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Modeling passenger route choices is crucial for analyzing and predicting public transportation demand. One of the most popular
methods is to use probabilistic route choice (PRC) models (also known as discrete choice models in general), which have broad
applications in transportation, economics, politics, and other fields. However, its performance varies depending on the char-
acteristics of the origin-destination (OD) trip data and should be examined carefully. This paper proposes a framework for
validating the PRC model on its application to urban rail transit (URT) networks containing small-scale OD trip data. The concept
of small-scale data is defined at first for each OD pair considering the desired confidence level and the variance of route choices.
Then, a travel time range (TTR)-based method is put forward to deduce passengers’ actual route choices as a benchmark for
verifying PRC models. The difference and regularity analysis between the actual route choices and the model predictions are also
performed with a twofold comparison. A case study on the Nanchang metro in China shows that the actual daily passenger
volumes on routes of small-scale OD pairs diverge remarkably from the estimations of the PRC model. The PRC model’s
performance is further discussed when the small-scale OD trip data accumulate to a larger scale over multiple days (e.g., several
months). This study reveals the inherent limitation of PRC models in estimating the travel behaviors of passengers in a small-scale
population. Several practical implications are discussed to improve the route choice model and passenger flow analysis.
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1. Introduction

The urban rail transit (URT) system, serving as a high-
capacity transportation system, has emerged as a crucial
component of urban passenger transportation, undergoing
remarkable progress from a solitary line to a complex
network in many major cities around the world. It is known
in the literature that the passenger flow in the network is the
foundation for the operation plan of a URT system. Esti-
mating passengers’ route choices on transit networks plays
a pivotal role in analyzing, predicting, and simulating

passenger flows. Over the years, numerous transit route
choice models have been developed, both in theory [1-5]
and in practice [6-10]. Comprehensive surveys are available
in several review papers [11-15].

In the field of transit route choice modeling, the shortest-
route principle is first used to estimate the route choices of
URT passengers. From the analyst’s perspective, it assumes
that all the passengers between an origin-destination (OD)
pair take the “shortest route,” which is usually the route with
fastest travel time (TT) (or lowest cost/shortest distance). As
the network expands and becomes more complex, there are
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more alternative routes between an OD pair, and passengers
may not choose the shortest route due to various reasons
(e.g., unfamiliarity, residual habits, and group traveling).
Accurately modeling passengers’ route choice behaviors is
also more challenging, considering the complexity of human
behavior representation, the lack of passengers’ knowledge
about the network composition, the uncertainty of pas-
sengers’ perceptions of route characteristics, and the un-
availability of precise information about passengers’
preferences. Thus, probabilistic choice models are in-
troduced, of which discrete choice models have been widely
adopted in the last few years. Recently, emerging techniques
have been applied to route choice data mining. Using au-
tomatic train supervision (ATS) and automatic fare col-
lection (AFC) data, analysts can deduce passengers’ train
choices, thereby estimating passenger route choices and flow
distribution on the network. Other techniques estimate
passengers’ route choices with mobile phone signaling
(MPS) data, Wi-Fi probing data, closed-circuit television
(CCTV) data, and other sources. However, these techniques
cannot take undetected passengers into account and are not
effective without historical data. Therefore, probabilistic
route choice (PRC) models still remain necessary and are
described in detail below.

When it comes to PRC models, Manski’s [16] paradigm
for predicting choice which provided the models’ essential
part is very helpful for simplicity. This paradigm states the
probability formula for an actor choosing an alternative
from the choice set. In terms of passenger route choice, the
probability of the passenger i choosing the route r for a given
OD pair od from the route choice set US; can be expressed as
the following expression:

ProalUS;) = >, pi(raalCS;)- p(CSIUS). (g

CS;€PS;

where p;(7,4/US;) is the choice probability of route r for
a given OD pair od from the universal set US; of all routes
available to the passenger i; p; (+.,4/CS;) is the conditional
probability of passenger i chooses route  for a given OD pair
od in his/her consideration set CS;, which is a subset of US;;
p(CS;|US;) is the probability that CS,; is the consideration set
of passenger i given his/her universal set US;.

PRC models follow the law of large numbers [17, 18],
which means that as the sample size grows, the average
tends to approach the expected value. A coin flipping is
a classic example of this principle. Each time a coin is
flipped, the probability of heads is 50%. Thus, in an infinite
sequence of coin flips, the anticipated ratio of heads is
gradually equivalent to 1/2. However, when we flip the coin
only 10 times, we may find that heads appear only three
times. Due to the small sample size of 10 flips, there is no
guarantee that the proportion of heads observed will be
anywhere near 50%. If the PRC models are applied to the
average of a large number of passengers, its prediction
results will be accurate. However, it may not be reliable to
predict the choices of a limited number of passengers. This
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issue is evident in URT networks containing OD pairs with
small-scale trips. In the case of the Shanghai Metro, one of
the largest metro systems in the world, statistics on AFC
transaction data show that there are more than 50% of OD
pairs with less than 30 passenger trips per day', accounting
for over 30% of total trips between these OD pairs within
the network [19]. Therefore, exploring the reliability of
PRC models for OD pairs with small-scale trips is an in-
triguing and significant issue, both theoretically and
practically, which has not been comprehensively addressed
in the literature.

Given the widespread presence of small-scale OD pairs
and the potential for PRC model misalignment under such
conditions, the research problem addressed in this study can
thus be stated more formally as follows: consider one URT
network represented as a directed graph G = (N, A), where
N is the set of nodes (stations) and A is the set of arcs (direct
connections between stations). Let W be the set of all OD
pairs within the network, where each OD pair w € W is
associated with a daily passenger flow volume d,,. We define
a subset W, ¢ W as small-scale OD pairs, where d,, < 0 for
all w e W, with 0 representing a threshold. For each OD
pairw € W, let R, be the set of all feasible routes connecting
the origin to the destination. Under a PRC model, the
probability of route r € R, being chosen is given by P¥, as
expressed in Equation (1). The model predicts that ap-
proximately d,, - P’ passengers will select route ». However,
given the law of large numbers, this prediction becomes
increasingly unreliable as d, decreases. We aim to in-
vestigate the reliability gap and evaluate the relationship
between predicted route flow distribution {d,, - P¥|r € R}
from PRC models and actual route choices {f}|r € R,}
observed in the system (where ),z f =d,). For small-
scale OD pairs where d,, < 0, we hypothesize that the dis-
crepancy between predicted and actual route flows exceeds
acceptable error margins. Furthermore, we examine how
this discrepancy evolves when data are accumulated over
multiple days, effectively increasing the sample size to T - d,,
(where T is the number of days).

To address these questions, we propose a validation
framework specifically tailored for small-scale OD pairs and
also investigate how model performance evolves when trip
data accumulate over multiple days. In addition to filling
a clear modeling gap, this study supports more informed
decisions about when and how such models can be applied
in practice effectively—particularly in short-term forecasting
and in identifying scenarios where model modifications or
supplementary data collection may be needed. It also helps
guide the application of PRC models in medium- and long-
term planning tasks, such as capacity design, service opti-
mization, and strategic investments in urban rail systems.

The main contributions of this paper are put forward in
advance:

1. A validation framework for PRC models is proposed,
which includes three successive tasks and completes
the validation with a twofold comparison.
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2. The definition of OD pairs with small-scale trips is
discussed in the context of URT systems, and the judge
criterion is provided.

3. A travel time range (TTR)-based method is developed
for deducing URT passengers’ actual route choices. It
is customized for the OD pairs with small-scale trips,
and the results are taken as a benchmark to assess the
validation of PRC models.

4. A detailed case study on the Nanchang metro in China
is conducted, with several results, and their impli-
cations are discussed.

The remainder of this paper is organized as follows:
Section 2 reviews relevant studies. Section 3 proposes
a validation framework including three successive works.
Section 4 presents the application of the proposed approach
to the Nanchang metro in China, followed by discussions in
Section 5. The final section summarizes the conclusions and
their practical implications.

2. Literature Review

This study focuses on the applicability of probabilistic
models for passengers route choices in rail transit. In this
section, we briefly review related literature on the historical
application of probabilistic models in the field of trans-
portation and highlight our contributions to the applicability
of PRC models at different demand levels.

2.1. PRC Models in Urban Transportation. Historically,
discrete route choice models have been utilized to address
passenger route choice issues, with generalized cost func-
tions widely used in current research. Bayesian techniques
and Logit-based models [3, 20, 21] have been suggested to
estimate passenger route preferences. However, these
models must consider the total cost associated with each
route, including factors such as waiting time, TT in the
vehicle, station dwell time, transfer time, and choice patterns
(such as transfer frequency, comfort level, and transfer
penalties). Some models attempted to incorporate how the
similarity between alternative route options affects passen-
ger decisions. These range from more sophisticated models
grounded in generalized extreme value theory, such as the
paired combinatorial logit, cross-nested logit (CNL), and
generalized nested logit, and error components and logit
kernel models. The multinomial logit (MNL) model is ad-
justed to capture these similarities by introducing additional
terms [22]. Sensitivity to the effective route threshold is
a limitation of these strategies. The quantity of effective
routes between OD pairs determines this to a large extent.

