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Unsupervised Global Difference Modeling for Image
Change Detection
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Abstract—In change detection, impact of nonintrinsic changes
such as those caused by illumination, season, and viewing angle
variances are common in practice but also a great challenge for
change detection methods. In this article, we propose a novel
unsupervised image change detection method by modeling global
difference information to deal with such nonintrinsic changes.
Comparing global features can mitigate the impact of them due
to the global consistency of them in the same scene at the same
time. But global modeling for change detection also faces the
challenges of feature learning with limited data and difficulty in
generating pixelwise changed regions. To overcome the challenges,
first, we use a backbone network to capture the global features of
bitemporal images. Then, an energy function is designed with a
masked difference between the two features and a margin-aware
constraint in order to align the global features and meanwhile
maintain detail information. To train the network with only two
images, we propose an adversarial learning method by introducing
a generalization network that consecutively generates two images
that can minimize the energy. Then, a new loss function is derived
to alternately train the feature learning network and generalization
network. Second, after learning with bitemporal images, it is also
important to generate the pixelwise changed regions. Then, we
design a difference mapping method that maps the changed regions
from global difference. Experiments on different types of data
by comparing with both supervised and unsupervised methods
demonstrate the effectiveness of the proposed method.

Index Terms—Image change detection, neural networks,
probabilistic model, unsupervised learning.
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I. INTRODUCTION

IMAGE change detection is to detect regions of change in
images of the same scene taken at different times [1], [2],

[3], [4], [5], [6], [7], [8], [9], [10], [11], [12]. It is significant in
many applications, including video surveillance [13], medical
diagnosis and treatment [14], and especially in remote sensing
monitoring and land use analysis [15], [16], [17]. Change detec-
tion methods can be divided into supervised or semisupervised
and unsupervised ones according to whether they need manually
annotated samples to learn. Supervised methods can adapt to
different complex scenarios with the assistance of annotated
training samples but require efforts to collect and annotate large
scale dataset. Unsupervised ones are widely applied due to
that they can detect the changes given only two multitemporal
images but the accuracy of them highly depends on the effective-
ness of preprocessing methods, such as geometric adjustments
(coregistration) [18] and radiometric adjustments (denoising,
atmospheric corrections, normalization, etc.) [19].

With the excellent performance of deep neural networks in
various applications [20], [21] and large-scale annotated data,
many deep learning based supervised change detection meth-
ods have been proposed [22], [23], [24], [25], [26]. We also
proposed an effective self-weighted spatial-temporal attention
neural network in [9] to fully explore the difference informa-
tion. With meticulously designed architectures and objective
functions, deep learning based changed detection methods have
achieved excellent performance. But they largely depend on the
large-scale annotated training datasets. For example, the widely
used LEVIR-CD [23] and WHU1 datasets were constructed for
building changes. CDD dataset [27] was constructed for robust-
ness to season changes of change detection networks. To reduce
annotation efforts, recently, many weakly-supervised change
detection methods have been proposed where only image-level
labels (changed or unchanged within the pairs of images) are
required [28], [29].

Different from other tasks such as the semantic segmentation
and scene classification, in changed detection, only the changed
and unchanged regions instead of various manually defined
classes should be distinguished. As a consequence, unsupervised
ones are still mainstream change detection methods. But due to
the feature diversity within the same class, they suffer larger
challenge in designing efficient methods than supervised ones.

1 [Online]. Available: https://study.rsgis.whu.edu.cn/pages/download/
building_dataset.html
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Traditional unsupervised change detection methods usually
generate the difference information via comparing pixel pairs
or manually designed local feature pairs, such as the classical
change vector analysis [30] and its derivatives [31], [32]. While
such comparison is not robust to many nonintrinsic changes
such as shadow variance caused by different illumination con-
ditions, seasonal changes, view angle variances, etc. To align
the widespread feature inconsistency such as seasonal changes
and heterogeneous distributions, we proposed a symmetric net-
work in [33] and improved it in [34] to extract features for
comparison and train it via dynamic pseudolabels. The pseu-
dolabels are trainable parameters and learned along with the
network parameters. We also integrated it in a probabilistic
model for change detection in [10]. Then, many methods have
been proposed based on different feature learning methods,
such as dictionary learning [35], autoencoder [36], slow feature
analysis [37], and graph learning [38], [39]. Except to compare
multitemporal feature pairs, structure or topological information
can also be compared. For example, nonlocal patch-based graph
is constructed as the structure in [39]. Topological structure of
multitemporal images is explored by linking class relationships
and change labels of pairwise superpixels in [40]. Recently,
deep neural networks have been widely applied in unsupervised
change detection due to their feature learning capability for
reducing nonintrinsic changes. However, training a deep net-
work is a great challenge with only unannotated bitemporal
images. UCDFormer proposed in [41] trains a Transformer via
regional patches with selected reliable pseudochanged and un-
changed pixels. In [42], iterative refining modules are proposed
to gradually refine pseudochange maps via cross-reconstruction
and bidirectional contrastive constraints. Moreover, progressive
learning is also used to train deep networks for unsupervised
change detection [43], [44].

