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Abstract—Due to the uneven distribution of ground observa-
tories, the effective data coverage of global ionospheric TEC is
below 50%. The International GNSS Service provides a global
ionosphere map based on a single shell assumption, derived from
the ground-based observations. This serves as the main reference
for global ionosphere morphology study. In this work, a new GAN
model, wavelet transform and merging generative adversarial net-
work (WTM-GAN) is proposed, designed for spatial completion
of ionospheric TEC data with observation coverage deficiency.
WTM-GAN is designed with an encoder–decoder architecture,
using a Haar wavelet filter and a multilayer decoder employing seg-
mentation and merging techniques. The performance is rigorously
tested, achieving root-mean-square errors of 2.117 TECu and 0.908
TECu during both high and low solar activity years, respectively,
and it obtains improvement of 0.945 TECu and 0.739 TECu over
the comparison models. It also attained a peak signal-to-noise ratio
over 32 dB, outperforming all comparisons. During geomagnetic
storms, WTM-GAN effectively captures features in the equatorial
ionization anomaly region, demonstrating enhanced spatial obser-
vation augmentation accuracy and stability. This framework offers
a robust solution for TEC data completion, improving the reliability
of ionospheric studies.

Index Terms—Generative adversarial network (GAN), ionosph-
ere, spatial inpainting, total electron content (TEC).

I. INTRODUCTION

THE ionosphere serves as an essential part of the Earth’s
atmosphere, playing a critical role as a medium for trans-

ionosphere radio propagation. It consists of the partially ion-
ized neutral atmosphere, which is influenced by solar radiation
and geomagnetic modulation [1], [2], [3], [4], [5]. The radio
signals passing through the ionosphere suffer from reflection
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and refraction, affecting airspace communication and satellite
navigations [6], [7], [8], [9], [10], [11].

The correction of ionospheric delay requires accurate calcu-
lation for the total electron content (TEC) in the ionosphere.
Since 1998, the Massachusetts Institute of Technology (MIT)
has been collecting ground-based global navigation satellite
system (GNSS) observations from over 6000 stations and then
calculating TEC data, providing the MIT-TEC product for the
study of the ionosphere [12], [13]. The MIT-TEC data is one
of the most popularly applied TEC data derived from ground
observations, but it does not provide global coverage due to
limitation of ground deployed stations [14]. In particular, there
is a significant lack of data in regions such as oceans and polar
areas. The available data accounts for approximately 30%–48%,
and the data gaps further hinder the study of the global mor-
phology and variations in the ionosphere [15]. To address the
problem, it is necessary to generate finer global ionosphere TEC
morphology in spatio-temporal resolutions.

The International GNSS Service (IGS) currently provides
global ionospheric map (GIM) products by the IGS ionosphere
associate analysis centers. The most commonly used GIM prod-
uct is in two hours interval, with a spatial resolution of 2.5◦ in
latitude 5◦ in longitude. Since 2000, IGS-GIM products maintain
a continuous temporal data storage for over twenty years, serving
as a solid data source for the global ionosphere investigations. A
great amount of ionosphere studies, including the geomagnetic
storm response, the equatorial ionization anomaly features as
well as the spatio-temporal variation in different scales are based
on the GIM products [16], [17], [18], [19], [20], [21], [22], [23].

The recent development of deep learning techniques has
shed light on the spatio-temporal estimation and prediction in
ionosphere TEC [22], [24], [25], [26], [27], [28], [29], [30], [31].
For instance, Chen et al. [32] developed a regularized-DCGAN
(R-DCGAN) network. Ji et al. [33] introduced the Deep-IRI
model with conditional GANs. It successfully reconstructed
ionospheric peak structures and improved the accuracy of the
IRI-TEC in the EIA region. It incorporated existing IGS-GIM
products as additional references to generate ionospheric peak
features under various time and geomagnetic conditions. Sub-
sequently, Pan et al. [34] proposed the DCGAN-PB framework,
which employed Poisson blending to make further smooth-
ness for image fusion. This model automatically completed
global TEC maps and accurately restored missing data while
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Fig. 1. Original data and postprocessing of MIT-TEC and IGS-GIM (Take 00:00UT on 1 January 2022, as an example). (a): IGS-GIM (5.6°×2.8°) with nearest
neighbor interpolation; (b): Raw MIT-TEC(1°×1°); (c): Masked IGS-GIM(5.6°×2.8°); (d): Down-sampled MIT-TEC(5.6°×2.8°)

preserving image continuity. Chen et al. [35] presented a global
and local GAN network based on DCGAN, enhancing the ability
to complete arbitrary regions in the image and it achieved
good performance even under geomagnetic storms. Later, Pan
et al. [36] constructed the SNP-GAN framework, which uti-
lizes a Patch-GAN architecture along with contextual attention
and discriminator spectral normalization constraints. SNP-GAN
outperforms the previous DCGAN-PB in terms of reconstruc-
tion accuracy, recovery rate of ionospheric peak structures, and
computational efficiency. It also effectively made completion
for large and medium ionosphere structures that were missing
in original TEC maps. Yang et al. [37] applied the pix2pixhd
model for completing TEC maps, demonstrating a certain level
of reliability in completing large-scale missing regions and gen-
erating ionospheric peak structures. Its performance was slightly
inferior near the edges of the ionospheric peak region.

