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Modeling passenger route choices is crucial for analyzing and predicting public transportation demand. One of the most popular
methods is to use probabilistic route choice (PRC) models (also known as discrete choice models in general), which have broad
applications in transportation, economics, politics, and other felds. However, its performance varies depending on the char-
acteristics of the origin–destination (OD) trip data and should be examined carefully. Tis paper proposes a framework for
validating the PRCmodel on its application to urban rail transit (URT) networks containing small-scale OD trip data.Te concept
of small-scale data is defned at frst for each OD pair considering the desired confdence level and the variance of route choices.
Ten, a travel time range (TTR)-based method is put forward to deduce passengers’ actual route choices as a benchmark for
verifying PRC models. Te diference and regularity analysis between the actual route choices and the model predictions are also
performed with a twofold comparison. A case study on the Nanchang metro in China shows that the actual daily passenger
volumes on routes of small-scale OD pairs diverge remarkably from the estimations of the PRC model. Te PRC model’s
performance is further discussed when the small-scale OD trip data accumulate to a larger scale over multiple days (e.g., several
months). Tis study reveals the inherent limitation of PRCmodels in estimating the travel behaviors of passengers in a small-scale
population. Several practical implications are discussed to improve the route choice model and passenger fow analysis.

Keywords: applicability; probabilistic route choice model; small-scale trips; urban rail transit; validation

1. Introduction

Te urban rail transit (URT) system, serving as a high-
capacity transportation system, has emerged as a crucial
component of urban passenger transportation, undergoing
remarkable progress from a solitary line to a complex
network in many major cities around the world. It is known
in the literature that the passenger fow in the network is the
foundation for the operation plan of a URT system. Esti-
mating passengers’ route choices on transit networks plays
a pivotal role in analyzing, predicting, and simulating

passenger fows. Over the years, numerous transit route
choice models have been developed, both in theory [1–5]
and in practice [6–10]. Comprehensive surveys are available
in several review papers [11–15].

In the feld of transit route choice modeling, the shortest-
route principle is frst used to estimate the route choices of
URT passengers. From the analyst’s perspective, it assumes
that all the passengers between an origin–destination (OD)
pair take the “shortest route,” which is usually the route with
fastest travel time (TT) (or lowest cost/shortest distance). As
the network expands and becomes more complex, there are
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more alternative routes between an OD pair, and passengers
may not choose the shortest route due to various reasons
(e.g., unfamiliarity, residual habits, and group traveling).
Accurately modeling passengers’ route choice behaviors is
also more challenging, considering the complexity of human
behavior representation, the lack of passengers’ knowledge
about the network composition, the uncertainty of pas-
sengers’ perceptions of route characteristics, and the un-
availability of precise information about passengers’
preferences. Tus, probabilistic choice models are in-
troduced, of which discrete choice models have been widely
adopted in the last few years. Recently, emerging techniques
have been applied to route choice data mining. Using au-
tomatic train supervision (ATS) and automatic fare col-
lection (AFC) data, analysts can deduce passengers’ train
choices, thereby estimating passenger route choices and fow
distribution on the network. Other techniques estimate
passengers’ route choices with mobile phone signaling
(MPS) data, Wi-Fi probing data, closed-circuit television
(CCTV) data, and other sources. However, these techniques
cannot take undetected passengers into account and are not
efective without historical data. Terefore, probabilistic
route choice (PRC) models still remain necessary and are
described in detail below.

When it comes to PRC models, Manski’s [16] paradigm
for predicting choice which provided the models’ essential
part is very helpful for simplicity. Tis paradigm states the
probability formula for an actor choosing an alternative
from the choice set. In terms of passenger route choice, the
probability of the passenger i choosing the route r for a given
OD pair od from the route choice set USi can be expressed as
the following expression:

Pi rod USi

􏼌􏼌􏼌􏼌􏼐 􏼑 � 􏽘
CSi∈PSi

pi rod CSi

􏼌􏼌􏼌􏼌􏼐 􏼑 · p CSi USi

􏼌􏼌􏼌􏼌􏼐 􏼑,
(1)

where pi(rod|USi) is the choice probability of route r for
a given OD pair od from the universal set USi of all routes
available to the passenger i; pi(rod|CSi) is the conditional
probability of passenger i chooses route r for a given OD pair
od in his/her consideration set CSi, which is a subset of USi;
p(CSi|USi) is the probability that CSi is the consideration set
of passenger i given his/her universal set USi.

PRC models follow the law of large numbers [17, 18],
which means that as the sample size grows, the average
tends to approach the expected value. A coin fipping is
a classic example of this principle. Each time a coin is
fipped, the probability of heads is 50%. Tus, in an infnite
sequence of coin fips, the anticipated ratio of heads is
gradually equivalent to 1/2. However, when we fip the coin
only 10 times, we may fnd that heads appear only three
times. Due to the small sample size of 10 fips, there is no
guarantee that the proportion of heads observed will be
anywhere near 50%. If the PRC models are applied to the
average of a large number of passengers, its prediction
results will be accurate. However, it may not be reliable to
predict the choices of a limited number of passengers. Tis

issue is evident in URTnetworks containing OD pairs with
small-scale trips. In the case of the Shanghai Metro, one of
the largest metro systems in the world, statistics on AFC
transaction data show that there are more than 50% of OD
pairs with less than 30 passenger trips per day1, accounting
for over 30% of total trips between these OD pairs within
the network [19]. Terefore, exploring the reliability of
PRC models for OD pairs with small-scale trips is an in-
triguing and signifcant issue, both theoretically and
practically, which has not been comprehensively addressed
in the literature.