The above methods can avoid many nonintrinsic changes
caused by sensor noise, illumination variation, nonuniform
attenuation, atmospheric absorption, and even heterogeneous
sensors. However, misalignment caused by view angle variance
is still a great challenge for unsupervised change detection
methods. As a consequence, in this article, we propose a new
unsupervised change detection framework by modeling global
features instead of comparing locally or regionally to gener-
ate pixelwise change information. Many variances are globally
consistent due to that the ground objects in the same image
are captured at the same time. Then, by aligning them many
globally consistent nonintrinsic changes can be mitigated such
as illumination, season, and even view-angle changes. However,
global comparison faces the problems of network training and
pixelwise difference generation. Then, the proposed method is
designed and the contributions are as follows.

1) We propose a new unsupervised change detection frame-
work by modeling global features to deal with global
changes.

2) We propose a global difference based energy function
with a margin-aware constraint. On the one hand, it is
used to align the global features. On the other hand, the
constraint is used to retain the margins and details of
changed regions. Moreover, to train the backbone network,

inspired from GAN, we propose an adversarial learning
method to learn the features that can be well aligned and
meanwhile capture the distribution of input bitemporal
images.

3) To generate the pixelwise changes, we propose a differ-
ence mapping method that maps the global difference
to local pixelwise difference. Experiments on images in
difference scenarios by comparing with both unsupervised
and supervised methods demonstrate the promising per-
formance of the proposed method.

The rest of this article is organized as follows. Change detec-
tion, related work, and motivation are introduced in Section II.
The detailed architecture, model, and learning process are
described and analyzed in Section III. Experiments on var-
ious types of images are conducted in Section IV. Finally,
Section V concludes this article.

II. PRELIMINARIES

To clearly tell the whole story, in this section, we first in-
troduce the change detection problem and motivation of the
proposed method. Then, the motivation of proposing adversarial
learning is discussed.

A. Change Detection and Motivation

In this article, we only consider change detection between
two images. For unsupervised change detection, given a pair of
preprocessed (the preprocessing mainly includes coregistration)
images I1 ∈ RW×H×N and I2 ∈ RW×H×N that are captured
at the same region while in different times, the aim of it is
to generate a binary change map Y ∈ BW×H that labels the
changed pixels. W , H , and N , respectively, denote the width,
height, and number of channels of images. R denotes the real
set and B denotes the binary set. To generate Y , unsupervised
methods usually first generate a difference image D ∈ RW×H

that indicates the pixelwise difference degree between I1 and I2
by comparing them. The aim of the proposed method is also to
generate a difference image.

To train deep networks and generate pixelwise difference,
existing unsupervised methods usually model multitemporal
images with local or regional features. In this article, we inno-
vatively propose to model global difference. Local or regional
learning and comparison is difficult to distinguish intrinsic and
nonintrinsic changes because they both may have large feature
differences. As shown in Fig. 1, changed and unchanged re-
gions show similar pairwise appearance. Moreover, the local
location changes caused by view angle variance also influence
the comparison of local features, as shown in Fig. 1, where
the unchanged regions in the same location have distinct ap-
pearance. As introduced above, many variances are globally
consistent due to that the ground objects in the same image
are captured at the same time. Analyzing and aligning global
features can mitigate many global changes in a larger feature
extraction scale, especially for images of large areas or captured
within 3-D scenes. For example, the change of season results in
color variance of vegetation, as shown in 1. Such a change will
significantly influence the detection of real intrinsic changes. But
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Fig. 1. Illustration of the motivation. Regional modeling is difficult to distin-
guish nonintrinsic and intrinsic changes. Moreover, it is not robust to view angle
variances for images captured within 3-D scenes. Global modeling analyzes
images in larger feature extraction scale which is robust to many nonintrinsic
changes.

it is usually pervasive over the acquired scene and its influence
can be mitigated via global aligning. Viewing angle change
results in local position variance between bitemporal images
which can also be mitigated via global feature modeling.

B. GAN and Adversarial Learning

To align the global features, we design a global difference
based energy function. But since all the parameters in networks
are trainable, directly minimizing the difference will result in
identical but useless features. So, except aligning the features,
it is also expected that the learned features can well capture the
distribution of input images. As a consequence, in this article,
we propose an adversarial learning method inspired from the
GAN.

GAN is composed of a generator G(·) and a classifier D(·).
The generator is used to generate a data x′ from a noise z: x′ =
G(z). The classifier is used to discriminate real data x from
generated data x′. The two networks are trained via a min-max
objective function as follows:

min
θG

max
θD

Ex log(D(x)) + Ez log(1−D(G(z))) (1)

whereEx andEz , respectively, denote the expectation of training
data and noise. θD and θG, respectively, denote the network pa-
rameters of classifier and generator. By maximizing the negative
cross entropy loss, the classifier is trained to better classify x and
x′. Then, by minimizing the loss of x′, the generator is expected
to generate a data that is more close to x. Then, by alternately
training, the generator is able to capture the distribution of the
training data and generate almost real data.

