
8 123.13 291,675 15 940 61.1 87.5 0 −2.68
9 119.47 294,230 15 936 62.32 88.89 0 −4.88

10 115.74 300,230 16 919 62.59 93.33 0 −4.28
11 112.16 303,203 16 914 63.69 94.94 0 −6.44
12 108.47 306,064 16 909 64.77 96.48 0 −8.52
13 104.84 308,216 16 909 66.24 97.95 0 −11.16
14 101.18 310,250 16 910 67.73 99.61 0 −13.88
15 99.44 311,250 16 910 68.46 100.39 0 −15.20
17 90.26 313,250 17 915 71.45 105.59 0 −19.52
20 79.26 315,250 18 918 74.44 110.79 0 −24.92
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Table A5. Pareto-optimal solutions of the PRMIP model (σ = 0.6).

k
Obj 1

(Million
USD)

Obj 2
(Million

USD)
ORN AFR

(USD)

TFC
(Million

USD)

TBC
(Million

USD)

The Extra
Penalty Cost

COIR
(Million

USD)

1 140.88 242,871 13 1014 49.82 65.04 0 9.41
2 138.16 250,335 13 1036 53.77 73.2 0 5.66
3 135.44 265,583 14 990 55.2 76.8 0 4.32
4 132.72 272,440 14 967 56.17 78 0 3.26
5 130.02 282,391 15 960 58.36 84.31 0 1.31
6 127.59 288,564 15 946 59.63 85.82 0 −0.02
7 124.61 291,342 15 940 60.85 87.24 0 −1.34
8 121.86 293,827 15 936 62.08 88.52 0 −2.66
9 119.14 296,108 16 927 61.61 92.32 0 −1.60

10 116.44 301,536 16 917 62.96 94.09 0 −3.16
11 113.77 304,175 16 913 64.04 95.6 0 −4.40
12 111.07 306,730 16 909 65.26 97 0 −5.64
13 108.26 309,064 16 910 66.97 98.82 0 −7.49
14 105.69 311,216 16 910 68.44 100.29 0 −9.07
15 105.52 311,250 16 910 68.46 100.39 0 −9.12
16 100.25 311,550 17 914 70.2 104.19 0 −10.34
17 98.07 313,250 17 915 71.45 105.59 0 −11.71
20 89.23 315,250 18 918 74.44 110.79 0 −14.95

Table A6. Pareto-optimal solutions of the PRMIP model (σ = 1.6).

k
Obj 1

(Million
USD)

Obj 2
(Million

USD)
ORN AFR

(USD)

TFC
(Million

USD)

TBC
(Million

USD)

The Extra
Penalty Cost

COIR
(Million

USD)

1 163.76 222,188 12 1062 45.73 59.3 0.72 33.54
2 158.53 238,175 13 1011 47.62 63.25 0.72 29.31
3 153.30 247,744 13 997 50.58 66.1 0.72 23.62
4 148.04 258,411 14 958 50.51 70.37 0.72 22.02
5 142.81 268,855 14 945 53.52 73.46 0.72 16.38
6 137.64 273,008 14 963 56.17 77.97 0.72 9.47
7 132.38 282,325 15 960 58.33 84.23 0.72 4.61
8 127.59 288,564 15 946 59.63 85.82 0.72 0.70
9 122.41 291,342 15 940 60.85 87.24 0.72 −2.82

10 116.76 296,275 16 922 61.32 92.12 0.18 −2.88
11 111.52 301,411 16 917 62.93 94.04 0.72 −7.30
12 106.38 304,494 16 910 64.01 95.6 0.72 −10.62
13 101.31 306,916 16 908 65.28 97.01 0.72 −14.40
14 95.83 309,064 16 910 66.97 98.82 0.72 −19.20
15 90.62 311,216 16 910 68.44 100.29 0.72 −23.42
16 90.37 311,250 16 910 68.46 100.39 0.72 −23.55
17 80.28 312,583 17 915 70.96 105.07 0.72 −29.06
18 78.60 313,250 17 915 71.45 105.59 0.72 −30.46
20 64.44 315,250 18 918 74.44 110.79 0.64 −39.10
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Table A7. Pareto-optimal solutions of the PRMIP model (φ = 0.6).

k
Obj 1

(Million
USD)

Obj 2
(Million

USD)
ORN AFR

(USD)

TFC
(Million

USD)

TBC
(Million

USD)

The Extra
Penalty Cost

COIR
(Million

USD)

1 124.10 188,653 12 1069 43.62 57.08 0 23.08
2 120.25 201,673 13 1016 45 60.48 0 20.76
3 116.41 203,291 13 1062 47.72 67.72 0 15.84
4 112.59 215,907 13 980 47.91 67.98 0 16.88
5 108.99 224,070 14 994 51.57 73.47 0 11.16
6 105.21 227,403 14 996 54.02 76.08 0 8.76
7 101.22 238,847 15 961 54.29 80.65 0 6.60
8 97.41 242,514 15 952 56 82.61 0 4.92
9 93.62 245,736 15 953 58.21 84.98 0 2.56

10 90.08 247,536 15 954 59.65 86.42 0 −0.12
11 89.39 247,670 15 954 59.87 86.55 0 −0.60
12 82.06 249,794 16 935 59.65 90.73 0 −1.32
13 78.24 252,683 16 936 61.61 92.84 0 −3.84
14 75.15 253,970 16 937 62.81 93.95 0 −6.08
17 63.56 255,170 17 940 65.79 99.15 0 −11.48
19 63.58 255,150 17 940 65.77 99.09 0 −11.52
20 51.52 256,370 18 942 68.78 104.35 0 −16.88

Table A8. Pareto-optimal solutions of the PRMIP model (φ = 1.6).

k
Obj 1

(Million
USD)

Obj 2
(Million

USD)
ORN AFR

(USD)

TFC
(Million

USD)

TBC
(Million

USD)

The Extra
Penalty Cost

COIR
(Million

USD)

1 164.54 254,346 13 1035 50.14 63.88 0 15.12
2 160.51 267,788 13 1018 52.88 70.07 0 10.64
3 156.71 283,746 14 977 54.58 73.91 0 7.88
4 152.70 291,746 14 981 58.22 76.82 0 1.36
5 148.75 302,493 15 979 60.51 85.65 0 −1.50
6 144.87 311,437 15 971 63.11 88.41 0 −6.24
7 141.09 317,048 15 966 65.06 90.36 0 −9.76
8 137.03 320,048 15 959 66.29 91.8 0 −11.96
9 133.11 323,604 16 948 66.41 96.33 0 −11.24

10 129.39 331,160 16 934 67.78 98.36 0 −13.92
11 125.53 333,937 16 929 69.01 99.78 0 −16.12
12 121.58 336,715 16 924 70.23 101.23 0 −18.32
13 117.55 339,271 16 920 71.45 102.76 0 −20.52
14 113.81 341,604 16 917 72.68 104.23 0 −22.72
15 109.77 343,937 16 918 74.39 106.05 0 −25.80
16 106.01 346,160 16 918 75.86 107.66 0 −28.44
17 102.00 347,471 17 925 77.62 111.51 0 −30.56
18 98.83 349,360 17 925 78.84 112.86 0 −32.76
19 94.15 350,226 18 927 80.12 116.24 0 −34.36
20 90.10 352,560 18 928 81.83 118.06 0 −37.44
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