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ABSTRACT Aging-induced failure of Insulated Gate Bipolar Transistors (IGBTs) significantly restricts the
reliability of power electronic systems. Accurate and efficient prediction of IGBT Remaining Useful Life
(RUL) is critical for proactive risk mitigation and ensuring system stability. Despite numerous existing aging
models and data-driven methodologies, maintaining prediction robustness and accuracy under diverse and
complex operational scenarios remains challenging. To overcome these limitations, we introduce a novel
GRU-Augmented Time-Frequency Estimator (GATE) tailored for IGBT lifetime prediction. GATE utilizes
an autoregressive time-series prediction framework trained via the Teacher Forcing strategy to recursively
decode the electrical parameters indicative of the IGBT’s aging state from rich time-frequency features.
Experimental validations are performed using the square-wave power cycling dataset from the NASA
Prognostics Data Repository. The results demonstrate that GATE significantly enhances prediction accuracy,
reducing Mean Squared Error (MSE) to 0.0026 and Mean Absolute Error (MAE) to 0.045, representing
improvements of 38.1% and 19.6%, respectively, compared to the leading baseline method. Moreover,
recursive forecasting experiments show that GATE precisely predicts the remaining power cycles until
the aging threshold (defined as a 15% increase in V ce(on)) at various aging stages (10–60%). Ablation
analyses further underline the critical contribution of the frequency-domain component. Collectively, these
findings underscore GATE’s capability to reliably decode IGBT RUL directly from historical operational
data, bypassing intricate electrical or mechanical modeling, thereby offering a practically deployable and
broadly generalizable solution for lifetime management in power electronic devices.

INDEX TERMS GRU, IGBT RUL prediction, teacher forcing, time-frequency fusion.
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I. INTRODUCTION
Insulated Gate Bipolar Transistor (IGBT), characterized by
low on-state voltage drop, excellent voltage-withstanding
capability, high input impedance, and high modularity, have
been widely applied in various power electronics fields,
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such as electric vehicles, aerospace, power transmission,
and power management and control systems [1]. As critical
components in power electronic converters, the reliability
of IGBTs directly influences the stability of entire power
systems. According to field failure reports, power electronic
converters are common sources of failures in power systems,
and such failures can have significant operational impacts [2].
For instance, in wind power plants, faults in power elec-
tronic converters account for 13% of total failures, leading
to approximately 18% of downtime [3]. Similarly, in photo-
voltaic (PV) systems, inverter faults constitute around 55%
of all failures, predominantly caused by failures in power
electronic converters [4]. Statistics further show that IGBTs
constitute about 42% of all power devices used [5], high-
lighting their critical role in system reliability. Consequently,
predicting the IGBT RUL has become a prominent research
topic.

The reliability of IGBTs is closely related to their operating
conditions. Temperature fluctuations, arising from various
factors, cause packaging aging, ultimately affecting the
device’s lifespan [6]. Given the high power density and fre-
quency characteristics of IGBTs, they are extensively used
in high-voltage, high-current control, and high-frequency
switching applications. This inevitably exposes IGBTs to tens
of thousands or even millions of thermal shocks through-
out their operational lifecycle. However, before complete
failure occurs, devices may still function normally for a
certain period. Therefore, accurately predicting the RUL of
IGBTs before complete failure allows timely maintenance
and replacement, effectively preventing system faults.

To evaluate the aging condition of IGBTs and timely
detect defective devices, researchers worldwide have exten-
sively investigated methods for identifying and extracting
fault-characteristic parameters. Some studies have discovered
significant correlations between junction temperature and
IGBT lifespan, leading to junction temperature-based RUL
prediction methods [7]. However, directly measuring junc-
tion temperature poses considerable challenges, necessitating
estimation through electrothermal parameters [5]. These
parameters are influenced not only by junction temperature
but also by chip degradation and packaging deformation,
complicating the RUL prediction task based on junction tem-
perature estimation. Some researchers proposed monitoring
chip temperature using fiber-optic temperature sensors [8],

FIGURE 1. Single-tube IGBT exploded view.

effectively bypassing complex modeling and computations
but requiring costly dedicated thermal imaging equipment,
limiting practical deployment.

Existing studies suggest that electrical parameters such as
IC, VGE, Ton, Toff, and Tj considering measurement ease,
accuracy, sensitivity, heritability, linearity, and calibration,
are more suitable as early aging indicators of IGBTs [9].
Among these, the IGBT collector-emitter on-state voltage
drop, V ce(on), is considered the optimal indicator for pre-
dicting IGBT RUL. During actual operation, voltage and
current are not constant; fluctuating electrical stress leads to
persistent temperature variations, causing cracks or voids in
the solder layer, the primary heat dissipation channel of the
IGBT. This reduces the thermal conduction area between the
solder layer and the IGBT chip, increases thermal resistance,
and consequently raises junction temperature [9]. Addition-
ally, V ce(on) is a positive temperature-sensitive electrical
parameter; thus, as junction temperature increases, V ce(on)
correspondingly rises [10].

