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Spatial–Frequency Fusion Network With Learnable
Fractional Fourier Transform for Remote Sensing

Imaging Enhancement
Wenyu Xu, Maohan Liang , Yuxu Lu , Ruobin Gao, Member, IEEE, and Dong Yang

Abstract—Atmospheric haze significantly degrades the quality
of remote sensing images, reducing visibility, distorting spectral
information, and impairing downstream tasks such as land cover
classification and infrastructure layout analysis. To overcome these
challenges, this article proposes a novel spatial–frequency fusion
network (termed SFFNet) with a learnable fractional Fourier
transform for efficient remote sensing imaging enhancement. In the
spatial domain, the SFFNet uses a multiscale spatial pyramid pool-
ing block to capture both fine-grained details and global contex-
tual information, while residual connections ensure robust feature
learning and spatial detail preservation. In the frequency domain,
a self-learned fractional Fourier transform module adaptively ex-
tracts haze-relevant features, leveraging a learnable parameter to
dynamically adjust the fractional order of the transform. Further-
more, an attentive frequency gate selectively emphasizes critical
frequency features based on the local features of the input image.
To effectively address the challenges of nonuniform haze distri-
bution, a self-attention-guided fusion mechanism is introduced,
synergistically integrating spatial and frequency information. In
addition, a hierarchical feature fusion strategy progressively re-
fines multiscale features throughout the dehazing process, ensuring
comprehensive and accurate haze removal. Experimental results
on both synthetic and real-world remote sensing datasets show
that the SFFNet achieves significant improvements in quantitative
metrics and visual quality. Moreover, the SFFNet demonstrates
strong practical potential in remote sensing object detection by
improving accuracy and robustness.

Index Terms—Deep network, fractional Fourier transform,
imaging enhancement, remote sensing, spatial–frequency fusion.

I. INTRODUCTION

HAZE substantially degrades the quality of remote sensing
images, leading to diminished visibility, distorted spectral

information, and impaired scene interpretability [1], [2]. The

Received 10 April 2025; revised 8 June 2025; accepted 25 June 2025. Date
of publication 3 July 2025; date of current version 25 July 2025. This work was
supported by the Research Grants Council of Hong Kong under Grant PolyU
15201722. (Corresponding author: Dong Yang.)

Wenyu Xu, Yuxu Lu, and Dong Yang are with the Department of
Logistics and Maritime Studies and the Maritime Data and Sustain-
able Development Centre, The Hong Kong Polytechnic University, Hong
Kong (e-mail: wendy.xu@connect.polyu.hk; yuxulouis.lu@connect.polyu.hk;
dong.yang@polyu.edu.hk).

Maohan Liang is with the Department of Civil and Environmental Engineer-
ing, National University of Singapore, Singapore 119077 (e-mail: mhliang@nus.
edu.sg).

Ruobin Gao is with the School of Marine Science and Technol-
ogy, Northwestern Polytechnical University, Xi’an 710072, China (e-mail:
gaor0009@163.com).

Digital Object Identifier 10.1109/JSTARS.2025.3585939

Fig. 1. Examples of scene restoration from three real-world degraded remote
sensing images of maritime ports. The upper triangles in three images are
degraded patterns, and the corresponding restored patterns by our SFFNet are
shown in the lower triangles.

degradation of image quality presents considerable challenges
for applications such as land cover classification, remote sens-
ing object detection [3], sea–land port segmentation [4], and
environmental monitoring [5]. As shown in Fig. 1, remote sens-
ing images differ from natural images by capturing large-scale
landscapes that often feature complex atmospheric interactions,
including nonuniform haze distribution and varying haze den-
sities [6]. The distinctive features of remote sensing visual
data demand specialized methods that can handle atmospheric
interference at satellite imaging scales.

Traditional methods mainly rely on physical imaging models,
such as the atmospheric scattering model (ASM) [7]. Specifi-
cally, building on the ASM, the dark channel prior (DCP) [8]
has demonstrated promising performance by leveraging nat-
ural scene statistics, where small patches in haze-free im-
ages often have at least one color channel with very low
intensity. However, DCP-based [9], [10] methods often suf-
fer from issues such as artifacts, overdehazing in sky or sea
regions, and limited effectiveness in handling complex light-
ing conditions, depth variations, and noise interference [11].
To address these limitations, alternative physical model-based
methods [12], [13], [14] have integrated algorithms, such as
edge-preserving filtering and low-rank decomposition, to im-
prove image clarity and computational efficiency. Neverthe-
less, traditional methods remain constrained by their depen-
dence on carefully designed priors, which may lack robust-
ness and generalization capability in diverse remote sensing
scenarios.
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Learning-driven methods excel in image restoration by mod-
eling complex degradations and recovering fine details. Specif-
ically, early methods [15], [16], [17], [18] integrated physical
models with convolutional neural networks (CNNs) to estimate
haze parameters or generate haze-free images directly. Build-
ing on these foundations, Transformer-based methods [6] have
achieved better performance by extracting long-range dependen-
cies and utilizing multiscale feature representations. However,
they are often associated with high computational costs and
depend on large-scale labeled datasets, which may not always
be available for remote sensing imagery. In addition, while
few-shot [19], semisupervised [20], and unsupervised learn-
ing [21] methods attempt to address the limitations of labeled
data, they frequently introduce artifacts and struggle to match
the performance of supervised methods, particularly in complex
remote sensing scenes.

