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Abstract

This paper proposes a speed-adaptive autonomous driving path-tracking framework based
on the soft actor–critic (SAC) and pure pursuit (PP) methods, named the SACPP controller.
The framework first analyzes the obstacles around the vehicle and plans an obstacle-free
reference path with the minimum curvature using the hybrid A* algorithm. Next, based
on the generated reference path, the current state of the vehicle, and the vehicle motor
energy efficiency diagram, the optimal speed is calculated in real time, and the vehicle
dynamics preview point at the future moment—specifically, the look-ahead distance—is
predicted. This process relies on the learning of the SAC network structure. Finally, PP
is used to generate the front wheel angle control value by combining the current speed
and the predicted preview point. In the second layer, we carefully designed the evaluation
function in the tracking process based on the uncertainties and performance requirements
that may occur during vehicle driving. This design ensures that the autonomous vehicle
can not only quickly and accurately track the path, but also effectively avoid surrounding
obstacles, while keeping the motor running in the high-efficiency range, thereby reducing
energy loss. In addition, since the entire framework uses a lightweight network structure
and a geometry-based method to generate the front wheel angle, the computational load is
significantly reduced, and computing resources are saved. The actual running results on
the i7 CPU show that the control cycle of the control framework exceeds 100 Hz.

Keywords: soft actor–critic; pure pursuit control; path tracking; motor efficiency map

1. Introduction
The rapid development of autonomous driving is due to advances in many fields,

including artificial intelligence, sensor technology, computer vision, and control theory [1].
Achieving safe and efficient vehicle driving has become a research focus. In this field,
path planning, speed optimization, and path tracking are the three key components for
achieving safe autonomous driving.

Effective path planning that considers safety, driving efficiency, passenger comfort,
and energy consumption can ensure that vehicles drive safely in complex environments
and avoid potential collision risks. To realize this, researchers have proposed a variety
of path-planning methods: graph search, sampling, model-based algorithms, etc. The
work mentioned in [2] improved the artificial potential field algorithm to solve a series of
problems in path planning, such as unreachable targets, local minima, and adaptation to
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dynamic obstacles. At the same time, they designed an improved sliding mode controller
to verify the feasibility of the path and tested it at different speeds. The results showed
small lateral and heading errors and maintained high tracking accuracy. However, there
are some limitations in their research, such as the use of a two-degree-of-freedom vehicle
model, the failure to consider external factors such as road conditions and weather, slow
calculation speed, and limitations to simulation experiments. Paper [3] proposed a path
smoothing algorithm based on an improved RRT*, which generated long-distance paths
based on an adaptive node expansion model and effectively improved the convergence
speed, obstacle avoidance ability, and planning efficiency. However, this method required
expanding a large number of nodes and evaluating these nodes to adjust their weights.
It led to the existence of redundant nodes, that need to be removed by combining a
filtering algorithm, thereby increasing the complexity of the algorithm. In addition, this
method was mainly applicable to low-speed scenarios. Z. Bai et al. proposed a new
comprehensive reward function [4], which aimed to enable the robot to reach the target
location quickly and safely. In addition, they designed an action evaluation system that
effectively balances the relationship between exploration and utilization, and the system
adapted to different outdoor environments. However, it mainly focused on testing static
scenes, which requires maintaining a relatively complex grid map. In addition, it did not
analyze or verify the disturbances caused by changes in its mass. The authors in Ding [5]
used a vehicle dynamics model predictive control algorithm to model the vehicle and
optimize the generated obstacle avoidance path to meet the constraints of vehicle dynamics
while improving driving safety. However, it failed to take into account the disturbance and
energy of the vehicle during driving.

Based on the path-planning module, further refining the vehicle’s driving speed by
optimizing the vehicle speed and acceleration can significantly improve driving efficiency
and comfort [6]. In addition, by using the motor energy efficiency map, the speed of
the autonomous driving vehicle can be optimized, thereby maximizing energy efficiency
while ensuring driver safety and comfort. Y. Zhang et al. proposed an optimized energy-
saving control scheme that takes into account driving scenarios and multiple energy-saving
constraints in [7]. The controller combined the motor energy efficiency map to find and
optimize the motor output efficiency corresponding to the speed at each moment. However,
this scheme did not fully optimize the reference path of the system, so it could not fully re-
flect the driving preferences of human drivers. In [8], a decision framework for autonomous
vehicles based on safety and energy saving was constructed. This framework effectively
avoided rear-end collisions during autonomous driving and improved energy-saving ef-
ficiency. However, this framework did not optimize the energy utilization efficiency of
autonomous vehicles throughout the process, making it difficult to ensure that the motor
operates stably within the expected energy area. A path planning and trajectory generation
algorithm based on a minimum time that takes into account the robot’s speed, acceleration,
and jerk constraints was proposed in [9]. The algorithm was optimized using the artificial
bee colony nature-inspired optimization algorithm. The final generated trajectory satisfies
the robot’s dynamic constraints. However, this article did not consider the internal and
external disturbances that exist during the robot’s driving process.