The predominant failure mechanism in IGBTs is bond
wire lift-off, accounting for about 70% of IGBT module
failures [11]. During operation, differences in coefficients of
thermal expansion (CTE) among various internal layers cause
non-uniform thermal and mechanical stresses under high
voltage, high current, and high-frequency conditions. These
stresses similarly induce cracks or voids in the solder layer.
However, shear stresses also occur at the bond wire and chip
interface during thermal cycling, leading to thermomechan-
ical fatigue. Repeated thermal cycles progressively reduce
the contact area between bond wires and the chip, increasing
current density and stress accumulation until eventual bond
wire lift-off. Concurrently, on-state resistance increases, con-
tinuously raising the V ce(on) until complete failure.
Clearly, the collector-emitter on-state voltage, V ce(on),

can accurately reflect the RUL condition of IGBTs. Due to
its ease of measurement, V ce(on) is adopted as the primary
electrical parameter for RUL prediction. In engineering appli-
cations, complete device failure is typically not used as the
failure standard; rather, an IGBT is deemed failed when its
reliability degrades to a certain threshold. Some researchers
define failure as a 20% increase in V ce(on) compared to its
initial value [12], while others propose a 10% increase [5],
[13]. Considering these perspectives, this paper selects an
intermediate threshold of 15%.

Clearly, the on-state voltage drop (V ce(on)) can accurately
reflect the RUL state of IGBTs. Due to the convenience of
its measurement, V ce(on) has become the primary electrical
parameter employed for RUL prediction. In practical engi-
neering applications, devices are typically not considered
failed only upon complete functional loss; rather, failure
is defined when IGBT reliability declines below a specific
threshold. Some researchers define failure as a 20% increase
in V ce(on) relative to its initial value [12], while others
propose a 10% increment as the threshold [13]. Several
scholars have also regarded increments within the range
of 10% to 20% as indicative of degradation or failure.
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Considering these research findings and the inherent sensi-
tivity of V ce(on) to temperature and aging states, this study
selects a 15% increment as the degradation threshold. This
value, situated midway within the range recommended by
the literature, avoids both premature failure determination—
which could lead to prediction biases—and excessively high
thresholds, which might neglect critical degradation stages,
thereby offering strong representativeness and rationality.

Most traditional studies still rely heavily on empirical for-
mulas or physics-based models to estimate RUL. However,
these approaches generally assume idealized stress scenarios
and struggle to accommodate complex load fluctuations and
nonlinear degradation characteristics encountered in practi-
cal operational conditions. Additionally, traditional methods
such as those based on Weibull distribution regression [14]
are usually applicable only to specific failure modes, thereby
limiting their generalizability and accuracy. In recent years,
data-driven methods have gained widespread application in
RUL prediction tasks, particularlymodels based on Recurrent
Neural Networks (RNN), which demonstrate superior per-
formance in capturing time dependencies within degradation
sequences. Specifically, Long Short-Term Memory (LSTM)
networks have been utilized to model IGBT degradation
behavior [15], significantly enhancing prediction accuracy.
Nevertheless, RNN-based models commonly suffer from
error accumulation and insufficient prediction coherence in
recursive multi-step predictions, posing challenges for indus-
trial deployments, which require stringent model stability and
operational efficiency.

Addressing these issues, this paper proposes a lightweight
Gated Recurrent Unit (GRU)-based prediction framework.
By integrating frequency-domain spectral amplitude fea-
tures and thoroughly examining the Teacher Forcing training
mechanism, the proposed approach enhances the model’s
capability to represent nonlinear degradation trends and
maintains stability in multi-step predictions. Moreover, the
method achieves high predictive accuracy and favorable
deployment adaptability while maintaining low computa-
tional complexity, making it suited for embedded industrial
systems.

The main contributions of this work are as follows:
1. We propose a lightweight GRU-based GATE model

that integrates time-domain and FFT-derived frequency-
domain features to improve RUL prediction accuracy
and effectively characterize nonlinear degradation
patterns.

2. A monotonicity constraint is introduced based on the
physical properties of V ce(on), ensuring physically
consistent and stable predictions throughout the device
aging process.

3. Various Teacher Forcing strategies are systematically
explored, and an optimal configuration is identified to
alleviate error accumulation and enhance stability in
multi-step forecasting.

4. Comprehensive experiments—including ablation
studies, comparisons with Transformer and

physics-informedmodels, and deployment evaluations—
validate the model’s predictive performance and
suitability for industrial applications.

II. RELATED WORK
A. IGBT RUL PREDICTION BASED ON AGING MODELS
As the lifespan degradation of IGBT modules results pri-
marily from material aging and deformation—processes
exhibiting certain predictability—several empirical
mathematical and numerical models have been proposed to
assess the RUL of power electronic devices. Among these, the
LESIT model is particularly prominent. It was developed by
integrating the Coffin-Manson fatigue lawwith the Arrhenius
temperature acceleration model, enhancing predictive accu-
racy and applicability [16].

The basic form of the Coffin-Manson equation is given
by:

Nf = C · (1ε)m (1)

In the equation: Nf represents the number of cycles before
failure; C is a material constant that depends on the specific
material and operating conditions; 1ε denotes the strain
range, representing the difference in strain during cyclic
loading(in power electronic devices, 1ε is rewritten as the
junction temperature swing 1TJ ); m is the Coffin-Manson
exponent, typically a negative value, indicating the sensitivity
of fatigue life to the strain range.

