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Room Partitioning in Complex Environments by
Supervoxel Segmentation and Anchor
Pixel Linking

Feng Li

Abstract—This article presents an innovative method to au-
tomatically partition rooms in cluttered environments, which is
a critical task for indoor reconstruction, navigation, as well as
scene understanding. It involves two main phases, starting with the
operations of morphological erosion and feature analysis on the
projected supervoxels to highlight gaps and remove narrow pas-
sages. This is followed by a refinement phase, where the continuous
and clean wall boundaries are connected in the occupancy evidence
map under the constraint of orientation information. Finally, the
individualization of rooms is achieved by inversely propagating the
segmented result inimage back to point cloud. Experimental results
demonstrate that the proposed method outperforms mainstream
approaches, particularly in challenging scenarios characterized
by heavy occlusion, curved walls, multiple ceiling heights, or long
corridors.

Index Terms—Indoor space, pixel linking, point cloud, room
partitioning, supervoxel segmentation.

I. INTRODUCTION

HE rapid advancements in scanning technology have sig-
T nificantly enhanced the efficiency and scope of capturing
indoor scenes, yielding massive point cloud data that intuitively
reflect the architectural details [1]. However, the sheer volume
of the data and complexity of the environment pose considerable
challenges in the effective utilization of the original point cloud
[2]. Considering that indoor space is commonly composed of
room units with varying size and functional use, a natural
strategy is to reduce the amount of data by dividing the building
into separated rooms in advance. The room partitioning task
not only fosters a deeper understanding of the indoor layout,
but also plays a pivotal role in subsequent applications. In the
context of indoor reconstruction, focusing on the analysis of a
discrete room circumvents interference from extraneous points,
thereby improving the geometric accuracy as well as semantic
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content of the resultant model [3], [4]. And for indoor navigation,
uncovering the spatial topological relationships between rooms
isinstrumental in devising suitable pathways [5], [6]. Thus, room
partitioning stands as a significant topic of research within the
fields of architecture, robotics, and spatial analysis [7], [8], [9].

Existing room partitioning methods are broadly classified into
two categories, one of which is closely related to the segmenta-
tion of occupancy map in the domain of mobile robotics [10],
[11], [12]. The division basis for this type of methods is pri-
marily the narrow passages and gaps between rooms in two-
dimensional (2D) images. A significant drawback of them re-
sides in the neglect of 3D spatial information, rendering it impos-
sible to cut off the tightly connected rooms just from the planar
view [13]. One reliable strategy is to introduce wall information
[14], [15], but it remains a formidable challenge to ensure the
accuracy and completeness of the extracted walls in cluttered
indoor environments. The second type of methods tends to pro-
cess the point cloud directly and imposes the distribution of solid
boundaries or the similarity between subspaces as the primary
criteria for room partitioning [16], [17]. However, such methods
may require the assistance from additional information, such as
the number of rooms, device location, and scanning trajectory
[18], [19], [20]. Moreover, these methods are generally limited
by regular structural assumptions and incapable of addressing
special scenarios where walls are curved or room heights are
inconsistent.

In addition to the challenges posed by the intricate indoor
structures, the presence of unavoidable noise, outliers, and miss-
ing data in the point cloud are most likely to result in incomplete
walls and unclear ceiling gaps, which further exacerbate the
difficulty of room partitioning [21], [22]. In order to overcome
the limitations of existing methods and cope with complex sce-
narios, this article proposes an automated method for room parti-
tioning from indoor point clouds. The core idea is to outline room
boundaries by identifying the structural elements that separate
the space, such as walls or doorways. The simplified workflow
starts with the application of morphological erosion operations
and geometric feature analysis on the projected supervoxels to
initially sever the narrow passages that connect rooms. Subse-
quently, the locally maximal anchor pixels are used to link the
wall boundaries under the constraints of directional information,
thereby completing the refined partitioning of the rooms. Finally,
the segmentation results on the image are inversely propagated
back to the point cloud to achieve the individualization of the
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room point cloud. The main contributions of this article are
threefold.

1) A room partitioning method is proposed to handle com-
plex indoor environments. It is not limited to the Man-
hattan world assumption and does not require additional
information.

2) The supervoxel segmentation and morphological opera-
tions are combined to remove narrow regions and candi-
date doorways.

3) A novel pixel linking strategy that consists of sequential
linking, intermittent linking, and jump linking is devised
to obtain continuous and clean wall boundaries.

II. RELATED WORK

Current room partitioning methods can be roughly divided
into two categories according to the nature of the operation
objects. The first category is intimately tied to the utilization
of 2D occupancy grid maps, which is herein referred to as
indirect partitioning. Conversely, the other category exhibits a
stronger preference for the manipulation of 3D point clouds,
thus designated as direct partitioning.

A. Indirect Room Partitioning

The introduction of image processing techniques has enabled
the segmentation of occupancy grid maps into independent
entities. Bormann et al. [23] provide a survey on four popular
segmentation algorithms, namely Voronoi graph-based, feature-
based, morphology-based, as well as distance transform-based.
To effectively apply these methods to the partitioning task of
room point cloud, it is necessary to generate the occupancy
map by projecting a certain range of points beforehand. The
Voronoi graph-based methods generate independent rooms by
merging the subdivided spatial units through heuristic rules and
topological relations. Ambrus et al. [24] leverage the Voronoi
graph to obtain virtual viewpoints from the projection points of
the ceiling. The points within a fixed radius from each viewpoint
are assigned with a specific label. However, the simple result
needs further processing and is prone to oversegmentation.
The feature-based methods devise a classifier to associate local
features with room labels, but are rarely used in room point cloud
partitioning because the performance of the trained classifier
degrades significantly in new environments. The morphology-
based methods cut off the connections between adjacent room
regions by iteratively applying an erosion operation to the occu-
pancy map [25]. Jungetal. [26] and [27] apply the morphological
method on a binary image that is generated from the point cloud
near the ceiling to preliminarily partition the interior space.
Then, the actual extent of individual rooms is determined by
closing the opening of skeletonized walls. The disadvantage of
it is that undersegmentation problem may occur when the center
region of the wall is incorrectly filled with noise points. Yang
et al. [28] introduce the wall information to assist the segmen-
tation of tightly connected rooms in the occupancy map. The
morphological algorithm is adopted to partition the free-space
evidence raster that has been pruned by the wall point evidence
into meaningful regions. However, it may obtain incorrect rooms
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when the detected walls are disturbed by noise. Wu et al. [29] use
cloth simulation filtering algorithm instead of horizontal slicing
to extract the ceiling points from the building with multiple room
heights. These points are then projected into regular grids, and
the connected regions are eroded to separate rooms. However,
this method may erroneously remove part of the point cloud near
the boundaries. The distance transform-based methods operate
by calculating the distance from each occupied raster to the
nearest boundary and regarding the position of the raster with
the local maxima value as the room center [30]. Tang et al.
[31] employ the watershed algorithm on the optimized distance
transform map to decompose the space into different functional
units. Nevertheless, the final results heavily depend on the
correctness of the extracted structure primitives. Martens and
Blankenbach [32] utilize distance transformation on the mask
images generated jointly by the interior free space and wall grids.
Then independent room centers are automatically filtered using
the Otsu thresholding method. However, it performs poorly
when the walls are extensively obscured or the room size is
small.