Path tracking requires the real-time acquisition of the vehicle’s state information in real
time and compare it with the reference path to ensure that the vehicle can accurately drive
along the target path [10]. The geometry-based PP method was proposed by Craig Coulter
in 1992, it is simple to control, and does not require complex kinematic and dynamic models.
Paper [11] used the backward Euler method to improve the lateral error accuracy during
vehicle tracking, optimize the acceleration and steering angle of the control input, enhance
the real-time processing tracking performance, and increase the controller’s stickiness,
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along with employing hot start technology to accelerate convergence. The shortcomings
included the heading error becomes larger, the amount of calculation increases, and the
internal and external disturbances in the control process are not fully considered. A
vehicle following model considering a time safety strategy was proposed in [12]. This
scheme also analyzed the relationship between vehicles in different time periods during the
following process, improving the following efficiency and safety performance. However,
it failed to consider the impact of different road surfaces on vehicle following, and also
lacks consideration of the energy consumption during the following process. The method
presented in [13] integrated behavioral decision making, path planning, and motion control
into a unified module for autonomous driving on highways. However, this study mainly
focused on decision making and path generation, and did not consider the internal and
external disturbances that may occur during driving. In addition, no effective solution
was proposed in this paper to solve the deviation between simulation and reality. An
adaptive tracking controller based on reinforcement learning (RL) is proposed in [14], which
enhances the stability of the network through model previewing and adaptive correction.
However, the paper does not discuss the computational complexity in detail, nor does it
consider the potential disturbances that may occur during the tracking process. Paper [15]
proposed a reinforcement learning (RL) controller framework that could directly generate
steering angles and accelerations without requiring an understanding of the dynamic and
kinematic models of the vehicle. However, the stability of the vehicle during driving needs
further analysis, and how to narrow the gap between simulation and reality also needs to
be discussed. The work in the paper [16] directly used images as input to generate vehicle
control instructions based on an RL framework, thereby reducing the intermediate links and
avoiding dependence on vehicle kinematic and dynamic modeling. However, this solution
mainly focused on learning the vehicle driving strategy and did not consider the various
disturbances that may occur during driving. The vision-language model-RL proposed
in [17] combined a pre-trained vision-language model with reinforcement learning, offering
a new method for generating reward signals that overcomes the limitations of traditional
RL approaches. In paper [18], an event-triggered reinforcement learning model predictive
control (MPC) path tracking control system was proposed, which effectively reduced the
computation time. However, this study did not consider the possible disturbances that
may occur during the tracking process, and also lacked a sufficient analysis of the energy
consumption during driving. MPC utilized the dynamic model of the vehicle to achieve
path tracking by optimizing the control input which can handle multiple constraints and is
suitable for dynamic environments. The SAC algorithm is an efficient and stable policy-
based RL method suitable for continuous control tasks. Combining the motor energy
efficiency map with SAC enables intelligent acceleration and speed decisions during path
tracking, improving energy efficiency, safety, and comfort.

This paper pays special attention to the uncertainty and performance requirements
of the vehicle during driving and designs targeted evaluation functions to ensure that
the autonomous vehicle can not only quickly and accurately track the path during path
tracking, but also effectively avoid obstacles and keep the motor running in the high-
efficiency range, thereby reducing energy loss. It is worth mentioning that the entire
framework adopts a lightweight network structure and a geometry-based front wheel
angle generation method, which greatly reduces the amount of calculation and saves
computing resources. In actual tests, the results obtained using the i7 CPU show that the
control cycle of the framework exceeds 100 Hz, verifying its efficiency and practicality. The
CarMaker tool and the Logitech G29 Driving Force steering wheel and pedals constitute the
test platform. The main application scenario of this design is urban roads, and CarMaker
uses a single model.
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Main contributions and novelties can be summarized as follows:

• By utilizing the motor energy efficiency map, the energy-efficient output control
strategy based on the SAC method ensures that the motor of the autonomous vehicle
operates in an efficient state at all times. This approach not only saves energy but also
prolongs the service life of the motor.

• By adopting U-Net and pavement image segmentation methods, we developed a
real-time detection system for road surfaces to better address the complexities of road
conditions. By incorporating the results into the soft actor–critic (SAC) controller, it can
effectively handle external disturbances caused by changes in the friction coefficient,
thereby enhancing its stability.

• Our work directly uses the results of road segmentation to determine the category to
which each pixel belongs (such as normal road, unpaved road, etc.) by performing
semantic segmentation on the input image. The segmented pixel information is then
input into the SAC network. Unlike directly inputting image features into the SAC
network, this method enables the SAC network to obtain the road type of each pixel,
thereby enhancing its adaptability.

• The SAC controller can better represent the vehicle’s dynamic model and make future
predictions based on the reference path, thereby improving the ability to handle
disturbances during tracking.

• The SACPP controller only needs to obtain the nominal values of the vehicle param-
eters without requiring the actual values. In addition, due to its simplified network
structure and geometric control method, the amount of calculation is significantly
reduced, thereby improving the practicality of this algorithm.

Section 2 introduces the problem and its framework. Section 3 shows how to generate
a smooth reference path using the improved A* algorithm and the conjugate gradient
descent method. Section 4 designs a robust controller that combines vision processing and
with SAC algorithm to address road surface uncertainty. Section 5 develops a PP-based
path-tracking controller. Finally, Section 6 verifies the proposed method through simulation
and successfully tests it on an actual vehicle.

2. Problem Formulation
Our work proposes a speed-adaptive autonomous driving path-tracking framework

based on the SAC method, as shown in Figure 1. This framework is constructed with six
modules: real-time path generation, road surface detection, efficiency optimization, SAC
controller, pure-pursuit controller, and the vehicle-test platform. The vehicle state vehstate

includes the vehicle center coordinates (x, y), heading angle φ, vehicle speed v, acceleration
a, and front wheel angle δ.