In this article, we also consider to capture the distribution of
input data in order to learn useful global features. So we intro-
duce a generation network and train the networks in adversarial
manner.

III. GLOBAL DIFFERENCE MODELING AND CHANGE

DETECTION

The proposed method is based on deep neural networks, which
can extract global features for bitemporal images of a large
scene. For unsupervised change detection, it is necessary to train
the networks with only bitemporal images to capture the useful
global features for comparison. We propose an energy driven
adversarial learning method to train the networks. Following we

Fig. 2. Architecture of the proposed unsupervised change detection network.
A backbone network is used to extract the global features of the bitemporal
images, respectively. To train the backbone network for useful global features,
we introduce the generation network and design an energy driven adversarial
learning method to align the global features and meanwhile capture the distri-
bution of bitemporal images.

detail the architectures, energy function, adversarial learning,
and change detection using the trained networks, respectively.

A. Overall Structure of the Method

The architecture of the proposed method is shown in Fig. 2.
The main backbone is based on a deep neural network with input
of image and output of a global feature vector. Many existing
network architectures can be used such as various convolutional
neural networks (CNNs) or Transformers. As shown in Fig. 2,
given an image It (for change detection t ∈ {1, 2}), with the
feature extracting network, a feature vector vt is generated via
the multilayer architecture: vt = fθ(It) where θ is the network
parameter set. For change detection, we aim to compare the two
images globally and then v1 and v2 are compared to compute
the difference of global features.

To train the backbone, we first define an energy function based
on the difference of the two features in order to align the global
features for global consistency. But the details are severely lost
in the global feature, which significantly influences the margin
of changed regions in pixelwise change map. As a consequence,
we define a margin-aware constraint in the energy function to
maintain the details of changed regions. However, since the
backbone network is trainable, simply minimizing the energy
function results in completely consistent while meaningless fea-
tures (i.e., v1 ≡ v2). Then, we introduce a generation network,
as shown in Fig. 2, and propose a adversarial learning method
to meanwhile capture the distribution of bitemporal images.
After optimization, the network is able to extract global features
as well as represent global difference between the two input
images. However, the aim of change detection is to generate
pixelwise difference that indicates the difference of exact regions
within the input images. Then, we propose a difference mapping
method to generate the pixelwise difference via the trained
network. To better describe the modeling, learning, and change
detection processes, the notations used below are summarized
in Table I according to the categories of them. Among them, θ
and additionally introduced u are the parameters that should be
learned. Then, we introduce the modeling process.

B. Energy Function

To mitigate nonintrinsic changes, the primal objective is to
align the global features of bitemporal images. However, there
are changed regions that should be avoided. Therefore, we
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TABLE I
SUMMARY OF NOTATIONS

introduce a new parameter u and define the alignment loss of
the two images as follows:

L(I1, I2, θ,u) =
∑
i

ui

(
vi
1 log

vi
1

vi
2

+ vi
2 log

vi
2

vi
1

)
(2)

where i is the component index of the feature vectors. u is a
pseudoprobability vector that indicates the unchanged proba-
bility of each component that is used to mask corresponding
changed components. It is a trainable parameter and will be
trained along with the network parameter set θ. In practice, we
use the sigmoid activation function in the output layer of the
backbone. Then, each component of v1 and v2 can be taken
as the probability that the input images contain certain objects,
regions, or features. So we use the symmetric KL divergence
to represent the feature alignment loss. Note that the energy
function is not directly minimized but in an adversarial manner.
u can be tuned to mask changed components during the learning
process. The feasibility of the energy function will be analyzed
later.

However, the global features extracted from the images lose
many details such as margins and textures. So, simply aligning
the global features is difficult to maintain the accurate margins of
changed regions in the difference image. Therefore, we propose
a margin-aware constraint given an image I as follows:

C(I, θ)

=
∑

(i,j,k)

∑
(i′,j′)∈Ω(i,j)

ω(i,j)(i
′, j ′)[δI(i′, j ′, k)− δI(i, j, k)]

2

(3)

where (i, j, k) denotes the pixel of (i, j) in thekth channel.Ω(i,j)

denotes the square neighborhood of the pixel (i, j). δI denotes
the differential coefficient of the output feature vector v with
respect to input image I as follows:

δI =
∂v

∂I
=

∂fθ(I)

∂I
. (4)

Similar to updating the network parameters, δI can be computed
via back-propagation where the gradient of each component in
output layer is 1. ω denotes the weight matrix within neighbor-
hood of each pixel, which is computed by the difference between