The fundamental form of the Arrhenius equation is as
follows:

k = A · e−
Ea
kBT (2)

In the equation: k represents the reaction rate constant;
A is the pre-exponential factor, which depends on the spe-
cific reaction mechanism;Ea denotes the activation energy;
kB is the Boltzmann constant; T represents the absolute
temperature.

The core equation of the LESIT model for IGBT RUL
prediction is as follows:

Nf = K · (1TJ )β1 · e
β2

TJ+273 · tβ3on · Iβ4 · V β5 · Dβ6 (3)

In the equation: Nf represents the number of cycles before
failure; 1TJ denotes the junction temperature swing; I repre-
sents the current through each bond wire; V is the blocking
voltage of the chip; D refers to the diameter of the bonding
wire.

The current research indicates that the LESITmodel serves
as a well-established reference for predicting the IGBT
RUL, providing satisfactory results. However, the LESIT
equation is essentially a static lifetime model; it calculates
the total lifespan of the device only after the actual failure
has occurred, thus serving merely as an empirical estimate
rather than dynamically predicting the exact time of failure
in advance
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B. IGBT RUL PREDICTION BASED ON MACHINE
LEARNING
Compared to traditional empirical mathematical models,
deep learning methods possess the capability of dynamic
prediction based on available data, enabling more effective
predictions of the RUL of IGBT devices. However, despite
numerous advancements in recent years, existing research
still significantly lacks effectiveness in capturing the com-
plex temporal-frequency degradation characteristics of IGBT
aging processes. For instance, Tian et al. [17] proposed
an adaptive boosting method based on a multi-class neu-
ral network, which improved classification accuracy but did
not incorporate frequency-domain degradation information.
Ali et al. [18] utilized Gaussian Process Regression (GPR)
combined with Bayesian inference for RUL estimation, offer-
ing advantages over traditionalMaximumLikelihood Estima-
tion methods in uncertainty modeling, yet exhibited limited
scalability with large-scale datasets. He et al. [19] compared
the performance of various machine learning models, such
as Backpropagation Neural Networks, Random Forests, and
Extreme Learning Machines, on the NASA IGBT aging
dataset, highlighting performance disparities but lacking
comprehensive exploration in feature selection and degrada-
tion mechanism modeling. Wang et al. [20] further integrated
Particle Swarm Optimization (PSO) with Random For-
est models, combining time-domain and frequency-domain
features for state prediction, significantly enhancing predic-
tion accuracy through improved feature fusion and model
optimization.

Despite these extensive explorations, a unified deep learn-
ing framework capable of jointly modeling temporal degrada-
tion trends and frequency-domain features remains lacking.
To bridge this research gap, this paper proposes a hybrid deep
learning model.

C. TEACHER FORCING STRATEGY
In traditional autoregressive models, predictions at each time
step depend on outputs from the previous step, potentially
causing slow convergence and error accumulation during
sequence generation. To address this, the Teacher Forcing
strategy always uses the true target value as the next input
during training [21], rather than relying on the model’s own
predictions. This provides the model with accurate context
information, accelerating convergence and mitigating gradi-
ent propagation difficulties.

However, this method faces distribution mismatch issues
during testing. Since the true target values are unavail-
able at inference, models must rely solely on their own
predictions, leading to ‘‘exposure bias,’’ where generated
results gradually deviate from true sequences. To mitigate
this issue, researchers introduced the Scheduled Sampling
strategy, which controls the balance between using true
targets and model predictions during training through a
probability ε. Initially, ε is high, making the model rely
primarily on true targets; as training progresses, ε gradually
decreases, enabling the model to use its own predictions

and better adapt to inference scenarios [22]. Alternatively,
Professor Forcing introduces a discriminator to compare
RNN behaviors under teacher forcing (using real data)
and free-running modes (using generated data). Through
adversarial training, Professor Forcing ensures consistency
between hidden states and output distributions under both
conditions [23].

III. GRU-AUGMENTED TIME-FREQUENCY ESTIMATOR
FOR IGBT REMAINING LIFETIME PREDICTION (GATE)
A. PROBLEM DEFINITION
The IGBT RUL prediction task is a time-series forecasting
problem. To accurately assess device health and remaining
lifetime, this study defines RUL prediction as a univariate
time-series forecasting problem based on V ce(on), which
serves as a degradation indicator. Given a historical sequence
{x1, x2, . . . , xn}, the goal is to estimate the future trend of
V ce(on) over the next time steps to support device lifetime
management and failure prevention.

Assuming that degradation data from D IGBT devices is
collected under continuous thermal cycling tests, the consol-
idated degradation curves can be represented as:(

x i1, x
i
2, . . . , x

i
Ni

)
, i = 1, 2, . . . ,D (4)

where x in represents the V ce(on) value measured for the i-th
IGBT device at the n-th thermal cycling round, andD denotes
the total number of devices.