Figure 1. The framework of the whole system.
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1. In the real-time path generation module, the hybrid A* method [19] is used to generate
and avoid obstacles according to the generated cost function to generate a safe driving
path while avoiding obstacles. However, in complex environments, this path may
have some uneven parts. Thus, a gradient descent smoother is adopted to optimize
the path, focusing on the curvature and smoothness to improve the overall driving
experience and provide the reference path re f path.

2. The vision-based road semantic segmentation algorithm and U-Net network structure
are used to segment the state of the road surface in real time during driving [20,21],
as shown in the road surface detection module. It can directly semantically segment
different types of roads, each corresponding to a specific category and indirectly reflect-
ing different friction coefficients. These classification results will be input into the RL
model as feature values, thereby enhancing its perception of the external environment.

3. The vehicle’s driving stability, safety, and motor output efficiency are always consid-
ered to ensure that the motor operates within the efficient output range, as demon-
strated in the efficiency optimization module. First, a motor energy efficiency model
is built to describe the energy consumption at different speeds [vmin, vmax] and accel-
erations [amin, amax]. Then, we include energy efficiency [Eamin , Eamax ] as part of the
reward function to encourage the algorithm to choose a more efficient driving speed.

4. Based on input information such as re f path, semantic information on road segmen-
tation, vehstate, and [Eamin , Eamax ], SAC controller can adjust the vehicle’s optimal
acceleration aopt and forward distance ldopt in real-time, as shown in the SAC con-
troller module.

5. The PP geometric tracking method used in the pure-pursuit controller is used to reduce
the amount of algorithm calculation. aopt and ldopt are directly used to calculate the
optimal front wheel angle δopt. It has almost negligible calculation time while meeting
the tracking accuracy, which significantly improves practicality.

6. As demonstrated in the vehicle-test platform, the simulation platform is mainly
composed of an industrial computer, the CarMaker, and a Logitech steering wheel
and brake throttle system. The platform is mainly used for data collection and network
training. Additionally, the actual vehicle is used to finally verify the performance of
our work.

3. Real-Time Path Generation
Under the premise of fully considering energy savings, we used the path planner

developed in [22] to generate a preliminary path {r1, r2, · · · , rn}. Although this path is
feasible, unnecessary steering actions often occur, making it beneficial to post-smooth the
path to improve comfort and safety. Thus, a gradient descent smoother is proposed to
minimize the cost function J of the path. To calculate the gradient of each objective function,
we need to take partial derivatives of them. We set the coordinates of the vertices on the
path to Ri = (xi, yi), where ri (1 < i < n).

Jcur = λcur

n−1

∑
i=1

((Ri − Ri−1)− (Ri+1 − Ri))
2 (1)

The cost function Jcur given in (1) evaluates the curvature of the path by calculating
the change in angle between adjacent vertices. The weight coefficient λcur represents the
adjustment parameter of the curvature cost function, which is primarily used to optimize
curvature, allowing the evaluation results to better meet actual needs. This term aims to
minimize the change in curvature of the path, thereby ensuring both the smoothness and
feasibility of the path. In addition, the degree of path change is controlled by the curvature
weight Jcur.
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Jsmo = λsmo

n−1

∑
i=1

(∆Ri+1 − ∆Ri)
2 (2)

The cost function Jsmo in (2) is obtained by calculating the displacement vectors
between the adjacent points. It assigns costs to unevenly spaced vertices and adjusts their
directions to ensure the continuity and smoothness of the path. The path-smoothing weight
λsmo is used to influence changes in the path. Specifically, the displacement vectors are
defined as ∆Ri + 1 = Ri + 1− Ri and ∆Ri = Ri − Ri − 1. Thus, our objective function can
be expressed in (3):

J = Jcur + Jsmo (3)

We start with an initial path, calculate the gradient at each point, and then search in
the direction of the negative gradient. This process is repeated until the objective function
converges or the maximum number of iterations is reached. In each iteration, we set
a convergence condition and stop the search when the condition is met, otherwise we
continue to iterate. In this way, we can gradually optimize the path and eventually obtain a
smooth path that meets the vehicle’s kinematic constraints. The specific steps are as follows:

1. Initialize the waypoint to the original waypoint.
2. Compute the gradient for each path point Ri, and calculate the objective function with

respect to the gradient of Ri gradient in (4):

∇J(Ri)= λcur∇Jcur + λsmo∇Jsmo (4)

Curvature gradient:
∇Jsmo = 2(Ri−1 − 2Ri + Ri+1)

Smooth gradient:
∇Jsmo = 2∆Ri+1 − ∆Ri

3. Waypoint update equation is given in (5):

Ri+1 = Ri − η∇J(Ri) (5)

where η is the learning rate, which controls the update step size. It is crucial to
choose an appropriate η, as a learning rate that is too large may cause algorithm
instability, while one that is too small will slow down the convergence speed. Adjust
the two weights λcur and λsmo according to the specific scenario to achieve the ideal
path-smoothing effect and path fidelity. The parameters η selected in this paper are
0.001, λcur and λsmo are set to 0.6 and 0.4, respectively. In each iteration, the algorithm
calculates the gradient of the objective function and updates the positions of the path
points using the conjugate gradient method [23]. Finally, the smooth path will be
output as the navigation reference path.