Similarly, route choice estimation in URT relies on those
models where passengers choose their transfer station
thoroughly based on the train schedules and personal travel
experiences. This also presents a typical issue raised by the
networked operation of URT in the real-world scenarios
[23]. Wu and Liu [24] constructed an equilibrium model
based on equilibrium theory and resolved it using the frank-
wolf algorithm, drawing inspiration from road traffic flow

assignment methods. Si et al. [25] developed a passenger-
integrated travel impedance function to enhance the equi-
librium model, highlighting the distinctions between URT
and road networks. The primary methods for calculating
route choice probabilities include the improved logit model
[26] and the probability distribution model based on normal
distribution [27]. In both models, the likelihood of route
choices increases as travel impedance decreases. While
initial passenger flow assignment results can be obtained
using the methods above, their accuracy has to be further
improved. The passenger travel impedance needs to be more
specifically described, and qualitative elements influencing
passenger route choice need to be converted into quanti-
tative indicators to increase model accuracy and make
findings more realistic [28].

Typically, the traditional logit approach may produce
some irrational outcomes, particularly due to its neglect of
routes interdependencies, which would affect result accuracy.
Most existing literature on route choice behavior analysis
using the logit models does not account for this aspect.
Considering the route relevance in URT networks, Zhang [14]
recommended using the C-logit or path size logit model [29]
for researching route choice behavior in practice. Gleason
et al. [30] utilized the C-logit model to explore how socio-
demographics, network structure, and passenger perceptions
of transfers affect route choice behavior. Additionally, the
cumulative prospect theory was found to be more effective
and realistic than the expected-utility-based approach in
testing the effectiveness of route choice behavior [31].

2.2. PRC Models for Variable Demand Levels. It is widely
known in the literature that stochastic user equilibrium
(SUE) flow patterns come close to those provided by the
deterministic user equilibrium (DUE) solution at very high
demand levels. However, for moderate to high demand
levels, SUE flows may differ significantly from DUE flows
depending on the specific route choice model employed [22].
A deeper characterization of passenger route choice be-
havior is necessary, for example, the effects of morning-peak
and evening-peak passenger flows, to accurately compre-
hend how passenger demand changes influence the distri-
bution of passenger flow in the URT network.

According to the changing degrees of travel demand,
passengers would be grouped together to mitigate errors and
oscillations that arise from insufficient data [32]. Zhang [14]
proposed a time-switching topologies approach to dy-
namically update the URT network representation based on
varying passenger loads. This considers the time-variance
nature of URT network passenger load, such as peak-hour
congestion and off-peak uncongested conditions. They also
suggested a function for the computation of general travel
costs in the URT network when passenger flow exceeds
permissible overcrowding limits. Xue et al. [33] developed
a control strategy for station-level passenger flow control in
URT networks based on train marshaling plans. Their
findings concluded that a suitable size of arrangement
scheme can be determined by the spatial and temporal
characteristics of large passenger flows due to the short
duration and the limited passenger flow packed section.
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However, these studies overlooked the situation in-
volving low-demand OD pairs. Bekhor et al. [22] compared
path flows generated using path-based SUE assignments
with the MNL and CNL models in real-size networks. They
examined how the choice set size affected issue convergence,
running duration, and particular results, highlighting the
prospective adoption of selected route choice models as
loading methods in SUE assignments. They found that in-
creasing the choice set size (leading to OD pairs with very
low-demand proportions) caused an increase in the route
choice estimation error. This may occur as the number of
routes in the choice set grows (and is comparable to the
situation of low-demand OD pairs).

2.3. The Contribution of the Study in This Paper to the Existing
Research Literature. In recent years, scholars have started to
notice and investigate the unreliability of traditional PRC
models for rail transit passenger route choices from different
perspectives. Most studies focused on influence factors such
as map topology [34-36], service level [37-39], and pas-
senger travel experience [40-42]. Additionally, in-
vestigations were also conducted on abnormal travel
behaviors, including denied boarding [43-46], taping in and
out at the same station [47], go-and-back travel [48-50], and
group-based travel [51].

Despite some enhancements, adjusting existing PRC model
parameters alone remains insufficient to fully explain a certain
proportion of behaviors and phenomena to achieve accurate
estimation, which can influence the passenger flow assignment
and rail transit operations. Rail transit agencies have also begun
to acknowledge the limitations of PRC models. Important and
necessary for industry, validation works for the PRC models
based on field data have initiated to be carried out [52, 53].
These studies revealed that a great number of OD pairs witness
remarkable deviations between actual passenger flows and the
values estimated by the models. For example, an investigation of
the Shanghai metro in China showed that more than 7000 OD
pairs had deviations based on the traditional PRC model,
contributing an average of more than 260,000 passengers per
day [19]. Beyond the aforementioned spatial dimension, several
inconsistencies also exist in the temporal dimension, typically
such as peak hour dislocation [54, 55]. Moreover, PRC models
struggle to accurately calculate and grasp actual passenger flow
distribution during large-scale or unexpected events, making
passenger flow control and network guidance more challenging.

To the best of the authors’ knowledge, previous research
studies on comparing and evaluating route choice models are
limited (Table 1). Existing studies rely either on traditional
manual-based methods or approaches dependent upon an-
other route choice model whose applicability is also uncertain.
To fill the research gap, this study empirically explores the OD
pairs with small-scale trips in terms of the model prerequisites,
providing a more comprehensive understanding and insights
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into the applicability of PRC models. This work is theoretically
and practically necessary and essential.

3. Methodology

3.1. Overview of Validation Procedure. Our study is based on
an assumption that the PRC models have been calibrated
using data from the whole URT network, as is customary in
practice [56, 57]. The detailed calibration steps are docu-
mented in previous studies and are not included in this paper.

To validate the built PRC models, we propose a frame-
work with three successive major tasks, as shown in Figure 1:
(1) identifying the OD pairs with small-scale trips, (2) de-
ducing passengers’ actual route choices between the OD
pairs, and (3) comparing the actual choices to those esti-
mated by the PRC models. The detailed steps are as follows:

Step 1. Identifying the set of OD pairs of study. For
convenient validation, we select OD pairs according to two
criteria: () OD pairs associated with only two route op-
tions; and (ii) OD pairs that satisfy the small-scale defi-
nition, which will be described in detail in Section 3.2.

Step 2. Deducing passengers’ actual route choices as
a benchmark for comparison. A TTR-based method,
which is customized for OD pairs with small-scale trips,
is proposed in Section 3.3 to deduce passengers’ actual
route choices and the resulting route flows.

Step 3. Comparing the actual results to those estimated
by the PRC model. The comparison is made at two
levels, respectively: daily and monthly. At each level,
differences between passengers’ actual and estimated
route choices and their regularity are analyzed in detail.

Remark 1. On the definition of small-scale data, our study
presents a criterion based on the sample size formula, as given
in Section 3.2, which considers the URT system’s characteristics
and the desired confidence intervals. Using this criterion, we
calculate threshold values for all OD pairs that entail different
variances of route choices and delineate small-scale ones.

Remark 2. The proposed TTR-based method for deducing
actual route choices is customized for the OD pairs with
small-scale trips. Generally speaking, TTRs of routes be-
tween a given OD pair may overlap with each other, making
it difficult to deduce passengers’ route choices according to
TTRs. However, it becomes possible, as shown in Section
3.3, when discussing the OD pairs with small-scale trips.

Remark 3. The proposed validation procedure examines the
effectiveness of applying PRC models to OD pairs with
small-scale trips at both daily and multiday levels. Note that
over a longer period (e.g., a month), the number of trips for
the same OD pair accumulates and may surpass the
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Step 1. Find O-D pairs with small-scale trips

< Each O-D pair >

v

( Small-scale threshold ) ( . )
. Actual trips
calculation

v

< O-D pairs with small-scale trips >

N

A

Step 2. Deduce passengers' actual route choices

between O-D pairs

Travel time range
(TTR)-based selection

v

2 v

Nonoverlapping

[Minor overlappingj [Major overlappingj

T

A

A

Passenger actual route
choice deduction

.

A

Step 3. Compare the actual choices to the estimated

by probabilistic models

[ Comparison level j(—)[ Comparison aspect ]

[ Single day j[ Multiday j [ Difference j[ Regularity j

FiGURE 1: Overall framework of three-step validation procedure.

threshold of small-scale data. Our study aims to conduct
comparisons for both scenarios.

3.2. Definition of OD Pairs With Small-Scale Trips. The
definition of OD pairs with small-scale trips is the pre-
requisite and key for the identification. Some practitioners
have adopted the principle of a sample size larger than 30 as
a universally applicable criterion for large-scale samples
[58, 59], which implies the small scale with data records less
than 30. Meanwhile, to obtain a more detailed and gener-
alized criterion, researchers in the fields of medicine and
control engineering have proposed several sample size es-
timation formulas according to their professional data and
assumptions, such as those based on the Central Limit
Theorem or Confidence Interval Theory [60-64].

Our study tries to give a calculation criterion con-
sidering the characteristics of the URT system and con-
sequently focuses on the sample size estimation formula
based on confidence interval. We introduce it into the
context of URT networks to calculate the threshold of
small-scale trips for a given OD pair. The calculation
formula is as follows:

od od
n

2
Sno = Za/2 sz(p)

A

, odew, (2)

where 19¢ is the threshold of the small scale, implying OD
pair od is small-scale if n°d<n¢ and vice versa, and W
denotes the set of OD pairs. The Z, represents the 1 — a/2
quantile of the standard normal distribution, and usually, «
takes the value 0.05, and then, Z, is 1.96. The A indicates
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the precision and can be determined based on the 95%
confidence interval reported in the previous literature
[65, 66]. Generally, the precision is no more than half the
width of the confidence interval. The V (p) represents the
variance of choice probability.

To compute the threshold 73 using this formula in the
URT system, we follow these steps: (1) the route choice
probability p is obtained using the PRC model; (2) whether
the variance V (p) follows a binomial or multinomial form
based on the number of significant routes is determined; (3)
the precision A and quantile Z,,, based on standard sta-
tistical practice are assigned; and (4) these values are
substituted into Equation (2) to compute the OD-specific
threshold.

