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ABSTRACT Obstacle intrusion detection in railway systems is a critical technology for ensuring the opera-
tional safety of trains. However, existing algorithms face challenges related to insufficient multiscale object
detection, highmodel redundancy, and poor real-time performance. Building upon the RT-DETR framework,
this study proposes aMultiscale Separable Deformable (MSD)module that integrates depthwise convolution
with deformable convolution to enhance feature extraction capabilities while reducing computational load.
Additionally, a Deformable Agent Attention (DAA) mechanism is designed to optimize attention weights
through sparse queries, effectively improving detection accuracy for small targets and enhancing inference
speed in complex scenarios. Experimental results demonstrate that the improved model achieves 87.9%
mean average precision (mAP) on a railway dataset, with a detection speed of 90 frames per second (FPS).
The proposed model achieves a +1.7% mAP improvement and 13.9% faster inference speed compared to
RT-DETR, while simultaneously reducing model parameters by 24.6%. As a result, the proposed model is
highly effective for multiple obstacle intrusion detection in complex real-world scenarios.

INDEX TERMS Convolutional neural network (CNN), deep learning, obstacle intrusion detection, railway
traffic, transformer.

I. INTRODUCTION
High-speed railways and subways are widely constructed
globally, which serve as the primary modes of transportation
for both passengers and freight due to their cost-effectiveness,
speed, and safety. However, rail accidents remain a significant
concern, mostly due to obstacles intruding onto the tracks.
According to the International Union of Railways (UIC), 90%
of railway accidents are attributed to third-party intrusions
into rail lines [1].

Accidents caused by obstacle intrusions often occur,
involving people, animals, trees, kites, and other objects.
These accidents have resulted in significant losses, includ-
ing service disruptions, delays, damage to trains and

The associate editor coordinating the review of this manuscript and

approving it for publication was Wei Xu .

infrastructure, increased maintenance costs, and potential
safety risks to passengers and staff. These risks are partic-
ularly pronounced in open railway environments, such as
level crossings and suburban sections [2], [3], as illustrated
in Figure 1. When trains encounter hazardous obstacles
during operation, they must execute emergency braking to
avoid collisions. However, due to their high speeds, early
identification of obstacles and effective protective measures
are imperative. These incidents also lead to reputational dam-
age and financial impacts due to compensation claims and
operational inefficiencies. Considering the limited reaction
time and visual field of train drivers, avoiding collision with
obstacles based solely on manual observation is challenging.
These intrusions pose serious risks to train safety and require
urgent attention. Reliance on manual observation by train
drivers is susceptible to environmental and human factors,
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resulting in delayed response times. Consequently, achieving
high-precision detection of multiscale intrusive obstacles
under real-time conditions to enable timely detection and
warning remains a significant challenge. Recent develop-
ments in artificial intelligence and autonomous driving tech-
nologies have driven remarkable progress in machine vision
for real-time railway obstacle detection. Deep learning and
image processing techniques can rapidly identify and analyze
potential hazards in rail transit systems, thereby enhancing
operational safety. With the development of railway obstacle
intrusion detection system, the system typically consists of
multiple interconnected layers, each playing a critical role in
ensuring the safe operation of trains. At the hardware layer,
visual sensors and LiDAR devices capture real-time data
about the railway environment. The algorithm layer, which
forms the core focus of our research, processes this sensor
data using advanced object detection and tracking models
to identify potential hazards along the tracks. Above this
sits the decision layer, responsible for risk assessment and
generating appropriate responses, while the execution layer
interfaces directly with train control systems to implement
necessary safety measures. Our work specifically targets
the algorithm layer, recognizing its pivotal role in enabling
real-time, accurate detection of obstacle on railway tracks.
By leveraging onboard camera systems, we aim to enhance
the system’s ability to identify small and obstructed objects
that pose significant safety risks. This research ultimately
seeks to improve railway safety by strengthening the algo-
rithmic foundation for obstacle detection, thereby reducing
the likelihood of accidents caused by obstacle intrusion.

FIGURE 1. Potential obstacles in railway environments (Red boxes
indicate annotated obstacle regions).