Fig. 3. Difference images obtained from I1 and I2 in Fig. 2 by the methods
of local comparison [33] and global comparisons with and without the margin-
aware constraint.

neighborhood pixels and center pixel as follows:

ω(i,j)(i
′, j ′) = exp

[
−‖I(i, j)− I(i′, j ′)‖22

2σ2
√

(i− i′)2 + (j − j ′)2

]
(5)

where σ denotes the standard deviation of the pixels within the
neighborhood. ‖ · ‖22 is the square error between two pixels. The
weight matrix defines the similarity between pixels within local
regions. Larger weight value denotes that the corresponding
pixel may belong to the same region with the center pixel. For
the network, if two pixels belong to the same region, then the
differential of the corresponding output code with respect to
the two pixels should also be similar. Otherwise the differential
between two pixels is different. Thus, the feature vector is able
to well represent the margin between regions within the input
images. If two feature vectors are different, the difference is
respected to be generated by the difference of regions in input
images instead of independent pixels.

Finally, the energy function is obtained by combining the two
terms as follows:

E(I1, I2, θ,u) = L(I1, I2, θ,u) + λ[C(I1, θ) + C(I2, θ)]
(6)

where λ is a user defined parameter that controls the weight
of the two terms. To intuitively illustrate the effect of global
comparison and the margin-aware constraint, difference images
generated from I1 and I2 in Figs. 1 and 2 with and without
the constraint are compared in Fig. 3. Local comparison re-
sults in many false alarms due to the impact of viewing angle
variance, which can be mitigated via the global comparison.
Without the constraint, the margin between different regions are
ambiguous. As analyzed above, many details are lost and thus
the pixelwise difference reflected from the global difference
cannot well maintain the margin between regions. With the
constraint, the result shows clear margins and the details of the
objects are well maintained. The pixels within changed regions
are not independent and they are highlighted evenly. Note that
the difference images are generated via trained network and the
change detection process will be described later.

The energy function only defines the global difference and
margin-aware constraint. With the trainable backbone network,
only optimizing the energy function will result in identical global
features. The global features should also can well represent the
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input images. As a consequence, we design an energy driven ad-
versarial learning method. In the following section, we describe
the adversarial learning process.

C. Adversarial Learning

Directly minimizing the above energy function
E(I1, I2, θ,u) may result in meaningless network parameters,
i.e., θ = 0 and u = 0. In such a case, the minimal value 0 of the
energy can be definitely achieved. So except to learning aligned
features, we also expect the features can well represent the input
images, i.e., capture the distribution. Inspired from the GAN
that was proposed with the aim of capturing the distribution of
training data. To implement adversarial learning, an additional
generation network is introduced to generate two images I ′1
and I ′2 (similar to fake image in GAN) from a random noise:
[I ′1, I

′
2] = fφ(ξ) with φ as the parameter set of the generation

network. Then, we define a new min-max loss function based
on the energy as follows:

min
θ,u

max
φ

[E(I1, I2, θ,u)− EξE(fφ(ξ), θ,u)]

s.t. 1 ≥ ui ≥ 0, i = 1, 2, . . . (7)

The backbone and generation network are trained alternately
by optimizing the loss function. The aim of the generator is to
generate I ′1 and I ′2 that can minimize the energy function, i.e., the
second term of the loss function in (7). While the backbone is
used to minimize the energy of input images I1 and I2 while
prevent other possible data to minimize the energy. So that
the difference features learned are exclusive, i.e., they can well
represent the input images.

To update the backbone network, the gradient of the learnable
parameters are derived as follows:

Δ{θ,u} =
∂[−E(I1, I2, θ,u)]

∂θ,u
− ∂[−E(I ′1, I

′
2, θ,u)]

∂θ,u
. (8)

There are two terms in the energy function, we derive the
gradient of them respectively. The gradient of alignment loss is
easy to be derived via back-propagation algorithm as follows:

∂L(I1, I2, θ,u)

∂θ,u
=

∂L(I1, I2, θ,u)

∂v1

∂v1

∂θ,u

+
∂L(I1, I2, θ,u)

∂v2

∂v2

∂θ,u
. (9)

For the margin-aware constraint, the gradient can be derived
similarly as follows:

∂C(I, θ)

∂θ
=

∂C(I, θ)

∂δI

∂δI
∂θ

=
∑

(i,j,k)

∑
(i′,j′)∈Ω(i,j)

ω(i,j)(i
′, j ′)[δI(i, j, k)

− δI(i
′, j ′, k)]

∂δI
∂θ

− ηδI(i, j, k)
∂δI
∂θ

(10)

Fig. 4. Illustration of energies and intermediate results during the learning
process.

where the difficulty lies in deriving the second derivative as
follows:

∂δI
∂θ

=
∂2v

∂I∂θ
=

∂2v

∂θ∂I
=

∑
k

∂v

∂lk

∂2lk
∂θ∂I

(11)

where lk denotes the kth layer of the network. This means
that to compute the gradient, K back-propagation processes are
necessary for a network withK layers. With the above gradients,
the backbone is then updated according to (8). For the generation
network, only the second term in (7) should be considered and
the gradient can also be derived according to back-propagation
as follows:

Δφ =
∂E(fφ(ξ), θ,u)

∂fφ(ξ)

∂fφ(ξ)

∂φ
. (12)

In the following section, we analyze why the adversarial
learning method can optimize the energy and meanwhile capture
the changed regions.