B. Direct Room Partitioning

The direct methods to room partitioning exhibit little corre-
lation with 2D occupancy maps, and typically revolve around
the distribution of walls or doors as well as the similarity among
subspaces to segregate rooms [33]. Armeni et al. [34] adopt
a template matching algorithm to detect two adjacent peaks
formed by a thick wall from the point density histogram and
then slice the point cloud along the two dominant axes of the
building. But this method is limited to conventional rectan-
gular rooms. Bobkov et al. [35] propose a room partitioning
method based on unsupervised clustering. The point cloud is
first voxelized and the potential field value is calculated for
each free voxel. Then combining the information of visibility,
spatial distance, and maximum potential field, a clustering is
performed to get room labels. This method does not require
the knowledge of device location, but it is difficult to handle
buildings with narrow corridors. Elseicy et al. [36] present a
room partitioning method that relies on the sampled trajectory
data. Potential locations of doorways are first identified by using
point clouds within a fixed radius of the trajectory points. Then
the trajectory points are divided into segments and the label value
of them are passed to the corresponding subset of the point cloud
with the assistance of the temporal attributes. However, due to
the presence of openings, the point cloud collected at the same
location may be distributed across multiple rooms. Ochmann
et al. [37] consider that points with high mutual visibility are
more likely to belong to the same room. The ray casting is applied
on the planar patches instead of all the point cloud to generate
the visibility graph [38]. The Markov clustering algorithm is
then applied on the graph to partition rooms. The shortcomings
are computational efficiency and over segmentation problems.
Cui et al. [39] propose a room partitioning method based on the
visibility analysis of trajectory data. First, the visible point cloud
of each sampled trajectory point that are limited by doors are
calculated. Since the visible point cloud of adjacent trajectory
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Fig. 1. Overview of the proposed room partitioning method.

points in the same room has a certain overlapping rate, the
associated point cloud can be divided into individual rooms
accordingly. The limitation of this method is the need to ensure
that trajectory data are available. Yang et al. [40] present a
room partitioning method that allows for complex buildings with
cross-floor spaces or nested rooms. First, the distance between
each voxel and the obstacle is calculated using an efficient
data structure. Subsequently, the indoor space is packed with
a number of spheres that overlap as small to generate room seed
regions. But the performance of this method is not good in clut-
tered or large-scale environments. Liu et al. [41] perform room
partitioning through the simulation of the scanning process. A
random point in the free space is selected and emits the light ray
uniformly in the clockwise direction. Then a virtual enclosing
region is formed by extending the walls hit by the ray and marked
as a room region if the proportion of the perimeter occupied by
real walls is greater than a threshold. Nevertheless, the method is
susceptible to the interference from indoor objects, which hinder
the propagation of the light ray.

III. METHODOLOGY

The proposed method is designed to partition rooms in
complex indoor environments, with its workflow illustrated in
Fig. 1. It takes unstructured point clouds as input, which may
be captured by various devices such as laser scanners or RGBD
cameras. During the initial partitioning phase, the method em-
ploys local feature calculation and supervoxel segmentation to
divide the input point cloud into a series of compact subsets
with better preserved boundary. Then morphological erosion is
applied to the projected supervoxels on a horizontal plane, aim-
ing to highlight the gaps between rooms. Simultaneously, narrow
doorways are identified and isolated by geometric properties and
adjacency relations. In the refinement phase, diverse information
including ceiling height, voxel distribution, and point density
are combined to build the wall occupancy evidence map, from
which the locally maximal pixels are selected and marked as
anchor points. Then, under the directional constraint of pixels,
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continuous and clean room boundaries are constructed by three
kinds of growth criteria, namely sequential linking, intermittent
linking, and jump linking. Finally, by wavefront propagation and
inverse mapping, the label values are transferred from 2D image
to 3D point cloud.

A. Initial Phase

The original point cloud is first downsampled using voxel
grids to reduce redundant data while preserving similar spatial
resolution across various datasets. Subsequently, the statistical
filter is employed to eliminate outlier points, which may be
introduced by device noise or environment factors. The sparse
outliers are identified by computing the average distance from
each point to its k£ nearest neighbors and comparing it with a
predefined threshold. Wherein the value of the threshold depends
on the statistical properties of the average distance, namely the
mean p and the standard deviation o

k
1
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The next step is to calculate the local geometric features of
each point. A covariance matrix M is constructed from the
coordinates of neighboring points, and then decomposed using
principal component analysis. The eigenvector 1_))1 associated
with the smallest eigenvalue A, is regarded as the normal vector
of current point, and the surface curvature Cur at the point equals
the ratio of the smallest eigenvalue to the sum of all eigenvalues
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Fig. 2. Comparison results of supervoxel segmentation: (a) and (b) preferen-
tially merged point sets in the original and improved method, and (c) and (d)
generated wall supervoxels by the original and improved method.

1) Supervoxel Segmentation: Following that, the point cloud
is segmented into multiple supervoxels that exhibit internal
consistency and distinct boundaries. The method based on fusion
and exchange minimization is proposed by Lin et al. [42], which
formalizes supervoxel segmentation as a subset selection prob-
lem. In order to enhance its segmentation performance in com-
plex indoor scenes, two improvements are made in the article.
First, during the merging process, the traversal initiates from the
point with the smallest curvature instead of randomly selected
point. This strategy is motivated by the fact that points with
smaller curvature are typically located in flat regions, and start-
ing the merge operation from these points makes the generated
supervoxels adhere more closely to walls, ceilings, or floors. In
contrast, the arbitrarily selected points, which may correspond
to corners or edges of architectural structures, potentially lead to
erroneous aggregation of the points from different components.
Second, during the computation of feature distances, in addition
to spatial proximity and normal vector difference, maximum
curvature is incorporated as a new metric to enhance the robust-
ness against noise. Points that exhibit close spatial coordinates
have similar normal vectors and maintain continuous surface
which are more likely to be categorized within the same subset.
Integrating these three aspects, the specific formulation for
computing the feature distance is delineated as follows:

D) = (.ds”p‘;;pj” o (1 _[R:. 7, )
+ we max (¢, ¢j) (6)

where p; and p; represent the coordinates of two adjacent points,

ﬁi and n j denote the unit normal vectors of them, and c;
and c; signify their surface curvature values. The resolution
of supervoxel is denoted as SR, while wy, w,, and w, are the
weighting coefficients used to adjust the importance of the three
factors. Fig. 2 provides a visual comparison of the segmentation
results before and after the improvement. It can be seen that the
original method may start merging points from irregular objects
such as decorations or furniture, and probably form supervoxels
that cross the actual boundary. Conversely, the improved method
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Fig. 3. Outcomes of the initial room partitioning: (a) generated supervoxels,
(b) projected regions, (c) eroded image, (d) narrow region removal, (¢) doorway
removal, and (f) connected regions.

tends to initiate from the points on planar structures and perform
better at locations with high surface variation.