The traditional manual inspection methods, characterized
by low efficiency, high cost, and subjectivity, have gradually
been replaced. sensors, along with image processing tech-
niques and AI-based technology, have been used to develop
obstacle intrusion detection systems (OIDS) for railway
applications [4], [5], [6]. High-resolution visual sensors, such
as cameras, LiDAR, and millimeter-wave radar, are typi-
cally installed on locomotives, level crossings, and stations.
These sensors collaborate with obstacle intrusion detection
(OID) algorithms to detect obstacles that are currently or
potentially entering the rail area, thereby issuing a danger
warning to operating trains. The algorithms used in OID can
be categorized into conventional image processing techniques

and AI-based deep learning (DL) methods. Traditional image
processing relies on local operations to extract shallow, low-
level features from rail and obstacle images. In contrast, deep
learning (DL)-based methods, such as convolutional neural
networks (CNNs), can automatically extract features with
high abstraction, accuracy, and robustness, whichmakes them
widely utilized in OID. Given the constraints of computa-
tional resources and the high-performance demands of rail-
way applications, current research has focused on designing
efficient and accurate obstacle detection and segmentation
frameworks that efficiently abstract and quantify image con-
tent for improved identification.

Existing methods for railway obstacle detection [7], [8]
still face limitations in comprehensively identifying both
ground and aerial obstacles along rail lines, particularly
small-scale objects. Furthermore, airborne obstacle (e.g.,
balloons, plastic bags) often evade timely detection despite
drivers’ continuous vigilance. These floating objects can
obstruct the driver’s vision and potentially damage power
transmission lines. Thus, real-time identification of such
objects is crucial for accident prevention. Railway OID algo-
rithms must prioritize real-time performance, as early obsta-
cle detection enables prompt driver intervention to mitigate
accidents. While ground-based railway inspection systems
suffer from limited coverage, onboard detection systems
can dynamically monitor the train’s operational environ-
ment, effectively compensating for the shortcomings of fixed
monitoring infrastructure. Therefore, alongside improving
detection accuracy, model complexity must be optimized to
facilitate deployment on embedded devices.

In summary, railway intrusion detection algorithms
must simultaneously satisfy real-time requirements, achieve
accurate multiscale object detection in complex environ-
ments, and maintain balanced model complexity. Current
algorithms have computational redundancy and struggle to
deliver optimal performance in real-world deployments under
increasingly intricate railway scenarios.

To address these challenges, this paper proposes an
improved real-time high-precision detection model based on
RT-DETR [9], specifically designed for OID in complex
railway environments. This model enhances multiscale object
detection performance while optimizing real-time efficiency,
thereby reducing the frequency of train emergency braking
and reducing accident risks. Compared with existing models,
its compact architecture is specially tailored for deployment
on embedded devices in train scenarios. Moreover, the pro-
posed modules exhibit cross-domain applicability, as these
components can be adapted for use in unmanned aerial vehi-
cle (UAV) inspection and autonomous driving scenarios, pro-
viding reusable building blocks. The contributions of this
work mainly lie in two aspects:

1. TheMultiscale Separable Deformable (MSD)Module is
proposed by integrating depthwise convolution (DWC) with
deformable convolution network v4 (DCNv4). This module
significantly reduces computational costs while expanding
the receptive field and improving multiscale object detection
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capabilities, thus enhancing both real-time performance on
embedded devices and detection accuracy in railway environ-
ments.

2. The Deformable Agent Attention (DAA) Mechanism is
proposed by employing deformable sampling points to focus
on critical regions, thus extracting more essential features.
By utilizing a sparse set of agents as queries, it reduces redun-
dancy in attention weight computation, thus significantly
accelerating inference speed.

II. RELATED WORK
Machine learning-based railway obstacle detection methods
primarily fall into two categories: background modeling-
based approaches and classifier-based approaches. The
former is suitable for detecting moving obstacles intrusion
but exhibits limited adaptability in complex scenarios,
while the latter can process single-frame images yet suf-
fers from restricted accuracy in multiscale and small
object detection. In recent years, the rapid advancement of
deep learning in image processing has demonstrated the
significant advantages of Convolutional Neural Network
(CNN) and Transformer-based models in railway obsta-
cle detection. These models automatically extract features
and perform classification, substantially enhancing fea-
ture extraction efficiency and robustness, making them
particularly suitable for obstacle intrusion detection in
railway scenarios. This technological evolution has crys-
tallized into two distinct architectural frameworks: the
accuracy-oriented two-stage detectors and efficiency-focused
single-stage implementations.