D. Feasibility Analysis

To better illustrate the optimization process, we plot the value
of the energies of input data E(I1, I2, θ,u) and generated data
E(I ′1, I

′
2, θ,u) during the learning process in Fig. 4. Both ener-

gies decrease with the increase of iterations. The two energies
become closer during the learning process, which demonstrates
the effect of the learning process. The intermediate difference
images generated from I1 and I2 in Fig. 2 with different itera-
tions are also exhibited in corresponding position. The difference
images at early stages highlight many unchanged regions. After
40 iterations, the difference images tend to be stable and the
background is well restrained.

In the energy function, the pseudoprobability u plays the crit-
ical rule that avoids the backbone network neglecting changed
regions. With the help of min-max adversarial learning, u can
be trained to mask components of changed regions. If u masks
components that cannot represent the changed regions, then
the KL divergence between unmasked components cannot be
minimized, which is not the optimal case of (7). While ifumasks
most unchanged components or changed regions are neglected
by the backbone network, the energy of I ′1 and I ′2 generated by
the generation network is not much higher than that of I1 and I2
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(less unmasked components result in equivalent energy value),
which is also not the optimal case of (7). So with the min-max
loss function,u can be trained to reduce the influence of changed
regions for feature alignment.

However, the aim of change detection is to generate the
pixelwise difference information. As a consequence, with the
trained backbone network that captures the global difference and
maintains the margin detail, a change region mapping method
is designed to generate the pixelwise difference.

E. Detecting Changed Regions

After optimization, the feature vectors v1 and v2 have been
aligned and is able to well represent the global features of input
images. As analyzed above, u is able to mask the changed
components in the global features. Then, without u, the dif-
ference between global features can well represent the changes
as follows:

LC(I1, I2) =
∑
i

(
vi
1 log

vi
1

vi
2

+ vi
2 log

vi
2

vi
1

)
. (13)

So we map the difference through the backbone network via
gradients as follows:

M1 =
∂LC(I1, I2)

∂I1
, M2 =

∂LC(I1, I2)

∂I2
. (14)

Finally, we combine the two gradient maps and generate the
difference image via moralization as follows:

D=
M1 +M2−max{M1(i, j) +M2(i, j)}

max{M1(i, j) +M2(i, j)} −min{M1(i, j) +M2(i, j)} .
(15)

Then, a simple image segmentation method can be used to
classify the pixels into changed and unchanged ones. Here, we
use an image clustering algorithm called FLICM [45] to generate
the final change map. As derived in (14), the difference image is
generated via the back-propagated error from the global feature
difference. Then the effect of the margin-aware constraint is
explicit. Without the constraint, the back-propagated gradient
of pixels within the same region cannot be kept coincident,
which results in the ambiguous margins in Fig. 3. With the
constraint, the details of changed region can be well maintained.
The whole change detection process including learning and
extracting changes is summarized in Algorithm 1, given two
images I1 and I2, is summarized in Algorithm 1.

Even though derivatives seem complex, the learning process is
concise, which is composed of two main steps including learning
and detecting changes. In learning, there are two main steps
in each iteration. The whole process seems time-consuming,
but since the training only needs the two input multitemporal
images, the model converges rapidly. Moreover, the parallel
computation on GPU significantly increases the computational
efficiency.

IV. EXPERIMENTAL STUDY

In this section, we verify effectiveness of the proposed change
detection framework via different types of images. All of them

Algorithm 1: Workflow of the Proposed Change Detection
Method.

Input:
Input I1 and I2 (only two images).

Initialization:
Randomly initialize θ and u.

Learning:
while The energy E(I1, I2, θ,u) is not stable and the
number of iterations is under maximum value do
Updating generation network:
Generate noise ξ and compute the energy.
Compute the gradients Δφ via (12) and update φ.
Generate images I ′1 and I ′2.
Updating backbone network:
Compute the energies in (7).
Compute the gradients Δ{θ,u} as in (8) and update.

end while
Detecting Changes:

Compute global difference via (13).
Map global difference into input images via (14).
Compute difference image D via (15)

Output:
Output the difference image D and segment it by FLICM.

Fig. 5. Datasets generated from UAV.

are misaligned. We first exhibit the datasets and corresponding
experimental settings. Then, the results are compared with both
unsupervised and supervised change detection methods.