The outcomes of initial partitioning are depicted in Fig. 3.
First, the supervoxels with insufficient interior points are dis-
carded, as they usually correspond to isolated noisy data. Then,
the supervoxels are projected onto a 2D horizontal plane in order
to reduce data dimensionality and pave the way for introducing
the image processing techniques. Each point of the supervoxel
is traversed and assigned to a grid cell in accordance with its
planar coordinates. The value of each grid is associated with
the supervoxel label of the highest point within it. The grid is
then converted to a grayscale image, and its values are mapped
into a contiguous integer sequence. As shown in Fig. 3(b), along
with the increase of gray value, the rendering color transitions
from blue to green and then to red. A collection of pixels with
identical grayscale value constitutes a projected region, which
serves as a simplified 2D representation of supervoxels.

2) Morphological Erosion: Afterwards, morphological ero-
sion is applied to the grayscale image to eliminate noise and
narrow structures. Some room partitioning methods disconnect
rooms by iteratively eroding edge pixels, but are prone to insuf-
ficient or excessive erosion. As opposed to individual pixels, the
projected region of the supervoxel is taken as the basic unit for
erosion in this article. These projected regions additionally carry
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Fig. 4. Geometric features of doorways: (a) spatial extent, (b) height differ-
ence, and (c) adjacent regions.

some information from 3D space, the larger regions are closely
related to horizontal structures such as ceilings or floors, while
smaller regions mostly correspond to walls or noisy objects.
The removal of narrow projected regions significantly enhances
the clarity of room boundaries. Specifically, a rectangular struc-
tural element SE slides over the grayscale image, if any pixel
within the extent of this element has a different value from the
center pixel, it indicates that the pixel is situated on the edge of
a projected region and thus subject to erosion. This process can
be mathematically formalized as follows:

I (v,y) =

{?7(3«"7 Y),

where I(z,y) and I.(z,y) represent the pixel value at a certain
location in the original image and the eroded image, respectively.
As illustrated in Fig. 3(d), narrower regions have disappeared,
while the remaining regions still have some pixels after erosion
and are entirely preserved. It is noteworthy that in some buildings
the sides of crossbeams may also generate narrow regions during
projection, but they should be retained to ensure the integrity of
the room.

Subsequently, potential doorways are identified from the pro-
jected regions of the supervoxels. The incapability of scanning
rays to penetrate solid walls results in gaps between adjacent
rooms. However, the existence of doorways may tightly connect
these point clouds. Therefore, cutting off the doorway can act
as an important basis for room partitioning. In the horizontal
direction, the spatial extent of a doorway is much smaller than
the rooms it connects. And in the vertical direction, the elevation
of adoorway is above the floor yet below the surrounding ceiling.
As shown in Fig. 4, these geometric features are harnessed to
select the projected regions associated with the doorways. If
there are at least two independent sets of regions that are not
only positioned higher than current region but also larger in
area, they typically correspond to rooms on both sides of the
passage. In such cases, current region is inferred as a potential
doorway and cut off from the image by modifying the values
of interior pixels to zero. The black boxes in Fig. 3(e) reveal
that the originally connected rooms may be separated after the
detected doorways are removed.

3) Connectivity Analysis: Finally, the updated grayscale im-
age is divided into multiple independent parts via connectivity
analysis. As shown in Fig. 3(f), each part is composed of many

if 3(i,5) € SE I (x +i,y +j) # I (2,y)
otherwise

(N
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Fig.5. Accessible height calculation: (a) vertical slice of point cloud, (b) state
of voxels, (c) free space, (d) interior of room, (e) doorway, and (f) wall.

2D supervoxels and rendered by a unique color. Upon the
completion of morphological erosion and doorway disconnec-
tion, the building entity may undergo fragmentation and room
boundaries become more prominent. Each connected part com-
prises a set of spatially continuous and nonempty pixels, which
can be effectively identified and labeled through neighborhood
search. However, owing to the complexity of indoor environ-
ments and the presence of noise data, walls and doorways may
be ambiguous, causing many rooms still to remain tightly inter-
connected. Thus, the aforementioned steps merely achieve an
initial partitioning of rooms and require subsequent refinement
processes.

B. Refined Phase

Building upon the initial partitioning results, the refinement
stage identifies and enhances the wall boundaries by the uti-
lization of point cloud analysis and image processing, thereby
ensuring that the final outcome closely aligns with indoor lay-
out. Nonetheless, the accurate and complete extraction of wall
structures from unorganized point clouds poses a considerable
challenge, particularly in buildings with heavy occlusions and
cluttered objects. Therefore, instead of directly segmenting wall
surfaces or fitting wall lines, this article generates an occupancy
evidence map of the walls by integrating the state of 3D voxels
and density of points in 2D grids. Under directional constraints,
continuous room boundaries are then extracted by three linking
criteria.

1) Wall Occupancy Estimation: First, from the perspective
of indoor space, the accessible height is derived from the spatial
distribution of the point clouds. This attribute is correlated with
contiguous and sufficient unoccupied voxels within each vertical
grid pillar, exhibiting higher values in the interior of the room
and smaller values at the connection area, as illustrated in Fig. 5.
During the specific calculation process, vertical supervoxels and
ceiling supervoxels are merged into a single point cloud, which
is then voxelized in 3D space. As shown in Fig. 5(b), each voxel
is assigned with a state of occupied or empty by checking the
presence of points within it. To improve insertion and query effi-
ciency, the octree structure is employed to organize and manage
the voxel grids. For each grid pillar, a vertical traversal of empty
voxels commences from the ceiling and proceeds downward
in a sequential manner. The traversal stops when a free space
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Fig. 6.

with a size exceeding the threshold is detected. Otherwise, it
continues searching down from the occupied voxel until enough
consecutive empty voxels are found or the floor is reached, as
shown in Fig. 5(c). The height of the uppermost empty voxel
within the identified free space is recorded and treated as a
quantitative value for the accessible height of current grid pillar.
Fig. 5(d), (e), and (f) illustrate the accessible heights in typical
regions such as the interior of rooms, doorways, and walls,
respectively. This attribute not only deepens the understanding
of indoor space, but also suffers less in environments with clutter
and occlusion. But it focuses more on indoor free space and fails
to intuitively highlight the wall space. For this reason, a simple
subtraction operation is utilized, which takes the difference value
between ceiling height and accessible height. In cases of the
presence of ceiling hole, the adjacent regions that are sufficiently
high are obtained through a breadth-first search strategy and
the median height of them is utilized to update the elevation of
the hole region. As illustrated in the height difference map in
Fig. 6(a), the walls exhibit significant height variations and are
marked in red, while the doorways have relatively smaller height
difference, and near-zero height variations exist inside the room
and are marked in blue.

Second, from the perspective of solid surface, the point den-
sity of walls is calculated by the rasterization way. Although the
height difference map reveals the distribution of room bound-
aries, there remains scope for improvement in terms of detail.
The decorative elements on the ceiling may leave unwanted
traces in the height difference map. Additionally, deviations
arising during data collection may lead to some supervoxels pos-
sessing a larger thickness, which is not conducive to locate the
actual walls. To address these limitations, the point density map
that can highlight the placement of walls [43] is introduced to
cooperate with the height difference map. The process involves
projecting all points within the non-horizontal supervoxels onto
the ground and rasterizing them. The points within each grid
cell are weighted on the basis of its height information and
then accumulated to acquire the point density. Due to the likely
presence of noise and obstacles near the floor, more weight is
given to the points closer to the ceiling. After that, the height
difference map I;, and the point density map I, are subjected
to a pixel-wise multiplication operation to fuse the occupancy
information of the wall space and the density information of the
wall surface. The result is mapped to eight-bit grayscale through
min—max normalization, yielding the wall occupancy evidence
map [, in Fig. 6(c). The mathematical equations for this step are

(b)

Construction of wall occupancy evidence map: (a) height difference map, (b) point density map, and (c) wall occupancy evidence map.
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where h., hy, and h), represent the height of the ceiling, floor,
and an arbitrary point within a grid cell. The maximum and
minimum values of multiplication result are denoted as R,,x and
Rpmin, respectively. And L is the grayscale level, which equals to
28 for an eight-bit image.