As we can see from the above equation, given the pa-
rameters (A andA) are unified, the threshold of small-scale
trips for a given OD pair depends only on the route choice
probability value (p) obtained from the PRC model. The
primary objective of the proposed method is to identify the
limitations of PRC models and quantify their estimation
errors. To achieve this, the two-route scenarios serve as
a clear and well-defined testbed. For OD pairs with dual
routes’, the route choice probability approximately satisfies
the binomial distribution, then V (p) = p(1 — p). Since this
probability varies across OD pairs depending on network
structure and passenger behavior, OD pairs with different
route choices will get different threshold values of small-
scale trips. Thus, to select those OD pairs with small-scale
trips, we need to calculate the threshold value and compare it
with the actual trips for each OD pair in the whole URT
network.

3.3. TTR-Based Method for Deducing Passengers’ Actual Route
Choices Between OD Pairs. We propose a TTR-based de-
duction method as follows. First, we construct and calibrate the
TTDs of different route options according to the URT
schedules and the distributions of passengers’ walking time
between AFC gates and platforms. Second, we distinguish AFC
records falling into the non-overlapping parts and identify
them as different route choices, as illustrated in Figures 2(a)
and 2(b). A special case occurs for route options with no
overlapping TTDs, as shown in Figure 2(c), under which all
passengers’ route choices are completely distinguishable.

To further ensure the confidence of deduction, we apply
the TTR-based method to OD pairs with only two route
options. Doing so significantly reduces the work of de-
duction and facilitates the verification of PRC models. The
following subsections describe these two steps in further
detail.

3.3.1. TTD. Itis a complete travel process where passengers
swipe their cards in and out of a station from their origin (O)
to destination (D) stations. The time difference between the
two swipes is the actual TT of each passenger. This route TT
varies among passengers. For multiroutes OD pairs, the TT
of passengers on different routes will also vary. To deduce the

actual choices more precisely, we need to parse the internal
components of the TT on each route for the OD pairs. In
a typical URT network, it mainly contains six parts that can
be calibrated from historical data as follows (Figure 3):

a. Walking time from the entry gate at the origin station
to the platform, ¢

o, ewt;
b. Waiting time from the arrival at the platform to the
departure of the train, £, .;

c. TT on the train, ¢4 (can be obtained from ATS system
data);

d. Walking time from the platform of the transfer origin
line to the platform of the transfer destination line,
t

e. Waiting time from the arrival at the platform of the
transfer destination line to the departure of the next
train, £

ts, tswt>

ts,wt;
f. Walking time from the platform to the exit gate at the
destination station, ¢, ...

Thus, TT for a passenger’s complete travel process can be
estimated by the following equation:

TT = to, ewt T to, wt T tod + tts, tswt T tts,wt + td, ewt* (3)

However, TT always fluctuates among different pas-
sengers on the same route of one OD pair due to individual
differences and environmental disturbance in the travel
process. In other words, TT on one route of the OD pair is
usually presented as a range of values, rather than a fixed
value (Figure 4).

For this reason, an essential concept that assists us in
deducing the passenger route choice is TTR. It is defined as
arange of TT that passengers can travel on a given route, from
the shortest TT TT,;, to the longest TT TT,,,, as shown
below. Specifically, the lower bound is defined theoretically by
considering scheduled train arrival and departure times
combined with the maximum realistic walking speeds, which
represents an ideal, delay-free scenario. For the upper bound,
it is determined from AFC and AVL data and captured real-
world variability, by including the minimum walking speed
and maximum waiting time due to delays. Delays such as
those caused by being left behind during peak hours naturally
lead to longer observed TTs, we accounted for potential
waiting time impacts by incorporating an additional waiting
time equivalent to one or two headways into the upper bound
based on actual station situations.

TTR = [TT, 00 TT - (4)

min?

3.3.2. Route Choice Deduction. Based on the above-
mentioned TT inference, the TTRs of routes for OD pairs
may overlap to different degrees (non-overlapping, minor
overlapping, and major overlapping). For OD pairs with
non-overlapping ranges, the actual TT of each passenger is
compared with the TTR. A passenger can be deduced to
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FIGURE 3: The composition of route travel time (TT) between a given OD pair.

a route if his/her actual time falls into the range of the route.
For OD pairs with overlapping ranges (minor overlapping or
major overlapping), the dates with trips falling into the
overlapping part need to be eliminated, and accordingly, the
trips in the remaining dates are in the non-overlapping parts.
Therefore, the corresponding deduction for these remaining
passenger route choices is consistent with the previous non-
overlapping process. In all, the actual route choices of
passengers can be deduced with certainty. The deduction
diagram is shown in Figure 5.

3.3.3. Twofold Comparison of Passengers’ Actual and Esti-
mated Route Choices. In this paper, we carry out a twofold
comparison approach (Figure 6): First, the comparison is
conducted at the single-day level and multiday level, re-
spectively; second, at each level (single-day or multiday),
differences between passengers’ actual and estimated route
choices and their regularity are analyzed in detail. At the
single-day level, the trips of a given OD pair may be classified
as small scale, while at the multiday level (e.g., for a month),
the trips of the same OD pair may raise and exceed the

threshold and become a large sample. We try to complete the
comparisons on both of them.

3.3.3.1. Single-Day and Multiday. At the single-day level, the
trips of a given OD pair after the abovementioned filtering are
small scale and cannot meet the threshold. It would be easy to
understand if this would lead to model inaccuracy. But at the
multiday level, when accumulating trips by days (e.g., for
a month), the count of trips may exceed the threshold and meet
the criteria of large scale (large population), and the situation
will be changed. Therefore, it is necessary to make comparisons
at both levels to analyze the difference between passengers’
actual and estimated results to check model applicability. If the
choices of such trips are inherently volatile, then they should not
be described using a fixed model value, but the regularity be-
tween actual passenger choices needs to be explored.

3.3.3.2. Difference and Regularity Analyses. The difference
and regularity analyses are conducted at both single-day and
multiday levels. Difference analysis aims to know the
magnitude of numerical variances between the actual

858017 SUOWILLOD BAIRID 3|eotjdde ay) Aq peusenob ale 9. VO '8sn 40 S8|NI 0 ARIq1T 8UIIUQ AB]1M UO (SUOTHIPUOD-PUE-SWLBI L0 A8 | 1M AReq U1 |UO//:SANL) SUORIPUOD pue SIS 1 189S *[6202/TT/90] Uo AkeiqiTauliuo A81IM 'INOH ON NH A LISYIAINN DINHOT LA TOd ONOM ONOH A £2/.09€/11/SSTT 0T/I0p/W0D A8 1M Areiqijputuoy/sdny wouy pspeojumod ‘T ‘G202 ‘607T



Journal of Advanced Transportation

Passenger density

B

Travel time range (TTR) Travel time (TT)

=== Empirical data

F1GURE 4: Illustration of a route’s travel time distribution between a given OD pair.

Smooth trend line

O-D pair with small-scale trips

v

Travel time range of routes

v

\ 4 *

Probability

Non-overlapping Minor overlapping Major overlapping

Route I

RouteIl  Travel time Route]  Routell Travel time Routel Route Il Travel time|

Probability
Probability

l

v

Actual travel time of trips

v

Filter the trips in the overlapping range

v

Identify the dates of these trips

v

Eliminate all trips on these dates

v

Compare the actual time and route range of each trip

v

Judge the route choice of each trip

Figure 5: Illustration of route choice deduction rules.

J/:Sdny) suonIpUED pue SWie 1 38U} 89S *[5202Z/TT/90] U0 AriqIT8UIUO AB1IM ‘INOH DN NH ALISYIAINN DINHOFLATOd ONOY ONOH Ad £2/209€/41/SGTT OT/I0p/L0D" A3 1M A Req 1 BUIIUO//SCRY o1} papeojumoq ‘T ‘G202 ‘60T

oA

85UBD1 7 SUOWILLIOD 318D 3|aedlt|dde ays Aq peutenob afe sapoile YO ‘8sh JO sajni 10y Areuq i auljuQ AS|IA Lo (SUO I IpUod-pue:



10

Twofold

comparison

Journal of Advanced Transportation

Difference

Single day analysis

Regularity

FIGURE 6: Twofold comparison of the actual and estimated passengers’ route choices.

choices and the estimated results, while regularity analysis
seeks to explore whether the actual choices themselves have
a certain regularity and stability.

Two indicators are selected to assist our analysis, the
relative percentage difference (RPD) and the root means
square error (RMSE). RPD is commonly employed to cal-
culate and observe whether there exists a significant gap
between two values and what the size of the gap is, while
RMSE helps measure the degree of deviation between a data
series and the true value [67]. The larger the RPD is, the more
significant the numerical gap is. The larger the RMSE is, the
more discrete, unstable, and disordered the data series itself
is. In the difference and regularity analysis, the data chosen
for the indicator formula are different, and a more detailed
description is given below.

In terms of difference analysis, the main focus is on com-
paring the model result with the actual proportion for each day.
Then, RPD and RMSE are calculated as Equations (5) and (6).

|Va - le
(v +v)12)]

where v, refers to the actual proportion on a given day, and
v,, refers to the estimated by PRC model.

RPD,; = x 100%, (5)

(6)

where N means the number of days for comparison, and v
means the actual proportion on the j* day.