Given the widespread presence of small-scale OD pairs
and the potential for PRC model misalignment under such
conditions, the research problem addressed in this study can
thus be stated more formally as follows: consider one URT
network represented as a directed graph G � (N, A), where
N is the set of nodes (stations) and A is the set of arcs (direct
connections between stations). Let W be the set of all OD
pairs within the network, where each OD pair w ∈W is
associated with a daily passenger fow volume dw. We defne
a subset Ws ⊂W as small-scale OD pairs, where dw < θ for
all w ∈Ws, with θ representing a threshold. For each OD
pairw ∈Ws, letRw be the set of all feasible routes connecting
the origin to the destination. Under a PRC model, the
probability of route r ∈ Rw being chosen is given by Pw

r , as
expressed in Equation (1). Te model predicts that ap-
proximately dw · Pw

r passengers will select route r. However,
given the law of large numbers, this prediction becomes
increasingly unreliable as dw decreases. We aim to in-
vestigate the reliability gap and evaluate the relationship
between predicted route fow distribution dw · Pw

r |r ∈ Rw􏼈 􏼉

from PRC models and actual route choices fw
r |r ∈ Rw􏼈 􏼉

observed in the system (where 􏽐r∈Rw
fw

r � dw). For small-
scale OD pairs where dw < θ, we hypothesize that the dis-
crepancy between predicted and actual route fows exceeds
acceptable error margins. Furthermore, we examine how
this discrepancy evolves when data are accumulated over
multiple days, efectively increasing the sample size to T · dw

(where T is the number of days).
To address these questions, we propose a validation

framework specifcally tailored for small-scale OD pairs and
also investigate how model performance evolves when trip
data accumulate over multiple days. In addition to flling
a clear modeling gap, this study supports more informed
decisions about when and how such models can be applied
in practice efectively—particularly in short-term forecasting
and in identifying scenarios where model modifcations or
supplementary data collection may be needed. It also helps
guide the application of PRC models in medium- and long-
term planning tasks, such as capacity design, service opti-
mization, and strategic investments in urban rail systems.

Te main contributions of this paper are put forward in
advance:

1. A validation framework for PRC models is proposed,
which includes three successive tasks and completes
the validation with a twofold comparison.
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2. Te defnition of OD pairs with small-scale trips is
discussed in the context of URTsystems, and the judge
criterion is provided.

3. A travel time range (TTR)-based method is developed
for deducing URT passengers’ actual route choices. It
is customized for the OD pairs with small-scale trips,
and the results are taken as a benchmark to assess the
validation of PRC models.

4. A detailed case study on the Nanchangmetro in China
is conducted, with several results, and their impli-
cations are discussed.

Te remainder of this paper is organized as follows:
Section 2 reviews relevant studies. Section 3 proposes
a validation framework including three successive works.
Section 4 presents the application of the proposed approach
to the Nanchang metro in China, followed by discussions in
Section 5. Te fnal section summarizes the conclusions and
their practical implications.

2. Literature Review

Tis study focuses on the applicability of probabilistic
models for passengers route choices in rail transit. In this
section, we briefy review related literature on the historical
application of probabilistic models in the feld of trans-
portation and highlight our contributions to the applicability
of PRC models at diferent demand levels.

2.1. PRC Models in Urban Transportation. Historically,
discrete route choice models have been utilized to address
passenger route choice issues, with generalized cost func-
tions widely used in current research. Bayesian techniques
and Logit-based models [3, 20, 21] have been suggested to
estimate passenger route preferences. However, these
models must consider the total cost associated with each
route, including factors such as waiting time, TT in the
vehicle, station dwell time, transfer time, and choice patterns
(such as transfer frequency, comfort level, and transfer
penalties). Some models attempted to incorporate how the
similarity between alternative route options afects passen-
ger decisions. Tese range from more sophisticated models
grounded in generalized extreme value theory, such as the
paired combinatorial logit, cross-nested logit (CNL), and
generalized nested logit, and error components and logit
kernel models. Te multinomial logit (MNL) model is ad-
justed to capture these similarities by introducing additional
terms [22]. Sensitivity to the efective route threshold is
a limitation of these strategies. Te quantity of efective
routes between OD pairs determines this to a large extent.

Similarly, route choice estimation in URTrelies on those
models where passengers choose their transfer station
thoroughly based on the train schedules and personal travel
experiences. Tis also presents a typical issue raised by the
networked operation of URT in the real-world scenarios
[23]. Wu and Liu [24] constructed an equilibrium model
based on equilibrium theory and resolved it using the frank-
wolf algorithm, drawing inspiration from road trafc fow

assignment methods. Si et al. [25] developed a passenger-
integrated travel impedance function to enhance the equi-
librium model, highlighting the distinctions between URT
and road networks. Te primary methods for calculating
route choice probabilities include the improved logit model
[26] and the probability distribution model based on normal
distribution [27]. In both models, the likelihood of route
choices increases as travel impedance decreases. While
initial passenger fow assignment results can be obtained
using the methods above, their accuracy has to be further
improved. Te passenger travel impedance needs to be more
specifcally described, and qualitative elements infuencing
passenger route choice need to be converted into quanti-
tative indicators to increase model accuracy and make
fndings more realistic [28].

Typically, the traditional logit approach may produce
some irrational outcomes, particularly due to its neglect of
routes interdependencies, which would afect result accuracy.
Most existing literature on route choice behavior analysis
using the logit models does not account for this aspect.
Considering the route relevance in URTnetworks, Zhang [14]
recommended using the C-logit or path size logit model [29]
for researching route choice behavior in practice. Gleason
et al. [30] utilized the C-logit model to explore how socio-
demographics, network structure, and passenger perceptions
of transfers afect route choice behavior. Additionally, the
cumulative prospect theory was found to be more efective
and realistic than the expected-utility-based approach in
testing the efectiveness of route choice behavior [31].

2.2. PRC Models for Variable Demand Levels. It is widely
known in the literature that stochastic user equilibrium
(SUE) fow patterns come close to those provided by the
deterministic user equilibrium (DUE) solution at very high
demand levels. However, for moderate to high demand
levels, SUE fows may difer signifcantly from DUE fows
depending on the specifc route choicemodel employed [22].
A deeper characterization of passenger route choice be-
havior is necessary, for example, the efects of morning-peak
and evening-peak passenger fows, to accurately compre-
hend how passenger demand changes infuence the distri-
bution of passenger fow in the URT network.

According to the changing degrees of travel demand,
passengers would be grouped together to mitigate errors and
oscillations that arise from insufcient data [32]. Zhang [14]
proposed a time-switching topologies approach to dy-
namically update the URTnetwork representation based on
varying passenger loads. Tis considers the time-variance
nature of URT network passenger load, such as peak-hour
congestion and of-peak uncongested conditions. Tey also
suggested a function for the computation of general travel
costs in the URT network when passenger fow exceeds
permissible overcrowding limits. Xue et al. [33] developed
a control strategy for station-level passenger fow control in
URT networks based on train marshaling plans. Teir
fndings concluded that a suitable size of arrangement
scheme can be determined by the spatial and temporal
characteristics of large passenger fows due to the short
duration and the limited passenger fow packed section.
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However, these studies overlooked the situation in-
volving low-demand OD pairs. Bekhor et al. [22] compared
path fows generated using path-based SUE assignments
with the MNL and CNL models in real-size networks. Tey
examined how the choice set size afected issue convergence,
running duration, and particular results, highlighting the
prospective adoption of selected route choice models as
loading methods in SUE assignments. Tey found that in-
creasing the choice set size (leading to OD pairs with very
low-demand proportions) caused an increase in the route
choice estimation error. Tis may occur as the number of
routes in the choice set grows (and is comparable to the
situation of low-demand OD pairs).