By analyzing the arrangement patterns and attribute values
among all pixels within a local neighborhood, it becomes fea-
sible to infer the underlying wall orientation embedded in the
occupancy evidence map. This feature plays a pivotal role in
the selection of the anchor pixels and provides a directional
constraint for subsequent boundary connection. Specifically, the
orientation information of each pixel is obtained by the weighted
principal component Analysis (WPCA) in 2D space. Pixels with
prominent occupancy evidence are frequently situated at room
boundaries, thereby contributing more to the determination of
wall orientation. Based on the weight and position of eight adja-
cent pixels, WPCA constructs a covariance matrix that yields a
set of principal directions after decomposition. In particular, the
eigenvector associated with the largest eigenvalue represents the
most significant extension direction of the current pixel, which is
consistent with the orientation of the wall structure. According to
the distribution pattern of neighboring pixels and the magnitude
of the angle with the positive horizontal axis, the orientation
values v,, are quantized into four uniform intervals using the
formula below. Each of the available pixels is given one of the
corresponding labels zone to generate the boundary orientation
map in Fig. 7(a)

(a tan (vjn Y, U:L . :L') + 971'/8) mod 7
/4

zone —

(11)

where the symbol [] denotes taking an integer upwards, and
mod function represents the modulo operation. As illustrated in
Fig. 7(b), each of the four intervals covers a quarter of a circle
and is associated with the cardinal orientation of walls.



18364

" Orientation’

(b)

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 18, 2025

(c)

Fig. 7. Information extracted from wall occupancy evidence map: (a) boundary orientation map, (b) quantized result of orientation, and (c) anchor pixels.
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Fig. 8.  Selection of pixels under orientation constraint: (a) extraction of anchor pixels, and (b) extension of pixels.

Subsequently, the anchor pixels are extracted from the wall
occupancy evidence map with the assistance of boundary ori-
entation and shown in Fig. 7(c). These pixels, which exhibit
the maximal value within the local region, are most likely to
indicate the exact location of walls and thus serve as crucial
starting points for boundary linking. A non-maximum sup-
pression strategy is applied to accurately pinpoint the anchor
pixels. Specifically, for each unvisited pixel in the occupancy
evidence map, a comparative analysis is conducted between it
and two adjacent pixels that are perpendicular to its orientation.
As the schematic illustrates in Fig. 8(a), in case of a horizontally
oriented pixel, the two neighbors come from directly above and
below it, respectively. If the value of current pixel is the biggest
and exceeds a predefined threshold over one adjacent pixel, this
pixel is deemed to be locally prominent and is consequently
labeled as an anchor point. The median absolute deviation, which
is robust to noise, is borrowed to automatically set the value of
the threshold 7}, and the calculation formula works as follows:

T, = med(X)+ d*med (| X; —med (X)|)  (12)

where X denotes a set that contains the values of all nonzero
pixels in the occupancy evidence map and X, represents an
individual sample within the set. The function med is used to

calculate the median value, while the constant factor ¢ controls
the strictness of the threshold selection.

2) Pixel Linking: The nextimportant task involves the design
of a heuristic tracking strategy to extend the anchor pixels,
aiming to obtain clean and continuous wall boundaries. This
strategy is inspired by the previous research on line segment
detection [44], [45], [46]. The pseudocode of the execution
flow is listed in Algorithm 1. The local attribute information,
such as point density or vertical height, is frequently utilized
to rigorously infer whether a single grid corresponds to the
wall [47]. But in complex environments, they are susceptible
to noise and tend to produce fragmented wall boundaries. In
reality, walls exhibit a high degree of continuity in 2D projected
image, with gaps only at a few locations including doorways
or occlusions. Therefore, the designed strategy starts with the
prominent anchor pixels, and progressively extends outward un-
der the guidance of the boundary orientation map and occupancy
evidence map, thereby identifying high-quality boundaries of
indoor rooms. Specifically, each connected component obtained
from the initial room partitioning is treated as an operation unit
for refinement process. The morphological dilation is performed
on the selected unit to generate a mask, which confines the
search scope for boundary pixels. The anchor pixels covered
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by the mask are collected and sorted in descending order based
on their values. Then initiating from the anchor point with the
largest value, the exploration follows the corresponding wall
orientation and moves toward both sides in an orderly manner.
An intuitive illustration of the process is provided in Fig. 8(b),
where in case of a horizontally oriented wall, the eligible pixels
on the left are sequentially connected and followed by the right
side. During each movement, three candidate neighbors in the
current direction are evaluated. If an anchor pixel is encountered
among these candidates, it is directly designated as the start point
for the subsequent step. Otherwise, the neighbor with the highest
value is selected to start the next move. This dynamic connection
process persists until the orientation of the current pixel changes,
the pixel value falls below a threshold, or the previously detected
boundary is reached. In Fig. 9, blue solid-line boxes denote the
detected horizontal wall segments, and orange solid-line boxes
indicate the detected vertical wall segments.

After the movement is suspended, a collection of linearly
arranged pixels is identified and constitutes a potential wall
segment as depicted in Fig. 9(a). For a wall segment meeting
the length requirement, the extension process restarts from the
breakpoint and continues to move forward a certain distance
along the direction of the wall. As exemplified in Fig. 9(b),
once a prominent pixel that aligns with the travel direction
is detected within the range, the new starting point shifts to
this pixel and proceeds to sequentially connect adjacent pixels;
if not, the movement in the current direction is completely
terminated. In addition, upon encountering pivotal pixels with a
change in direction while moving, these pixels are successively
stored into a stack structure and serves as an initial point for
subsequent tracking of walls with other orientations. Following

(b)
. Horizontal Vertical
. Anchor pixel .I:l pixel l:’ pixel
. Boundary Horizontal
D Empty pixel D pixel |:| segment
:éertlcal — _| Extended o ! Filled gap
gment — ' segment = te----2
<T> Extended Blocked Pixel
directions direction jumping
(d)

Different ways of pixels linking: (a) sequential linking, (b) intermittent linking, (c) jump linking, and (d) annotation symbols.

this, a series of potential wall segments triggered and connected
by an individual anchor pixel are pieced together, and if the
overall length is insufficient, pixels far from the outer boundary
of the selected component are removed. This aims to filter out the
trivial and isolated edges introduced by noise or furniture. After
the anchor pixels in the mask image have been traversed, the
focus shifts again to the wall segment with lengths exceeding a
certain threshold.