A. Datasets and Experimental Settings

We use eight datasets with each dataset contains two multi-
temporal images and a ground truth to test the proposed method.
Note that the ground truth is only used for result evaluation.
The learning and change detection processes use only the two
multitemporal images for each dataset. To fully evaluate the
proposed method, images captured from different acquisition
platforms and scenarios are used.

The first two datasets show the scene of urban street cap-
tured by unmanned aerial vehicle (UAV) which are exhibited
in Fig.5 (named as Datasets U1 and U2, respectively). The size
of them is 512× 512 pixels. Since UAV moves persistently,
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Fig. 6. Datasets generated from the Gaofen Challenge.

even though it captures the same scene, the view position and
angle are different, which results in the difficulty of accurate
coregistration. Since the images are captured within a 3-D scene,
many details such as lines, edges, and textures are not strictly
aligned regardless of the seeming coregistration [46], as shown
in Fig. 1, where the regions at the same location show distinct
appearance.

The following three datasets are from the 2021 Gaofen Chal-
lenge on Automated High-Resolution Earth Observation Image
Interpretation,2 which are exhibited in Fig. 6 (named as Datasets
G1, G2, and G3, respectively). The images are Gaofen-2 or
Jilin-1 multitemporal optical images with resolution better than
1 m. The size of them is 512× 512 pixels. Due to the illumina-
tion and seasonal variances, there are color deviations between
bitemporal images.

The last three datasets show the changes of land use within Xi-
dian University. They are exhibited in Fig. 7 (named as Datasets
X1, X2, and X3, respectively). The size of them is 1024× 1024
pixels. We capture the images from the Google Map according
to the coordinate of latitude and longitude. So the images are
strictly accordant from the geographic position. But since the
images are captured from different times and view angles, the
illumination and season are different. Moreover, many buildings
are with different morphology, as shown in Fig. 8. The three
datasets show large scenes from the Google Map without any
prior information in order to demonstrate the learning capability
of the proposed method in capturing differences for open large
scale unsupervised scenarios.

To demonstrate the adaptation of the proposed method, we
compare with both unsupervised and supervised change de-
tection methods. Unsupervised methods are able to generate
the results with only two multitemporal images and the com-
pared methods include deep slow feature analysis [37], stacked

2 [Online]. Available: http://sw.chreos.org/challenge

Fig. 7. Datasets generated from Google Map on the area of Xidian University.

Fig. 8. Illustration of different view angles on the Xidian University datasets.

denoising autoencoder (SDAE) based method [47], the deep
convolutional coupling network (DCCN) [33], our previous
work BCNN [10] and TVRBN [34], and recently proposed
unsupervised methods INLPG [39] and LPEM [40]. Moreover,
since the compared methods generate difference images, we use
the same image segmentation method FLICM [45] to generate
the final result. In practice, since the prior information about the
scenarios are not always available, for fair comparison, we use
a public dataset, i.e., the widely used LEVIR-CD [23] dataset
to train supervised methods including BiT [26], P2V [48], and
SNUNet [49]. Then, the trained models are used to implement
the change detection on the above test datasets.

We evaluate the difference images via two criteria, including
areas under precision-recall (PR) curve [50] and receiver oper-
ating characteristic (ROC) curve [51], are called AP and AUR,
respectively. These criteria are widely used in evaluating the
separability of data. The curves are plotted based on a set of
results with consecutive thresholds (0,1,2,...,255). Those results
are compared with the ground truth to generate the values of
true positive (TP), false positive (FP), true negative (TN), and
false negative (FN). The precision, true positive rate (TPR, a.k.a.
recall rate), and false positive rate (FPR) are then computed as
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Fig. 9. Difference images or final results generated via different methods on UAV datasets. Final results of supervised methods are surrounded by red dashed
box.

follows:

Precision =
TP

TP + FP
.

TPR =
TP

TP + FN
.

FPR =
FP

TN + FP
. (16)

Finally the PR curve is plotted by using the precision versus
the recall rate and the ROC curve is plotted by using the TPR
versus the FPR. Those criteria are used to evaluate the quality
of the difference images. If a difference image is closer to the
ground truth than others, its criteria are better. Then, accuracy
(Acc.) and Kappa coefficient are use to evaluate the final result
generated by FLICM. The two criteria are widely used in change
detection [52].

To implement the proposed method, we use a CNN as the
backbone network and set 16 layers for the backbone network
including 1 input layer, 7 convolutional layers with each one
followed by a 2× 2 pooling layer, and 1 fully connected layer
as the output layer. The number of feature maps is assigned as 3
(input layer), 16× 2 (one convolutional layer and one pooling
layer), 32× 2, 64× 4, 128× 6, and 512 (output feature vector).
For the generation network, we set 8 convolutional layers and
7 upsampling layers alternately. We set λ = 1, Ω(i,j) = 5× 5,
and the learning rate as 0.1. We use softplus [53] as the activation
function for hidden layers, which is the continuous version of
the widely used ReLU in order to compute the second-order
derivatives conveniently and meanwhile mitigate the vanished
gradients. We use the sigmoid function as the activation function
for the output layer in order to encode the images.