To address the challenges of atmospheric haze in remote sens-
ing images, we propose a novel spatial–frequency fusion net-
work (SFFNet) for adaptive and robust imaging enhancement.
The SFFNet integrates spatial-domain enhancement, frequency-
domain modeling, and spatial–frequency fusion into the frame-
work, effectively addressing the limitations of existing methods.
Specifically, the SFFNet captures multiscale spatial features
using a spatial pyramid pooling block (SPPB) with residual
connections to preserve spatial details, while a self-learned
fractional Fourier transform module adaptively models haze-
relevant frequency features. To combine spatial and frequency
information effectively, a self-attention-guided fusion mecha-
nism is proposed, enabling SFFNet to handle nonuniform haze
distributions and achieve accurate haze removal. In addition,
we propose a hybrid loss function to further improve the visual
performance of the restored image. The contributions of our
work are summarized as follows.

1) We propose a framework integrating spatial-domain en-
hancement, frequency-domain modeling, and spatial–
frequency fusion, providing an adaptive and robust solu-
tion for effective haze removal in remote sensing imagery.

2) We propose a self-learned fractional Fourier transform
module for adaptive frequency-domain feature extraction
(FdE), coupled with a self-attention-guided fusion mecha-
nism to effectively address nonuniform haze distributions.

3) Experiments on synthetic and real-world remote sensing
datasets demonstrate SFFNet’s performance, achieving
better quantitative metrics and generating visually im-
proved results with enhanced scene interpretability.

The rest of this article is organized as follows. In Section II,
we systematically review related dehazing work. The imaging
degradation model is given in Section III. Section IV is the
principle of our SFFNet. Experimental details and results are
provided in Section V. Finally, Section VI concludes this article
and outlines future work.

II. RELATED WORK

A. Traditional Methods

Traditional image dehazing methods mainly depend on phys-
ical models and handcrafted priors, leveraging assumptions
about scene features and atmospheric conditions to estimate and

remove haze. The DCP [8] is used to estimate transmittance
by analyzing the statistical properties of dark pixels in natural
scenes. While effective in many cases, the DCP is susceptible
to introducing artifacts or overdehazing, especially in sky re-
gions. To address these limitations, Yu and Liao [22] enhanced
DCP using edge-preserving filters, which improves image clar-
ity while minimizing artifacts. Other statistical model-based
methods have also been proposed. For example, the color line
prior method [23] estimates transmittance by analyzing the
linear distribution of colors in degraded images. In contrast,
Tan [24] focused on local contrast maximization to enhance
visual clarity, though it often results in overenhancement. In
addition, optimization-based strategies have been explored to
improve dehazing performance. For example, Meng et al. [13]
proposed edge-aware optimization of transmittance to preserve
fine details, and Berman et al. [14] proposed the nonlocal dehaz-
ing method, which leverages the similarity of color distributions
for more refined results. Liang et al. [25] proposed a remote
sensing dehazing method using heterogeneous priors for robust
atmospheric light and transmission estimation. For real-time
applications, methods such as rank-one prior (ROP)+ [10] sim-
plify dehazing by employing low-rank matrix decompositions,
enabling faster processing. Meanwhile, Ancuti and Ancuti [26]
integrated multiexposure imaging techniques to enhance image
quality. However, traditional methods struggle to effectively
manage complex scenes with nonuniform haze, varying lighting
conditions, and significant depth variations in remote sensing
imagery.

B. Learning-Driven Methods

Physical model-based learning methods combine an
ASM with learnable parameters, using parameters such as
transmittance and atmospheric light. For instance, De-
hazeNet [15] estimated the transmittance map via CNNs and
integrated it with a physical model to generate haze-free images.
Li et al. [16] proposed the all-in-one dehazing network (AOD-
Net) to directly output haze-free images through a parameter-
ized physical model, skipping separate parameter estimation.
GridDehazeNet [27] enhanced adaptability to complex scenes
by combining a physical model with a grid structure. Lihe
et al. [28] combined residual learning and the ASM for effi-
cient physics-aware haze removal. End-to-end learning methods
bypass physical models, directly mapping hazy to haze-free
images using deep learning frameworks like CNNs [29] or
Transformers. Transformer-based methods excel in capturing
long-range dependencies and improving dehazing via global
modeling. For instance, PCSformer [6] integrated physical pri-
ors with the Transformer framework, balancing detail preser-
vation and haze removal. Unsupervised and semisupervised
methods are particularly effective when labeled data are scarce.
Cycle-Dehaze [21] achieved unsupervised dehazing through
cycle consistency loss but may introduce artifacts. The do-
main adaptation method [30] addressed data distribution gaps
by transferring synthetic training results to real data. Liang
et al. [31] proposed a self-supervised method to reduce reliance
on labeled data using internal tasks like image reconstruction but
lag behind supervised methods in image quality. Wang et al. [20]
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proposed an unsupervised contrastive learning-based dehazing
framework, which uses unpaired data and self-contrastive loss to
solve domain shift and achieve efficient dehazing. However, ex-
isting learning-based dehazing methods often rely on extensive
labeled datasets, struggle with artifact generation in unsuper-
vised settings, and are challenging to generalize effectively to
real-world scenarios.