Two-stage neural network approaches [10] first gen-
erate region proposals from input images, followed by
classification and regression on these candidate regions. He et
al. [11] enhanced small object recognition by improving Swin
Transformer [12] and PAFPN [13], proposing a modified
Mask R-CNN. Separately, Li et al. [14] further improved
object detection in complex traffic environments through
cross-layer fusion of backbone network features. Despite
these architectural innovations, the inherent multi-stage
processing mechanism imposes substantial computational
demands, fundamentally limiting their real-time applicability
in railway monitoring systems. Conversely, Single-stage neu-
ral network approaches [15] directly predict object categories
and locations from input images, offering high computa-
tional efficiency and streamlined architectures. This signif-
icantly improves real-time detection performance, making
them more suitable for deployment on embedded devices
in rail transit systems [16], [17], [18]. Nevertheless, their
simultaneous handling of anchor generation, classification,
and regression—coupled with reliance on predefined anchor
box designs—results in lower detection accuracy, particularly
for small objects. To address this, Tian [19] proposed a
variable-zoom multiscale enhancement method, leveraging
detection results as prior knowledge to identify more small
targets.Meng et al. [20] improved local feature representation

by integrating SAM and SENet, enhancing attention to small
objects. While these models advance detection performance,
limitations persist in global context modeling and long-range
dependency capture—precisely the challenges that Trans-
former architectures are positioned to address.

The widespread adoption of Transformers in computer
vision is largely due to their inherent ability to model global
relationships through self-attention mechanisms. This capa-
bility is exemplified by DETR [21], which revolutionized
object detection with its end-to-end set prediction approach,
effectively capturing long-range dependencies. However,
DETR’s reliance on global feature processing results in
significant computational overhead, posing challenges for
real-time deployment. Consequently, there has been increas-
ing research attention on improving DETR.

To acceleratemodel convergence, several DETRvariants—
including Deformable-DETR [22] and Conditional-DETR
[23]—have introduced innovative attention mechanisms.
In parallel, DINO [24] addresses both positive and negative
noise object queries, which accelerates model convergence
and enhances the accuracy of detecting small targets.
MS-DETR [25] improves the training efficiency of DETR
by explicitly supervising the candidate generation process
through a mix of one-to-one and one-to-many supervision.
Additionally, RT-DETR addresses this limitation through
its decoupled multiscale interaction architecture, which is
the first to separate multiscale feature interaction from
cross-scale fusion operations to enhance computational effi-
ciency. Wang et al. [26] introduced cascaded group attention
to propose CGA-IFI for intra-scale feature interaction. They
further designed a dilated reparam block (DRB-CFFM) to
enhance cross-scale feature interactions, thereby improv-
ing high-resolution remote sensing object detection through
advanced image feature fusion. Yu et al. [27] enhanced
railway turnout defect detection performance by modifying
the RT-DETR backbone: (1) replacing the multi-head self-
attention mechanism with the Hilo attention mechanism, and
(2) substituting the original cross-scale feature fusion module
(CCFF) with an optimized fusion structure.

Despite these advancements, hybrid CNN-Transformer
detectors continue to struggle with balancing model com-
pactness, detection accuracy, and inference speed. To address
these challenges in complex railway scenarios, this study
introduces an improved RT-DETR framework that facilitates
real-time, high-precision multiscale obstacle intrusion detec-
tion while maintaining architectural simplicity.

III. METHODOLOGY AND IMPROVEMENTS
A. IMPROVED NETWORK ARCHITECTURE
As illustrated in Figure 2, we implement algorithmic
improvements based on the RT-DETR model to achieve
efficient and accurate detection of railway obstacles. The
input images from the dataset are first processed through
the MSD_Block (Multiscale Separable Deformable Block),
which enables enhanced multiscale feature extraction
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FIGURE 2. Improved model architecture.