2.3.Te Contribution of the Study inTis Paper to the Existing
Research Literature. In recent years, scholars have started to
notice and investigate the unreliability of traditional PRC
models for rail transit passenger route choices from diferent
perspectives. Most studies focused on infuence factors such
as map topology [34–36], service level [37–39], and pas-
senger travel experience [40–42]. Additionally, in-
vestigations were also conducted on abnormal travel
behaviors, including denied boarding [43–46], taping in and
out at the same station [47], go-and-back travel [48–50], and
group-based travel [51].

Despite some enhancements, adjusting existing PRCmodel
parameters alone remains insufcient to fully explain a certain
proportion of behaviors and phenomena to achieve accurate
estimation, which can infuence the passenger fow assignment
and rail transit operations. Rail transit agencies have also begun
to acknowledge the limitations of PRC models. Important and
necessary for industry, validation works for the PRC models
based on feld data have initiated to be carried out [52, 53].
Tese studies revealed that a great number of OD pairs witness
remarkable deviations between actual passenger fows and the
values estimated by themodels. For example, an investigation of
the Shanghai metro in China showed that more than 7000 OD
pairs had deviations based on the traditional PRC model,
contributing an average of more than 260,000 passengers per
day [19]. Beyond the aforementioned spatial dimension, several
inconsistencies also exist in the temporal dimension, typically
such as peak hour dislocation [54, 55]. Moreover, PRC models
struggle to accurately calculate and grasp actual passenger fow
distribution during large-scale or unexpected events, making
passenger fow control and network guidancemore challenging.

To the best of the authors’ knowledge, previous research
studies on comparing and evaluating route choice models are
limited (Table 1). Existing studies rely either on traditional
manual-based methods or approaches dependent upon an-
other route choice model whose applicability is also uncertain.
To fll the research gap, this study empirically explores the OD
pairs with small-scale trips in terms of the model prerequisites,
providing a more comprehensive understanding and insights

into the applicability of PRC models. Tis work is theoretically
and practically necessary and essential.

3. Methodology

3.1. Overview of Validation Procedure. Our study is based on
an assumption that the PRC models have been calibrated
using data from the whole URT network, as is customary in
practice [56, 57]. Te detailed calibration steps are docu-
mented in previous studies and are not included in this paper.

To validate the built PRC models, we propose a frame-
work with three successive major tasks, as shown in Figure 1:
(1) identifying the OD pairs with small-scale trips, (2) de-
ducing passengers’ actual route choices between the OD
pairs, and (3) comparing the actual choices to those esti-
mated by the PRC models. Te detailed steps are as follows:

Step 1. Identifying the set of OD pairs of study. For
convenient validation, we select OD pairs according to two
criteria: (i) OD pairs associated with only two route op-
tions; and (ii) OD pairs that satisfy the small-scale def-
nition, which will be described in detail in Section 3.2.
Step 2. Deducing passengers’ actual route choices as
a benchmark for comparison. A TTR-based method,
which is customized for OD pairs with small-scale trips,
is proposed in Section 3.3 to deduce passengers’ actual
route choices and the resulting route fows.
Step 3. Comparing the actual results to those estimated
by the PRC model. Te comparison is made at two
levels, respectively: daily and monthly. At each level,
diferences between passengers’ actual and estimated
route choices and their regularity are analyzed in detail.

Remark 1. On the defnition of small-scale data, our study
presents a criterion based on the sample size formula, as given
in Section 3.2, which considers the URTsystem’s characteristics
and the desired confdence intervals. Using this criterion, we
calculate threshold values for all OD pairs that entail diferent
variances of route choices and delineate small-scale ones.

Remark 2. Te proposed TTR-based method for deducing
actual route choices is customized for the OD pairs with
small-scale trips. Generally speaking, TTRs of routes be-
tween a given OD pair may overlap with each other, making
it difcult to deduce passengers’ route choices according to
TTRs. However, it becomes possible, as shown in Section
3.3, when discussing the OD pairs with small-scale trips.

Remark 3. Te proposed validation procedure examines the
efectiveness of applying PRC models to OD pairs with
small-scale trips at both daily and multiday levels. Note that
over a longer period (e.g., a month), the number of trips for
the same OD pair accumulates and may surpass the

4 Journal of Advanced Transportation
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threshold of small-scale data. Our study aims to conduct
comparisons for both scenarios.

3.2. Defnition of OD Pairs With Small-Scale Trips. Te
defnition of OD pairs with small-scale trips is the pre-
requisite and key for the identifcation. Some practitioners
have adopted the principle of a sample size larger than 30 as
a universally applicable criterion for large-scale samples
[58, 59], which implies the small scale with data records less
than 30. Meanwhile, to obtain a more detailed and gener-
alized criterion, researchers in the felds of medicine and
control engineering have proposed several sample size es-
timation formulas according to their professional data and
assumptions, such as those based on the Central Limit
Teorem or Confdence Interval Teory [60–64].

Our study tries to give a calculation criterion con-
sidering the characteristics of the URT system and con-
sequently focuses on the sample size estimation formula
based on confdence interval. We introduce it into the
context of URT networks to calculate the threshold of
small-scale trips for a given OD pair. Te calculation
formula is as follows:

n
od ≤ n

od
0 ≡

Z
2
α/2 × V(p)

△2
, od ∈W, (2)

where nod
0 is the threshold of the small scale, implying OD

pair od is small-scale if nod ≤ nod
0 and vice versa, and W

denotes the set of OD pairs. Te Zα/2 represents the 1 − α/2
quantile of the standard normal distribution, and usually, α
takes the value 0.05, and then, Zα/2 is 1.96. Te △ indicates

Each O-D pair

Small-scale threshold
calculation

O-D pairs with small-scale trips

Step 2. Deduce passengers' actual route choices
between O-D pairs

Travel time range
(TTR)-based selection

Nonoverlapping Minor overlapping

Passenger actual route
choice deduction

Step 3. Compare the actual choices to the estimated
by probabilistic models

Comparison level Comparison aspect

Single day Multiday Diference Regularity

Major overlapping

Actual trips

Step 1. Find O-D pairs with small-scale trips

Figure 1: Overall framework of three-step validation procedure.
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the precision and can be determined based on the 95%
confdence interval reported in the previous literature
[65, 66]. Generally, the precision is no more than half the
width of the confdence interval. Te V(p) represents the
variance of choice probability.