B. Experiments on UAV Datasets

The difference images generated by unsupervised methods on
the two UAV datasets are exhibited in Fig. 9. Supervised methods
directly output the final results, which are also illustrated in
Fig. 9. From the datasets, it seems that they are coregistered.
But since UAV moves frequently, the view angles are different.
The different view angles can be reflected from the results of
compared methods where the position bias of the same object
results in the highlight of unexpected objects such as the tex-
tured wall. On the dataset U1, the car is prominent against the
background. Therefore, the compared methods can highlight it.
However, most of the existing methods generate the pixelwise

difference via local or regional comparison. As analyzed above,
the view angle variance results in the distinct features at the
same position. As a consequence, compared methods cannot
well restrain the unchanged region, which generate many false
detections. While for the proposed method, global comparison
successfully avoids the influence of view angle variance and
generate clear unchanged region. For supervised methods, if
there are few changed cars in the training dataset, the model
cannot be trained to well detect the cars. As a consequence, they
wrongly highlight the change objects. On the dataset U2, there
are two changed cars and one unchanged car. SDAE highlights
the unchanged car while ignores the changed cars. SFA can high-
light the changed cars and restrain the unchanged car. But the
building is also highlighted. DCCN highlights all the three cars.
With the adversarial learning, BCNN highlights the changed
objects but as well as some margins and textures due to the
comparison of local features. Different from them, the proposed
change detection compares the images according to the global
features. Therefore, the changed cars can be highlighted and
unchanged objects can be restrained. However, without any prior
information, the car windows are recognized as independent
objects and unchanged ones. For supervised methods, only one
car can be detected.

The values of the evaluation criteria are listed in Table II.
The proposed method significantly outperforms the compared
methods. Unsupervised methods are not able to restrain the back-
ground objects while supervised methods heavily depend on
training samples. Even though the proposed method can detect
the changed objects, the completeness cannot be guaranteed.

C. Experiments on Gaofen Challenge Datasets

The difference images or final results generated by different
methods on the three Gaofen Challenge datasets are exhibited
in Fig. 10. There are illumination difference and slight mis-
alignment in the three datasets. Therefore, the difference images
of the existing methods show many false alarms. Even though
the changed regions can be highlighted, the background is not
well restrained. The proposed method is able to recognize the
changed regions, but part of changed regions are also missed
and the complete changed region cannot be accurately detected.
Especially in the G3 dataset where only a building is detected
and actually the whole region around the building is changed.
But the proposed method is able to reduce many false alarms
caused by the misalignment, which demonstrate the superiority
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Fig. 10. Difference images or final results generated via different methods on Gaofen Challenge datasets. Final results of supervised methods are surrounded by
red dashed box.

TABLE II
VALUES OF EVALUATION CRITERIA ON THE UAV DATASETS.

of comparing global features. Supervised methods highly de-
pend on the training data. Since the LEVIR-CD dataset mainly
focuses on the changes of buildings, the changes of vegetation
are missed.

The values of the evaluation criteria are listed in Table III.
From those evaluation criteria, the proposed method is superior
over existing ones. But on the datasets G2 and G3, the proposed
method cannot outperform BCNN in terms of AUR. For the
proposed method, even though part of the changed regions can
be highlighted, part of them is restrained. Therefore, when FPR
is high, TPR becomes lower. Even though supervised methods
may miss some changed regions, the detected changed regions
are more complete, which results in larger Acc on the G3
dataset. However, in terms of other criteria, the proposed method
significantly outperforms compared methods.

D. Experiments on Xidian University Datasets

Finally, we test our method in an real scenario. Suppose, we
want to research the changes of Xidian University while there

TABLE III
VALUES OF EVALUATION CRITERIA ON THE GAOFEN CHALLENGE DATASETS.

are no satellite images. We can acquire the images from Google
Map, which almost covers the surface of Earth. Both latest
and historical data are provided. However, with different view
angles, the tall objects show different appearance and cannot be
accurately coregistered, as shown in Fig. 8. This phenomenon
brings great challenges for traditional change detection methods,
especially unsupervised ones.