In terms of regularity analysis, the main focus is on
exploring the self-regularity of the actual proportions. Then,
Equations ((5) and (6)) can be applied again by replacing the
variable v,, with v,, which refers to the average of the actual
proportions over N days. The resulting values are noted as
RPD,,, and RMSE,,, respectively.

reg’

4. Case Study
4.1. Study Area and Data Collection

4.1.1. The Nanchang Metro Network. The case study con-
ducted in this paper is based on the Nanchang metro in
China. Its network (Figure 7) consists of 4 lines (Line No.
1-4), with a total of 94 stations (including 9 transfer

stations). For subsequent analysis, each station is numbered,
where the transfer stations are generated with different
numbers on different lines.

4.1.2. Multisource Data to Be Used. The data we used come
from three different sources, including the AFC system, the
ATS system, and crowd walking speed (CWS) statistics. The
AFC transaction data and ATS timetable data for five
months in 2022 were used. Investigations into passenger
walking speed were conducted in a comprehensive reference
to several literature studies [68, 69].

The station’s entry and exit gates can record relevant data
when passengers swipe their smart cards, including pas-
senger’s ticket number, ticket type, card swipe date and time,
travel amount, origin station, and destination stations, etc.
We select six types of information relevant to this study, as
shown in Table 2.

The train timetable data include the date, line number,
line terminal, train number, arrival, and departure time of
each train at each station, and the train running direction. We
extract the following information from ATS data (Table 3).

The CWS varies depending on individual differences.
According to different kinds of people, walking speeds are
usually considered for three categories: the ordinary (the
medium), the elderly (the low), and the young (the high).
The walking speed intervals of the three groups of people
may have some overlaps. The average values are taken as the
basis of the later calculation. In this study, a simplified
example of walking speed value is shown in Table 4.

4.2. Results and Analysis. The proposed approach is applied
to the Nanchang metro network. In particular, three OD
pairs are used for demonstration. Their daily trips meet the
criteria of small scale, and more importantly, their actual
route choices can be accurately deduced on certain days
using the TTR method. This enables high-confidence
benchmarking. Difference and regularity analysis are
given based on the deduction results of these three OD pairs.

4.2.1. Typical OD Pairs to Be Selected. The typical OD pairs
are selected not for their extremity but because their route
configurations allow us to confidently deduce actual pas-
senger route choices. Our focus is on leveraging high-
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NANCHANG METRO
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Shengmi
Dagang
Nanlu
FIGURe 7: The Nanchang metro network.
TaBLE 2: AFC data used in this study. TaBLE 4: A simplified example of walking speed data.
Field Example Walkin;

. P Crowd category d val 8 /
Ticket number 00000111F774108B speed value (m/s)
Date 20,220,922 Medium speed 1.35
Exit time 074,203 Low speed 1.28
Exit station number 0121 High speed 1.50
Entry time 072,702
Entry station number 0245

certainty cases to uncover limitations in the PRC model, and
o other OD pairs covering across the entire network can be
TaBLE 3: ATS data used in this study. . P & .

included in future work, especially as more granular or
Field Example sensor-based data become available to improve inference

Train number 01 accuracy.
Train run number 09 To make the cases more comprehensive and convincing,
Station name Qiushui square we divided the OD pairs into three categories based on the
Station number 0128 degree of TTR overlap. As the overlap increases, fewer dates
Train ?lmval time 113,308 can be fully presumed for each OD pair and the greater the
Train departure time 113,338 difference between the actual and the estimated results.
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Table 5 summarizes the information of one example in each
category, namely, 0438-0425, 0437-0222, and 0244-0227.
The locations of the OD pairs in the metro network are also
shown in Figures 8(a), 8(b), and 8(c).

4.2.2. Deduction Results. For the OD® (0438-0425), there
are 1950 trips during the studied five months. After ex-
cluding 23 abnormal records, the actual route choices of the
passengers are deduced for each day. The corresponding
proportions for the two routes are illustrated in Figure 9,
where the red solid line is the prediction of the PRC model
and the yellow solid line is the average of the actual pro-
portions. It can be found that most passengers tend to
choose the shorter route (Route I) on most days, and more
specifically, 54 days or 35.2% of the 5-month data are fo-
cused entirely on Route I.

For the OD® (0437-0222), it has 1585 trips during the
studied five months. After excluding 29 abnormal records
and 19 trips in the overlapping part, 138 days remain to fully
deduce the actual route choices of passengers. The corre-
sponding proportions for the two routes are shown in
Figure 10, where the red solid line is the prediction of the
PRC model and the yellow solid line is the average of the
actual proportions. In contrast to the model probability,
there are 59 days that all passengers choose the shorter route
(Route I), accounting for 42.7%. The longer route (Route II)
also has more passenger choices on some dates, with more
passengers choosing Route II on 3days and the same
number for both routes on 20 days.

For the OD® (0244-0227), 909 trips are recorded during
the studied five months. After excluding 41 abnormal re-
cords and 348 data in the overlapping zone, a total of 23 days
is available to fully deduce the actual choice of passengers.
The corresponding proportions for the two routes are shown
in Figure 11, where the red solid line is the prediction of the
PRC model and the yellow solid line is the average of the
actual proportions. The actual proportions of passenger
choices differ significantly from the model probability, with
15 days (65.2%) that are completely contrary to the trend of
the model.

4.2.3. Single-Day Analysis. For the non-overlapping OD
pair, we take the week from 07/24/2022 to 07/30/2022 as an
example shown in Table 6. The convergence between the
actual and the estimated is consistent, with the shorter route
chosen more. Comparing the actual proportions with each
other for each day, there are occasionally different trends in
the proportions, and it is hard to summarize a clear regu-
larity of changes.

For the minor overlapping OD pair, we take the week
from 01/01/2022 to 01/07/2022 as an example shown in
Table 7. The convergence between the actual and the esti-
mated is gradually becoming different, which means that
passengers did not overwhelmingly tend to the shorter route
as the model indicates. The general trend is consistent when
comparing the actual proportions within each other on most
dates, there are still occasional disparities.

Journal of Advanced Transportation

For the major overlapping OD pair, we take all deducted
dates as an example shown in Table 8. The convergence
between actual and estimated values varies significantly on
most dates. The trend of actual proportions per day is not
regular to each other, with almost no dates closer to obvious
patterns.

In summary, at the single-day level, when the trips are
below the small-scale threshold, the actual proportions of
passenger route choices per day are distinctly different from
the estimated by the model for all three types of OD pairs.
The difference between the actual proportions and the es-
timated can be significant to a great extent even inverted as
the TTRs overlap more. When the TTRs are completely
overlapping, the uncertainty in passenger route choices is
more pronounced. In other words, probabilistic models
cannot describe passenger route choices between OD pairs
when the trips are small scale, and the choices themselves are
with little regularity.

4.2.4. Multiday Analysis. For the non-overlapping OD pair,
we take the monthly data as demonstrated in Table 9. The
comparison from the monthly dimension is conducted. The
actual proportions after accumulating multiple days are
again compared with the model probability, and it can be
found that they are nearly similar. Meanwhile, the pro-
portions are also close to each other among months. The
change in the difference is relatively stable, with no large
deviations.

For the minor overlapping OD pair, we take the monthly
data as demonstrated in Table 10. The actual proportions
after monthly accumulation remain predominantly similar
to the model probability, and the actual proportions con-
verge from month to month. The change of the difference is
still relatively stable, especially in the comparison between
the actual proportions.

For the major overlapping OD pair, we take the monthly
data as demonstrated in Table 11. The monthly actual
proportions after accumulation are very different from the
model probability, and they even all appear to be reversed. In
contrast, the actual proportions of these 5months after
accumulating are very similar. The change of the difference
with the model is greater than the change in own difference.

Building on the previous discussion, it is evident that at
the multiday level, even when the trips surpass the small-
scale threshold, passenger route choices may deviate from
the PRC models in some cases. Specifically, when TTRs do
not overlap or overlap minimally, passenger choices tend to
align with model predictions. Conversely, when TTRs ex-
hibit substantial or complete overlap, notable differences
between actual proportions and model estimates become
evident, sometimes even resulting in reversed trends. In this
case, it is intriguing that passenger route choices seem to
exhibit their own patterns, which sheds light on future
studies concerning passenger choices for OD pairs with
small-scale trips.

In summary, the variance of passengers’ actual route
choices on OD pairs with small-scale trips is more significant
as the overlap of TTRs between routes increases. This may
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F1GURE 9: Choice proportions of the two routes between OD® (0438-0425).

have some degree of impact on the result accuracy and create
analytical disturbances in the overall network. Pending
further validation analysis is necessary and valuable.

4.3. Discussions. Several results are further discussed in the
following subsections to inspire the application and im-
provement of the existing route choice models as well as
passenger flow calculations.

i. The variance in passengers’ actual route choices among
single days for OD pairs with small-scale trips

At the single-day level, it can be found that passenger
route choices lack stability when compared across
different days. The actual proportions fluctuate a lot
from date to date (as shown in record No. 1 to No. 7
of Table 12) and can even appear distinctly opposite
on the days before and after (as shown in record No.

ii.

2 to No. 3 of Table 11). These findings are not sur-
prising, given that passenger flow distribution in the
URT network is a macroscopic emergence from in-
dividual route choices at the micro level. To discern
distribution patterns clearly, a large-scale dataset is
required. In situations with limited samples, pas-
senger flow exhibits higher volatility compared to
regularity, amplifying the variance in passenger
choices.

The variability in model applicability among multi-
days for OD pairs with small-scale trips

At the multiday level, the passenger route choices
themselves present stable proportions to an extent
when those single-day trips are accumulated and
meet the criteria of large-scale (large population).
Nevertheless, these actual proportions of passenger
route choices may either conform to (as shown in
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TaBLE 6: Weekly results for OD® (0438-0425).