The jump linking strategy is devised to lengthen the seg-
ments toward both ends to repair the gaps in the wall contour,
the implementation of which is visualized in Fig. 9(c). Some
exceptional scenarios may lead to notable gaps in the wall
occupancy evidence map, such as doors near the ceiling or large
obstructions. Thus, the jump linking strategy is necessitated
to reinforce the integrity of wall boundaries. Specifically, a
weighted least squares fitting method is adopted to precisely
capture the dominant direction (b, —a) of the wall segment.
Under the constraint of this direction, the projection points of the
end pixels (x;,y;) attempt to jump outwards with incremental
steps and continuously track a sequence of pixels. If these pixels
are sufficient in quantity and capable of forming a line parallel
to the current wall segment, as shown by the red dotted box,
the jumping process stops. Then the void pixels between the
projected point (z,,y,) and the jumped point (xy,, y,, ), which
are enclosed by green dotted box, are filled with the help of
Bresenham’s line algorithm to achieve seamless closure of gaps.
The main mathematical formulas involved in this step are as
follows:

minimize Z wi(ax; + by; + c)2

a,b,c
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Algorithm 1: Boundary pixels linking.

Input : I,: Occupancy evidence map, /,: Boundary orientation map,
IR: Components after initial room partition
Output: 7,,: Wall boundaries map

1 Aps = nonMaxSuppression(/,, I,); // anchor pixels

2 for each component rcin IR do

3 I,,,, ob = detMaskAndBoundary(rc);

4 aps = sortAnchorPixels(1,,, Aps);

5 for each anchor pixel ap in aps do

6 stack = initStack(ap.coord, ap.val, ap.dir);

7 while stack is not empty do

8 curp=stack.pop();

9 while curp.dir is not changed do

10 nextp = trackNextPixel(curp, I,, I);

11 if nextp.dir = curp.dir AND nextp.val >threshold then
se = addToSegment(nextp);

labelPixel(nextp, I,,); // Sequential linking
14 end

15 else

stack.push(nextp);

// Intermittent linking

curp = extendPixel(nextp);

18 end
19 end
20 ws = addToWallSegments(se);
21 end
// Pixels triggered by an anchor pixel
2 wallchain = addToPixelChain(ws);
23 I,, = removeNoisypixels(wallchain, ob)
24 end
25 for each wall segment se in ws do
2 line = weightFitLine(se);
27 for each jump step | in Al do
28 Jumpizel = jumpForwad(se.endpl,l, line, I,,);
29 if canGrow(jumpizel, I,,) then
30 holepizels = Bresenham(jumpizel, se.projp);
31 I, = fillHole(holepizxels, I,,); // Jump linking
32 break;
33 end
34 end
35 end
36 end

st.a’+ =1 (13)
) = (V) M (a

(y;:;) B (yz> a2 + b2 (b) (14)
Tn\ _ (Tp L . ( b )

<y> (yp) T \a (15)

where w; represents the weight and is equal to the pixel value of
the wall occupancy evidence map. And Al represents the step
size of jumps, with its value gradually increasing over iterations.

3) Label Propagation: In the final step, all identified wall
segments are superimposed to form a complete room boundary
map, as illustrated in Fig. 10(a). Through the image differencing
operation between this map and the outcome of initial room
partitioning, the continuous pixels effectively cut off the tightly
connected room sets. Then, multiple mutually independent re-
gions are extracted from the differential image by using the
connected component analysis. Any region satisfying the preset
area and dimensional criteria is regarded as an individual room,
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Fig. 10. Refined partitioning of rooms: (a) room boundary map, (b) room
regions, (c) room segmentation map and connected network, and (d) final result
of room partitioning.

with its internal pixels assigned a distinctive label. Thereafter,
a wall-constrained region growing algorithm is employed to
ensure that the unlabeled pixels are correctly categorized. During
the growth process, labels of the pixels inside the room are
propagated to adjacent unlabeled pixels, while the wall boundary
pixels neither serve as starting points for propagation nor receive
label from surrounding pixels. This is to avoid the incorrect situ-
ation where the room region crosses the actual walls. Following
this, the remaining unlabeled pixels that mostly appear on the
public walls or within minor regions are further processed using
the topological information of the supervoxels. A room entity
comprises multiple supervoxel projection areas, while a single
projection area exhibits a certain probability of being distributed
in several neighboring rooms. If the supervoxel projection area
where a pixel to be classified belongs, or the adjacent projection
areas are entirely located in the same room, the unclassified
pixel directly inherits the label of this room. In other cases, a
modified wavefront propagation method is employed to assign
the most frequently occurring label in the vicinity, rather than
the first accessed one to the unclassified pixel. After the label
assignment of all pixels is completed, the room segmentation
map is obtained in Fig. 10(c), which visually represents the
layout and boundaries of indoor rooms. This is then combined
with the information of narrow doorways and wall occupancy
evidence map to obtain the connected network between rooms.
The segmentation results in the horizontal plane are inversely
mapped to the point cloud through coordinate correlations,
thereby achieving the individualization of rooms in 3D space.

IV. EXPERIMENT

To validate the effectiveness of the proposed room partitioning
method, this section selects some representative indoor point
cloud datasets, which exhibit variability in terms of scale, layout,
and complexity. Table I provides the key information of each
dataset. Meanwhile, Fig. 11 offers a visual representation of
the selected datasets. The first four datasets are derived from
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Fig. 11. Test dataset: (a) TUB2-1, (b) TUB2-2, (c) UoM, (d) Grainger Museum, (e) Areal, and (f) Area3.
TABLE I TABLE II
KEY INFORMATION OF THE TEST DATASETS CONFIGURATION OF PARAMETERS
Test Capture  Points Area  Height  Clutter Symbol Description Value
dataset  device (million)  (m?) (m) level cs Cube size 0.05m
TUB2-1 Laser 13.1 641.1 24 Low knei Nearest neighbors 21
scanner Wg, Wy, W Weight coefficients 0.6, 1.0, 0.4
TUB2-2 Laser 8.5 592.3 6.0 Low SR Supervoxel resolution 1.0 m
scanner el
Laser _ gs Grid size 0.1 m
UoM scanner 12.6 479.8 3.8 Medium empty,in  Min height of free space 0.50r 0.8 m
Grainger  Laser . Pmin Min pixel value for linking lor3
Museum  scanner 242 700.3 4.9 High lenin Min length of wall segment 1.0 m
Areal RGBD 44.0 1189.9 53 High Al J.ump step size 0.5,0.7,09, 1.1 m
camera TQmin Min area for room 1.0 m?
Area3  RGBD e 752.5 3.1 High Thmin Min height for room 1.8 m
camera T Woin Min length and width 0.8 m

the ISPRS Benchmark on Indoor Modeling [48], where the first
and second datasets pertain to the upper and lower stories of
building TUB2, respectively, and are connected by a staircase.
UoM and Grainger Museum datasets are collected using mobile
laser scanner in cluttered environments and include considerable
noise. The latter two datasets, Areal and Area3, are obtained
from the Stanford 3D Large-Scale Indoor Scene Dataset [34]
and captured by RGBD camera. Notably, in order to facilitate
room partitioning, some datasets undergo preprocessing steps
including coordinate reorientation and outdoor point removal,
which can be realized via the previous methods [49].

The implementation and testing of the method are conducted
on a laptop equipped with a 10th generation Intel Core i7 proces-
sor. The programming language is C++, and open-source PCL
and OpenCV library tools are introduced to support the efficient
processing of 3D point clouds and 2D images, respectively.