FIGURE 3. MSD module.

by synergizing depthwise convolution (DWC) with fea-
ture redundancy reduction operations, thereby signifi-
cantly reducing computational overhead. Subsequently, the
low-resolution feature maps are fed into the DAA module
(Deformable Agent Attention) to acquire richer and more
accurate semantic information. By leveraging a sparse set
of agents as queries, this module eliminates redundancy
in attention weight computation, accelerating the model’s
inference speed while maintaining detection precision.

B. MSDBLOCK
For computationally constrained embedded devices, model
lightweighting is critical, while the complexity of railway

environments imposes stricter demands on real-time per-
formance. The original model employs stacked ResNet
blocks [28], which not only fail to meet lightweight and
real-time requirements due to their bulky architecture, but
also suffer from limited receptive fields. The conventional
convolutional stacking used in these blocks exhibits restricted
capability in multiscale feature extraction. To address these
issues, we propose the MSD module, which enables more
comprehensive feature extraction while significantly reduc-
ing computational overhead.

As illustrated in Figure 3, the MSD module integrates
depthwise convolution (DWC) and deformable convolu-
tion network v4 (DCNv4) [29]. Based on the effective
receptive field theory [30], enlarging convolutional kernel
sizes proves more effective in expanding the model’s fea-
ture receptive field. Consequently, we employ kernels of
varying dimensions to enhance multiscale object detection,
while DWC reduces computational costs compared to stan-
dard convolutions without compromising feature extraction
capability. To address feature redundancy in preliminary
extraction stages [31], we preserve 25% of the input channels
without being processed, thereby maintaining accuracy while
minimizing computational overhead.

For complex images with deformable or non-rigid
variations, fixed convolutional kernels struggle to adapt to
content changes. In contrast, DCNv4 dynamically adjusts
kernel shapes and sampling positions to adaptively focus
on critical feature regions, facilitating the extraction of
intricate local patterns. Following feature concatenation
from four branches, a shuffle operation [32] is applied to
enable cross-channel information fusion, thereby enhancing
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FIGURE 4. Deformable agent attention.

the model’s representational capacity. The operation is
formulated as:

Output = Shuffle(cat(DWC3 (x0) ,DWC5 (x1) ,

DCN (x2) , x3) (1)

where DWC3,DWC5 denote depthwise convolutions with
kernel sizes of 3 × 3 and 5 × 5, respectively.

C. DEFORMABLE AGENT ATTENTION MECHANISM
The standard Transformer suffers from high computa-
tional complexity and excessive reliance on computational
resources, making it challenging to deploy in complex
railway environments. To address this limitation, we propose
a Deformable Agent Attention (DAA) mechanism by syner-
gizing the strengths of Agent Attention [33] and Deformable
Attention [34]. As illustrated in Figure 4, the proposed
DAA extends the traditional attention triplet (Q, K, V) by
introducing an additional set of agent vectors A, forming a
novel quadruple attention mechanism (Q, A, K, V). In this
framework, the agent vectors A first act as proxies for the
query vectors Q to aggregate information from K and V, and
then broadcast the refined information back to Q. Since the
number of agent vectors can be designed to be significantly
smaller than that of query vectors, agent attention achieves
global information modeling at reduced computational cost.
The DAA mechanism seamlessly integrates the powerful
global modeling capability of Softmax attention with the
computational efficiency of linear attention, inheriting their
advantages while maintaining low computational complex-
ity and high model expressiveness. To further enhance the
module’s ability to focus on task-relevant regions and capture
discriminative features, the DAA incorporates deformable
points fromDeformable Attention. Specifically, a deformable
attention block with an offset network generates adaptive
offsets based on query features, dynamically determining
the positions of agents A and keys K. This design enables
agents A and keys K to concentrate on critical regions with

heightened flexibility and efficiency, thereby enhancing the
original self-attention module and extracting more informa-
tive features.