. . Proportion of Proportion of
Date Actual trips Actual trips roate T woute IT RPD,, (%)  RPD,, (%)
of route I of route II . reg
(%) (%)
20220724 3 1 75.00 25.00 -8.95 -11.54
20220725 8 0 100.00 0.00 19.74 17.17
20220726 5 2 71.43 28.57 -13.82 -16.39
20220727 2 0 100.00 0.00 19.74 17.17
20220728 3 0 100.00 0.00 19.74 17.17
20220729 5 0 100.00 0.00 19.74 17.17
20220730 3 4 42.86 57.14 -62.73 —-65.06
Small-scale threshold 57 Model probability 82.03 17.97 — —
TaBLE 7: Weekly results for OD® (0437-0222).
. . Proportion of Proportion of
Date Actual trips Actual trips roate T woute 1T RPD,, (%)  RPD,, (%)
of route I of route II . reg
(%) (%)
20220101 4 7 36.36 63.64 —78.55 -71.27
20220102 20 4 83.33 16.67 —-4.16 4.30
20220103 5 1 83.33 16.67 —-0.08 8.38
20220104 9 1 90.00 10.00 7.61 16.05
20220105 10 3 76.92 23.08 -8.08 0.38
20220106 10 3 76.92 23.08 —8.08 0.38
20220107 13 1 92.86 7.14 10.73 19.15
Small-scale threshold 53 Model probability 83.40 16.60 — —
TaBLE 8: Weekly results OD® (0244-0227).
. . Proportion of Proportion of
Date Actual trips Actual trips foute I rl:)ute 11 RPDy (%)  RPD,, (%)
of route I of route II 1 reg
(%) (%)
20220109 1 2 33.33 66.67 —84.42 16.33
20220127 1 0 100.00 0.00 19.74 111.76
20220130 0 4 0.00 100.00 —200.00 -200.00
20220604 0 2 0.00 100.00 —200.00 —-200.00
20220605 0 7 0.00 100.00 —200.00 —-200.00
20220710 3 0 100.00 0.00 19.74 111.76
20220717 0 1 0.00 100.00 —-200.00 —-200.00
20220720 0 1 0.00 100.00 —-200.00 —-200.00
20220723 2 1 66.67 33.33 -20.66 80.79
20220725 0 3 0.00 100.00 —-200.00 —200.00
20220729 0 4 0.00 100.00 —-200.00 -200.00
20220730 0 2 0.00 100.00 —200.00 -200.00
20220804 1 2 33.33 66.67 -84.42 16.33
20220814 1 0 100.00 0.00 19.74 111.76
20220815 0 4 0.00 100.00 —-200.00 —-200.00
20220818 1 1 50.00 50.00 —48.52 55.42
20220824 1 4 20.00 80.00 -121.59 -34.38
20220825 0 1 0.00 100.00 —-200.00 —-200.00
20220831 1 2 33.33 66.67 —-84.42 16.33
20220911 0 1 0.00 100.00 —-200.00 —200.00
20220912 1 1 50.00 50.00 —48.52 55.42
20220918 1 1 50.00 50.00 —48.52 55.42
20220922 1 6 14.29 85.71 —140.67 —65.82
Small-scale threshold 57 Model probability 82.03 17.97 — —
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TaBLE 9: Monthly results for OD® (0438-0425).

17

. . Proportion of Proportion of
Month Actual trips Actual trips route I route II RPD ;s (%) RPD,., (%)
of route I of route II 8
(%) (%)
202201 301 69 81.35 18.65 -0.83 -2.71
202206 384 86 81.70 18.30 -0.40 -2.28
202207 266 45 85.53 14.47 4.18 2.29
202208 194 41 82.55 17.45 0.64 -1.25
202209 316 48 86.81 13.19 5.67 3.78
Total 1461 289 83.49 16.51 1.76 —
Small-scale threshold 57 Model probability 82.03 17.97 RMSEq;¢ RMSE g
0.1761 0.1754
TaBLE 10: Monthly results for OD® (0437-0222).
. . Proportion of Proportion of
Month Actual trips Actual trips route I route II RPDy (%)  RPD,, (%)
of route I of route II 8
(%) (%)
202201 240 31 88.56 11.44 5.63 -3.45
202206 198 19 91.24 8.76 8.98 -0.10
202207 262 19 93.24 6.76 11.14 2.07
202208 252 26 90.65 9.35 8.33 -0.75
202209 334 24 93.30 6.70 11.20 213
Total 1243 111 91.80 8.20 9.08 —
Small-scale threshold 53 Model probability 83.40 16.60 RMSEq;¢ RMSE g
0.1451 0.1118
TaBLE 11: Monthly results for OD® (0244-0227).
. . Proportion of Proportion of
Month Actual trips Actual trips route I route II RPD, (%)  RPD,, (%)
of route I of route II 8
(%) (%)
202201 2 6 25.00 75.00 -106.57 16.71
202206 0 9 0.00 100.00 —-200.00 —-200.00
202207 5 12 29.41 70.59 -94.43 32.70
202208 5 14 26.32 73.68 -102.85 21.79
202209 3 9 25.00 75.00 -106.57 16.71
Total 15 50 23.08 76.92 -112.17 —
Small-scale threshold 57 Model probability 82.03 17.97 RMSEqi¢ RMSE g
0.6388 0.3455
TaBLE 12: Comparison of the actual proportions of passengers’ route choices among multiple days.
Actual trip Actual proportion Model probability
No. oD Date Route 1 Route 11 Route I Route II
Route I Route II (%) (%) (%) (%)
1 20220804 1 2 33.33 66.67
2 20220814 1 0 100.00 0.00
3 20220815 0 4 0.00 100.00
4 0244-0227 20220818 1 1 50.00 50.00 82.03 17.97
5 20220824 1 4 20.00 80.00
6 20220825 0 1 0.00 100.00
7 20220831 1 2 33.33 66.67
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TaBLE 13: Comparison of the actual proportion and the estimated by model for large-scale trips of multiple days.

Actual trip Actual proportion Model probability

No. oD Month Route I Route II Route I Route II
Route I Route II (%) (%) (%) (%)
1 0438-0425 5 months in 2022 1461 289 83.49 16.51 82.03 17.97
0437-0222 5 months in 2022 1243 111 91.80 8.20 83.40 16.60
3 0244-0227 5 months in 2022 15 50 23.08 76.92 82.03 17.97

iii. Application of PRC models for short-, medium- and
long-term prediction

Performed analysis shows that caution is needed
when applying PRC models on a daily or weekly
basis. Before application, the scale of the passenger
trip data should be evaluated, and modification is
needed for those small-scale OD pairs. One potential
approach is to combine the data-driven deduction
method with PRC models. Routine surveys are also
suggested for the small-scale OD pairs. While ap-
plying PRC models in short-term predictions may
encounter a considerable amount of small-scale OD
pairs, which may cause notable errors, the medium-
and long-term applications with time horizons of
months or years would likely address the small-scale
issue. Such predictions serve as invaluable tools for
facilitating strategic planning tasks, including re-
source investment and network designs. In summary,
when it comes to passenger route choices for OD
pairs with small-scale trips, the probabilistic model
proves inadequate in providing accurate de-
scriptions. Additionally, it is worth noting that
passenger route choices exhibit varying behavior at
different scale levels. There is a lack of consistency in
route choices when comparing every single day.
When aggregated over multiple days, resulting in
trips that meet the large-scale threshold, these
choices can align with the probabilistic model in
some cases. However, in some other cases, this
alignment is absent, and the behavior does not
conform to the model. While the PRC model exhibits
the aforementioned errors in single-day scenarios, it
still maintains partial applicability in large-scale
contexts, making it suitable for medium and long-
term predictions. This complex interplay underscores
the need for a more nuanced understanding of
passenger route choices and their relationship with
trip scale and temporal factors.

Overall, the results presented in this section offer practical
value for both transit planners and model developers. By
distinguishing where PRC models succeed and where they fail
based on trip volume, temporal scale, and user behavior
consistency, this study supports more context-aware appli-
cations of modeling tools. These findings also point to the
need for adaptive strategies, such as integrating supple-
mentary data sources or modifying model assumptions, to
improve accuracy in small-scale OD scenarios. In doing so, it
helps bridge the gap between theoretical model design and
operational decision-making in real-world URT systems.

5. Conclusion and Practical Implications

This study sets out to address a fundamental modeling
challenge in URT system: evaluating the reliability of PRC
models when applied to OD pairs with small-scale trip data.
While PRC models are widely used in transit demand
modeling, their limitations under sparse data conditions
remain insufficiently understood. This research fills that gap
by proposing and testing a validation framework tailored for
such contexts, aiming to clarify when and how these models
should be applied in practice. First, the concept of “small
scale” is defined, enabling the identification of OD pairs with
small-scale trips in the network. Second, a TTR-based method
is proposed to infer passengers’ actual route choices. Third,
a twofold comparison, at single-day and multiday levels, is
conducted to analyze the corresponding difference and
regularity between the estimations and actual results. In the
case of the Nanchang metro in China, we found that OD pairs
with small-scale trips exhibit significant variations in the daily
passenger route choices, leading to notable errors. While the
model becomes applicable again in some instances when the
trips of OD pairs accumulate and reach the large-scale
threshold over a monthly period, limitations still persist in
certain cases, revealing complex dynamics that challenge
traditional probabilistic assumptions.

The results of this study also have several practical
implications for URT operation agencies regarding route
choice modeling to improve passenger flow analysis.

1. There are OD pairs on the URT network where
passengers’ route choices cannot be appropriately
estimated by existing PRC models. URT operation
agencies need to recognize that PRC models may not
be suitable for certain OD pairs, even if their trip data
accumulates to a large-scale population. Therefore, it
is important for URT operation agencies to exercise
caution when estimating route choices using PRC
models.