To compute the threshold nod0 using this formula in the
URT system, we follow these steps: (1) the route choice
probability p is obtained using the PRC model; (2) whether
the variance V(p) follows a binomial or multinomial form
based on the number of signifcant routes is determined; (3)
the precision △ and quantile Zα/2 based on standard sta-
tistical practice are assigned; and (4) these values are
substituted into Equation (2) to compute the OD-specifc
threshold.

As we can see from the above equation, given the pa-
rameters (△ and△) are unifed, the threshold of small-scale
trips for a given OD pair depends only on the route choice
probability value (p) obtained from the PRC model. Te
primary objective of the proposed method is to identify the
limitations of PRC models and quantify their estimation
errors. To achieve this, the two-route scenarios serve as
a clear and well-defned testbed. For OD pairs with dual
routes2, the route choice probability approximately satisfes
the binomial distribution, then V(p) � p(1 − p). Since this
probability varies across OD pairs depending on network
structure and passenger behavior, OD pairs with diferent
route choices will get diferent threshold values of small-
scale trips. Tus, to select those OD pairs with small-scale
trips, we need to calculate the threshold value and compare it
with the actual trips for each OD pair in the whole URT
network.

3.3.TTR-BasedMethod forDeducingPassengers’ActualRoute
Choices Between OD Pairs. We propose a TTR-based de-
ductionmethod as follows. First, we construct and calibrate the
TTDs of diferent route options according to the URT
schedules and the distributions of passengers’ walking time
between AFC gates and platforms. Second, we distinguish AFC
records falling into the non-overlapping parts and identify
them as diferent route choices, as illustrated in Figures 2(a)
and 2(b). A special case occurs for route options with no
overlapping TTDs, as shown in Figure 2(c), under which all
passengers’ route choices are completely distinguishable.

To further ensure the confdence of deduction, we apply
the TTR-based method to OD pairs with only two route
options. Doing so signifcantly reduces the work of de-
duction and facilitates the verifcation of PRC models. Te
following subsections describe these two steps in further
detail.

3.3.1. TTD. It is a complete travel process where passengers
swipe their cards in and out of a station from their origin (O)
to destination (D) stations. Te time diference between the
two swipes is the actual TTof each passenger. Tis route TT
varies among passengers. For multiroutes OD pairs, the TT
of passengers on diferent routes will also vary. To deduce the

actual choices more precisely, we need to parse the internal
components of the TT on each route for the OD pairs. In
a typical URTnetwork, it mainly contains six parts that can
be calibrated from historical data as follows (Figure 3):

a. Walking time from the entry gate at the origin station
to the platform, to, ewt;

b. Waiting time from the arrival at the platform to the
departure of the train, to,wt;

c. TTon the train, tod (can be obtained from ATS system
data);

d. Walking time from the platform of the transfer origin
line to the platform of the transfer destination line,
tts, tswt;

e. Waiting time from the arrival at the platform of the
transfer destination line to the departure of the next
train, tts,wt;

f. Walking time from the platform to the exit gate at the
destination station, td, ewt.

Tus, TT for a passenger’s complete travel process can be
estimated by the following equation:

TT � to, ewt + to,wt + tod + tts, tswt + tts,wt + td, ewt. (3)

However, TT always fuctuates among diferent pas-
sengers on the same route of one OD pair due to individual
diferences and environmental disturbance in the travel
process. In other words, TT on one route of the OD pair is
usually presented as a range of values, rather than a fxed
value (Figure 4).

For this reason, an essential concept that assists us in
deducing the passenger route choice is TTR. It is defned as
a range of TTthat passengers can travel on a given route, from
the shortest TT TTmin to the longest TT TTmax, as shown
below. Specifcally, the lower bound is defned theoretically by
considering scheduled train arrival and departure times
combined with the maximum realistic walking speeds, which
represents an ideal, delay-free scenario. For the upper bound,
it is determined from AFC and AVL data and captured real-
world variability, by including the minimum walking speed
and maximum waiting time due to delays. Delays such as
those caused by being left behind during peak hours naturally
lead to longer observed TTs, we accounted for potential
waiting time impacts by incorporating an additional waiting
time equivalent to one or two headways into the upper bound
based on actual station situations.

TTR � TTmin, TTmax􏼂 􏼃. (4)

3.3.2. Route Choice Deduction. Based on the above-
mentioned TT inference, the TTRs of routes for OD pairs
may overlap to diferent degrees (non-overlapping, minor
overlapping, and major overlapping). For OD pairs with
non-overlapping ranges, the actual TT of each passenger is
compared with the TTR. A passenger can be deduced to
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a route if his/her actual time falls into the range of the route.
For OD pairs with overlapping ranges (minor overlapping or
major overlapping), the dates with trips falling into the
overlapping part need to be eliminated, and accordingly, the
trips in the remaining dates are in the non-overlapping parts.
Terefore, the corresponding deduction for these remaining
passenger route choices is consistent with the previous non-
overlapping process. In all, the actual route choices of
passengers can be deduced with certainty. Te deduction
diagram is shown in Figure 5.

3.3.3. Twofold Comparison of Passengers’ Actual and Esti-
mated Route Choices. In this paper, we carry out a twofold
comparison approach (Figure 6): First, the comparison is
conducted at the single-day level and multiday level, re-
spectively; second, at each level (single-day or multiday),
diferences between passengers’ actual and estimated route
choices and their regularity are analyzed in detail. At the
single-day level, the trips of a given OD pair may be classifed
as small scale, while at the multiday level (e.g., for a month),
the trips of the same OD pair may raise and exceed the

threshold and become a large sample.We try to complete the
comparisons on both of them.