C. Deep Learning With Fourier Transform

Frequency-domain features extracted via Fourier transform,
combined with the nonlinear modeling of deep learning, improve
image restoration by effectively preserving global structures
and recovering fine details [32], [33]. Low-frequency com-
ponents typically capture the global structural information of
an image, while high-frequency components encode finer de-
tails and texture information. For example, Jiang et al. [34]
proposed a frequency-domain generative adversarial network
(GAN), which significantly outperformed traditional meth-
ods in super-resolution tasks by effectively enhancing high-
frequency components. Several studies have proposed spatial–
frequency joint modeling frameworks that integrate informa-
tion from both spatial and frequency domains to improve
restoration performance. For example, Liu et al. [35] com-
bined density-guided transformers and frequency dual-path en-
hancement to effectively remove nonhomogeneous haze in re-
mote sensing images. Zhou et al. [36] proposed an efficient
image restoration method that leveraged the Fourier trans-
form for global modeling, reducing computational complex-
ity while enhancing performance. Zheng et al. [37] proposed
the Transformer-guided cycle-consistent generative adversar-
ial network (CycleGAN) framework, incorporating frequency-
domain attention, semitransparent mask pretraining, and to-
tal variation loss to enhance remote sensing image dehaz-
ing. Sun et al. [38] integrated Fourier and wavelet-based
heterogeneous enhancement to effectively fuse CNN and Trans-
former features, significantly improving imaging quality. Sim-
ilarly, Wu et al. [39] proposed a frequency self-prompting
method that dynamically utilizes frequency properties to guide
a universal restoration network. However, efficiently extracting
and seamlessly integrating spatial- and frequency-domain fea-
tures from images using neural networks remains a significant
challenge.

III. PHYSICAL IMAGING MODEL

In remote sensing image processing, atmospheric scattering
effects, such as haze and aerosol interference, significantly
impact image quality. These effects cause signal attenuation
and spectral distortion, obscuring surface details and reducing
visibility [6]. The imaging model of remote sensing images
can be described through the ASM [7], which considers the
propagation features of light in the atmosphere. Based on the
ASM, the hazy imaging model can be expressed as

I(x) = J(x) · t(x) +A · (1− t(x)) (1)

where I(x) represents the observed remote sensing image, J(x)
is the potentially clear image, A is the atmospheric light value,
and t(x) is the transmission rate. The first term J(x) · t(x) on

the right-hand side of the equation represents the direct transmis-
sion component, describing the portion of scene-reflected light
reaching the sensor after atmospheric attenuation. The second
term A · (1− t(x)) represents the atmospheric scattered light
component, describing the light intensity gain caused by atmo-
spheric scattering. The transmission rate t(x) is a key parameter
describing the degree of light attenuation during atmospheric
propagation and can be given as

t(x) = e−βd(x) (2)

where β is the atmospheric scattering coefficient, and d(x)
represents the distance from the scene point to the camera.
The transmission rate has an exponential relationship with the
scattering coefficient and propagation distance, reflecting the
attenuation features of the atmosphere on light.

Haze variation in remote sensing is caused by spatially
nonuniform atmospheric conditions, with the scattering coeffi-
cientβ differing across regions [40]. In addition, terrain-induced
distance variations d(x) cause heterogeneous transmission rates
t(x) = e−βd(x), unlike the uniform haze typically found in
terrestrial settings. It leads to uneven image degradation, with
longer atmospheric paths and multispectral distortions further
complicating dehazing compared to land-based scenes.

IV. SPATIAL–FREQUENCY FUSION NETWORK

A. Overview

As shown in Fig. 2, our SFFNet is specifically proposed
to address the challenges associated with integrating spatial
and frequency information for efficient remote sensing image
restoration. The architecture consists of three primary com-
ponents, i.e., spatial-domain feature extraction (SdE), FdE,
and spatial–frequency feature fusion (SFF). In addition, a hy-
brid loss function, which incorporates perceptual, frequency-
aware, and reconstruction constraints, is used to further enhance
dehazing performance while effectively preserving structural
details.

B. Spatial-Domain Feature Extraction

Remote sensing images affected by haze are characterized by
spatial degradation, including blurred edges, loss of fine-grained
details, and a decline in structural consistency. These challenges
arise from the inherent complexity of haze, which exhibits spatial
nonuniformity and multiscale degradation patterns. To address
these issues, we propose an SdE module that captures both
local details and global contextual information. It is suggested
through a similar SPPB [41], which processes the input feature
map x using multiple convolutional branches with different
receptive fields. The SPPB consists of multiple branches, which
can extract features at different scales and are fused to form the
spatial feature representation, i.e.,

FSPPB(x) = F1(x) + F3(x) + F
(3)
3 (x) + F

(9)
3 (x) (3)

whereF1(x),F3(x),F
(3)
3 (x), andF (9)

3 (x) represent the outputs
of the 1× 1, 3× 3, 3× 3 dilated (i.e., rate = 3), and 3× 3
dilated (i.e., rate = 9) convolutions, respectively. The dilation
rates of 3 and 9 are specifically chosen to progressively expand
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Fig. 2. (a) Overall architecture of the SFFNet. Spatial–frequency convolutional block (SFCB) is the main component of SFFNet and mainly consists of three
parts: (b) spatial-domain feature extraction module, (c) frequency-domain feature extraction module, and (d) spatial–frequency feature fusion module.