Figure 4 Given an input feature map x ∈ RH×W×C , we first
downsample it with a factor r to obtain a uniform grid size
HG = H/r , WG = W/r , and reference points p∈RHG×WG×2

are generated from this grid for subsequent deformable con-
volution operations. The offset generation involves linearly
projecting the input features to produce queries q = xWq,
which are fed into a lightweight network θoffset (·) to generate
offsets1p = θoffset (q). Deformed features x̃ are then sampled
via spatial interpolation, followed by linear projections and
pooling to derive keys and agent tokens, as are formalized in
equation (2) and (3):

q = xWq, k̃ = x̃wk ,AgentToken = pool(x̃wa) (2)

1p = θoffset (q), x̃ = ϕ(x; p+ 1p) (3)

where k̃ and Agent Token represent the deformed key and
agent embeddings. The sampling function ϕ(·; ·) employs
bilinear interpolation, defined in equation (4):

ϕ
(
z;

(
px , py

))
=

∑
ry,ry

g (px , rx) g
(
py, ry

)
z
[
ry, rx , :

]
(4)

where g(a, b) denotes the interpolation weighting function
along the x and y-axes, and (rx , ry) indexes all spatial
positions in z ∈ RH×W×C .

With q and Agent Token, the Deformable Agent Attention
(DAA) mechanism is formulated as:

OA = σ
(
qAT

)
σ

(
ÃkT

)
v︸ ︷︷ ︸

VA

(5)

where A ∈ Rn×c denotes the agent tokens from equation (2),
σ (·) is the softmax function, and v = xWv is the linearly
projected value. Specifically, agents A first aggregate global
information via σ (AKT )V to produce VA. Subsequently,
A serves as keys to broadcast agent-refined features back to
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TABLE 1. Data distribution in TAD dataset.

all queries through σ (qAT ), avoiding quadratic QKT com-
putation. By setting the number of agents, the mechanism
achieves linear complexity while preserving global modeling
capacity.

The final output of DAA integrates agent-guided features
and local diversity preservation:

Wo = σ
(
qAT + B2

)
σ

(
Ak̃T + B1

)
v+ DWC(v) (6)

where B1,B2 are learnable agent biases enhancing positional
awareness, and the depthwise convolution (DWC) termmain-
tains feature diversity.

D. REPLACING AIFI WITH DDA MODULE
In the AIFI module, each query q interacts with a large num-
ber of keys k , leading to excessive computational costs, slow
convergence, and increased risk of overfitting. To address
these limitations, we replace the AIFI module in RT-DETR
with the proposed Deformable Agent Attention (DAA) mod-
ule. The DAA mechanism focuses candidate agents and keys
on critical regions, thereby avoiding the high computational
complexity caused by applying uniform global attention
across the entire image in standard multi-head self-attention
(MHSA). The DAAmodule concentrates attention on pivotal
regions and captures more informative features. By utilizing
a small set of agents A as query proxies, it eliminates direct
interactions between individual queries and keys, mitigating
redundancy in attention weight computation while achieving
high model expressiveness with low computational complex-
ity. The operational process is formulated as:

F5 = DAA(P5) (7)

where DAA denotes the Deformable Agent Attention mech-
anism, and P5 represents the higher-level feature layer from
the backbone network (see Figure 2), which contains richer
semantic information.

IV. EXPERIMENTAL RESULTS
To evaluate the detection capability and improvement
effectiveness of the proposed algorithm, we conducted com-
parative and ablation experiments on the railway dataset.

All experiments were performed under identical software
and hardware configurations for consistent comparison and
analysis. The implementation utilized the PyTorch 2.0.1 deep
learning framework on Ubuntu 22.04, with a workstation
equipped with an Intel Core i9-12900K CPU and an NVIDIA
GeForce RTX 3090 GPU (24GB VRAM). Input images were
resized to 640 × 640 pixels before being fed into the model.
During training, the batch size was set to 16 for 120 epochs,
using a stochastic gradient descent (SGD) optimizer with
momentum. The learning rate, momentum, and weight decay
were configured as 0.0001, 0.9, and 0.0001, respectively.

A. DATA PREPARATION
Pretrained models on common public datasets (e.g.,
MS COCO, PASCAL VOC) often fail to demonstrate com-
parable performance in railway environments. To address
this limitation, we constructed a railway-specific dataset
comprising training, validation, and test sets, synthesized
from three sources: Infra Dataset [35], Rail Dataset [36], and
RailFOD23 [37].
To achieve real-time obstacle detection ahead of trains