The model employs a GRU network for time-domain
modeling of the V ce(on) sequence while integrating
frequency-domain features extracted via Fast Fourier Trans-
form (FFT). Mathematically, for each device sequence with
a historical prefix

{
x i1, x

i
2, . . . ,x

i
n
}
, the sequence is first

processed through the GRU network to extract hidden repre-
sentations that reflect aging evolution. Then, FFT is applied
to the same prefix sequence, and the amplitude spectra of
key frequency components are selected as covariates, which
are then processed through an MLP to obtain a frequency-
domain embedding. The final hidden state from the GRU
and the MLP output are fused, and a fully connected layer
is used to predict the V ce(on) value for the next thermal
cycle x in+1. Abstracting this process as a function F, the
prediction function can be expressed as:

x in+1 = F(GRU(x i1:n),MLP(FFT(x i1:n))) (5)

where FFT(x i1:n) represents the frequency-domain informa-
tion of the sequence at the given cycle.

The above model enables accurate prediction of the next
V ce(on) value; however, in many cases, predictions over a
longer time horizon are required. To achieve this, a recursive
iteration approach is used for long-term forecasting.

The core of recursive prediction is to append the current
predicted value x̂n+1 to the end of the historical sequence and
use the updated sequence as input for the next step. Through
this rolling iteration process, future values for multiple time
steps can be continuously inferred.
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FIGURE 2. GATE model framework.

This process can be viewed as an explicit autoregressive
modeling, expressed as:

x in+m = F(x̂ in+m−1, x̂
i
n+m−2, . . . ; θ ) m = 1, 2, . . . ,T (6)

where θ represents the learnable model parameters, which
are the trainable network weights that need to be opti-
mized through backpropagation and gradient descent during
training.

B. MODEL OVERVIEW
The proposed GATE model in this study aims to compre-
hensively mine both temporal and frequency-domain features
hidden within the one-dimensional historical V ce(on) data,
thus enabling precise regression predictions of IGBT module
RUL. Figure 2 illustrates the overall architecture of the pro-
posed model, which primarily consists of two feature extrac-
tion branches. The first is a time-domain branch, where raw
historical data is input into aGRUnetwork to extract temporal
features. The recurrent structure of GRU effectively captures
temporal dependencies, generating high-dimensional hidden
states. The second branch transforms the raw historical data
into frequency-domain signals using FFT, extracting spectral
amplitude features and subsequently feeding these into an
MLP for nonlinear mapping and feature extraction. After
extracting features from both branches, the outputs are con-
catenated and integrated, followed by linear transformations
and nonlinear activation through fully connected layers, ulti-
mately providing the predicted RUL of the IGBT modules.

C. GATED RECURRENT UNIT (GRU)
Traditional recurrent neural networks (RNNs) often suf-
fer from gradient vanishing or exploding problems during

training, making it difficult for the model to remember
long-term and short-term information [24]. To address this
issue, Long Short-TermMemory (LSTM) networks introduce
gate mechanisms, effectively managing information retention
and forgetting, thereby alleviating gradient-related problems
to some extent [25], [26]. The GRU model, an optimized
variant derived from LSTM, simplifies the structure without
introducing additional parameters by merging the input and
forget gates into a single update gate and combining cell states
and hidden states [27]. GRUmodels maintain accuracy while
having fewer training parameters and faster convergence than
LSTM models [28].

The reset gate determines whether to forget the previous
step’s information by combining the hidden state from the
previous time step ht−1 and the current input xt . The result
is passed through a tanh activation function to generate the
candidate hidden state h′

t .
The update gate controls the extent to which information is

retained. It produces zt using a sigmoid activation function,
where zt ranges between 0 and 1. When zt is closer to 1,
more information is preserved; when it is closer to 0, less
information is retained.

The computation formulas are as follows:

rt = σ (Wγ · [ht−1, xt ]) (7)

h′
t = tanh(Wh′

t
· [xt , rt ⊙ ht−1]) (8)

zt = σ (Wz · [ht−1, xt ]) (9)

ht = (1 − zt ) ⊙ ht−1 + zt ⊙ h′
t (10)

In the equation: xt and ht represent the current input and
the new hidden state of the GRU unit at time step t, respec-
tively; ht−1 is the hidden state from the previous time step;
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FIGURE 3. Model training and prediction flowchart.

[ht-1,xt] denotes the concatenation of the previous hidden
state and the current input along the feature dimension; Wϒ ,
Wht ′ andWz are theweightmatrices corresponding to the reset
gate, candidate hidden state, and update gate, respectively;
σ () represents the sigmoid activation function; h′

t represents
the sigmoid activation function.; · denotes matrix multiplica-
tion; ⊙ represents element-wise multiplication.
In time-series prediction tasks, GRU is particularly suitable

due to its lightweight characteristics, making it advantageous
for scenarios involving smaller datasets or real-time require-
ments. In contrast, LSTM networks typically involve more
parameters and memory usage, and a complete Transformer
further increases parameter scale significantly. Thus, this
paper integrates the Teacher Forcing trainingmechanismwith
the GRU’s temporal processing capability to construct an
efficient and lightweight prediction model.