2. The operation of URT should be able to withstand
a certain degree of inaccuracies in passenger flow
predictions. It is not economically viable to accurately
detect and record the actual behaviors of URT pas-
sengers in practice. Therefore, further research is
necessary to investigate the impact of small-scale data
issues on the entire network and incorporate this
information into robust modeling.

3. New approaches to estimating URT passengers’ route
choices are necessary for operation agencies seeking
more precise passenger flow analysis. There may be
situations where the impact of PRC models’
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inapplicability becomes larger due to different URT
network structures or different stages of development.
When it becomes too large to harm the whole network
operation, new approaches or even paradigms need to
be considered to replace the existing PRC models,
such as retrospective route choice models, and mul-
tisource data fusion (cell phone signaling data, Wi-Fi
data, CCTV data, etc.).

In light of the aforementioned, it is imperative that more
URT operation agencies take note of the inapplicability of
PRC models in practice. We contend that our research focus
remains relevant, and our analytical framework offers valu-
able insights, particularly for cities with more extensive and
intricate URT networks. By grouping less-used alternatives
into an aggregated category, multiroute OD pairs can be
approximated within a binary framework, retaining meth-
odological simplicity while enabling broader applicability.
Building on this, future research should delve deeper into
understanding how OD pairs with small-scale trips may lead
to adverse consequences in diverse network configurations.
Investigating how network structure and development scale
influence the generalizability of our conclusions holds great
interest. Ultimately, developing new paradigms tailored to
refined URT operations is also essential for exploring and
evaluating the performance in comparison to PRC models.
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Endnotes

'A more rigorous definition of small scale will be given in
Section 3.

*This structure forms a practical basis for future extension to
multiroute scenarios, which are not discussed here.

References

[1] H. Spiess and M. Florian, “Optimal Strategies: A New As-
signment Model for Transit Networks,” Transportation

19

Research Part B: Methodological 23, no. 2 (1989): 83-102,

https://doi.org/10.1016/0191-2615(89)90034-9.

S. H. Lam and F. Xie, “Transit Path-Choice Models That Use

Revealed Preference and Stated Preference Data,” Trans-

portation Research Record: Journal of the Transportation Re-

search Board 1799, no. 1 (2002): 58-65, https://doi.org/
10.3141/1799-08.

Y. Sun and R. Xu, “Rail Transit Travel Time Reliability and

Estimation of Passenger Route Choice Behavior: Analysis

Using Automatic Fare Collection Data,” Transportation Re-

search Record: Journal of the Transportation Research Board

2275, no. 1 (2012): 58-67, https://doi.org/10.3141/2275-07.

P. Kumar, A. Khani, and Q. He, “A Robust Method for Es-

timating Transit Passenger Trajectories Using Automated

Data,” Transportation Research Part C: Emerging Technologies

95 (2018): 731-747, https://doi.org/10.1016/j.trc.2018.08.006.

[5] Y. Zhu, H. N. Koutsopoulos, and N. H. Wilson, “Passenger

Itinerary Inference Model for Congested Urban Rail Net-

works,” Transportation Research Part C: Emerging Technologies

123 (2021): 102896, https://doi.org/10.1016/j.trc.2020.102896.

N. Eluru, V. Chakour, and A. M. El-Geneidy, “Travel Mode

Choice and Transit Route Choice Behavior in Montreal: In-

sights From McGill University Members Commute Patterns,”

Public Transport 4, no. 2 (2012): 129-149, https://doi.org/

10.1007/s12469-012-0056-2.

F. Zhou, J. Shi, and R. Xu, “Estimation Method of Path-

Selecting Proportion for Urban Rail Transit Based on AFC

Data,” Mathematical Problems in Engineering 2015 (2015):

1-9, https://doi.org/10.1155/2015/350397.

W. Zhu, W. Wang, and Z. Huang, “Estimating Train Choices

of Rail Transit Passengers With Real Timetable and Automatic

Fare Collection Data,” Journal of Advanced Transportation

2017 (2017): 1-12, https://doi.org/10.1155/2017/5824051.

[9] C.Li, X. Liu, Y. Bai, B. Wang, J. Huang, and Y. Chen, “Route
Choice Model of the Major Passenger Group in Urban Rail
Transit: A Case Study of Beijing, China,” 2020 IEEE 5th In-
ternational Conference on Intelligent Transportation Engi-
neering (ICITE) (2020): 8-13, https://doi.org/10.1109/
icite50838.2020.9231366.

[10] B. Mo, Z. Ma, H. N. Koutsopoulos, and J. Zhao, “Ex Post Path
Choice Estimation for Urban Rail Systems Using Smart Card
Data: An Aggregated Time-Space Hypernetwork Approach,”
Transportation Science 57, no. 2 (2023): 313-335, https://
doi.org/10.1287/trsc.2022.1177.

[11] J. N. Prashker and B. Shlomo, “Route Choice Models Used in
the Stochastic User Equilibrium Problem: A Review,”
Transport Reviews 24, no. 4 (2004): 437-463, https://doi.org/
10.1080/0144164042000181707.

[12] C. G. Prato, “Route Choice Modeling: Past, Present and

Future Research Directions,” Journal of Choice Modelling 2,

no. 1 (2009): 65-100, https://doi.org/10.1016/S1755-5345(13)

70005-8.

M. Pelletier, T. Martin, and M. Catherine, “Smart Card Data

Use in Public Transit: A Literature Review,” Transportation

Research C 19, no. 4 (2011): 557-568, https://doi.org/10.1016/

j.trc.2010.12.003.

J. Zhang, “A Review on Route Choice Behavior and Volume

Control of Passengers in Urban Rail Transit Network,” IOP

Conference Series: Materials Science and Engineering, 677,

no. 4 (IOP Publishing, 2019), 042047, https://doi.org/10.1088/

1757-899x/677/4/042047.

T.]. Tiam-Lee and R. Henriques, “Route Choice Estimation in

Rail Transit Systems Using Smart Card Data: Handling Ve-

hicle Schedule and Walking Time Uncertainties,” European

[2

[3

[4

[6

[7

[8

(13

(14

[15

858017 SUOWILLOD BAIRID 3|eotjdde ay) Aq peusenob ale 9. VO '8sn 40 S8|NI 0 ARIq1T 8UIIUQ AB]1M UO (SUOTHIPUOD-PUE-SWLBI L0 A8 | 1M AReq U1 |UO//:SANL) SUORIPUOD pue SIS 1 189S *[6202/TT/90] Uo AkeiqiTauliuo A81IM 'INOH ON NH A LISYIAINN DINHOT LA TOd ONOM ONOH A £2/.09€/11/SSTT 0T/I0p/W0D A8 1M Areiqijputuoy/sdny wouy pspeojumod ‘T ‘G202 ‘607T


http://doi.org/10.1016/0191-2615(89)90034-9
http://doi.org/10.3141/1799-08
http://doi.org/10.3141/1799-08
http://doi.org/10.3141/2275-07
http://doi.org/10.1016/j.trc.2018.08.006
http://doi.org/10.1016/j.trc.2020.102896
http://doi.org/10.1007/s12469-012-0056-2
http://doi.org/10.1007/s12469-012-0056-2
http://doi.org/10.1155/2015/350397
http://doi.org/10.1155/2017/5824051
http://doi.org/10.1109/icite50838.2020.9231366
http://doi.org/10.1109/icite50838.2020.9231366
http://doi.org/10.1287/trsc.2022.1177
http://doi.org/10.1287/trsc.2022.1177
http://doi.org/10.1080/0144164042000181707
http://doi.org/10.1080/0144164042000181707
http://doi.org/10.1016/S1755-5345(13)70005-8
http://doi.org/10.1016/S1755-5345(13)70005-8
http://doi.org/10.1016/j.trc.2010.12.003
http://doi.org/10.1016/j.trc.2010.12.003
http://doi.org/10.1088/1757-899x/677/4/042047
http://doi.org/10.1088/1757-899x/677/4/042047

20

(16]

(17]

(18]

(19]

[20

[21

[22

[23

(24]

(25]

(26]

(27]

[28

(29]

(30]

[31

(32]

Transport Research Review 14, no. 1 (2022): 31-16, https://
doi.org/10.1186/s12544-022-00558-x.

C. F. Manski, “The Structure of Random Utility Models,”
Theory and Decision 8, no. 3 (1977): 229-254, https://doi.org/
10.1007/BF00133443.

E. L. Lehmann, Introduction to Large-Sample Theory
(Springer, 1999).

R. O. Kuehl, Design of Experiments: Statistical Principles of
Research Design and Analysis, 2nd ed. (Duxbury Press Cal-
ifornia, 2000).

R. Xu, W. Zhu, and F. Song, Research on Validation and
Optimization of Clearing Model of Shanghai metro Network
(Tongji University, 2014).

B. Si, M. Zhong, J. Liu, Z. Gao, and ]. Wu, “Development of
a Transfer-Cost-Based Logit Assignment Model for the Bei-
jing Rail Transit Network Using Automated Fare Collection
Data,” Journal of Advanced Transportation 47, no. 3 (2013):
297-318, https://doi.org/10.1002/atr.1203.

B. Si, L. Fu, J. Liu, S. Shiravi, and Z. Gao, “A Multi-Class
Transit Assignment Model for Estimating Transit Passenger
Flows—A Case Study of Beijing Subway Network,” Journal of
Advanced Transportation 50, no. 1 (2016): 50-68, https://
doi.org/10.1002/atr.1309.