4. Optimal Speed Generation
4.1. Road Surface Detection

As demonstrated in Figure 2, the road surface detection module uses the U-Net
network [24] to capture the contextual information in the image and divide the road surface
into 13 different categories: (black, background), (light blue, road asphalt), (greenish
blue, paved road), (peach/light orange, unpaved road), (white, road marking), (pink,
speed bump), (yellow, cats eye), (purple, storm drain), (cyan, manhole cover), (dark blue,
patches), (dark red, water puddle), (red, pothole), (orange, cracks). These features are then
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incorporated into the SAC state representation. We simplified the model as shown in Table 1,
by removing the redundant Dropout layer and merged some convolution operations. This
adjustment not only reduces the complexity of the model but also effectively maintains its
segmentation ability.

Figure 2. Summary of the road types.

Table 1. Configuration of the U-Net.

No Operational Layer Output Connected

1 input_layer (InputLayer) 256, 256, 3
2 conv2d (Conv2D) 256, 256, 16 No. 1
3 max_pooling2d (MaxPooling2D) 128, 128, 16 No. 2
4 conv2d_1 (Conv2D) 128, 128, 32 No. 3
5 max_pooling2d_1 (MaxPooling2D) 64, 64, 32 No. 4
6 conv2_2 (Conv2D) 64, 64, 64 No. 5
7 max_pooling2d_2 (MaxPooling2D) 32, 32, 64 No. 6
8 conv2_3 (Conv2D) 32, 32, 128 No. 7
9 max_pooling2d_3 (MaxPooling2D) 16, 16, 128 No. 8
10 conv2_4 (Conv2D) 16, 16, 256 No. 9
11 conv2d_transpose (Conv2DTranspose) 32, 32, 128 No. 10
12 concatenate (Concatenate) 32, 32, 256 No. 11, 8
13 Conv2_5 (Conv2D) 32, 32, 128 No. 12
14 conv2d_transpose_1 (Conv2DTranspose) 64, 64, 64 No. 13
15 concatenate_1 (Concatenate) 64, 64, 128 No. 14, 6
16 conv2_6 (Conv2D) 64, 64, 64 No. 15
17 conv2d_transpose_2 (Conv2DTranspose) 128, 128, 32 No. 16
18 concatenate_2 (Concatenate) 128, 128, 64 No. 17, 4
19 conv2d_7 (Conv2D) 128, 128, 32 No. 18
20 conv2_9 (Conv2D) 256, 256, 13 No. 19

4.2. Motor Efficiency Optimization

As mentioned in the efficiency optimization module and the real-time output of motor
efficiency Emotor, we select the range with a higher output efficiency than the current
or set threshold within the converted restriction range. Then, these selections can be
converted into [vmin, vmax] and [amin, amax] of the vehicle. These generated ranges meet the
requirements of being higher than the current or set output efficiency [Eamin , Eamax ], while
also satisfying the dynamic and kinematic constraints of the vehicle, thereby improving
the motor output efficiency and reduces the energy consumption without affecting the
vehicle’s driving. Directly applying the acceleration information from the motor energy
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efficiency map to the SAC controller can effectively optimize energy efficiency and control
the performance of electric vehicles. As mentioned in Figure 1 and our previous work [25],
the optimal motor efficiency Eaopt can be calculated and is demonstrated in Figure 3.

Figure 3. Generation of Emotor.

4.3. SAC Controller

The SAC controller can be efficiently generated and optimized for speed, as
detailed below:

State: It should contain various information related to the movement of the vehi-
cle, including vehicle status: position, speed, acceleration, and direction; environmental
information: characteristics obtained through the camera, such as pavement with di-
mensions of 256 × 256; Eaopt when generating optimal speed, acceleration, and re f path.
According to the environment and task requirements, the path generated by the hybrid
A* is optimized and input into the SAC using the conjugate gradient descent smoother:
(re f x0, re f y0, re f x1, re f y1, · · · , · · · , re f x7, re f y7).

Action: SAC outputs the optimal acceleration aopt and the optimal look-ahead distance
ldopt through learning strategies, allowing the vehicle to drive smoothly in complex envi-
ronments. Thus, the pure-pursuit controller can achieve stable tracking only by updating
the optimal front wheel angle δopt.

The output action is defined by two continuous variables ld, a, where a is limited to
the range [−4, 4] based on the vehicle dynamics. The real-time ld is based on the vehicle’s
dynamic constraints and is limited to the range [0, ldmax].

Reward: The reward function is designed to encourage vehicles to minimize en-
ergy consumption and drive more efficiently while ensuring tracking accuracy, safety,
and comfort.

1. Path tracking error: The tracking error includes the lateral tracking error (cross-track
error, (cte)) and the heading tracking error eψ. During the tracking process, as long
as the tracking error of the controller is kept within a reasonable range, the safety of
driving can be ensured. Therefore, the reward function will encourage the controller
to minimize both the lateral and heading errors, especially the lateral error.

rcte =

{
ξ1 ∗ (wveh

2 − cte) cte < wveh
2

−rmax cte ≥ wveh
2
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reψ =

{
e−ξ2|eψ| |eψ|< π

2

−rmax |eψ| ≥ π
2

Since the heading deviation has a significant impact on driving safety, the reward func-
tion will decrease exponentially as eψ increases. This design is intended to encourage
the controller to pay more attention to the heading error to ensure driving safety.