D. TIME-FREQUENCY FUSION
In time-series modeling tasks, particularly for modeling and
predicting the degradation process of IGBT, key signals such
as V ce(on) not only exhibit monotonic trends evolving over

time but also contain significant periodicity and spectral
characteristics. Existing research indicates that under pro-
longed thermal-electrical cyclic stress, the spectral response
of V ce(on) changes markedly with aging: the energy within
its high-frequency components (1–10 MHz) gradually atten-
uates, accompanied by a consistent decrease in the amplitude
of dominant spectral peaks [29]. Such frequency-domain evo-
lution patterns reflect physical degradation processes within
the device’s internal structures, such as bond wire cracks and
solder joint aging, offering enhanced sensitivity and inter-
pretability for degradation monitoring and potentially serving
as early indicators of device failure.

Traditional models based solely on time-domain fea-
tures, such as GRU, exhibit limitations in capturing these
frequency-domain degradation signals. To address this
gap, this study extends the GRU’s capability in extract-
ing temporal characteristics by introducing an additional
frequency-domain modeling branch. Historical sequence sig-
nals are mapped from the time domain to the frequency
domain using FFT, extracting spectral amplitude and phase
information. For unified modeling, the resulting spectral
vectors are standardized to fixed lengths via truncation or
zero-padding and subsequently processed by a Multi-Layer
Perceptron (MLP) to explore nonlinear and higher-order rela-
tionships.

Ultimately, the frequency-domain features are combined
with the temporal hidden states generated by the GRU within
a feature fusion module, facilitating integrated modeling
for subsequent RUL prediction. This dual-branch architec-
ture not only preserves the capability to model dynamic
temporal evolutions but also enhances sensitivity to latent
periodicity and spectral degradation patterns, thereby signif-
icantly improving the model’s adaptability, robustness, and
generalization in capturing both short-term fluctuations and
long-term trends in the IGBT degradation process.

IV. EXPERIMENTAL SETUP AND RESULTS
A. EXPERIMENTAL SETUP
This study utilizes the accelerated degradation dataset of
V ce(on) collected by NASA Ames Research Center [30],
which has gained significant recognition and extensive cita-
tion in the field of power device lifetimemodeling and predic-
tion. The data were acquired by NASA researchers through
classical thermal cycling experiments, wherein IGBT devices
were repeatedly heated and cooled to simulate thermal
stress conditions commonly encountered in practical indus-
trial environments [31]. The experiment involved six IGBT
devices of the IRG4BC30KD type, each installed on a cus-
tomized aging test platform. Each device underwent periodic
excitation controlled by PulseWidthModulation signals with
a frequency of 10 kHz and a duty cycle of 40%. The ambi-
ent temperature varied precisely between 20◦C and 100◦C,
ensuring accurately controlled thermal stress conditions. The
V ce(on) signal was continuously recorded with high tempo-
ral resolution throughout the devices’ complete degradation
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process, comprising over 100,000 data samples. The data
acquisition system consisted of high-precision oscilloscopes
and data acquisition cards, achieving well-controlled noise
levels without significant external interference.

Considering that V ce(on) is influenced not only by aging
but also by junction temperature, this study employs a lin-
ear temperature-dependent model of V ce(on) to mitigate the
effect of junction temperature within the dataset [32]. The
equation is given as follows:

VCE = V0 + kT · (Tj − T0) (11)

In this equation, V ce(on) denotes the collector-emitter on-
state voltage measured at the current junction temperature
Tj, while V0 represents the reference on-state voltage drop
at a baseline temperature T0 (typically 25◦C). KT is the
temperature coefficient, indicating the incremental change in
the on-state voltage per 1◦C increase in temperature.

FIGURE 4. Temperature compensation effect on Vce(on).

This linear model has been extensively utilized in tempera-
ture compensation and device health monitoring applications.
Based on this model, this study implements temperature com-
pensation on the measured on-state voltage data, effectively
eliminating disturbances caused by temperature fluctuations.
Consequently, the degradation in electrical performance due
to device aging or damage can be more accurately identified.
Figure 4 shows the compensated image.

To effectively suppress random noise, data smoothing
was conducted using Exponential Moving Average (EMA).
Unlike the fixed-window moving average, EMA assigns
different weights to recent and historical data points, main-
taining signal trends while dynamically smoothing the data.
The EMA calculation formula is as follows:

EMAt = α × xt + (1 − α) × EMAt−1 (12)

In the equation: xt represents the data value at time step
t;EMAt denotes the exponentially weighted moving average
at time step t; α is the smoothing coefficient, which ranges
between 0 and 1.

In this study, α is set to 0.3, meaning that in each computa-
tion step, 30% of the weight is assigned to the new data, while
70% of the weight comes from the previous filtered value.
After applying the EMA filter, the data is normalized using

the Min-Max normalization method, which maps the results
into the [0,1] range. The transformation function is given as
follows:

x ′
=

x − xmin

xmax − xmin
(13)

In the equation: xmin and xmax represent the minimum and
maximum values of the sample data.

Since the IGBT lifespan follows a monotonic trend over
time, this study enforces an increasing constraint on V ce(on)
to ensure a strictly rising trend throughout the aging process.