3.3.3.1. Single-Day and Multiday. At the single-day level, the
trips of a given OD pair after the abovementioned fltering are
small scale and cannot meet the threshold. It would be easy to
understand if this would lead to model inaccuracy. But at the
multiday level, when accumulating trips by days (e.g., for
a month), the count of trips may exceed the threshold andmeet
the criteria of large scale (large population), and the situation
will be changed.Terefore, it is necessary to make comparisons
at both levels to analyze the diference between passengers’
actual and estimated results to check model applicability. If the
choices of such trips are inherently volatile, then they should not
be described using a fxed model value, but the regularity be-
tween actual passenger choices needs to be explored.

3.3.3.2. Diference and Regularity Analyses. Te diference
and regularity analyses are conducted at both single-day and
multiday levels. Diference analysis aims to know the
magnitude of numerical variances between the actual
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Route I Route II Travel time

Pr
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ty

Route I Route II
(a) (b) (c)

Travel time

Figure 2: Tree overlapping types of route travel time distributions for OD pairs. (a) Major overlapping. (b) Minor overlapping. (c) Non-
overlapping.

Walk to platform On the train On the trainTransfer walk

Walking timeWalking time

Wait for train

Origin station (O) Transfer station (T) Destination
station (D)

Wait for train
Walk to gate

Exit

Swiping out timeSwiping in time

Entry

Waiting time On-board time Transfer walking time Waiting time On-board time

Figure 3: Te composition of route travel time (TT) between a given OD pair.
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Figure 4: Illustration of a route’s travel time distribution between a given OD pair.
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Figure 5: Illustration of route choice deduction rules.
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choices and the estimated results, while regularity analysis
seeks to explore whether the actual choices themselves have
a certain regularity and stability.

Two indicators are selected to assist our analysis, the
relative percentage diference (RPD) and the root means
square error (RMSE). RPD is commonly employed to cal-
culate and observe whether there exists a signifcant gap
between two values and what the size of the gap is, while
RMSE helps measure the degree of deviation between a data
series and the true value [67].Te larger the RPD is, the more
signifcant the numerical gap is. Te larger the RMSE is, the
more discrete, unstable, and disordered the data series itself
is. In the diference and regularity analysis, the data chosen
for the indicator formula are diferent, and a more detailed
description is given below.

In terms of diference analysis, the main focus is on com-
paring the model result with the actual proportion for each day.
Ten, RPD and RMSE are calculated as Equations (5) and (6).

RPDdif �
va − vm

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

va + vm( 􏼁/2( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
× 100%, (5)

where va refers to the actual proportion on a given day, and
vm refers to the estimated by PRC model.

RMSEdif �

������������

􏽘

N

j�1

v
a
j − vm􏼐 􏼑

2

N
,

􏽶
􏽴

(6)

where N means the number of days for comparison, and va
j

means the actual proportion on the jth day.
In terms of regularity analysis, the main focus is on

exploring the self-regularity of the actual proportions. Ten,
Equations ((5) and (6)) can be applied again by replacing the
variable vm with ve, which refers to the average of the actual
proportions over N days. Te resulting values are noted as
RPDreg and RMSEreg, respectively.

4. Case Study

4.1. Study Area and Data Collection

4.1.1. Te Nanchang Metro Network. Te case study con-
ducted in this paper is based on the Nanchang metro in
China. Its network (Figure 7) consists of 4 lines (Line No.
1–4), with a total of 94 stations (including 9 transfer

stations). For subsequent analysis, each station is numbered,
where the transfer stations are generated with diferent
numbers on diferent lines.

4.1.2. Multisource Data to Be Used. Te data we used come
from three diferent sources, including the AFC system, the
ATS system, and crowd walking speed (CWS) statistics. Te
AFC transaction data and ATS timetable data for fve
months in 2022 were used. Investigations into passenger
walking speed were conducted in a comprehensive reference
to several literature studies [68, 69].

Te station’s entry and exit gates can record relevant data
when passengers swipe their smart cards, including pas-
senger’s ticket number, ticket type, card swipe date and time,
travel amount, origin station, and destination stations, etc.
We select six types of information relevant to this study, as
shown in Table 2.

Te train timetable data include the date, line number,
line terminal, train number, arrival, and departure time of
each train at each station, and the train running direction.We
extract the following information from ATS data (Table 3).

Te CWS varies depending on individual diferences.
According to diferent kinds of people, walking speeds are
usually considered for three categories: the ordinary (the
medium), the elderly (the low), and the young (the high).
Te walking speed intervals of the three groups of people
may have some overlaps. Te average values are taken as the
basis of the later calculation. In this study, a simplifed
example of walking speed value is shown in Table 4.

4.2. Results and Analysis. Te proposed approach is applied
to the Nanchang metro network. In particular, three OD
pairs are used for demonstration. Teir daily trips meet the
criteria of small scale, and more importantly, their actual
route choices can be accurately deduced on certain days
using the TTR method. Tis enables high-confdence
benchmarking. Diference and regularity analysis are
given based on the deduction results of these three OD pairs.

4.2.1. Typical OD Pairs to Be Selected. Te typical OD pairs
are selected not for their extremity but because their route
confgurations allow us to confdently deduce actual pas-
senger route choices. Our focus is on leveraging high-

Diference
analysis

Twofold
comparison

Single day

Multiday Regularity
analysis

Figure 6: Twofold comparison of the actual and estimated passengers’ route choices.
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certainty cases to uncover limitations in the PRCmodel, and
other OD pairs covering across the entire network can be
included in future work, especially as more granular or
sensor-based data become available to improve inference
accuracy.

To make the cases more comprehensive and convincing,
we divided the OD pairs into three categories based on the
degree of TTR overlap. As the overlap increases, fewer dates
can be fully presumed for each OD pair and the greater the
diference between the actual and the estimated results.

Figure 7: Te Nanchang metro network.

Table 2: AFC data used in this study.

Field Example
Ticket number 00000111F774108B
Date 20,220,922
Exit time 074,203
Exit station number 0121
Entry time 072,702
Entry station number 0245

Table 3: ATS data used in this study.

Field Example
Train number 01
Train run number 09
Station name Qiushui square
Station number 0128
Train arrival time 113,308
Train departure time 113,338

Table 4: A simplifed example of walking speed data.

Crowd category Walking
speed value (m/s)

Medium speed 1.35
Low speed 1.28
High speed 1.50

Journal of Advanced Transportation 11

 1409, 2025, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1155/atr/3607727 by H

O
N

G
 K

O
N

G
 PO

L
Y

T
E

C
H

N
IC

 U
N

IV
E

R
SIT

Y
 H

U
 N

G
 H

O
M

, W
iley O

nline L
ibrary on [06/11/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Table 5 summarizes the information of one example in each
category, namely, 0438-0425, 0437-0222, and 0244-0227.
Te locations of the OD pairs in the metro network are also
shown in Figures 8(a), 8(b), and 8(c).