2. Velocity tracking error: In terms of tracking efficiency and comfort, we have estab-
lished a reward mechanism: within the speed limit of the road, the faster the speed,
the higher the efficiency. Therefore, we introduced a speed reward. When the vehicle
speed is lower than a certain set value, a negative reward will be given to ensure that
the vehicle can maintain a certain initial speed.

rv =

{
ξ3 ∗ (v− vmin) v > vmin

−rmax vs. ≤ vmin

The acceleration of the vehicle directly affects ride comfort, so we have also established
an acceleration reward mechanism. Specifically, the smaller the acceleration, the
smoother the driving process, thus improving the ride comfort experience.

ra =

{
ξ4 ∗ (amax − a) a < amax

−rmax a ≥ amax

3. Energy efficiency: Energy consumption is a crucial factor in high-speed path tracking.
The motor running at a low energy efficiency point will directly lead to a shortened
actual mileage of the vehicle and also shorten the service life of the battery and motor.
Therefore, it is very necessary to keep the motor output at a high-efficiency point
during driving. As given in the efficiency optimization module, [Eamin , Eamax ] can be
defined. When Emotor exceeds this threshold, the corresponding reward will be given;
if it is lower than the set threshold, the reward will be negative.

rEmap =

{
ξ5 ∗ (Emotor − Eamin) Emotor > Eamin

−rmax Emotor < Eamin

In our study, the hyperparameter tuning process for the SAC algorithm followed
a systematic approach to ensure the reproducibility of the results. We selected a set of
initial hyperparameters, including the learning rate, discount factor, target network update
frequency, and others. The details are presented in Table 2.

Table 2. SAC hyperparameter settings.

Hyperparameter Value

Learning rate: actor 0.0003
Learning rate: critic 0.0003

Learning rate: entropy regularization coefficient 0.0003
Discount factor 0.99

Target network update rate 0.005
Replay buffer 1,000,000

Entropy regularization coefficient 0.2

4.4. Network

In Figure 4, “Linear” refers to, direct linear output without on activation function,
while “Dense” means fully connected output. SAC’s experience replay mechanism uses
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historical data from the cache for learning. For example, 65,560 is calculated as the sum
of the segmented image input: 256× 256 and the vehicle state: 24. As uniform random
sampling may lead to low learning efficiency and even cause overfitting problems, prior-
itized experience replay is adopted in Algorithm 1 [26]. It samples from the experience
replay pool according to a specific priority. Compared with random uniform sampling, it
can significantly improve learning efficiency and thus accelerate the convergence process
of the model.

Figure 4. Structure of the SAC network.

Algorithm 1: SAC path-tracking training method with prioritized experience
replay

Input: D: Prioritized experience replay buffer, N: Total number of transitions, N :
Number of updates, η: The threshold for updates

Output: π∗ϕ: Control policy with optimal

1 Initialize parameter ψ, ψ̄, θ, φ, D ← ϕ, N ← 0, st ← s0; y← 1;
2 for each iteration do
3 while st ̸= sT do
4 at π∅(at|st), st+1 ← p(st+1|st, at)

5 D ← D ∪ {(st, at, r(st, at), st+1, Done)}
6 set initialize TD error to 1
7 N ← N + 1, st ← st+1

8 normalize TD error to pj and sampling on D
9 end

10 if N ≥ η then
11 ψ← ψ−NV∇̂ψ JV(ψ)

12 θi ← θi −NQ∇̂θi JQ(θi) f ori ∈ {1, 2}
13 ϕ← ϕ−Nπ∇̂ϕ Jπ(ϕ)

14 ψ̄← τψ̄ + (1− τ)ψ̄

15 calculate every sample’s TD error and update D
16 end
17 end
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5. Path Tracking Using the PP Method
Since MPC has a large computational load, we introduce a pure geometric method to

reduce the computational burden while maintaining a tracking accuracy similar to or even
better than MPC. In addition, the MPC method also requires more accurate vehicle model
data and parameters, which are often difficult to obtain in practical applications.

In Figure 5, based on the current position of the rear axle center of the vehicle, a
preview point (x, y) is matched forward on re f path, recorded as ldopt(x, y), and this preview
point is regarded as the goal point for this cycle. Assume that the rear axle center of the
vehicle can reach the preview point according to a certain turning radius R. Next, δ is
determined based on the geometric relationship between ldopt, R, and the orientation angle
β of the preview point in the vehicle coordinate system. For the center point of the rear
axle of the vehicle to smoothly reach point C along the arc dotted line path, (6) needs to be
satisfied in the triangle OAB:

ldopt

sin2β
=

R
sin(π

2 − β)
(6)

Figure 5. The schematic diagram of PP method.

As sin2β = 2sinβcosβ, sin
(

π
2 − β

)
= cosβ, so the above formula can be simplified

to (7)

R =
ldopt

2sinβ
(7)

In the Ackermann turn (triangle OAC), we have (8)

tanδ ≈ L
R

(8)

Combining the above formulas, we can obtain (9):

δ = tan−1
(

2Lsinβ

ldopt

)
(9)

The lateral position error is defined as the lateral error between the vehicle’s current
posture and the forward-looking angle, that is, ey = ldoptsinα. Therefore, (10) is given:

δ = tan−1

(
2Ley

ldopt
2

)
(10)

Since the front wheel turning angle is generally small, the small angle assumption can
be used, leading to (11).