ŷt = max{ỹt , ŷt−1 + ε} (14)

In the equation: ỹt represents the raw prediction of the model
at time step t; ŷt denotes the adjusted prediction after applying
the increasing constraint; ŷt−1 is the prediction from the
previous time step; ε is a small positive constant to ensure
strict monotonicity.

This study evaluates the difference between the model’s
predictions and the actual values using Mean Squared Error
(MSE) and Mean Absolute Error (MAE). The MSE metric
amplifies larger errors due to squaring, making it more sensi-
tive to significant prediction deviations.

MSE =
1
n

n∑
i=1

(yi − ŷi)2 (15)

In the equation: n represents the total number of samples;
yi denotes the actual value of the i-th sample; ŷi denotes the
predicted value of the i-th sample.

FIGURE 5. IGBT accelerated aging test hardware [33].

MAE is calculated by averaging the absolute differences
between predicted and actual values, directly reflecting the
average prediction error of the model. Since MAE does not
involve squaring the errors, it is less sensitive to outliers,
providing a more realistic representation of the overall error
level.

MAE =
1
n

n∑
i=1

∣∣yi − ŷi
∣∣ (16)

In the equation: n represents the total number of samples; yi
denotes the actual value of the i-th sample; ŷi denotes the
predicted value of the i-th sample.
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TABLE 1. Model structure and parameters.

Table 1 summarizes the hyperparameter settings of the pro-
posed model, including the learning rate, number of training
iterations, batch size, and parameter configurations for key
network structures.

B. LIFE PREDICTION UNDER DIFFERENT TRAINING
STRATEGIES
This experiment further explores the impact of various
training strategies on IGBT RUL prediction, specifically
comparing enhanced Teacher Forcing strategies (Scheduled
Sampling and Professor Forcing) against traditional Teacher
Forcing. The experimental results summarized in Table 2
systematically evaluate the influence of each training strategy
on prediction accuracy and stability.

The traditional Teacher Forcing strategy accelerates model
convergence by consistently feeding the model the true pre-
vious outputs as inputs for the subsequent step. However,
this method often introduces exposure bias, where prediction
errors significantly amplify once the model uses its own pre-
viously predicted outputs during inference. The ratio α within
Teacher Forcing controls the probability of employing actual
data versus model predictions during training. Specifically,
when α = 1.0, only true values are used, whereas for α < 1.0,
the model’s own predictions are utilized with a probability of
1−α. Reducing α encourages the model to gradually learn
to correct its own errors but may also increase difficulty in
convergence due to early exposure to prediction noise.

Scheduled Sampling addresses this issue by introducing a
curriculum learning approach. Initially, training uses a high
α value to leverage true data significantly. As training pro-
gresses, α is progressively decreased, transitioning the model
smoothly towards usingmore autoregressive predictions, thus
preparing it better for the closed-loop environment encoun-
tered during inference [22].

Professor Forcing integrates adversarial learning to align
the distribution of hidden states between Teacher Forcing
and free-running modes. Besides maximizing the likelihood
of the next-step prediction, this method introduces a dis-
criminator during training, forcing the network to exhibit
indistinguishable internal dynamics between the two oper-
ational modes, thus fundamentally eliminating the disparity
between training and inference behaviors [23].

Table 2 presents performance metrics (MSE and MAE)
across different training strategies, with optimal results high-
lighted in bold and second-best results underlined. The results
indicate that setting the Teacher Forcing ratio to 0.2 yields the
best performance, achieving an MSE of 0.0026. This result
represents a 38.1% reduction compared to the second-best
performance (Teacher Forcing ratio of 0.6, MSE =0.0042).
Additionally, the corresponding MAE at a ratio of 0.2 is
0.045, a 16.7% improvement over the next-best MAE, con-
firming that lower Teacher Forcing ratios effectively help the
model learn long-term dependencies and mitigate cumulative
error.

Further analysis reveals that the Teacher Forcing strat-
egy significantly outperforms Curriculum Learning (MSE =

0.0058) and Scheduled Sampling (MSE = 0.0084). Specifi-
cally, the MSE improvement is 33.99% compared to Curricu-
lum Learning and 69.05% compared to Scheduled Sampling.
Although the MAE improvement against Curriculum Learn-
ing (MAE = 0.0558) is modest at 5.50%, it significantly
outperforms Scheduled Sampling (MAE = 0.0826), high-
lighting superior error control capabilities.

It is noteworthy that Curriculum Learning, despite intro-
ducing progressive complexity during training, falls short
of Teacher Forcing in error control. Scheduled Sampling
exhibits notably poorer performance, particularly with ele-
vated MAE values, reflecting its limited effectiveness in
accurately predicting drastic changes in degradation curves.

In summary, the Teacher Forcing strategy not only achieves
optimal error metrics but also demonstrates considerable
advantages in prediction stability and generalization capa-
bility. Given its superior performance in capturing key
degradation characteristics of IGBTs and enhancing RUL
prediction accuracy, this study adopts Teacher Forcing as the
training strategy to meet the rigorous precision and stability
requirements of practical engineering health-state prediction
applications.

TABLE 2. Scores for each model (Optimal results are bolded; suboptimal
ones are underlined).