4.2.2. Deduction Results. For the OD① (0438-0425), there
are 1950 trips during the studied fve months. After ex-
cluding 23 abnormal records, the actual route choices of the
passengers are deduced for each day. Te corresponding
proportions for the two routes are illustrated in Figure 9,
where the red solid line is the prediction of the PRC model
and the yellow solid line is the average of the actual pro-
portions. It can be found that most passengers tend to
choose the shorter route (Route I) on most days, and more
specifcally, 54 days or 35.2% of the 5-month data are fo-
cused entirely on Route I.

For the OD② (0437-0222), it has 1585 trips during the
studied fve months. After excluding 29 abnormal records
and 19 trips in the overlapping part, 138 days remain to fully
deduce the actual route choices of passengers. Te corre-
sponding proportions for the two routes are shown in
Figure 10, where the red solid line is the prediction of the
PRC model and the yellow solid line is the average of the
actual proportions. In contrast to the model probability,
there are 59 days that all passengers choose the shorter route
(Route I), accounting for 42.7%. Te longer route (Route II)
also has more passenger choices on some dates, with more
passengers choosing Route II on 3 days and the same
number for both routes on 20 days.

For the OD③ (0244-0227), 909 trips are recorded during
the studied fve months. After excluding 41 abnormal re-
cords and 348 data in the overlapping zone, a total of 23 days
is available to fully deduce the actual choice of passengers.
Te corresponding proportions for the two routes are shown
in Figure 11, where the red solid line is the prediction of the
PRC model and the yellow solid line is the average of the
actual proportions. Te actual proportions of passenger
choices difer signifcantly from the model probability, with
15 days (65.2%) that are completely contrary to the trend of
the model.

4.2.3. Single-Day Analysis. For the non-overlapping OD
pair, we take the week from 07/24/2022 to 07/30/2022 as an
example shown in Table 6. Te convergence between the
actual and the estimated is consistent, with the shorter route
chosen more. Comparing the actual proportions with each
other for each day, there are occasionally diferent trends in
the proportions, and it is hard to summarize a clear regu-
larity of changes.

For the minor overlapping OD pair, we take the week
from 01/01/2022 to 01/07/2022 as an example shown in
Table 7. Te convergence between the actual and the esti-
mated is gradually becoming diferent, which means that
passengers did not overwhelmingly tend to the shorter route
as the model indicates. Te general trend is consistent when
comparing the actual proportions within each other on most
dates, there are still occasional disparities.

For the major overlapping OD pair, we take all deducted
dates as an example shown in Table 8. Te convergence
between actual and estimated values varies signifcantly on
most dates. Te trend of actual proportions per day is not
regular to each other, with almost no dates closer to obvious
patterns.

In summary, at the single-day level, when the trips are
below the small-scale threshold, the actual proportions of
passenger route choices per day are distinctly diferent from
the estimated by the model for all three types of OD pairs.
Te diference between the actual proportions and the es-
timated can be signifcant to a great extent even inverted as
the TTRs overlap more. When the TTRs are completely
overlapping, the uncertainty in passenger route choices is
more pronounced. In other words, probabilistic models
cannot describe passenger route choices between OD pairs
when the trips are small scale, and the choices themselves are
with little regularity.

4.2.4. Multiday Analysis. For the non-overlapping OD pair,
we take the monthly data as demonstrated in Table 9. Te
comparison from the monthly dimension is conducted. Te
actual proportions after accumulating multiple days are
again compared with the model probability, and it can be
found that they are nearly similar. Meanwhile, the pro-
portions are also close to each other among months. Te
change in the diference is relatively stable, with no large
deviations.

For the minor overlapping OD pair, we take the monthly
data as demonstrated in Table 10. Te actual proportions
after monthly accumulation remain predominantly similar
to the model probability, and the actual proportions con-
verge from month to month. Te change of the diference is
still relatively stable, especially in the comparison between
the actual proportions.

For the major overlapping OD pair, we take the monthly
data as demonstrated in Table 11. Te monthly actual
proportions after accumulation are very diferent from the
model probability, and they even all appear to be reversed. In
contrast, the actual proportions of these 5months after
accumulating are very similar. Te change of the diference
with the model is greater than the change in own diference.

Building on the previous discussion, it is evident that at
the multiday level, even when the trips surpass the small-
scale threshold, passenger route choices may deviate from
the PRC models in some cases. Specifcally, when TTRs do
not overlap or overlap minimally, passenger choices tend to
align with model predictions. Conversely, when TTRs ex-
hibit substantial or complete overlap, notable diferences
between actual proportions and model estimates become
evident, sometimes even resulting in reversed trends. In this
case, it is intriguing that passenger route choices seem to
exhibit their own patterns, which sheds light on future
studies concerning passenger choices for OD pairs with
small-scale trips.

In summary, the variance of passengers’ actual route
choices on OD pairs with small-scale trips is more signifcant
as the overlap of TTRs between routes increases. Tis may
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have some degree of impact on the result accuracy and create
analytical disturbances in the overall network. Pending
further validation analysis is necessary and valuable.

4.3. Discussions. Several results are further discussed in the
following subsections to inspire the application and im-
provement of the existing route choice models as well as
passenger fow calculations.

i. Te variance in passengers’ actual route choices among
single days for OD pairs with small-scale trips
At the single-day level, it can be found that passenger
route choices lack stability when compared across
diferent days. Te actual proportions fuctuate a lot
from date to date (as shown in record No. 1 to No. 7
of Table 12) and can even appear distinctly opposite
on the days before and after (as shown in record No.