A. Parameter Setting

The configuration of parameters for different datasets is sum-
marized in Table II. The vast majority of parameters exhibit
stability across various datasets. Initially, the cube with a size
of 0.05 m is used to downsample the input point cloud. The
number of nearest neighbors is chosen to be 21 for the estimation
of local normal vector and surface curvature. The resolution of
supervoxel is delineated as 1.0 m, and the assignment of three
weighting coefficients are 0.6, 1.0, and 0.4, respectively. The
supervoxels are rasterized at a resolution of 0.1 m, which is
consistent with the scale of subsequent 3D voxelization process.
At the refined stage, the step size of jumping connection is
progressively incremented from 0.5 to 1.1 m, allowing to cope
with intricate and variable environments. A minimum area of 1.0
square meters is imposed for a room to be deemed acceptable,
alongside the requirement that both the length and width exceed
0.8 m. In addition to constraining planar dimensions, a vertical



18368

(d)

Fig. 12.  Complex scenes in some datasets: (a) and (b) scattered points above
the ceiling in Areal and Area3, and (c) and (d) abrupt drop of ceiling elevation
in TUB2-2 and UoM.

height requirement of 1.8 m for rooms is added. Meanwhile,
given that a room is enclosed by the ceiling, floor, and walls,
candidate rooms with severe missing vertical point clouds are
discarded.

Besides, there are still two important parameters that need
to be adjusted in accordance with the data characteristics. The
first one is the height of free space, which directly affects the
pixel value of the wall occupancy evidence map. As exemplified
in Fig. 12, the aperture structures of the corridor result in some
points dispersed above the ceilings of adjacent rooms. To prevent
ignoring the wall space below, the height threshold is raised from
the conventional 0.5 to 0.8 m in Areal and Area3 datasets. The
second one is the minimum pixel value during dynamic linking,
which controls the sensitivity of wall boundary recognition. For
TUB2-2 and UoM datasets, this parameter is incremented to 3
from the default value of 1, to mitigate errors arising in places
where the ceiling abruptly drops in the same room.

B. Evaluation Results

The performance of the proposed method in various indoor
environments is illustrated in Fig. 13. Each dataset is presented
with three subfigures, the first column is the reference bench-
mark, which are either cropped after careful observation or
obtained from existing ground truth. The second column shows
the core regions of the extracted rooms, with the black lines
delineating the connected wall boundaries. The third column
focuses on the partitioned room point cloud, wherein each room
is given a unique label and distinguished by random color.
The experimental outcomes indicate that the proposed method
achieves remarkable performance, as almost all test datasets can
be accurately identified and partitioned, even in the presence of
complex structures such as curved walls that deviate from the
Manhattan assumption. From the perspective of free space and
solid surface, the proposed method integrates multiple sources
of information, such as spatial voxel distribution, point density,
and point height to construct the wall occupancy evidence map,
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which greatly reduces the interference of unstructured objects.
Specifically, the first story of TUB2 building is partitioned
into 15 distinct point cloud subsets, whereas the second story
undergoes a division into 9 rooms. The incomplete thin wall in
the middle of the long corridor is successfully detected, thus
avoiding the incorrect fusion of the rooms on both sides. In the
dataset of TUB2, the two spaces closely connected to the left cor-
ridor are not separated due to the lack of distinct wall evidence. In
terms of the functional utility and visual inspection, it is indeed
more rational to consider these two spaces as part of the corri-
dor, rather than independent entities. Seven rooms are detected
from the UoM dataset, including a winding public corridor.
Despite the generated wall occupancy evidence map has defects
due to the interference from moving pedestrians, ventilation
facilities, and bookshelves in rooms. The method is still able
to discover continuous and clean wall boundary pixels under
orientation constraint. Notably, the Grainger Museum dataset
has an abundance of curved walls and cluttered booths, resulting
in a high degree of complexity to the internal environment. This
poses a significant challenge for room segmentation methods
that rely on wall plane fitting. Conversely, the proposed method
effectively separates the tightly connected rooms without direct
extraction of planes and yields 21 distinct units. The curved
walls with constantly changing orientations can be captured in
the process of pixel linking, thereby preventing the formation
of fragmented segments and generating continuous boundaries.
The datasets of Areal and Area3 further validate the capability
of the method in handling large-scale indoor scenes. There are 45
and 23 rooms extracted from these two datasets, with only one
more room found in Areal in comparison with the reference
data. The over-segmentation problem occurs in the stairwell
and is marked by a blue arrow in Fig. 13(e). The height of
this staircase is much greater than that of other rooms and the
integrity of point cloud is poor. The T-shaped wall at the center
makes a clear imprint in the occupancy evidence map and covers
the opening directly below, thus causing the erroneous division
of the stairwell into two rooms. In addition, a flaw observed in
Area3 is the classification deviation of some points in Fig. 13(f),
as highlighted by ared arrow. This is due to the severe obstruction
of the wall behind the door, coupled with the interference from
the nearby cabinets, which leads to the connected boundary
diverging from the shared wall. Consequently, some pixels at
the junction of rooms are misclassified. Although the subsequent
label propagation process can improve this situation to a certain
extent, it is still not possible to ensure that all of the boundary
points are accurately categorized into the corresponding rooms.
Despite encountering few defects in several datasets, the pro-
posed method maintains a high level of accuracy, robustness,
and versatility across a wide range of indoor environments.

In addition to intuitive visual evaluation, this section also
quantitatively analyzes the performance of the method on six
experimental datasets. Table III presents a variety of quantitative
metrics, encompassing the accuracy of the partitioned point
cloud, the deviation in room counts, and the execution time of
the method. Among these, accuracy stands as a pivotal global
metric, aiming to measure the proportion of correctly partitioned
samples relative to the total samples at the point level. To achieve
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Fig. 13.  Partitioning results of test datasets. (a) TUB2-1, (b) TUB2-2, (¢) UoM, (d) Grainger Museum, (e) Areal, and (f) Area3.
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TABLE III
QUANTITATIVE EVALUATION RESULTS

Dataset APPC (%) Nactual Nextracted DRC TE (S)
TUB2-1 98.86 15 15 0 7.2
TUB2-2 99.12 9 9 0 8.6
UoM 99.17 7 7 0 8.5
Grainger o9 ) 21 21 0 18.8
Museum
Areal 93.65 44 45 1 19.3
Area3 96.31 23 23 0 7.5

this evaluation, a bidirectional one-to-one mapping of rooms is
deduced on the basis of the criterion of maximum overlap,
ensuring that each extracted room uniquely corresponds to an
actual room and each actual room is associated with at most
one extracted room. The intersecting point clouds within the
pairwise matched rooms are regarded as correctly partitioned
samples. The total samples originate from all points in the initial
point cloud, including not only correctly partitioned points,
but also those erroneously assigned to other rooms as well as
unclassified points. The deviation in room count is a metric
used to quantify the discrepancy between the number of rooms
extracted by the method and the actual number of rooms, with
both oversegmentation and undersegmentation contributing to
an increased deviation value. The execution time directly re-
flects the efficiency of the method in practical applications. The
accuracy of the partitioned point cloud Appc and the deviation
in the number of rooms Dgc can be formally expressed as

ZNmilchcd (ngtracled N Cz}ctual)
1= 3 K2

Appc = Z jy;c:lluul C;;ctual (16)
DRC - ‘ Nextracled - Nactual | (17)

where Npatcheds Nactual, aNd Nexraced denote the number of
pairwise matched rooms, actual rooms in reference data, and
extracted rooms, respectively. Similarly, C¢xracted gpg (Cactual
represent the point cloud in one of the extracted rooms and actual
rooms, respectively.