C. COMPARATIVE EXPERIMENTS
In this study, 50% of the available historical data was selected
as the training dataset, with the trained model subsequently
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applied to predict trends in future samples. Besides the
proposed GATE model, the study also included a GATE
model without the frequency-domain branch, a Bidirectional
Gated Recurrent Unit (Bi-GRU), a Transformer model, and a
physics-based model as comparison methods to comprehen-
sively evaluate their performances on time-series prediction
tasks.

The GRU model effectively handles long-sequence mod-
eling tasks by dynamically selecting and retaining crucial
information via its gating mechanism. The Bi-GRU model
enhances feature extraction by simultaneously capturing
forward and backward sequence features, integrating bidirec-
tional hidden states to provide a more comprehensive under-
standing of contextual information within the sequence [34].
The Transformer model, characterized by its self-attention
mechanism, is capable of modeling dependencies among
arbitrary positions within a sequence. It features excellent
parallel computation capabilities and scalability, and has been
widely applied to tasks such as time-series prediction, classi-
fication, and anomaly detection [35].

Additionally, to characterize the degradation trend of the
conduction voltage drop of power devices over their usage
cycles, this study introduces the following physically inspired
exponential growth model [36], [37]:

VCE (N ) = V0 + 1Vmax ·

(
1 − e−λN γ

)
(17)

In the equation: VCE(N ) is the normalized conduction voltage
drop at cycle N ;V0 represents the reference initial con-
duction voltage, corresponding to the device’s early-state
voltage; 1Vmax is the maximum voltage drift amplitude dur-
ing degradation; λ denotes the degradation rate parameter
controlling the speed; γ is the nonlinear modulation factor
that adjusts the curvature of degradation; and N is the opera-
tional cycle number.

This model integrates power-law growth with exponential
saturation characteristics, effectively fitting the degradation
trajectories of power devices such as IGBTs under thermo-
mechanical stress. It is broadly applicable in tasks such as
device lifetime evaluation, failure prediction, and health-state
modeling.

In the IGBTRUL prediction task, the GATEmodel demon-
strates superior performance across all evaluation metrics
compared to other comparative models, indicating excep-
tional predictive accuracy and robustness. As shown in the
table, the MSE of the GATE model is 0.0026, representing a
reduction of 38.1% relative to the second-best model, GATE
(no freq), which has an MSE of 0.0042. Similarly, the MAE
is 0.045, which is 19.6% lower than the 0.056 MAE of GATE
(no freq). These results clearly demonstrate that incorpo-
rating frequency-domain information while maintaining the
original GRU structure significantly enhances overall model
performance.

The prediction curves illustrated in Figure 6 further con-
firm the validity of these metrics. The GATE model (green
curve) closely aligns with the true measurement curve (blue)

throughout the entire prediction interval. Particularly during
the initial stages of fault evolution, it accurately captures
the onset of voltage increases. In contrast, the GRU model
(orange) shows delayed responses initially, while Bi-GRU
(brown) and Transformer (pink) models exhibit varying
degrees of deviation, indicating relatively weaker sensitivity
to sequential variations.

During non-stationary phases such as voltage oscil-
lation intervals, the GATE model demonstrates superior
stability and noise reduction capability. Its predictions
remain smooth and continuous, resisting significant fluctu-
ations from minor disturbances. Conversely, the Transformer
model frequently exhibits abrupt jumps and discontinu-
ities, undermining its reliability. This advantage is attributed
to the frequency-domain branch integrated into the GATE
model, enabling it to effectively identify and suppress
high-frequency noise while enhancing sensitivity to charac-
teristic variations.

FIGURE 6. Comparison chart of model predictions.

TABLE 3. Scores for each model (Optimal results are bolded; suboptimal
ones are underlined).

Furthermore, the GATE model excels near critical points
of arc faults, accurately predicting when voltage values
approach preset thresholds and proactively responding, thus
showcasing robust safety warning capabilities. The Trans-
former model, on the other hand, exhibits instability around
these critical points, with substantial deviations in its pre-
dictions, rendering it ineffective as a reliable reference for
decision-making.

Overall, compared to conventional GRU, Bi-GRU, and
Transformer models, the GATE model not only excels in
global fitting accuracy but also significantly improves per-
formance in key aspects such as critical point response, trend
capture, noise robustness, and early-warning capabilities.
The inclusion of frequency-domain information facilitates
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FIGURE 7. Visualization results for different input proportions.

multidimensional feature fusion, particularly suitable for
RUL prediction tasks involving electronic devices like IGBTs
characterized by complex degradation patterns, demon-
strating substantial practical engineering applicability and
broader potential for deployment.

D. IMPACT OF DIFFERENT INPUT PROPORTIONS ON
PREDICTION
To simulate realistic scenarios where initial historical data
availability varies in practical applications, this study eval-
uated the predictive performance of the GATE model using
temperature-compensated data under different proportions of

known historical data. Figure 7 and Table 2 illustrate the
impact of varying initial data proportions (start_percent) on
prediction outcomes. Experimental results indicate that when
the initial data proportion is low (e.g., 10% or 20%), the
model can only learn limited degradation characteristics in
the early stages, failing to accurately capture significant fluc-
tuations and trends at later stages, thus resulting in notable
discrepancies between predictions and actual degradation tra-
jectories.