S. Bekhor, T. Toledo, and J. N. Prashker, “Effects of Choice Set
Size and Route Choice Models on Path-Based Traffic As-
signment,” Transportmetrica 4, no. 2 (2008): 117-133, https://
doi.org/10.1080/18128600808685682.

B. Mao, Z. Zhang, and Z. Chen, “A Review on Operational
Technologies of Urban Rail Transit Networks,” Journal of
Transportation Systems Engineering and Information Tech-
nology 17, no. 6 (2017): 1-9.

X. Wu and C. Liu, “Traffic Equilibrium Assignment Model
Specially for Urban Railway Network,” Journal of Tongji
University 32, no. 9 (2004): 1158-1162.

B. Si, B. Mao, and Z. Liu, “Passenger Flow Assignment Model
and Algorithm for Urban Railway Traffic Network Under the
Condition of Seamless Transfer,” Journal of the China Railway
Society 29, no. 6 (2007): 12-18.

J. Liu, “Passenger Flow Distribution Model of Urban Rail
Transit Network Based on Data Obtained IC card Usage,”
Logistics Technology 8 (2010): 64-67.

R. Xu, Q. Luo, and P. Gao, “Passenger Flow Distribution
Model and Algorithm for Urban Rail Transit Network Based
on Multi-Route Choice,” Journal of the China Railway Society
31, no. 2 (2009): 110-114.

K. Qiao, P. Zhao, and Z. Qin, “Passenger Route Choice Model
and Algorithm in the Urban Rail Transit Network,” Journal of
Industrial Engineering and Management 6, no. 1 (2013):
113-123, https://doi.org/10.3926/jiem.595.

M. Ben-Akiva and M. Bierlaire, “Discrete Choice Methods
and Their Applications to Short Term Travel Decisions,”
Handbook of Transportation Science 1 (1999): 1-29.

J. Gleason, S. Richter, and C. Sundberg, “A Behavioral
Comparison of Route Choice on Metro Networks: TIME,
Transfer, Crowding, Topology and Socio-Demographics,”
Transportation Research A 66, no. 1 (2014): 185-195.

H. Xu, J. Zhou, and W. Xu, “A Decision-Making Rule for
Modeling Travelers’ Route Choice Behavior Based on Cu-
mulative Prospect Theory,” Transportation Research Part C:
Emerging Technologies 19, no. 2 (2011): 218-228, https://
doi.org/10.1016/j.trc.2010.05.009.

J. Wu, Y. Qu, H. Sun, H. Yin, X. Yan, and J. Zhao, “Data-
Driven Model for Passenger Route Choice in Urban Metro
Network,” Physica A: Statistical Mechanics and Its

(33]

(34]

[35

[36

(37]

(38

(39]

[40

(41]

[42

[43

(44

(45

(46]

Journal of Advanced Transportation

Applications 524 (2019): 787-798, https://doi.org/10.1016/
j.physa.2019.04.231.

H. Xue, P. Yang, H. Zhang, and E. Jing, “Study on the Control
Strategy of Urban Rail Transit Passenger Flow Under the
Condition of Large Passenger Flow,” in IOP Conference Series:
Earth and Environmental Science, 234, no. 1 (IOP Publishing,
2019), 012001, https://doi.org/10.1088/1755-1315/234/1/012001.
Z. Guo, “Mind the Map! The Impact of Transit Maps on Path
Choice in Public Transit,” Transportation Research Part A:
Policy and Practice 45, no. 7 (2011): 625-639, https://doi.org/
10.1016/j.tra.2011.04.001.

S. Raveau, J. C. Munoz, and L. Grange, “A Topological Route
Choice Model for Metro,” Transportation Research A 45, no. 2
(2011): 138-147, https://doi.org/10.1016/j.tra.2010.12.004.

S. Raveau, Z. Guo, J. C. Mufioz, and N. H. Wilson, “A Be-
havioral Comparison of Route Choice on Metro Networks:
Time, Transfers, Crowding, Topology and Socio-
Demographics,” Transportation Research A 66 (2014): 185-
195, https://doi.org/10.1016/j.tra.2014.05.010.

D. V. Lierop, G. B. Madhav, and M. E. Ahmed, “What In-
fluences Satisfaction and Loyalty in Public Transport? A
Review of the Literature,” Transport Reviews 38, no. 1 (2018):
52-72, https://doi.org/10.1080/01441647.2017.1298683.

A. Tirachini, H. Ricardo, D. Thijs, and A. D. Ricardo, “Es-
timation of Crowding Discomfort in Public Transport: Results
From Santiago de Chile,” Transportation Research A 103, no. 9
(2017): 311-326, https://doi.org/10.1016/j.tra.2017.06.008.

X. Xu, L. Xie, H. Li, and L. Qin, “Learning the Route Choice
Behavior of Subway Passengers From AFC Data,” Expert
Systems With Applications 95, no. 4 (2018): 324-332, https://
doi.org/10.1016/j.eswa.2017.11.043.

Y. Zhang, E. Yao, J. Zhang, and K. Zheng, “Estimating Metro
Passengers’ Path Choices by Combining Self-Reported
Revealed Preference and Smart Card Data,” Transportation
Research Part C: Emerging Technologies 92, no. 7 (2018):
76-89, https://doi.org/10.1016/j.trc.2018.04.019.

Y. Asakura, I. Takamasa, N. Yoshiki, and K. Takahiko, “Es-
timation of Behavioral Change of Railway Passengers Using
Smart Card Data,” Public Transport 4, no. 1 (2012): 1-16,
https://doi.org/10.1007/s12469-011-0050-0.

T. Kusakabe, T. Iryo, and Y. Asakura, “Estimation Method for
Railway Passengers” Train Choice Behavior With Smart Card
Transaction Data,” Transportation 37, no. 5 (2010): 731-749,
https://doi.org/10.1007/s11116-010-9290-0.

E. Miller, E. S. Gabriel, and N. Neema, “Estimation of Passengers
Left Behind by Trains in High-Frequency Transit Service Op-
erating Near Capacity,” Transportation Research Record: Journal
of the Transportation Research Board 2672, no. 8 (2018): 497-504,
https://doi.org/10.1177/0361198118794291.

C. Sipetas, A. Keklikoglou, and E. J. Gonzales, “Estimation of
Left Behind Subway Passengers Through Archived Data and
Video Image Processing,” Transportation Research Part C:
Emerging Technologies 118, no. 9 (2020): 102727, https://
doi.org/10.1016/j.trc.2020.102727.

Y. Zhu, H. N. Koutsopoulos, and N. H. Wilson, “Inferring Left
Behind Passengers in Congested Metro Systems From Au-
tomated Data,” Transportation Research Procedia 23 (2017):
362-379, https://doi.org/10.1016/j.trpro.2017.05.021.

Z. Ma, H. N. Koutsopoulos, Y. Chen, and N. H. Wilson,
“Estimation of Denied Boarding in Urban Rail Systems: Al-
ternative Formulations and Comparative Analysis,” Trans-
portation Research Record: Journal of the Transportation
Research Board 2673, no. 11 (2019): 771-778, https://doi.org/
10.1177/0361198119857034.

858017 SUOWILLOD BAIRID 3|eotjdde ay) Aq peusenob ale 9. VO '8sn 40 S8|NI 0 ARIq1T 8UIIUQ AB]1M UO (SUOTHIPUOD-PUE-SWLBI L0 A8 | 1M AReq U1 |UO//:SANL) SUORIPUOD pue SIS 1 189S *[6202/TT/90] Uo AkeiqiTauliuo A81IM 'INOH ON NH A LISYIAINN DINHOT LA TOd ONOM ONOH A £2/.09€/11/SSTT 0T/I0p/W0D A8 1M Areiqijputuoy/sdny wouy pspeojumod ‘T ‘G202 ‘607T


http://doi.org/10.1186/s12544-022-00558-x
http://doi.org/10.1186/s12544-022-00558-x
http://doi.org/10.1007/BF00133443
http://doi.org/10.1007/BF00133443
http://doi.org/10.1002/atr.1203
http://doi.org/10.1002/atr.1309
http://doi.org/10.1002/atr.1309
http://doi.org/10.1080/18128600808685682
http://doi.org/10.1080/18128600808685682
http://doi.org/10.3926/jiem.595
http://doi.org/10.1016/j.trc.2010.05.009
http://doi.org/10.1016/j.trc.2010.05.009
http://doi.org/10.1016/j.physa.2019.04.231
http://doi.org/10.1016/j.physa.2019.04.231
http://doi.org/10.1088/1755-1315/234/1/012001
http://doi.org/10.1016/j.tra.2011.04.001
http://doi.org/10.1016/j.tra.2011.04.001
http://doi.org/10.1016/j.tra.2010.12.004
http://doi.org/10.1016/j.tra.2014.05.010
http://doi.org/10.1080/01441647.2017.1298683
http://doi.org/10.1016/j.tra.2017.06.008
http://doi.org/10.1016/j.eswa.2017.11.043
http://doi.org/10.1016/j.eswa.2017.11.043
http://doi.org/10.1016/j.trc.2018.04.019
http://doi.org/10.1007/s12469-011-0050-0
http://doi.org/10.1007/s11116-010-9290-0
http://doi.org/10.1177/0361198118794291
http://doi.org/10.1016/j.trc.2020.102727
http://doi.org/10.1016/j.trc.2020.102727
http://doi.org/10.1016/j.trpro.2017.05.021
http://doi.org/10.1177/0361198119857034
http://doi.org/10.1177/0361198119857034

Journal of Advanced Transportation

[47] G. Xue, S. Liu, and D. Gong, “Identifying Abnormal Riding

Behavior in Urban Rail Transit: A Survey on “In-Out” in the

Same Subway Station,” IEEE Transactions on Intelligent

Transportation Systems 23, no. 4 (April 2022): 3201-3213,

https://doi.org/10.1109/TTTS.2020.3032843.