The quantitative outcomes also significantly demonstrate that
the proposed method has excellent performance. It achieves an
accuracy of about 99% as well as no quantity deviation in most
experimental data, even for the Grainger Museum dataset with
complex structures. However, a notable decline in accuracy to
93.65%, along with an increase in deviation to one is observed
in the dataset of Areal. This is primarily attributed to the stair
region being excessively partitioned into two separate rooms.
Area3 dataset has zero deviation in room count but shows a
relatively low accuracy of 96.31% . This is due to the fact
that some points of the long corridor are distributed above
the ceiling of the adjacent rooms, and form overlapping raster
after downward projection. All points in the same raster are
treated as a single entity when the segmented results are back
propagated to the original point cloud, which results in the
misclassification of some points. This issue also exerts a negative
influence on the accuracy of Areal. Besides, unexpected factors
such as solid door occlusion, furniture interference, and wall
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holes have an effect on the identification of room boundary in
some indoor scenes like TUB2-1 and Area3, which triggers a
small number of points to be incorrectly categorized. However,
these factors exhibit limited influence on the overall accuracy.
Furthermore, the analysis reveals that laser datasets achieve
slightly higher average accuracy at 99.04% . And the method
maintains strong performance on RGBD data, with an average
accuracy of 94.98%, proving its resilience to sensor types.

The execution time T’r of the method is closely related to the
characteristics of the experimental data, particularly the number
of points, the complexity of the environment, and the spatial
extent of the building. The average time for room partitioning
in six different datasets is kept within 12 seconds. Among them,
the highly complex Grainger Museum and Areal datasets, which
contain millions of points and cover hundreds of square meters,
consume the longest time of about 19 seconds. For the remaining
datasets, the method takes less than 10 seconds to complete
the partitioning. It is worth noting that supervoxel segmentation
occupies more than 80% of the overall runtime, significantly
exceeding the time consumed in the steps of initial and refined
room partitioning. This is due to the need to calculate the local
features of each point and the similarity between neighboring
points in the generation of supervoxels. Overall, the proposed
method is capable of partitioning the point cloud into rooms
within a shorter period of time.

C. Comparison Results

To further reveal the advantages of the proposed method,
this section conducts a comparative analysis with mainstream
methods on a series of challenging datasets. The room partition-
ing results for the TUB2-1 dataset are shown in Fig. 14, where
the first subplot contains the scanning trajectory and the point
cloud with the ceiling removed to clearly present the details
of the indoor room layouts. Although this building adheres to
the typical Manhattan world assumption, extra complexities are
introduced to the partitioning task due to thin walls and open
stairwells. Morphology-based method [23] separates connected
regions through iterative erosion operations but struggles to dis-
tinguish between tightly coupled corridors and rooms, resulting
in under-segmentation problem as evidenced in Fig. 14(b). Wu
et al. [29] devise a method combining cloth simulation filtering
and regular grid analysis to accommodate buildings with varying
room heights or slanted ceilings. However, the method easily
overlooks the point cloud in the transitional passages and also
suffers from the under-segmentation at the long corridor. Yang
et al. [40] proposed a method on the basis of sparse voxels
and sphere packing to perform room partitioning directly in 3D
space, bypassing the projection of the point cloud. Neverthe-
less, this method is susceptible to disturbances from obstacles
like pedestrians and steps in the environment during distance
transformation, leading to the problem of oversegmentation in
the corridor and stairwell, as demonstrated in Fig. 14(d). Tang et
al. [31] employ an improved morphological method to spatially
decompose the binary image generated by the superposition of
original point clouds and vertical structural primitives. Although
this method is somewhat robust to noise, the decomposition
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Fig. 14.
(e) Tang et al.’s method, and (f) proposed method.

(d)

Fig. 15.
et al.’s method, (e) Martens et al.’s method, and (f) proposed method.

result depends on the planar primitives detected from the un-
structured point cloud, and when the wall points are missing
severely, it may yield the undersegmented corridor in Fig. 14(e).
In contrast, the proposed method outperforms other methods
on the current dataset by linking the anchor pixels to obtain
continuous wall boundaries and eliminating the need to detect
planes.

The room partitioning results obtained by diverse methods on
the Grainger Museum dataset are visually presented in Fig. 15.
This building is particularly challenging as the spatial layout
does not follow the Manhattan structural assumption and the
indoor environment is chaotic. The method based on distance
transform [23] treats regions far from image edges as poten-
tial room centers. Through multiple adjustments of projection

(b) (©)

.(d) I (e)...

Partitioning results of different methods on TUB2-1 dataset: (a) test dataset, (b) morphology method, (c) Wu et al.’s method, (d) Yang et al.’s method,

(®) (c)

(e) )

Partitioning results of different methods on Grainger Museum dataset: (a) test dataset, (b) distance transform method, (c) Wu et al.’s method, (d) Yang

resolution and area threshold, most rooms are separated but
some of the boundaries are quite different from reality, especially
the small rooms on the left side of Fig. 15(b). Unlike directly
selecting the point cloud within a fixed offset space near the
ceiling, Wu et al. [29] utilize the cloth simulation filtering
algorithm to better handle buildings with inconsistent room
heights. However, the extracted ceilings may not be complete
when the scene exhibits significant variation in elevation, which
leads to a considerable lack of point cloud in the result of
Fig. 15(c). The method of Yang et al. [40] has certain advan-
tages in tackling complex buildings that contain nested rooms
and cross-floor spaces. Nevertheless, its drawback lies in the
dependency on trajectory data and sensitivity to interference
factors like occlusions, noise, and reflections, which may greatly
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Fig. 16.

impact the overall partitioning quality, as shown in Fig. 15(d).
The strategy of Martens and Blankenbach [32] is to create
non-overlapping rooms by gradually growing outward from the
seed regions with the assistance of the wall grids. The method
achieves robust and accurate results on some buildings with
atypical Manhattan assumption. However, it fails to avoid the
influence of vertical furniture and narrow spaces and causes
the incorrect division of the small rooms in Grainger Museum
dataset, as demonstrated in Fig. 15(e). The proposed method
eliminates the necessity for extra scanning trajectory, relying
solely on spatial distribution information of the point cloud to
reveal indoor room layout. Experimental results of this chal-
lenging dataset also indicate that the proposed method surpasses
alternative approaches in performance.

In addressing the large-scale and multi-room datasets Areal
and Area3, the comparative results of different methods are
presented in Fig. 16. The red circles in the figures highlight
where the errors occurred, which include the instances of
oversegmentation, undersegmentation, and inaccurate bound-
aries. The left subfigure originates from the method proposed
by Armeni et al. [34], which leverages density histograms to
search for voids enclosed by wall entities as a way to parse
the building into multiple independent rooms. This method
exhibits robustness in cluttered environments since there is no
requirement for detecting the surface information from input
point cloud. However, it is not suitable for rooms that deviate
from the main walls of the building or have more freeform
shapes. Bobkov et al. [35] present a room partitioning method
grounded in anisotropic potential fields. It does not depend on the
Manhattan world assumption or scanning location information,
making it applicable to a wider range of irregular indoor envi-
ronments. Nevertheless, the computational costs associated with
estimating potential field values and unsupervised clustering
are relatively high. And as shown in Fig. 16(b), the division

(b) (©)

Partitioning results of different methods on Areal and Area3 dataset: (a) Armeni et al.’s method, (b) Bobkov et al.’s method, and (c) proposed method.