As the proportion of initial historical data progressively
increased (from 10% to 50%), the model’s capability to
recognize key patterns in the IGBT degradation process
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significantly improved, particularly in accurately responding
to turning points in degradation trends and high-frequency
oscillation nodes. When the input data proportion reached
30% or higher, the GATE model effectively leveraged richer
historical information, enhancing its ability to fit degradation
trends more accurately. Consequently, the predicted curves
closely aligned with the actual data, exhibiting greater stabil-
ity and sensitivity.

Figure 7 further validates the model’s performance across
different degradation stages, demonstrating that the GATE
model not only effectively models the degradation trajectory
but also maintains high prediction accuracy and robust-
ness amidst high-amplitude and high-frequency dynamic
changes. These findings highlight its practical value and
adaptive flexibility in applications such as power elec-
tronics device health assessment and remaining useful life
prediction.

E. MODEL PERFORMANCE EVALUATION
To evaluate the runtime efficiency and resource consumption
of the proposed GRUmodel incorporating frequency-domain
features in practical deployment scenarios, this study con-
ducted a performance analysis during the inference phase.
The experiments were carried out on an NVIDIA GPU-based
Linux system platform, utilizing single-sample forward infer-
ence. The results indicate that the model achieves an average
inference time of 0.8783 milliseconds and a peak GPU mem-
ory usage of approximately 15.25 MB, reflecting minimal
resource overhead and suitability for online deployment.

The model structure is compact, consisting only of a
single-layer GRU and a shallow fully connected network,
with moderate computational complexity enhanced by low-
dimensional FFT-derived frequency-domain features. Given
its uniform input dimensions and independence from com-
plex graph structures, the model also demonstrates strong
portability to CPU or low-power embedded GPUs (such as
Jetson Nano or NVIDIAOrin Nano). Moreover, the inference
time is maintained below 1 ms, meeting real-time require-
ments typical of power systems and intelligent monitoring
systems.

Future work can further compress the model size through
quantization (e.g., INT8 inference) or pruning techniques,
enabling deployment under more stringent edge comput-
ing conditions. Additionally, migration experiments targeting
hardware platforms such as FPGAs and DSPs could be con-
ducted to enhance the flexibility and scalability of the model
for industrial applications.

V. CONCLUSION AND FUTURE WORK
This research proposes aGATEmodel integrating time-domain
and frequency-domain features to jointly model key degra-
dation characteristics during IGBT aging, aiming to predict
the RUL of devices. Unlike traditional neural network
approaches reliant solely on time-domain features, the pro-
posed GATE model extracts spectral features from V ce(on)
signals using FFT and integrates these with GRU-derived

temporal features. This structure not only enhances accu-
racy in capturing degradation trends but also provides
frequency-domain priors useful for constructing hybrid mod-
els that integrate physical mechanisms, aiding in uncovering
intrinsic degradation mechanisms under complex operational
conditions.

Comparative experiments conducted on publicly available
accelerated aging datasets demonstrate that the proposed
method achieves superior performance metrics, including
MSE and MAE, outperforming traditional temporal models.
The notable advantages of incorporating Teacher Forcing
mechanisms and frequency-domain features validate the
effectiveness of the time-frequency feature integration strat-
egy in enhancing model performance and early degradation
sensitivity.

Potential applications of the GATE model include rapid
screening prior to device shipment and aging assessment tests
at the factory level, enabling accurate life-cycle predictions
from early-stage data without the necessity of full lifecy-
cle accelerated testing, thereby significantly reducing testing
time and costs. However, this method still has limitations.
Primarily, the dataset utilized involves idealized constant
duty-cycle power cycling conditions, not fully covering the
complex operating modes prevalent in actual industrial sys-
tems, such as dynamic load disturbances in motor drives
and frequent startups in wind-power inverters. Thus, the
current model’s robustness and generalization capabilities
under complex application scenarios remain insufficiently
validated.

Additionally, the GATE model relies on historical V ce(on)
data for training and prediction, which in practical deploy-
ment may face constraints from data acquisition resolution,
measurement noise, and sample scarcity, posing challenges
to system stability. Therefore, future research will focus on
three main expansion areas: (1) introducing domain-adaptive
transfer learning techniques, such as adversarial feature align-
ment and maximum mean discrepancy (MMD) constraints,
to address data distribution shifts between experimental
and real industrial domains; (2) employing synthetic degra-
dation data generation methods based on finite element
simulations and electrothermal modeling to construct train-
ing sample pools under multi-condition and multi-device
scenarios, thus improving model adaptability; and (3) col-
laborating with industrial partners to conduct deployment
validation in real application environments, investigating the
practicality and maintainability of the GATE model in typ-
ical scenarios such as industrial inverters and motor drive
systems.

In summary, although GATE demonstrates excellent per-
formance under controlled experimental conditions, sys-
tematic resolution of generalization, interpretability, and
deployment complexity issues is required for engineering
promotion. Future developments integrating multi-source
information fusion and cross-domain transfer modeling hold
promise for enhancing its application value in intelligent
manufacturing and power electronics health management.
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