δ ≈
2Ley

ldopt
2 (11)
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6. Experiments and Results
The main parameters of the vehicle and its motors are given in Table 3.

Table 3. Parameters of the vehicle.

Parameter Value

Vehicle mass (kg) 600
Wheel radius (m) 0.3125

Wheel inertia (km/m2) 0.25
Battery normal voltage (V) 72

Motor max power (kW) 84
Motor max torque (Nm) 280

6.1. SACPP Network Training

In Figure 6, the test scenario built in CarMaker [27] introduces a variety of turning
radii and different types of road surfaces while adjusting the mass of the vehicle during the
test to evaluate the controller’s tracking performance and anti-interference ability.

1. Training scenario 1: Straight driving on a normal road, 1.87 km long, mainly used to
learn basic acceleration and deceleration operations.

2. Training scenario 2: Circular driving on a normal road, 6.366 km long, aimed at
mastering basic left and right turn operations.

3. Training scenario 3: Normal road with a combination of straight lines and arcs, 3.61 km
long, aimed at achieving simple straight driving, acceleration, and deceleration, and
basic operations such as left and right turns.

4. Training scenario 4: A simple scenario with different road surfaces, combining straight
lines, arcs, and U-turns, 4.02 km long. This scenario helps the controller adapt to
disturbances caused by road changes.

5. Training scenario 5: A complex scenario with a variety of road types, includ-
ing straight lines, arcs, continuous turns, and multiple U-turns, with a length of
5.184 km. Since this scenario involves different road types, continuous turns, and
diverse U-turns, it aims to improve the controller’s precise tracking capabilities in
complex environments.

6. Verification scenario 6: This is a complex test scenario (straight line + arc + continuous
turns + multiple U-turns) with a length of 7.787 km, covering a variety of road types,
continuous curves, and multiple U-turns. This scenario is designed to fully verify the
performance of the algorithm in actual applications.

6.2. Generalization Performance Verification

65 km/h This work is mainly aimed at urban environments, where the maximum v
is 65 km/h. In Figure 7, the controller can reach 65 km/h and the average v is 42.3 km/h
in a complex environment with continuous turns, U-turns, and different road conditions.
The controller SACPP will decelerate in advance when turning, especially on curves with
larger arcs, and will implement more significant deceleration measures to ensure that the
vehicle has sufficient support while turning, maintaining good tracking ability and ensure
driving safety.

As shown in Figure 8, the maximum acceleration is less than 4 m/s2, which meets
the vehicle’s dynamic constraints. At the same time, the maximum deceleration does not
exceed −4 m/s2, which is close to the actual mechanical limit of the vehicle. The SACPP
controller can make full use of the physical characteristics of the vehicle and the road speed
limit constraints to generate efficient control variables, maximize the tracking speed under
multiple constraints, maintain tracking accuracy, and improve driving safety. Furthermore,
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the maximum value of δ is close to 0.1rad (about 5.73 degrees), which is much lower than
the maximum steering angle of the vehicle. This indicates a smaller turning amplitude,
especially when driving at high speeds; a smaller turning amplitude will help improve the
stability of the vehicle.

(a) (b)

(c)

Figure 6. Maps utilized in this work: (a) Training scenario 4. (b) Training scenario 5. (c) Training
scenario 6.

Figure 7. Faced with the complex road conditions of scenario 6, the performance of the SACPP
controller in an urban environment is evaluated: red represents the reference path, blue indicates the
path of the vehicle under the SACPP controller, and the highlighted paths (1, 2, and 3) are partially
enlarged for comparison.
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Figure 8. Performance analysis of SACPP controller: acceleration/ deceleration a, and steering angle
δ constraints in urban driving conditions.

6.3. Uncertainties

Since changes in vehicle weight introduce external disturbances, we conducted path
tracking tests with different masses on the same given path to verify the generalization
performance of this algorithm. Figure 9 shows that, for the nominal weight, the average
lateral error (cte) is 0.0989 and the maximum cte is 0.219; when the weight is reduced
by 10%, the average cte is 0.108 and the maximum cte is 0.254; and when the weight is
increased by 10%, the average cte is 0.123 and the maximum cte is 0.302. From the above
data, it can be seen that, when the mass change is around 10%, the maximum cte in all
cases is less than 0.5. However, compared to reducing weight, increasing weight has a
more significant impact on the controller, with the maximum cte exceeding 40% of nominal
weight and the average cte exceeding 24% of normal weight. In contrast, when reducing
weight, both the maximum and average cte are close to normal weight, indicating that the
disturbance caused by increasing weight is much greater than that the disturbance caused
by reducing weight.

Figure 9. The impact of vehicle weight variations (m, 9/10 m, 11/10 m) on controller path-following
performance: a detailed presentation of the average and maximum lateral errors for a given path.

The path tracking performance under different road conditions was tested, while
keeping the same speed for the experiment, and the specific results are shown in Figure 10.
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For normal paved roads and unpaved roads, the tracking performance is similar, and
the maximum cte does not exceed 0.3. However, on slippery roads, the maximum cte is
close to 0.5. Although the cte on slippery roads increases at the same speed, it remains
within an acceptable range. Road surface detection errors are mainly influenced by lighting
conditions, such as incorrectly segmenting paved roads as unpaved roads or failing to
accurately identify scenes like puddles. In response to these segmentation errors, this
paper pays special attention to the puddle scenario, which refers to relatively slippery
road surfaces. The proposed algorithm can ensure that the maximum cte does not exceed
0.5 m. This means that even in the presence of semantic segmentation errors, the algorithm
introduced in this paper can still keep the maximum cte within an acceptable range.