Fig. 3. Pipeline of self-learned FdE module. It mainly consists of three
parts: FrFT for extracting frequency-domain information, AFG for enhancing
important frequency features, and IFrFT for mapping frequency-domain features
back to the spatial domain.

the receptive field, enabling the capture of medium-range and
long-range spatial dependencies that are crucial for modeling
the nonuniform haze distribution patterns commonly observed
in large-scale remote sensing images.

To preserve the original spatial details, a residual connection
is added, which can be given as

Fsd = R(C(FSPPB(x)) + x) (4)

where Fsd represents the final spatial-domain features, R is
rectified linear unit, and C is a convolutional operation.

C. Frequency-Domain Feature Extraction

Remote sensing images contaminated by haze exhibit com-
plex nonstationary frequency features across scales, which tra-
ditional Fourier analysis struggles to capture due to its focus
on global frequencies. To address this, as shown in Fig. 3, we
propose a self-learned FdE module that adaptively learns the

optimal fractional order α for each input, leveraging fractional
calculus to flexibly model multiscale localized haze features.

1) Self-Learned FrFT: Given the input feature map x, the
α-order fractional Fourier transform is defined as

Fα(x) =

∫
Kα(t, u)x(t)dt (5)

where the kernel function Kα(t, u) with scaling factor Cα, for
α �= 0, 1, is formulated as

Kα(t, u) = Cα exp[jπ(t2 cot(απ/2)

− 2tu csc(απ/2) + u2 cot(απ/2))] (6)

where t represents the variable in the input domain (e.g., spatial
coordinates), and u represents the variable in the output domain
(i.e., fractional frequency domain). For α ∈ (0, 1), this kernel
enables a continuous interpolation between the time and fre-
quency domains. When α = 0, FrFT degenerates to the original
signal, and when α = 1, it becomes the conventional Fourier
transform. The scaling factor Cα ensures energy preservation
across transformations. The scaling factor Cα ensures energy
preservation across transformations

Cα =
√

1− j cot(απ/2). (7)

Unlike prior methods that rely on fixed transform orders, our
module incorporates a learnable fractional order α, which is
dynamically optimized during training. Instead of preselecting
fixed values for α, the network learns to determine the optimal
fractional order for each input image. To constrainα to the range
[0, 1], it is parameterized using a sigmoid function

α = Sigmoid(θα) (8)
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Fig. 4. Pipeline of SFF module. It leverages self-attention mechanisms in both spatial and frequency domains, followed by an adaptive fusion strategy.

where θα is a trainable parameter initialized to a reasonable
value. Compared to the traditional Fourier transform, which
maps signals strictly between the time domain (α = 0) and
the frequency domain (α = 1), the fractional fourier transform
(FrFT) offers a continuous interpolation between these domains
through the fractional order α ∈ (0, 1). It allows FrFT to cap-
ture intermediate representations that combine both time- and
frequency-domain features, providing greater flexibility in mod-
eling haze patterns with spatially varying and scale-dependent
features.

To separately analyze haze density and distribution features,
we decompose the transformed feature into magnitude and phase
components, i.e.,

Fα(I) = |Fα(I)| � exp(jφα(I)) (9)

where |Fα(I)| represents the magnitude spectrum reflecting
haze density variations, and φα(I) encodes spatial distribution
information.

2) Attentive Frequency Gate: To further enhance relevant
frequency components while preserving key image details via
identity mapping, we propose an attentive frequency gate (AFG)
module that dynamically modulates frequency components
based on local image properties. The AFG module first trans-
forms the input features X into the frequency domain using an
FrFT with a learnable order α ∈ [0, 1]. The real and imaginary
parts are concatenated to form Xfrft. To model complex inter-
channel dependencies, we use a lightweight two-layer neural
network with dimensionality reduction, i.e.,

z = W2(R(W1(Xfrft))) (10)

where W1 reduces channel dimensionality for computational
efficiency, and W2 restores channel dimensionality for attention
weighting. The channel reduction ratio of 4 provides an optimal
balance between model capacity and computational overhead.
The channelwise attention weights are computed through sig-
moid normalization. The final frequency-modulated features are
obtained through

Y = X � σ(z) +X (11)

where � denotes elementwise multiplication. The residual
connection ensures stable gradient flow during training while
preserving original feature information. Through the adaptive
modulation mechanism, our AFG module effectively enhances

relevant frequency components while maintaining crucial image
details through identity mapping.

D. Spatial–Frequency Feature Fusion

Hazy remote sensing images exhibit both spatial-domain
degradation (e.g., blurred details and edge loss) and frequency-
domain distortions (e.g., reduced contrast and uneven energy
distribution). To address these challenges, we propose an SFF
module, shown in Fig. 4. This module leverages self-attention-
guided fusion mechanisms (SAMs) in both spatial and frequency
domains. Given spatial-domain features Fsd and frequency-
domain features Ffd, the SFF module first processes the inputs
through initial convolution transformations. Then, the SAM is
used independently to the spatial and frequency features and can
extract refined features by capturing long-range dependencies
within each domain, i.e.,

F att
s = SAMs(Cs(Fsd)) (12)

F att
f = SAMf (Cf (Ffd)) (13)

where F att
s and F att

f are the output attention feature maps.
SAM(·) computes attention weights and refines the input fea-
tures, which can be given as

Attention(Q,K, V ) = Softmax

(
QK�
√
d

)
V (14)

where Q, K, and V are the query, key, and value matrices, pro-
jected fromF using learnable convolutional layers, respectively.
The term

√
d is a scaling factor, with d being the dimensionality

of the query and key vectors. The attention output refines the
input feature map by weighting the value representations based
on the similarity between queries and keys.