2 to No. 3 of Table 11). Tese fndings are not sur-
prising, given that passenger fow distribution in the
URT network is a macroscopic emergence from in-
dividual route choices at the micro level. To discern
distribution patterns clearly, a large-scale dataset is
required. In situations with limited samples, pas-
senger fow exhibits higher volatility compared to
regularity, amplifying the variance in passenger
choices.

ii. Te variability in model applicability among multi-
days for OD pairs with small-scale trips
At the multiday level, the passenger route choices
themselves present stable proportions to an extent
when those single-day trips are accumulated and
meet the criteria of large-scale (large population).
Nevertheless, these actual proportions of passenger
route choices may either conform to (as shown in

(a) (b) (c)

Figure 8: Te specifc locations of the case study OD pairs in the Nanchang metro network. (a) OD① (b) OD② (c) OD③.
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Figure 9: Choice proportions of the two routes between OD① (0438-0425).
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records No. 1 and No. 2 of Table 12) or deviate from
(as shown in record No. 3 of Table 13) the prob-
abilistic model. On the one hand, due to the ex-
pansion of sample size, it exceeds the threshold of
large scale, and thus, the probabilistic model can be
generally consistent with actual proportions in
some cases. On the other hand, there are also some

special cases where several same passengers travel
every day. Tese passengers have solidifed their
travel habits; that is, they choose the same route
every time. Terefore, even though the large sample
is satisfed, it does not meet the premise assumption
of independent identical distribution (IID) in the
probabilistic model.
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Figure 10: Choice proportions of the two routes between OD② (0437-0222).
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Figure 11: Choice proportions of the two routes between OD③ (0244-0227).
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Table 6: Weekly results for OD① (0438-0425).

Date Actual trips
of route I

Actual trips
of route II

Proportion of
route I
(%)

Proportion of
route II
(%)

RPDdif (%) RPDreg (%)

20220724 3 1 75.00 25.00 −8.95 −11.54
20220725 8 0 100.00 0.00 19.74 17.17
20220726 5 2 71.43 28.57 −13.82 −16.39
20220727 2 0 100.00 0.00 19.74 17.17
20220728 3 0 100.00 0.00 19.74 17.17
20220729 5 0 100.00 0.00 19.74 17.17
20220730 3 4 42.86 57.14 −62.73 −65.06
Small-scale threshold 57 Model probability 82.03 17.97 — —

Table 7: Weekly results for OD② (0437-0222).

Date Actual trips
of route I

Actual trips
of route II

Proportion of
route I
(%)

Proportion of
route II
(%)

RPDdif (%) RPDreg (%)

20220101 4 7 36.36 63.64 −78.55 −71.27
20220102 20 4 83.33 16.67 −4.16 4.30
20220103 5 1 83.33 16.67 −0.08 8.38
20220104 9 1 90.00 10.00 7.61 16.05
20220105 10 3 76.92 23.08 −8.08 0.38
20220106 10 3 76.92 23.08 −8.08 0.38
20220107 13 1 92.86 7.14 10.73 19.15
Small-scale threshold 53 Model probability 83.40 16.60 — —

Table 8: Weekly results OD③ (0244-0227).

Date Actual trips
of route I

Actual trips
of route II

Proportion of
route I
(%)

Proportion of
route II
(%)

RPDdif (%) RPDreg (%)

20220109 1 2 33.33 66.67 −84.42 16.33
20220127 1 0 100.00 0.00 19.74 111.76
20220130 0 4 0.00 100.00 −200.00 −200.00
20220604 0 2 0.00 100.00 −200.00 −200.00
20220605 0 7 0.00 100.00 −200.00 −200.00
20220710 3 0 100.00 0.00 19.74 111.76
20220717 0 1 0.00 100.00 −200.00 −200.00
20220720 0 1 0.00 100.00 −200.00 −200.00
20220723 2 1 66.67 33.33 −20.66 80.79
20220725 0 3 0.00 100.00 −200.00 −200.00
20220729 0 4 0.00 100.00 −200.00 −200.00
20220730 0 2 0.00 100.00 −200.00 −200.00
20220804 1 2 33.33 66.67 −84.42 16.33
20220814 1 0 100.00 0.00 19.74 111.76
20220815 0 4 0.00 100.00 −200.00 −200.00
20220818 1 1 50.00 50.00 −48.52 55.42
20220824 1 4 20.00 80.00 −121.59 −34.38
20220825 0 1 0.00 100.00 −200.00 −200.00
20220831 1 2 33.33 66.67 −84.42 16.33
20220911 0 1 0.00 100.00 −200.00 −200.00
20220912 1 1 50.00 50.00 −48.52 55.42
20220918 1 1 50.00 50.00 −48.52 55.42
20220922 1 6 14.29 85.71 −140.67 −65.82
Small-scale threshold 57 Model probability 82.03 17.97 — —
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Table 9: Monthly results for OD① (0438-0425).

Month Actual trips
of route I

Actual trips
of route II

Proportion of
route I
(%)

Proportion of
route II
(%)

RPDdif (%) RPDreg (%)

202201 301 69 81.35 18.65 −0.83 −2.71
202206 384 86 81.70 18.30 −0.40 −2.28
202207 266 45 85.53 14.47 4.18 2.29
202208 194 41 82.55 17.45 0.64 −1.25
202209 316 48 86.81 13.19 5.67 3.78
Total 1461 289 83.49 16.51 1.76 —

Small-scale threshold 57 Model probability 82.03 17.97 RMSEdif RMSEreg
0.1761 0.1754

Table 10: Monthly results for OD② (0437-0222).

Month Actual trips
of route I

Actual trips
of route II

Proportion of
route I
(%)

Proportion of
route II
(%)

RPDdif (%) RPDreg (%)

202201 240 31 88.56 11.44 5.63 −3.45
202206 198 19 91.24 8.76 8.98 −0.10
202207 262 19 93.24 6.76 11.14 2.07
202208 252 26 90.65 9.35 8.33 −0.75
202209 334 24 93.30 6.70 11.20 2.13
Total 1243 111 91.80 8.20 9.08 —

Small-scale threshold 53 Model probability 83.40 16.60 RMSEdif RMSEreg
0.1451 0.1118

Table 11: Monthly results for OD③ (0244-0227).

Month Actual trips
of route I

Actual trips
of route II

Proportion of
route I
(%)

Proportion of
route II
(%)

RPDdif (%) RPDreg (%)

202201 2 6 25.00 75.00 −106.57 16.71
202206 0 9 0.00 100.00 −200.00 −200.00
202207 5 12 29.41 70.59 −94.43 32.70
202208 5 14 26.32 73.68 −102.85 21.79
202209 3 9 25.00 75.00 −106.57 16.71
Total 15 50 23.08 76.92 −112.17 —

Small-scale threshold 57 Model probability 82.03 17.97 RMSEdif RMSEreg
0.6388 0.3455

Table 12: Comparison of the actual proportions of passengers’ route choices among multiple days.