Figure 10. Path-tracking performance of the SACPP controller for a given path under different road
conditions: lateral error display for water puddle, unpaved road and paved road.

From the summary in Table 4, despite the increase or decrease in weight, the maximum
cte remains within a reasonable range, which proves that the algorithm has a good handling
ability for internal disturbances. It is worth noting that the adaptive speed generation
strategy based on SAC can decelerate in advance in slippery road scenarios, thereby
reducing cte and ensuring the stability of the driving process. This shows that the algorithm
has good adaptability and stability under different road conditions.

Table 4. cte results for uncertainties.

Uncertainty Parameters Max cte (m) Mean cte (m)

Mass
m 0.220 0.099

9
10 m 0.2548 0.108
11
10 m 0.3025 0.1235

Road surface
Water Puddle 0.5249 0.2207

Unpaved 0.2549 0.1089
Paved 0.2321 0.092

We conducted an experimental comparison on the internal disturbance introduced by
the vehicle mass. The compared algorithms include the model predictive control algorithm
(KMPC) based on the dynamic model, the model predictive algorithm (DMPC) based on the
kinematic model, the linear quadratic controller algorithm (DLQR) based on the kinematic
model, the simple geometric tracking algorithm, and the PID control algorithm. From the
comparison results in Figure 11, it can be seen that the MPC controller based on the dynamic
model needs to incorporate the vehicle body mass in the modeling process, making it the
most affected by the mass. Its maximum cte increases significantly, exceeding 0.5 m, which



Sensors 2025, 25, 4533 16 of 22

will seriously affect the safety of the vehicle during driving. For the two control schemes
of DMPC and KMPC, their tracking performance is similar, but their maximum cte also
exceeds 0.5 m. The tracking performance of the SACPP controller proposed by us remains
stable in the face of the uncertainty of mass increase, with little change, and its maximum
cte is still within 0.25 m, which greatly ensures the safety of the vehicle during driving.

Figure 11. Experimental comparison of internal disturbances caused by robot mass: performance
analysis of various control algorithms: such as MPC, DMPC, DLQR, simple geometric tracking
and PID.

6.4. Energy Consumption

The computer configuration used in the test platform is an Intel(R) Core(TM) i7-
9750H CPU, with a main frequency of 2.60 GHz (the actual frequency is 2.59 GHz), and a
graphics card of GeForce GTX 1060. During the actual operation process, we measured the
algorithm’s time consumption for the proposed controller, and the relevant data are shown
in Figure 12. The control scheme proposed here has a maximum computation time of less
than 0.01 s and the average time consumed by the algorithm is 0.0037 s; that is, the control
cycle exceeds 100 Hz, thus meeting the real-time requirements for path tracking control in
autonomous driving. In addition, since SACPP can generate adaptive speed, this feature
effectively reduces the demand for speed generation modules and greatly saves computing
resources. This means that the control frequency of the controller can exceed 100 Hz, fully
meeting the real-time requirements of the vehicle driving process. The GPU memory usage
is less than 1 GB during runtime, and the trained network has a low usage rate on the GPU.
In actual deployment, you may consider replacing it with Jetson Orin Nano 4 GB, which
can not only meet performance requirements but also effectively reduce costs.

Figure 12. Performance metrics of the proposed SACPP controller: timing analysis and resource
utilization on Intel Core i7-9750H and GeForce GTX 1060.
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To verify the effectiveness of this controller, human trajectory data Ding [5] (released
by Honda North America Research Institute) is used, covering 37 driving scenarios and
a total of 104 h of real driving data. Since the input of the SACPP controller requires
speed and acceleration ranges, we use the speed and acceleration data of human drivers
to replace the speed and acceleration ranges generated based on the current state of the
vehicle, ensuring that the speed produced by SACPP is closer to the actual driving speed of
human drivers. We define the improved motor output efficiency rate as ηI given in (12). By
combining vehicle dynamics with the motor efficiency map, the energy consumption rate
Rec can be calculated using Equation (13). In these two formulas, ηSACPP, ESACPP represent
the average energy efficiency and motor output energy of SACPP, respectively, while ηh, Eh

represent the average energy efficiency and motor output energy of human drivers.

ηI =

(
ηSACPP − ηh

ηh

)
× 100% (12)

Rec =

(
Eh − ESACPP

Eh

)
× 100% (13)