After obtaining the self-attending features, the spatial and
frequency features are concatenated and passed through a fusion
layer, i.e.,

Ffusion = Softmax(Csf ([F att
s , F att

f ])) (15)

where [·, ·] denotes channelwise concatenation. The fused fea-
tures are then used to enhance the original spatial and frequency
features via elementwise multiplication and residual connec-
tions, which can be given as

F ′
s = Cs′(F att

s � Ffusion + Fsd) (16)
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F ′
f = Cf ′(F att

f � Ffusion + Ffd). (17)

Finally, the enhanced spatial and frequency features are com-
bined to generate the output Fsf of the SFF module, i.e.,

Fsf = F ′
s + F ′

f . (18)

The SFF module is essential as spatial features capture fine-
grained local details, while frequency features model global haze
patterns, providing complementary information necessary for
haze removal in complex remote sensing scenes.

E. Encoder–Decoder Architecture

Our network uses an encoder–decoder framework with skip
connections [42], where the proposed SdE, FdE, and SFF are
strategically integrated. The encoder E progressively reduces
spatial dimensions while increasing feature channels, enabling
the network to extract both local and global haze patterns. The
decoder D gradually recovers spatial details through transposed
convolutions. The overall architecture is given as

F l
e = El(F

l−1
e ,SFFNetl(F

l−1
e )), l ∈ [1, L] (19)

where F l
e represents the encoded features at level l, and L de-

notes the total number of encoding levels. The decoder operates
symmetrically to the encoder through skip connections

F l
d = Dl([F

l+1
d , F l

e]), l ∈ [L− 1, 1] (20)

where [·, ·] denotes channelwise concatenation, and F l
d repre-

sents the decoded features at level l. This multiscale architecture
enables our network to process haze features at different spatial
scales through the encoding–decoding process, maintain fine
details via skip connections, and progressively fuse and refine
features during reconstruction.

F. Hybrid Loss Function

We propose a multiscale hybrid loss function for image dehaz-
ing that combines supervision from pixel LL1, perceptual Lper,
and frequency domains Lfre. Our loss function is motivated by
the observation that effective dehazing requires both local detail
preservation and global contrast enhancement. The total loss
Ltotal is given as

Ltotal = λ1LL1 + λpLper + λfLfre (21)

where λ1, λp, and λf are weighting coefficients set to 1.0, 0.1,
and 0.1, respectively, through empirical validation.

1) Pixelwise L1 Loss: The L1 loss provides fundamental
supervision in pixel space; mathematically, we have

LL1 =
1

N

N∑
i=1

|Iire − Iigt| (22)

where Ire and Igt denote the predicted dehazed image and
ground truth, respectively. Unlike L2 loss, L1 loss exhibits
better convergence properties and is more robust to outliers,
making it particularly suitable for dehazing where local intensity
variations can be significant. The linear penalization of L1 loss
also helps preserve sharp edges and prevent oversmoothing in
the dehazed results.

2) Perceptual Loss: To capture high-level semantic informa-
tion and structural features, we use a perceptual loss based on
VGG16 network [43] features, i.e.,

Lper =
∑
l

αl

ClHlWl
‖φl(Ire)− φl(Igt)‖1 (23)

whereφl represents features from layer l of the VGG16 network,
and αl are layer-specific weights. The multilayer feature extrac-
tion provides hierarchical supervision: lower layers capture local
textures and patterns, while higher layers encode semantic infor-
mation. This hierarchical supervision is crucial for maintaining
perceptual quality in regions with varying haze densities.

3) Frequency-Domain Loss: To ensure proper recovery of
different frequency components, we suggest a frequency-
domain loss, which can be given as

Lfre = Lmag + 0.5Lphase (24)

where the magnitude spectrum loss is defined as

Lmag = ‖W � log(1 + |F(Ire)|)− log(1 + |F(Igt)|)‖1 (25)

whereF denotes the 2-D Fourier transform andW is a frequency
weighting matrix suggested to emphasize different frequency
components

W = 0.3Wlow + 0.5Wmid + 0.2Whigh (26)

where Wlow, Wmid, and Whigh are binary masks in the frequency

domain, defined using radial frequency f =
√
f2
x + f2

y , where

(fx, fy) ∈ [−1, 1]2. Specifically,Wlow = 1 for f ≤ 0.2,Wmid =
1 for 0.2 < f ≤ 0.6, and Whigh = 1 for f > 0.6, otherwise
0, emphasizing low-frequency global contrast, mid-frequency
structures, and high-frequency details, respectively.

The phase spectrum loss complement magnitude supervision
is given as

Lphase = ‖∠F(Ire)− ∠F(Igt)‖1 (27)

where∠F represents the phase spectrum operation. Phase infor-
mation is crucial for preserving structural coherence and edge
alignment in the restored image.