No. OD Date
Actual trip Actual proportion Model probability

Route I Route II Route I
(%)

Route II
(%)

Route I
(%)

Route II
(%)

1

0244-0227

20220804 1 2 33.33 66.67

82.03 17.97

2 20220814 1 0 100.00 0.00
3 20220815 0 4 0.00 100.00
4 20220818 1 1 50.00 50.00
5 20220824 1 4 20.00 80.00
6 20220825 0 1 0.00 100.00
7 20220831 1 2 33.33 66.67
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iii. Application of PRC models for short-, medium- and
long-term prediction
Performed analysis shows that caution is needed
when applying PRC models on a daily or weekly
basis. Before application, the scale of the passenger
trip data should be evaluated, and modifcation is
needed for those small-scale OD pairs. One potential
approach is to combine the data-driven deduction
method with PRC models. Routine surveys are also
suggested for the small-scale OD pairs. While ap-
plying PRC models in short-term predictions may
encounter a considerable amount of small-scale OD
pairs, which may cause notable errors, the medium-
and long-term applications with time horizons of
months or years would likely address the small-scale
issue. Such predictions serve as invaluable tools for
facilitating strategic planning tasks, including re-
source investment and network designs. In summary,
when it comes to passenger route choices for OD
pairs with small-scale trips, the probabilistic model
proves inadequate in providing accurate de-
scriptions. Additionally, it is worth noting that
passenger route choices exhibit varying behavior at
diferent scale levels. Tere is a lack of consistency in
route choices when comparing every single day.
When aggregated over multiple days, resulting in
trips that meet the large-scale threshold, these
choices can align with the probabilistic model in
some cases. However, in some other cases, this
alignment is absent, and the behavior does not
conform to the model. While the PRCmodel exhibits
the aforementioned errors in single-day scenarios, it
still maintains partial applicability in large-scale
contexts, making it suitable for medium and long-
term predictions.Tis complex interplay underscores
the need for a more nuanced understanding of
passenger route choices and their relationship with
trip scale and temporal factors.

Overall, the results presented in this section ofer practical
value for both transit planners and model developers. By
distinguishing where PRCmodels succeed and where they fail
based on trip volume, temporal scale, and user behavior
consistency, this study supports more context-aware appli-
cations of modeling tools. Tese fndings also point to the
need for adaptive strategies, such as integrating supple-
mentary data sources or modifying model assumptions, to
improve accuracy in small-scale OD scenarios. In doing so, it
helps bridge the gap between theoretical model design and
operational decision-making in real-world URT systems.

5. Conclusion and Practical Implications

Tis study sets out to address a fundamental modeling
challenge in URT system: evaluating the reliability of PRC
models when applied to OD pairs with small-scale trip data.
While PRC models are widely used in transit demand
modeling, their limitations under sparse data conditions
remain insufciently understood. Tis research flls that gap
by proposing and testing a validation framework tailored for
such contexts, aiming to clarify when and how these models
should be applied in practice. First, the concept of “small
scale” is defned, enabling the identifcation of OD pairs with
small-scale trips in the network. Second, a TTR-basedmethod
is proposed to infer passengers’ actual route choices. Tird,
a twofold comparison, at single-day and multiday levels, is
conducted to analyze the corresponding diference and
regularity between the estimations and actual results. In the
case of the Nanchangmetro in China, we found that OD pairs
with small-scale trips exhibit signifcant variations in the daily
passenger route choices, leading to notable errors. While the
model becomes applicable again in some instances when the
trips of OD pairs accumulate and reach the large-scale
threshold over a monthly period, limitations still persist in
certain cases, revealing complex dynamics that challenge
traditional probabilistic assumptions.

Te results of this study also have several practical
implications for URT operation agencies regarding route
choice modeling to improve passenger fow analysis.

1. Tere are OD pairs on the URT network where
passengers’ route choices cannot be appropriately
estimated by existing PRC models. URT operation
agencies need to recognize that PRC models may not
be suitable for certain OD pairs, even if their trip data
accumulates to a large-scale population. Terefore, it
is important for URT operation agencies to exercise
caution when estimating route choices using PRC
models.

2. Te operation of URT should be able to withstand
a certain degree of inaccuracies in passenger fow
predictions. It is not economically viable to accurately
detect and record the actual behaviors of URT pas-
sengers in practice. Terefore, further research is
necessary to investigate the impact of small-scale data
issues on the entire network and incorporate this
information into robust modeling.

3. New approaches to estimating URTpassengers’ route
choices are necessary for operation agencies seeking
more precise passenger fow analysis. Tere may be
situations where the impact of PRC models’

Table 13: Comparison of the actual proportion and the estimated by model for large-scale trips of multiple days.

No. OD Month
Actual trip Actual proportion Model probability

Route I Route II Route I
(%)

Route II
(%)

Route I
(%)

Route II
(%)

1 0438-0425 5 months in 2022 1461 289 83.49 16.51 82.03 17.97
2 0437-0222 5 months in 2022 1243 111 91.80 8.20 83.40 16.60
3 0244-0227 5 months in 2022 15 50 23.08 76.92 82.03 17.97
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inapplicability becomes larger due to diferent URT
network structures or diferent stages of development.
When it becomes too large to harm the whole network
operation, new approaches or even paradigms need to
be considered to replace the existing PRC models,
such as retrospective route choice models, and mul-
tisource data fusion (cell phone signaling data, Wi-Fi
data, CCTV data, etc.).

In light of the aforementioned, it is imperative that more
URT operation agencies take note of the inapplicability of
PRC models in practice. We contend that our research focus
remains relevant, and our analytical framework ofers valu-
able insights, particularly for cities with more extensive and
intricate URT networks. By grouping less-used alternatives
into an aggregated category, multiroute OD pairs can be
approximated within a binary framework, retaining meth-
odological simplicity while enabling broader applicability.
Building on this, future research should delve deeper into
understanding how OD pairs with small-scale trips may lead
to adverse consequences in diverse network confgurations.
Investigating how network structure and development scale
infuence the generalizability of our conclusions holds great
interest. Ultimately, developing new paradigms tailored to
refned URT operations is also essential for exploring and
evaluating the performance in comparison to PRC models.
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Endnotes
1A more rigorous defnition of small scale will be given in
Section 3.
2Tis structure forms a practical basis for future extension to
multiroute scenarios, which are not discussed here.
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