and ensure consistency with actual application scenarios,
we manually removed non-driver perspective images from
these datasets, retaining only those captured from advanta-
geous positions on the train, simulating the viewing angle
of onboard cameras. This selection enhances the model’s
generalization capability in railway scenarios ahead of the
train. We utilized the LabelMe annotation tool to rectify
the annotation information of the integrated dataset, correct-
ing inconsistencies in the original datasets (e.g., unlabeled
pedestrians, railroad switches, and level crossings). We also
established annotation granularity requirements, such as
using minimum bounding rectangles for large objects and
covering the entire body for small objects, to prevent missed
detections due to occlusion. We made every effort to ensure
that there were no omissions or errors in the annotations of
the integrated dataset. Cross-validation was conducted by two
annotators to ensure data accuracy. The optimized dataset was
named the Train Assisted Dataset (TAD). Figure 5 illustrates
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FIGURE 5. Distributions of object dimensions and locations in TAD dataset: (a) Height-width distribution; (b) Center-point spatial distribution.
Heatmap colors indicate density levels (yellow: highest;green, blue, and purple: descending order).

the height-width distribution (Fig. 5(a)) and center-point
location distribution (Fig. 5(b)) of the objects in the dataset,
revealing that most obstacles in railway environments are
small targets, posing significant challenges for high-precision
real-time detection. The detection scenarios cover objects
near the tracks under both daytime and nighttime conditions.
These objects are categorized into eight classes: Crossing,
Turnout, Semaphore, Person, Nest, Plastic bag, Floater, and
Balloon. Detecting Crossings, Turnout, and Semaphore aims
to alert drivers to exercise heightened caution in these areas,
while Nest, Plastic bag, Floater, and Balloon threaten driver
visibility and critical infrastructure such as pantographs and
power transmission lines. Detailed category descriptions are
provided in Table 1. The dataset contains 11,957 images,
which are randomly split into training, validation, and test sets
at ratios of 75%, 10%, and 15%, respectively. In terms of data
augmentation, we maintained consistency with the data aug-
mentation strategies of the original RT-DETR model, which
helps to fairly validate the effectiveness of the improved
model.

B. EVALUATION METRICS
To evaluate the performance of the proposed model under
identical experimental conditions, this study compares detec-
tion models using the following metrics: mean Average
Precision (mAP), F1-score, Giga Floating-point Operations
per Second (GFLOPs), Frames Per Second (FPS), and model
parameters (Params). The F1-score, defined as the harmonic
mean of precision and recall, serves as a comprehensive
metric to balance the trade-off between these two indicators.
A higher F1-score indicates better equilibrium between pre-
cision and recall. The calculation for the F1 score is detailed
in Equation (8).

F1 = 2
Precision · Recall
Precision+ Recall

(8)

The Average Precision (AP) measures the average preci-
sion at various recall levels per category. The mAP reflects
the model’s average detection accuracy across all obstacle
categories, with higher values denoting superior multi-class
recognition performance, as illustrated in the following
equations, Equations (9) and (10).

AP =

∫ 1

0
P(r)dr (9)

mAP =

∑S
j=1 AP(j)

S
(10)

where S denotes the total category count and the denominator
is the summation of AP values across all categories.

FPS quantifies real-time inference speed, where higher
values correspond to faster processing capabilities, as shown
in Equation (11).

FPS =
1
taνg

(11)

where taνg represents the per-image inference time.
Moreover, GFLOPs and Params measure computational

complexity and model size, respectively. Lower values
in these metrics indicate reduced algorithmic complexity,
enhancing deployability on resource-constrained embedded
devices.

C. MODEL COMPARISON EXPERIMENTS
In comparative experiments with state-of-the-art detection
algorithms, we benchmarked Improved RT-DETR against
advanced models including YOLOv11 [38] and YOLOv12
[39]. The experimental results are summarized in Table 2.
Improved RT-DETR achieves 87.9% mean average preci-
sion (mAP) at a detection speed of 90 FPS. Due to their
bulky backbone networks, RT-DETR-34 and RT-DETR-50
exhibit slower inference speeds, higher computational com-
plexity, excessive parameter counts, and larger model sizes,
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TABLE 2. Results of model comparison experiments.

TABLE 3. Results of ablation experiments.