V. EXPERIMENTS AND DISCUSSIONS

In this section, we provide an overview of the experimental
setup, including training and testing datasets, the experimental
platform, the evaluation metrics, and the competitive meth-
ods. We assess the performance of SFFNet against competitive
methods on both remote scene-related datasets and standard
benchmarks. Furthermore, we conduct an extensive series of
ablation studies to validate the contributions of individual net-
work modules. Finally, we explore the application of SFFNet to
advanced vision tasks, accompanied by an analysis of its runtime
efficiency and computational complexity.

A. Implementation Details

1) Datasets: The limited availability of real-world paired
data (i.e., clear and low-visibility images) poses a significant
challenge to the training of learning-based image restoration
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TABLE I
DETAILS OF TRAINING AND TESTING DATASETS USED IN OUR EXPERIMENTS

networks. To overcome this limitation, we utilize the dataset for
object detection in aerial images (DOTA) [46] and the composite
degradation dataset (CDD-11) [44] to synthesize low-visibility
images. To evaluate the robustness and generalization perfor-
mance of our proposed method, we incorporate the classic image
dehazing benchmark dataset, i.e., realistic single image dehazing
(RESIDE) [45]. We also select real remote sensing hazy images
from the DOTA dataset to verify the performance of the proposed
method in practical applications. More detailed information can
be found in Table I.

2) Experimental Platform: The network is trained for 50
epochs using the Adam optimizer with an initial learning rate of
0.001. The learning rate is reduced by a factor of 0.1 every 15
epochs to ensure effective convergence. All experiments are con-
ducted in a Python 3.9 environment utilizing the PyTorch frame-
work. The training process is performed on a high-performance
PC equipped with an Intel(R) Core(TM) i9-12900K CPU @
2.30 GHz and an Nvidia GeForce RTX 4090 GPU, enabling
accelerated computations.

3) Evaluation Metrics: To quantitatively assess the effec-
tiveness of visibility enhancement, we utilize both referenced
and no-referenced evaluation metrics. Reference-based metrics,
which require a ground truth image for comparison, include peak
signal-to-noise ratio (PSNR), structural similarity index (SSIM),
feature similarity index (FSIM), visual saliency-induced index
(VSI), and lightness order error (LOE). These metrics measure
the fidelity of the enhanced image in terms of signal clarity
and structural similarity. For most of these metrics (e.g., PSNR,
SSIM, FSIM, and VSI), higher values indicate superior quality,
while for LOE, lower values denote better performance as it
measures the consistency of lightness order. No-reference met-
rics, which do not require a reference image, include the natural
image quality evaluator (NIQE) and the perceptual image quality
evaluator (PIQE). These metrics assess the perceptual quality
based on intrinsic image features, with lower values indicating
better quality.

4) Competitive Methods: To assess the restoration perfor-
mance on remote sensing images, we will compare SFFNet
against several state-of-the-art methods, which include tra-
ditional methods such as DCP [8], ROP [10], luminance
and dark channel prior (LDCP) [47], and contrast enhance-
ment and exposure fusion (CEEF) [48], as well as learning-
based methods like multi-scale convolutional neural network
(MSCNN) [49], DehazeNet [15], AODNet [16], all-in-one im-
age restoration network (AirNet) [50], DeFormer [51], all-
in-one scene recovery network (AoSRNet) [52], and com-
pensation atmospheric scattering model (CASM) [53]. To en-
sure fairness and impartiality, all implementations are sourced

directly from the original code provided by the respective
authors.

B. Synthetic DOTA Degradation

1) Quantitative Analysis: To evaluate the performance of our
SFFNet, we select 200 synthesized degraded images from the
DOTA dataset. According to Table II, the SFFNet ranks first
in all indicators compared with other competing methods. In
particular, the two reference evaluation indicators (i.e., SSIM
and PIQE) have achieved obvious performance improvements.
Some methods often result in overenhancement or poor lighting
consistency. Learning-based methods such as MSCNN, AirNet,
and CASM may perform well on specific metrics but lack overall
robustness compared to traditional methods such as DCP and
ROP. In contrast, our SFFNet demonstrates balanced and com-
prehensive performance across all metrics, effectively restoring
image details, enhancing structural fidelity, and improving per-
ceptual quality.

2) Qualitative Analysis: To compare the visual performance
of our SFFNet, six synthetic hazy images are selected from the
DOTA dataset. As shown in Fig. 5, the hazy images capture in
the real world are generally low in brightness and contrast, which
destroys the texture details of the image. DCP, LDCP, AirNet,
and CEEF can enhance the contrast and clarity of the image, but
there is color distortion and overexposure. Although the color
distribution of ROP, MSCNN, and DehazeNet is close to the
actual value, the image is locally blurred and the dehazing effect
is not obvious enough. The colors after learning-based methods
are somewhat color-degraded, the image is oversmoothed, and
the edge texture information is locally lost. Our SFFNet effec-
tively achieves dehazing without compromising the underlying
texture or color features, delivering visual results that closely
resemble a real clear image.

C. Standard Dataset Degradation

1) Quantitative Analysis: We provide the average results of
each method on the CDD-11 and RESIDE datasets in Table III.
DCP-generated results have relatively low PSNR and SSIM,
indicating low similarity with the real image. The images pro-
cessed by DeFormer and CEEF have the lowest PSNR and
SSIM, indicating poor restored image quality. Combining the
two datasets, LDCP and AoSRNet have relatively excellent
PSNR and SSIM results. The quantitative evaluation results
of CASM on the two datasets are insufficient, which may be
mainly due to its insufficient generalization ability for such
scenarios. Our method achieves the best quantitative results on
both datasets, fully demonstrating the superior robustness and
effectiveness of our SFFNet in remote sensing image dehazing
compared to other methods.