Y. Li, F. Zhou, L. Hong, and W. Zhu, in Empirical Analysis of

Failing to Board and Traveling Backward in an Overcrowded

Urban Rail Transit System (American Society of Civil Engi-

neers, 2018).

[49] C. Yu, H. Li, X. Xu, and J. Liu, “Data-Driven Approach for
Solving the Route Choice Problem With Traveling Backward
Behavior in Congested Metro Systems,” Transportation Re-
search Part E: Logistics and Transportation Review 142, no. 10
(2020): 102037, https://doi.org/10.1016/j.tre.2020.102037.

[50] R. Xu, Y. Li, W. Zhu, and S. Li, “Empirical Analysis of

Traveling Backwards and Passenger Flows Reassignment on

a Metro Network With Automatic Fare Collection (AFC)

Data and Train Diagram,” Transportation Research Record:

Journal of the Transportation Research Board 2672, no. 8

(2018): 230-242, https://doi.org/10.1177/0361198118781395.

Y. Liu, Y. Zhao, and W. Zhu, “Abnormal Travel Behaviors and

Their Impacts on Route Choice Modeling for Metro Pas-

sengers,” Traffic & Transportation no. 01 (2023): 51-55.

W. Zhu, F. Zhou, J. Huang, and R. Xu, “Validating Rail Transit

Assignment Models With Cluster Analysis and Automatic

Fare Collection Data,” Transportation Research Record:

Journal of the Transportation Research Board 2526, no. 1

(2015): 10-18, https://doi.org/10.3141/2526-02.

C. Monterola, F. L. Erika, P. Dji, K. L. Kee, and G. H. Gih, “Non-

Invasive Procedure to Probe the Route Choices of Commuters in

Rail Transit Systems,” Procedia Computer Science 80 (2016):

2387-2391, https://doi.org/10.1016/j.procs.2016.05.459.

Y. Zhang, E. Yao, K. Zheng, and H. Xu, “Metro Passenger’s

Path Choice Model Estimation With Travel Time Correlations

Derived From Smart Card Data,” Transportation Planning

and Technology 43, no. 2 (2020): 141-157, https://doi.org/

10.1080/03081060.2020.1717135.

[55] W. Zhu, J. Wei, and C. Xu, “Evaluating Rail Transit As-
signment Models in the Temporal Dimension: The Problem
and Its Solution,” International Journal of Transportation
Science and Technology 18 (2025): 96-114, https://doi.org/
10.1016/j.ijtst.2024.05.008.

[56] W. Zhu, H. Hu, and Z. Huang, “Calibrating Rail Transit
Assignment Models With Genetic Algorithm and Automated
Fare Collection Data,” Computer-Aided Civil and In-
frastructure Engineering 29, no. 7 (2014): 518-530, https://
doi.org/10.1111/mice.12075.

[57] B. Mo, Z. Ma, H. N. Koutsopoulos, and J. Zhao, “Calibrating
Path Choices and Train Capacities for Urban Rail Transit
Simulation Models Using Smart Card and Train Movement
Data,” Journal of Advanced Transportation 2021 (2021): 1-15,
https://doi.org/10.1155/2021/5597130.

[58] S.Y. Assele, M. Meulders, and M. Vandebroek, “Sample Size
Selection for Discrete Choice Experiments Using Design
Features,” Journal of Choice Modelling 49 (2023): 100436,
https://doi.org/10.1016/j.jocm.2023.100436.

[59] W. Wang, H. Xiang, W. Gong, and Z. Shi, “Research of the

Applicable Sample Size of Common Distribution Central

Limit Theorem,” Journal of Science of Teachers’ College and

University 41, no. 07 (2021): 20-25.

J. Liand]. Fine, “On Sample Size for Sensitivity and Specificity

in Prospective Diagnostic Accuracy Studies,” Statistics in

Medicine 23, no. 16 (2004): 2537-2550, https://doi.org/

10.1002/sim.1836.

[48

(51

[52

[53

[54

[60

21

[61] K. Hajian-Tilaki and Karimollah, “Sample Size Estimation in
Diagnostic Test Studies of Biomedical Informatics,” Journal of
Biomedical Informatics 48 (2014): 193-204, https://doi.org/
10.1016/j.jbi.2014.02.013.

[62] N. A. Obuchowski, “Computing Sample Size for Receiver
Operating Characteristic Studies,” Investigative Radiology 29,
no. 2 (1994): 238-243, https://doi.org/10.1097/00004424-
199402000-00020.

[63] Z. Zhang, “On Wireless Location Equipped Probe Vehicle
Sample Sizes,” Control Engineering China 17, no. S2 (2010):
171-172, https://doi.org/10.14107/j.cnki.kzgc.2010.52.002.

[64] G. Feng, “Sample Size Estimation for Diagnostic Test Evalua-
tion,” Chronic Pathematology Journal 23, no. 11 (2022): 1657-
1660, https://doi.org/10.16440/].CNKI.1674-8166.2022.11.15.

[65] G. Casella and R. L. Berger, Statistical Inference (Duxbury
Press California, 2002).

[66] H. Blaker, “Confidence Curves and Improved Exact Confi-
dence Intervals for Discrete Distributions,” Canadian Journal
of Statistics 28, no. 4 (2000): 783-798, https://doi.org/10.2307/
3315916.

[67] D. C. Montgomery and G. C. Runger, Applied Statistics and
Probability for Engineers (Wiley, 2018).

[68] W. H. K. Lam and C. Cheung, “Pedestrian Speed/Flow Re-
lationships for Walking Facilities in Hong Kong,” Journal of
Transportation Engineering 126, no. 4 (2000): 343-349,
https://doi.org/10.1061/(asce)0733-947x(2000)126:4(343).

[69] H. Yang, M. Wu, and H. Zhang, “A Modeling Study of the
Walking Speed of the Passengers in Different Areas of a Subway
Station for Transfer,” Journal of Transportation Systems Engi-
neering and Information Technology 11, no. S1 (2011): 140-145,
https://doi.org/10.16097/j.cnki.1009-6744.2011.51.001.

8518017 SUOWIWOD @A 3|qedl|dde au Aq peusenob a1 S9joe O 'S JO S3|nJ 104 Akl 8UIIUO A8]IM UO (SUORIPUOD-pUR-SWIR)W00" 43| 1M ATeiq U U0//SARY) SUORIPUOD Pue SLB | 8U188S *[5Z02/TT/90] Uo ARiqiTaulluo A8IIM 'WOH ON NH A LISHIAINN OINHOTLATOd ONOM ONOH Ad £22209€/11/SSTT 0T/I0p/Wo A8 1M AReiqijeut|uo//sdiy woly papeojumod ‘T ‘S20Z ‘60T


http://doi.org/10.1109/TITS.2020.3032843
http://doi.org/10.1016/j.tre.2020.102037
http://doi.org/10.1177/0361198118781395
http://doi.org/10.3141/2526-02
http://doi.org/10.1016/j.procs.2016.05.459
http://doi.org/10.1080/03081060.2020.1717135
http://doi.org/10.1080/03081060.2020.1717135
http://doi.org/10.1016/j.ijtst.2024.05.008
http://doi.org/10.1016/j.ijtst.2024.05.008
http://doi.org/10.1111/mice.12075
http://doi.org/10.1111/mice.12075
http://doi.org/10.1155/2021/5597130
http://doi.org/10.1016/j.jocm.2023.100436
http://doi.org/10.1002/sim.1836
http://doi.org/10.1002/sim.1836
http://doi.org/10.1016/j.jbi.2014.02.013
http://doi.org/10.1016/j.jbi.2014.02.013
http://doi.org/10.1097/00004424-199402000-00020
http://doi.org/10.1097/00004424-199402000-00020
http://doi.org/10.14107/j.cnki.kzgc.2010.s2.002
http://doi.org/10.16440/J.CNKI.1674-8166.2022.11.15
http://doi.org/10.2307/3315916
http://doi.org/10.2307/3315916
http://doi.org/10.1061/(asce)0733-947x(2000)126:4(343)
http://doi.org/10.16097/j.cnki.1009-6744.2011.s1.001

	On the Application of Probabilistic Route Choice Models to Urban Rail Transit Networks Containing Small-Scale OD Trip Data
	1. Introduction
	2. Literature Review
	2.1. PRC Models in Urban Transportation
	2.2. PRC Models for Variable Demand Levels
	2.3. The Contribution of the Study in This Paper to the Existing Research Literature

	3. Methodology
	3.1. Overview of Validation Procedure
	3.2. Definition of OD Pairs With Small-Scale Trips
	3.3. TTR-Based Method for Deducing Passengers’ Actual Route Choices Between OD Pairs
	3.3.1. TTD
	3.3.2. Route Choice Deduction
	3.3.3. Twofold Comparison of Passengers’ Actual and Estimated Route Choices
	3.3.3.1. Single-Day and Multiday
	3.3.3.2. Difference and Regularity Analyses



	4. Case Study
	4.1. Study Area and Data Collection
	4.1.1. The Nanchang Metro Network
	4.1.2. Multisource Data to Be Used

	4.2. Results and Analysis
	4.2.1. Typical OD Pairs to Be Selected
	4.2.2. Deduction Results
	4.2.3. Single-Day Analysis
	4.2.4. Multiday Analysis

	4.3. Discussions

	5. Conclusion and Practical Implications
	Data Availability Statement
	Conflicts of Interest
	Author Contributions
	Funding
	Endnotes
	References