FIGURE 6. Results of multi-scale convolutional combinations.

rendering them unsuitable for real-time deployment on
embedded onboard devices. While YOLOv11n is deployable
on embedded platforms, its insufficient detection accuracy
(81.7% mAP) makes it impractical for railway environments
requiring high precision. Although YOLOv11m has a detec-
tion accuracy 0.8% lower and YOLOv12m has a detection
accuracy 0.6% lower than that of our improved model,
respectively. Moreover, they require 17.5 GFLOPs and
16.9 GFLOPs more in computations, 5.05M and 5.12M addi-
tional parameters, and 9.4 MB and 9.6 MB larger model sizes
compared to our proposed method. These results conclu-
sively validate that our optimized model is more amenable to
deployment on embedded systems such as onboard devices.

D. ABLATION STUDY
To validate the effectiveness of the proposed modules,
we conduct ablation experiments using RT-DETR as the

baseline model. By modifying the backbone network,
we achieve multiscale feature extraction while significantly
reducing computational complexity and parameter count.
Additionally, the original attention in the AIFI module is
replaced with our proposed Deformable Agent Attention
(DAA) to enhance inference speed and accuracy. Experimen-
tal results are summarized in Table 3.

The RT-DETR_MSD variant, which integrates the MSD
module into the backbone, demonstrates a 1.1% improvement
in mean average precision (mAP) while reducing parameters
by 5.11M and computational load by 7.4 GFLOPs, con-
firming its suitability for edge device deployment. For the
RT-DETR_DAA variant, replacing the standard transformer
attention with DAA increases parameters by 0.21M and com-
putation by 0.3 GFLOPs, yet achieves a 7.1 FPS acceleration
and a 1.2% mAP gain. This improvement stems from the
DAA mechanism’s ability to focus dynamically on critical
regions, accelerating both training convergence and inference
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TABLE 4. Comparative results of different attention mechanisms.

FIGURE 7. Grad-CAM visualization of feature activation maps before and after integrating the DAA module. (a–d) Original images. (e–h) Feature
heatmaps of the baseline RT-DETR. (i–l) Feature heatmaps of the proposed model with DAA.

efficiency. The final optimized RT-DETRmodel outperforms
the baselinewith a 1.7%mAP50 increase, an 11 FPS speedup,
12.2% fewer GFLOPs, and a 4.9M parameter reduction.
The ablation study results, as comprehensively analyzed in
Table 3, confirm the effectiveness of each proposed module.

E. RESULTS OF MULTI-SCALE CONVOLUTIONAL
COMBINATIONS
To validate the effectiveness of multi-scale feature extraction
in enhancing detection accuracy for railway environments,

we conducted comparative experiments on the proposed
MSD module with different convolutional kernel config-
urations. As shown in Figure 6, models incorporating
multi-scale convolutional kernels achieved superior detec-
tion accuracy compared to those using single-scale kernels.
Specifically, the parallel architecture combining 3 × 3 and
5 × 5 convolutional kernels yielded the highest precision.
Notably, all parallel configurations outperformed the original
ResNet-based backbone network in detection accuracy. All
convolutional operations employed lightweight depthwise
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FIGURE 8. Partial detection results of two models. (a-d) Ground truth bounding boxes, (e-h) Predicted images from RT-DETR model, (i-l) Predicted
images From improved RTDETR.

convolution (DWC), demonstrating that parallel multi-scale
convolutions effectively capture multi-scale features while
maintaining computational efficiency. These results also con-
firm the existence of feature redundancy in image feature
extraction stages. As illustrated in Figure 3, selective feature
extraction can be implemented without compromising final
detection accuracy.

F. COMPARATIVE ANALYSIS OF ATTENTION MECHANISMS
To validate the superiority of our proposed Deformable Agent
Attention (DAA) in obstacle intrusion detection under com-
plex environments, we conducted comparative experiments
against state-of-the-art attention mechanisms. All attention
variants were evaluated by replacing the AIFI module in the
RT-DETR model on the TAD dataset, with the original AIFI
module serving as the baseline. To minimize testing variance,
the reported frames per second (FPS) were averaged over five
independent trials. The experimental results are presented in
Table 4.
From Table 4, it can be observed that the proposed

Deformable Agent Attention achieves significant improve-
ments in mAP, F1-score, and FPS with only marginal
increases in model size and parameter count compared to
the baseline model. Specifically, mAP50 and mAP50:95
are enhanced by 1.2% and 1.3%, respectively, while the

FPS improves by 10.5 frames per second. Although the
Cascade Group Attention module accelerates detection
speed, this comes at the cost of reduced accuracy. Both
Deformable Attention and Agent Attention exhibit improve-
ments in accuracy and inference speed, yet their performance
remains suboptimal. The Transformer-based Blind-Spot Net-
work (TBSN) module introduces substantial computational
and parametric overhead for a mere 0.2% accuracy gain,
rendering it impractical for onboard device deployment.
Furthermore, our proposed attention mechanism achieves the
highest F1-score (86.45) among these modules, indicating an
optimal balance between precision and recall.