2) Qualitative Analysis: We show the visual results of all
methods in Fig 6. The DeFormer-generated results show ob-
vious black shadows and significant color distortion, resulting
in relatively poor quality. While the image processed by Air-
Net achieves better dehazing performance, there are still slight
haze residues in some complex scenes. The AoSRNet-generated
results are whiter overall and lose a lot of texture details.
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TABLE II
COMPARISON OF DEHAZING RESULTS (MEAN ± STD) WITH PSNR, SSIM, FSIM, VSI, LOE, NIQE, AND PIQE ON DOTA-BASED SYNTHETIC DATASETS

Fig. 5. Visual comparisons of dehazing results are presented for the DOTA dataset [46]. From left to right, the images include: (a) hazy input images, followed
by restored images produced by (b) DCP [8], (c) ROP [10], (d) LDCP [47], (e) CEEF [48], (f) MSCNN [49], (g) DehazeNet [15], (h) AODNet [16], (i) AirNet [50],
(j) DeFormer [51], (k) AoSRNet [52], (l) CASM [53], (m) our SFFNet, and (n) the corresponding ground truth.

TABLE III
COMPARISON OF (MEAN ± STD) VALUES OF PSNR AND SSIM ON STANDARD

TEST DATASETS RESIDE [45] AND CDD-11 [44]

Fig. 6. Visual comparisons of dehazing results are presented for RESIDE [45]
and CDD datasets [44]. From left to right, the images include: (a) hazy input
images, followed by restored images produced by (b) AirNet [50], (c) De-
Former [51], (d) AoSRNet [52], (e) CASM [53], (f) our SFFNet, and (g) the
corresponding ground truth.
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Fig. 7. Visual results of our method for sandstorm image enhancement and
underwater image enhancement.

Although CASM removes the interference of haze to a certain
extent, the generated image has low contrast and looks unnatural.
Compared with the original clear image, our method can han-
dle challenging thick haze and nonuniform haze, produces
fewer artifacts, and retains the texture details and local color
information of the image. It further demonstrates the better
dehazing generalization ability of our SFFNet under different
scenarios.

D. Scenario Generalization Analysis

The proposed SFFNet’s ability to generalize across tasks
like sandstorm and underwater image enhancement, as shown
in Fig. 7, is rooted in its spatial–frequency fusion framework,
which handles diverse degradation patterns without fine-tuning.
The SPPB captures multiscale spatial features, from local tex-
tures to global context, ensuring resilience to varying degrada-
tions like scattering in sandstorms or turbidity underwater. The
self-learned FrFT module adaptively extracts frequency-domain
features, addressing common degradation patterns (e.g., low-
frequency contrast and high-frequency details). In addition, the
self-attention-guided fusion mechanism dynamically integrates
spatial and frequency features, prioritizing relevant information
for different degradations. It allows the SFFNet to learn gener-
alized feature representations, delivering enhanced contrast and
fine details across diverse restoration tasks.

E. Real-World Degradation Analysis

Fig. 8 presents the qualitative comparison results of the real
remote sensing hazy image. To highlight the restored details, a
local region of the image has been enlarged. It is evident that the
dehazing performance of DehazeNet and AirNet is insufficient
in some cases, leaving noticeable haze residue in the images.
While MSCNN demonstrates a slightly better dehazing effect
than DehazeNet and AirNet, it often introduces significant color
distortion. AODNet and DeFormer effectively remove haze but
tend to darken the images, whereas AoSRNet causes a noticeable
yellowish tint. The contrast of the image enhanced by convolu-
tional block attention module (CBAM) is insufficient making the
restored image darker. In contrast, our proposed SFFNet delivers

TABLE IV
ABLATION STUDY ON SDE, FDE, AND SFF MODULES

TABLE V
ABLATION STUDY ON THE LEARNABLE FRACTIONAL FOURIER TRANSFORM

superior dehazing performance by not only removing haze and
restoring fine texture details but also maintaining excellent color
fidelity. To further demonstrate the robustness of our method, as
shown in Fig. 9, we also select real-world hazy remote sensing
images from the DOTA dataset to show the restored visual
effects.

F. Ablation Study

1) Effect of Network Modules: To validate the significance of
the proposed modules in our method for image restoration tasks,
we conduct ablation experiments. As shown in Table IV, exclud-
ing any of these modules results in the lowest performance across
all metrics. Specifically, without frequency-domain processing,
the network struggles to capture frequency-specific details. The
spatial domain-focused SPPB improves generalization by ex-
tracting spatial domain information. Dynamic parameter adjust-
ment further enhances the network’s adaptability. Incorporat-
ing SFF significantly boosts performance by integrating spatial
and frequency-domain features, leveraging their complementary
strengths. The full model, which combines all components,
achieves the best results, demonstrating the synergistic effects
of these modules.

2) Effect of Learnable FrFT: This section evaluates the de-
hazing performance of the learnable FrFT. As shown in Table V,
the results demonstrate that learnable parameters significantly
enhance the dehazing effect on remote sensing images. Com-
bined with adaptive optimization of the learnable parameters,
the model dynamically adjusts FdE, effectively capturing the
complex characteristics of nonuniform haze. This leads to better
separation of interference from target information, improving
image quality and preserving structural fidelity.