Figure 13 shows the energy saving result with a normal driving scenario of a human
driver, where the driving path of the human driver, v, a, the motor output efficiency map,
and the efficiency details are demonstrated. The subfigure v includes the speed of the
human driver during driving and the speed finally generated by the proposed SACPP
controller based on the human driver as the reference speed. The speed generated by
SACPP is similar to the speed of the human driver but smoother. The subfigure a compares
the acceleration generated by the human driver with the acceleration generated by SACPP,
and the results show that the acceleration variation of SACPP is smaller. For the normal
straight case shown in Figure 13a, the output efficiency corresponding to SACPP is more
concentrated, while the output efficiency of the human driver is more dispersed, and there
are some output efficiency points falling by 70%. The average motor output efficiency of
human drivers is 92.73%, while that of SACPP is 93.65%, an increase of 0.92%, close to
1%. Higher output efficiency means less energy consumption. In addition, we analyzed
scenarios such as avoidance, left turn, and right turn. In these scenarios, due to the low
speed and large acceleration and deceleration, the motor output efficiency is reduced.
In comparison, the algorithm proposed in this paper performs better in these scenarios,
and the actual output efficiency can be improved by up to 1.8%. In the left-turn scenario
in Figure 13b, ηI is 1.23% higher than that of humans, and it exceeds 90%. Additionally,
because the generated speed and acceleration are smoother, the overall energy consumption
is reduced by 4.5% compared to that of humans, according to the formula. In the intersection
scenario shown in Figure 13c, the output efficiency of the motor is 1.13% higher than that
of human drivers. As shown in the figure, there are instances where the output efficiency
of human drivers is less than 50%, indicating that half of the energy is wasted at certain
moments. Although the algorithm proposed in this paper increases the motor’s output
efficiency by 1.13%, the overall energy savings exceed 4.5% due to the smoothing of speed
and acceleration, according to the formula.
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(a)

(b)

(c)

Figure 13. Energy-saving analysis in several driving scenarios: comparison of human driver and
SACPP controller performance indicators, including speed v, acceleration a, and motor energy
efficiency map and output efficiency: (a) normal straight (b) right turn (c) intersection.
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6.5. Testing in the Real Vehicle

In Figure 14, we selected an open path on campus, where the set path tracking speed
must not exceed 10 km/h, and the road is unpaved. Considering the short test area, we
adopted a continuous round-trip test method. First, we set the driving path, and the human
driver drove the vehicle back and forth along the path, recording the position, speed, and
acceleration during the driving process, while using a data logger to save the real-time
current of the motor. After the human driver completed the test, we used SACPP as the
path-tracking controller and took the human driver’s reference speed as input to record
the vehicle’s state and motor current. As seen in Figure 15, when tracking the same path
multiple times, the SACPP controller keeps the vehicle close to the reference path and no
obvious deviation occurs during the multiple round trips.

Figure 14. Vehicle testing on an open path on campus.

Figure 15. Path tracking performance of the SACPP controller in multiple tests: the human driver
drove back and forth on an uneven road at a speed not exceeding 10 km/h, while the vehicle, under
the control of our proposed SACPP controller, operated autonomously.
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Figure 16 shows a comparison of motor currents between a human driver and a
SACPP controller during driving. It can be seen that the current fluctuations required by
the SACPP controller are smaller and more uniform, and its current demand is lower than
that of a human driver. For the motor, a smaller current means lower energy consumption
at the same input voltage. This indicates that the SACPP controller can accomplish the
same task with reduced energy consumption. Furthermore, the lateral deviation during
continuous path tracking remains within a safe range, which not only improves energy
efficiency but also ensures the safety of path tracking. As a result, this contributes to higher
motor output efficiency, extends the motor’s service life, and enhances the efficiency of
autonomous driving path tracking.

Figure 16. Comparison of the current demand between the SACPP controller and the human driver:
The SACPP exhibited smaller and more uniform current fluctuations during path tracking, showing
lower energy consumption and higher energy efficiency, ensuring the safety and service life of
the motor.

7. Conclusions
This paper proposes an accurate path-tracking method for autonomous driving based

on U-Net semantic segmentation and a reinforcement learning controller. First, U-Net is
used to perform semantic segmentation on the road surface to obtain different types of
road surface information. Then, combined with the adaptive capabilities of reinforcement
learning, the system can adapt to changing road conditions. At the same time, the motor
energy efficiency map is introduced to optimize the motor output, ensuring that it operates
above the set threshold, thereby saving energy and extending the motor life. To reduce the
computational load, we use a pure-pursuit controller based on a geometric algorithm and
employ the adaptive look-ahead nodes generated by reinforcement learning to improve
efficiency while ensuring tracking accuracy. Test results show that the algorithm has
good anti-interference ability to external and internal disturbances, with the maximum
controller time consumption being less than 0.01 s, and the real-time control frequency
exceeding 100 Hz, meeting the real-time requirements. The actual machine verification
results show that the algorithm performs well in energy saving, tracking accuracy, and
motor energy efficiency output. This work aims to improve safety and driving efficiency.
First, safety has been improved by eliminating human operation errors through precise
control, which effectively solves the problem of frequent accidents at intersections. Second,
the reduction in vehicle spacing increases the capacity of the road, thereby improving
driving efficiency. Third, the smooth driving trajectory reduces sudden acceleration and
deceleration, optimizing energy consumption.

Our future work plans are as follows:
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1. We will focus on terrain changes (such as mountain roads and different slopes) to
further improve the tracking performance of the controller under various terrains.

2. We will study the impact of different rewards on the stability of the overall controller,
and related experiments will be included in subsequent work.

3. We plan to conduct robustness experiments on the proposed algorithm under different
weather conditions in future work. However, due to the difficulties in obtaining
relevant data and the challenges associated with actual scene testing, this work is
currently difficult to implement. Therefore, we will focus on testing the performance
of the algorithm in various weather conditions and on steep slope scenarios.

4. Subsequent work will integrate various traffic signs and trajectory predictions of
surrounding vehicles to generate a driving speed that takes into account traffic in-
formation and surrounding vehicle conditions. This will not only help save energy
but also improve travel efficiency. In addition, the algorithm can be deployed on
multiple vehicles to achieve collaborative path tracking, further enhancing overall
travel efficiency.
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