G. VISUALIZATION EXPERIMENTS AND ANALYSIS
To validate the attention capability of the proposed
Deformable Agent Attention (DAA) mechanism on critical
features, we employ Grad-CAM [42] to visualize the regions
of interest in both the original RT-DETR and our modified
model with DAA. Figure 7(a–d) displays the original input
images, while (e–h) and (i–l) present the feature heatmaps
of the baseline RT-DETR and our DAA-enhanced model,
respectively. Deeper color intensity indicates higher model
attention to the corresponding regions. As shown in the first
and second columns, our model exhibits superior perception
in complex railway scenarios, such as low-light conditions
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and small targets, achieving more accurate detection of
floating objects and pedestrians. This demonstrates enhanced
global contextual modeling. Notably, in the third and fourth
columns, our model reduces excessive focus on distracting
elements by prioritizing essential regions, thereby strength-
ening target discriminability. These visual results confirm
that our approach maintains robust global modeling and
stable anti-interference capabilities even in intricate railway
environments.

Figure 8 shows the detection results of the improved model
in different complex railway environments. Fig. 8(a)-(l)
demonstrate a comparative analysis of detection results
between RT-DETR and the proposed improved model across
diverse railway environments. Subfigures 8(a)-(d) display
original input images, while 8(e)-(h) present the detection
outcomes of RT-DETR, and 8(i)-(l) showcase the results from
the enhanced model. These visual comparisons conclusively
demonstrate that our improved model surpasses RT-DETR
in detection accuracy, with significant reductions in missed
detections and false positives. Specifically, Fig. 8(e) reveals
that RT-DETR produces low-confidence detections under
nighttime conditions, a limitation also observed in Figs. 8(g)
and (h). Fig. 8(f) further illustrates RT-DETR’s failure to
detect a level crossing and its erroneous classification of a
roadside sign as a pedestrian. In contrast, the proposed model
achieves accurate detection across all scenarios, as evidenced
in Figs. 8(i)-(l).

V. CONCLUSION
This study proposes a hybrid model combining convolutional
neural networks (CNNs) and Transformers to enhance object
detection performance in railway operations. By introducing
two key modules, e.g., MSD and DAA, the model achieves
superior real-time detection accuracy in complex railway
environments. Specifically, the MSD module strengthens
the model’s capability to detect multiscale targets, enabling
robust recognition of objects with varying sizes. The DAA
module optimizes attention weight allocation to reduce
computational redundancy, thereby accelerating inference
speed. Experimental results on the railway dataset TAD
demonstrate that the improved model attains 87.9% mean
average precision (mAP) at 90 frames per second (FPS)
on an NVIDIA GeForce RTX 3090 GPU, indicating high
detection accuracy alongside real-time efficiency. To sim-
plify the initial research phase, this study implemented
real-time detection through full-image processing. How-
ever, this approach exhibits limitations in spatial granularity
due to the absence of Region of Interest (ROI) partition-
ing. The lack of ROI segmentation leads to computational
redundancy in non-critical regions (e.g., vegetation, distant
infrastructure), thereby increasing false positive rates from
background artifacts. To address this limitation, future work
will incorporate semantic-guided dynamic ROI partitioning.
This approach integrates a lightweight semantic segmentation
module to prioritize high-resolution analysis for high-risk
areas (e.g., near-track regions) while applying downsampling

to peripheral regions, thereby minimizing computational
overhead. Additionally, we will extend the model’s applica-
bility to diverse railway scenarios and enhance its capability
to detect additional obstacle categories, thereby improving
generalization performance. These enhancements will facili-
tate broader deployment across various railway environments
while improving operational safety.
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