Fig.17. Improved room partitioning result on Area3 dataset: (a) original result,
and (b) improved result.

performance of this method in the corridor is poor. By compari-
son, the proposed method is not limited to Manhattan buildings
and significantly mitigates the partitioning flaws on the test
datasets.

V. DISCUSSION

Comparison analysis demonstrates that the proposed method
outperforms other methods in real-world scenarios with curved
structures, elongated corridors, and thin walls, showing strong
applicability and robustness. As shown in the lower right corner
of Fig. 1, the partitioning results not only facilitate the analysis
and reconstruction of individual entities with reduced complex-
ity and smaller data volumes, but also assist in extracting connec-
tivity relationship between distant rooms for indoor navigation.
Although it still has limitations to deal with some special indoor
scenes. Especially when neighboring rooms overlap together
after projection, part of the point cloud will be misclassified
because the points within the same raster grid are considered
as a whole. As illustrated in the box of Fig. 17, the hole
structure at the top of the corridor causes some points to be
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Fig. 18.  Ablation experiment: (a) only initial partitioning, and (b) only refined
partitioning.

scattered on the ceiling of adjacent rooms. This problem may
be solved by introducing the clustering strategy in 3D space
to reclassify the overlapping points. Specifically, the corridors
that connect multiple regions in the room segmentation map are
first identified. Then, focus is shifted to the point cloud within
a certain distance range from the ceiling to minimize interfer-
ence and reduce computational load. Next, the point cloud at
the top of the corridor is used as the clustering centroid and
gradually incorporates the nearby points from the surrounding
rooms. Finally, all points within a single cluster are assigned
the corresponding room label, and the improved result is shown
in Fig. 17(b). In terms of quantitative evaluation metrics, the
accuracy of the Areal and Area3 datasets has been improved
by 0.37% and 0.48%, respectively. This demonstrates that the
introduced 3D spatial clustering strategy effectively addresses
the issue of room overlap and enhances the robustness of the
method.

The proposed room partitioning method consists of two main
phases. To validate the importance and necessity of each phase,
ablation experiments are conducted by independently evaluating
their impact on overall performance. The initial partitioning
phase highlights gaps between rooms. However, due to noise in
point cloud and complexity of indoor environment, the majority
of rooms remain tightly connected as shown in Fig. 18(a). While
the refined partitioning phase can identify most rooms through
anchor pixel linking, it fails to effectively segment small rooms
in cluttered areas in Fig. 18(b), affecting the accuracy of the
results. By integrating both phases, more accurate and reliable
results are achieved in Fig. 15(f), in which room count devi-
ation is zero. The initial phase removes narrow structures and
doorways, providing a cleaner input for the refined stage, which
then optimizes the wall boundaries to produce high-quality
partitioning.

Furthermore, we analyze the impact of key parameters such
as supervoxel resolution and jump step size. The partition-
ing results in Fig. 13 indicate that a supervoxel resolution of
1.0 m and a jump step size incrementally adjusted from 0.5 to
1.1 m offer an optimal balance between detail preservation and
computational efficiency, and are applicable to a wide range of
test datasets. The selection of supervoxel resolution is primarily
based on the minimum area of rooms, while the determination
of the jump step is informed by the common width of doors.

Supervoxels are spatially contiguous clusters of points with
homogeneous geometric features and serve as the main oper-
ating objects in the initial partitioning phase. The resolution
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Fig. 19.  Effect of supervoxel resolution: (a) supervoxel resolution at 2.0 m,
and (b) supervoxel resolution at 0.5 m.
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Effect of jump step: (a) jump step at 0.3 m, and (b) jump step at

Fig. 20.
1.3 m.

determines the scale of supervoxels in space, which directly
affects the removal of narrow structures and door passages. A
range of resolution values, from relatively coarse to fine are
tested for comparison. The top and bottom rows of Fig. 19
show the supervoxel segmentation results and the initial room
partitioning results, respectively. As shown in Fig. 19(a), a low
supervoxel resolution of 2.0 m causes supervoxels to span across
adjacentrooms. While this increases processing speed, it leads to
the loss of important boundary information, and as a result, some
door passages and narrow structures fail to be detected. A high
supervoxel resolution of 0.5 m, as depicted in Fig. 19(b), retains
more details but tends to oversegment. This can result in the
erroneous removal of areas that are not actually door passages
or narrow structures, such as ceiling indentations, potentially
splitting a single room into multiple parts.

The jump size is a critical parameter in the refined partitioning
phase. Typically, doorways connecting different spaces leave
distinct marks on the supervoxel projection map or the wall oc-
cupancy evidence map. These features serve as important cues to
close openings. However, special cases, such as doors positioned
close to the ceiling or significant point cloud loss, can create gaps
that are challenging to identify. In such scenarios, the use of
jump linking becomes essential to improve the completeness of
wall boundaries and the jump step of pixels directly determines
whether the gaps can be correctly filled. Fig. 20 shows the core
region of rooms obtained with different jump steps. As shown
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in Fig. 20(a), if the jump step is too short, the gap may fail to be
detected. The doors between the two neighboring small rooms
are not closed, causing them to be closely connected. As shown
in Fig. 20(b), when the jump step is excessively long, the gap may
be incorrectly filled. The wall boundary line is extended into the
interior of the corridor, resulting in the long corridor being over
divided. To effectively adapt to the complex and variable indoor
environments, a strategy of gradually increasing jump step is
adopted. Starting from the smallest step and gradually increasing
it, each distance is tested until a qualified gap is identified or the
maximum step is reached.

VI. CONCLUSION

This article proposes an automated room partitioning method
for indoor point cloud, which consists of two main stages. In
the initial partitioning phase, narrow structures and doorways
are eliminated by morphological erosion and geometric feature
analysis to highlight the gaps between rooms. Subsequently, in
the refinement stage, continuous and clean room boundaries are
generated by connecting the anchor pixels in the wall occupancy
evidence map. Finally, the individualization of rooms is achieved
by propagating the segmentation results on the image to the
overall point cloud through inverse mapping. Six datasets with
varying structural layout, scale, and complexity are selected
to validate the performance of the proposed method. Through
qualitative, quantitative, and comparative analyses, the results
show that the proposed method accurately identifies almost all
rooms in each dataset while effectively reducing the negative
effects of noise, occlusion, and data loss. The average accuracy
of partitioned point cloud is close to 98%, and the longest
execution time is controlled within 20 seconds. Besides, it
overcomes the limitations of the Manhattan-world assumption
and eliminates the need for additional data. The deep-learning
methods directly process unordered point cloud and achieve
accurate semantic segmentation in cluttered environments. The
extracted indoor structural elements are helpful for room parti-
tioning. But there are some challenges with these methods, such
as training requirements for large amounts of data and limited
generalizability to different indoor layouts. Future work will
include the integration of an efficient and lightweight network.
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