The difference images or final results generated by differ-
ent methods are shown in Fig. 11. The three datasets show
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Fig. 11. Difference images or final results generated via different methods on Xidian University datasets. Final results of supervised methods are surrounded by
red dashed box.

the changes of buildings. On the dataset X1, there are many
details that cannot be well coregistered. The tall building is spe-
cially obvious. The compared unsupervised methods highlight
unchanged objects. For example, SDAE highlights the white
rooftops. The proposed method can well restrain the background
objects. But changed object is not completely highlighted. On
the dataset X2, the changed object is a white building, which
shows distinct appearance with the background. As a conse-
quence, SFA and DCCN can highlight it with well restrained
background. However, there is another white building that in-
fluences the detection result. The proposed method is able to
avoid the influence of unchanged buildings. Dataset X3 shows
a changed region with many rising buildings. Many unchanged
buildings are not exactly coregistered. Moreover, the different
seasons also result in the variant appearance of background.
As a consequence, even though some compared methods can
highlight the changed region, many unchanged buildings are
also detected as changed ones. In summary, as analyzed in
Section II, compared methods fail to accurately distinguish
intrinsic and nonintrinsic changes, which results in many false
alarms in unchanged regions. From the results, the proposed
method achieves clearer unchanged regions, which demonstrates
its capability in restraining nonintrinsic changes. But due to the
simple margin-aware constraint, which is based on the color
information, many changed regions are missed. With complex
scenarios with many types of ground objects, supervised meth-
ods fail to correctly detect the changed regions with limited
training data.

The values of the evaluation criteria are listed in Table IV.
Obviously, the proposed method significantly outperforms com-
pared ones. Since the images are directly acquired from Google
Map, there are many obstacles for unsupervised methods to deal
with, such as the illumination, season, and viewing angle vari-
ance. Moreover, the scene variance between test image and train-
ing images in supervised methods also results in invalidation.

E. Experiment on λ

In this method, the hyperparameter λ is important to
control the importance of the two terms in the energy
function. Therefore, in this experiment, we set the λ as

TABLE IV
VALUES OF EVALUATION CRITERIA ON THE XIDIAN UNIVERSITY DATASETS.

{0.02, 0.05, 0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 50, 100, 200} and im-
plement the proposed method to generate the difference images,
respectively. The AP and AUR values of those difference images
on the eight datasets are shown in Fig. 12. Due to the consec-
utive pooling layers, the output feature is robust to the local
positional deviation. Slight positional deviation of regions will
not influence the difference of features. Then, the alignment
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Fig. 12. AUR and AP values with different λ on the eight datasets.

TABLE V
TIME COST (S) OF EACH DATASET

loss L(I1, I2, θ,u) and constraint C(I1, θ) + C(I2, θ) is not
conflicted with each other. As a consequence, from the line
plots, the proposed method is not very sensitive to the value
of λ on some datasets. While for the U1 and U2 datasets, much
better results are achieved by the λ values around 1. Different
from remote sensing scenes where the misalignment is local
(only buildings), the misalignment of UAV scenes is more severe
because the camera captures the images around the 3-D objects
instead of far from them. Therefore, almost all the objects are not
well aligned. As a consequence, the choice of λ influences the
result a lot on the UAV datasets. For Gaofen Challenge datasets,
the positional deviation is simple to deal with and the view angle
seems almost the same. Therefore, the method is not sensitive
to λ on those datasets.

F. Running Time

As we analyzed in Section III, even though the training and
change detection processes seem overstaffed, both of them focus
on one pair of images. With the assistance of GPU parallel
computation, the computational time can be controlled within a
reasonable range. Therefore, here we list the running time of the
proposed method on each dataset in Table V. The computing
device is equipped with Intel i7-8700 K CPU (3.7 GHz) and
NVIDA RTX3090 GPU. From the table, the computational
cost for all the datasets can be kept within 5 min, which
is acceptable for offline change detection. For small datasets
(512× 512 pixels), the whole change detection process can
be kept within 2 min. For large datasets, the computational
time increases significantly. But the computational time does
not increase exponentially. Since real time is not required in
change detection, the proposed method is feasible in practical
applications with parallel computation devices.

V. CONCLUSION

We propose a new unsupervised change detection paradigm,
which compares images via globally encoded features. Thus, it
can mitigate the influence of many global changes such as the

illumination, season, and viewing angles. To generate changed
regions from global comparison, we use a deep neural network to
extract the features and propose an adversarial learning method
to train the network. First, to align the global features, we define
a masked loss, which measures the bias between features of
two images. Meanwhile, to maintain the details for pixelwise
difference, we define a margin-aware constraint that restrains
the differential of code with respect to input image according
to the margin of regions. Second, to learn useful features with
the two input images and meanwhile align the global features,
we introduce a generation network and train the two networks
adversatively. After training, the change detection is achieved by
mapping the global difference to pixelwise difference via gradi-
ent. From the experiments, the proposed methods significantly
reduces the nonintrinsic changes and achieves clear unchanged
regions in the difference image, which is difficult for compared
methods.

However, due to that the margin-aware constraint is simply
based on gray value and spatial information of input images,
the changed region cannot be completely detected. Moreover,
the second derivative also encumbers the learning efficiency.
Therefore, in the future work, we try to design an object-aware
network that encodes the images according to complete objects,
such as a car or a building instead of simple homogeneous
regions. Moreover, we will consider fusing multiscale feature
difference between feature maps of different layers to maintain
more changed regions and directly constraint a mask to avoid
the second derivative for efficiency.
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