3) Effect of Loss Function: To evaluate the effectiveness of
the proposed hybrid loss function, we conducted a series of
ablation experiments by systematically removing its individual
components. As presented in Table VI, utilizing only the LL1

loss provides basic pixel-level supervision but yields the lowest
performance. Incorporating Lper alongside LL1 significantly
improves texture and edge preservation by introducing semantic
guidance. Furthermore, the addition of Lfre enhances detail
recovery and contrast by refining frequency-specific features.
The complete loss function, which combines LL1, Lper, and
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Fig. 8. Visual comparisons of dehazing results on real-world images. From left to right, the images include: (a) degraded images, followed by restored images
produced by (b) MSCNN [49], (c) DehazeNet [15], (d) AODNet [16], (e) AirNet [50], (f) DeFormer [51], (g) AoSRNet [52], (h) CASM, and (i) our SFFNet.

Fig. 9. Visual comparisons of real-world degraded images (top) and our enhancement results (bottom) for more examples from the DOTA [46] dataset.

TABLE VI
ABLATION STUDY ON THE LOSS FUNCTION COMPONENTS

TABLE VII
REMOTE SENSING IMAGE DETECTION PERFORMANCE OF DIFFERENT METHODS

UNDER DIFFERENT YOLO11 MODELS, EVALUATED USING MEAN AVERAGE

PRECISION

Lfre, achieves the highest performance, highlighting the com-
plementary nature of these components in achieving superior
image restoration results.

G. Improving High-Level Task

To demonstrate the advantages of SFFNet in remote sensing,
we evaluate its impact on object detection using YOLOv11 [54]
on objects like buildings, vehicles, and ships from the DOTA
dataset. The results presented in Table VII demonstrate that
the SFFNet consistently outperforms competing methods across
all YOLOv11 model sizes, achieving higher mean average
precision values even in challenging hazy conditions. Notably,

Fig. 10. Visual comparisons of dehazing results are presented for the DOTA
dataset [46]. From left to right, the images include: (a) hazy input images,
followed by restored images produced by (b) AirNet [50], (c) DeFormer [51],
(d) AoSRNet [52], (e) our SFFNet, and (f) the corresponding ground truth.

SFFNet’s performance approaches that of the ground truth, high-
lighting its effectiveness in enhancing image quality for robust
object detection. As shown in Fig. 10, YOLOv11 struggles
with hazy images due to reduced contrast and blurred details.
Enhanced images processed by SFFNet significantly improve
detection accuracy by revealing clearer features. Competing
methods often fail in severe haze, losing fine details or introduc-
ing color distortions, which hinder detection performance. In
contrast, the SFFNet generates images with superior clarity and
structural consistency, enabling robust detection even in dense
and nonuniform haze. These results highlight SFFNet’s ability
to enhance remote sensing imagery for high-accuracy object de-
tection, preserving critical details and improving interpretability.
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TABLE VIII
MODEL SIZE (UNIT, KB), RUNTIME (UNIT, SECONDS), AND FLOPS (UNIT, G)
COMPARISON OF VARIOUS METHODS ON TWO DIFFERENT SIZE DATASETS OF

1920× 1080 AND 2560× 1440

H. Computational Efficiency Analysis

Table VIII summarizes the model size, runtime, and compu-
tational complexity comparisons of various methods at resolu-
tions of 1920× 1080 and 2560× 1440. Traditional CPU-based
methods show significantly longer processing times compared
to GPU-accelerated learning-based approaches. Our proposed
SFFNet achieves competitive runtime performance through
GPU acceleration. While the SFFNet exhibits higher compu-
tational complexity (FLOPs) than other methods, this reflects
its sophisticated architecture that prioritizes comprehensive
feature extraction for superior dehazing quality over minimal
computational cost.

VI. CONCLUSION

In this article, we propose SFFNet, an innovative deep learn-
ing framework for addressing the challenges of haze removal
in remote sensing images. By integrating spatial-domain en-
hancement, frequency-domain modeling, and spatial–frequency
fusion, the SFFNet effectively overcomes the limitations of
traditional and existing dehazing methods. Key contributions
include the self-learned fractional Fourier transform module,
which adaptively extracts frequency-domain features, and the
self-attention-guided fusion mechanism, which enables robust
integration of spatial and frequency information to handle
nonuniform haze distributions. Extensive experimental results
on synthetic and real-world datasets verify the advantages of
SFFNet in terms of both quantitative metrics and visual quality.

The SFFNet excels in haze removal for remote sensing images
but faces limitations due to its reliance on synthetic datasets,
which may hinder generalization to diverse real-world scenar-
ios, particularly regarding the model’s sensitivity to different
levels or nonuniform distributions of haze. Its computational
complexity, though optimized, could challenge real-time use on
resource-limited devices.

Future work will focus on improving real-world adaptability
through more robust learning methods to address varying haze
conditions, optimizing efficiency for edge deployment, and ex-
tending SFFNet to other restoration tasks or multimodal data for
broader applications. In addition, we will delve deeper into the
integration of image enhancement and advanced vision tasks
through joint learning frameworks, aiming to systematically

quantify the impact of enhancement techniques on the perfor-
mance of high-level vision models.
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