Moreover, the RFGAN framework was proposed, which was a
hybrid deep learning approach combining the dual discriminator
conditional GAN (DDcGAN) and Deepfill v2 for free-form im-
age inpainting [38]. It effectively integrated MIT-TEC data, IGS
final products, and TEC observations from altimetery satellites,
achieving high accuracy performance in both continental and
oceanic regions for all geomagnetic conditions.

Those numerous GAN-based framework have been utilized
for TEC in-painting tasks. many of these methods employ cus-
tomized mask shapes and ratios for the input data, restricting the
evaluation for inpainting on the original MIT-TEC data.

To address the problem, this work proposed a relatively simple
encoder–decoder structure, with only a few hidden layers to
achieve better performance and efficient computational costs.
The rest of this article is organized as follows. In Section II,
data source and methods are introduced. In Section III, the
experimental results are described and compared. In Section IV,
the discussion is made. Finally, Section V concludes this article.

II. DATA AND METHODS

A. Data Sources

The training data used in this work is the IGS-GIM final
products, obtained from the Crustal Dynamics Data and In-
formation System (CDDIS) of the National Aeronautics and
Space Administration (NASA) archive.1 This data have a spatial
resolution of 2.5◦ in latitude and 5◦ in longitude, with a temporal
resolution of 2 hours. To ensure compatibility with the proposed
model, nearest neighbor interpolation is employed to resize the
data dimensions to 64 × 64, facilitating processing within the
proposed GAN framework, as illustrated in Fig. 1(a). To conduct
the global TEC inpainting, the MIT-TEC is selected as the source
data, which can be downloaded from the website.2 The original
size of the MIT-TEC data is 180 × 360, as shown in Fig. 1(b).
It has a resolution of 1◦ in both longitude and latitude and a

1[Online]. Available: ftp://gdc.cddis.eosdis.nasa.gov
2[Online]. Available: http://cedar.openmadrigal.org/

ftp://gdc.cddis.eosdis.nasa.gov
http://cedar.openmadrigal.org/
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Fig. 2. Generator and discriminator structure of the WTM-GAN model.

temporal interval of 5 min. Despite the high spatial resolution,
the spatial coverage is relatively low.

For the in-painting task of MIT-TEC, there are two ap-
proaches. The first method, as demonstrated in Fig. 1(c), involves
overlaying the MIT mask on IGS-GIM. Initially, the masked
IGS-GIM was selected as input for comparison baseline across
different GAN-based frameworks. Subsequently, the MIT-TEC
image was processed with partially masked ground-truth values,
which were then used for performance evaluation. The alterna-
tive approach requires direct alignment between MIT-TEC and
IGS-GIM, followed by a down-sampling scheme applied to the
original MIT-TEC data, resulting in 64 × 64 grid sizes shown
in Fig. 1(d). This down-sampling yields a spatial resolution of
5.625◦ in latitude and 2.8125◦ in longitude, while maintaining
the original temporal interval of 2 hours. The scheme achieves
effective data coverage exceeding 30% for test data, specifically
34.3% in 2014 and 36.1% in 2017 as selected in this work.

For both two ways, the missing regions are indicated by pixel
values of zero. It is noted that the two types of data are both
normalized in the range of [-1, 1] before the training and testing
process.

B. Proposed Framework

The proposed GAN-based framework is composed of
encoder–decoder architectures. For the encoder part, a Haar
wavelet filter was installed ahead, followed by a trans-
formed down-sampling layers. For the decoder part, a novel
segmentation-transformation-merging architecture was pro-
posed, with some parts of module modified from the original
AOT-GAN [26]. The proposed wavelet transform and merg-
ing generative adversarial network (WTM-GAN), as shown in
Fig. 2, has strongly increased the performance of MIT-TEC
completion under low resolution situations. To accomplish the
proposed in-painting scheme, the following improvements were
made.

1) Gated Convolution: Gated convolution was used in the
encoder part, instead of the traditional convolution. It is con-
sidered as an enhancement to partial convolutions to address the

issue of mask updating [27]. A learnable soft mask updating rule
is utilized, expressed as follows:

Gating y,x =
∑∑

Wg · I (1)

Feature y,x =
∑∑

Wf · I (2)

Oy,x = φ ( Feature y,x)� σ
(

Gating y,x

)
(3)

where σ is the sigmoid activation function and φ is set as the
ELU activation function in our experiment. Gated convolution
introduces a learnable parameter matrix to distinguish between
valid and invalid pixels, and thus has the ability to learn dynamic
feature selection for each channel and spatial position, making
it very effective in image inpainting tasks.

2) Haar Wavelet Transform Down-Sampling (HWD): The
Haar wavelet transform is utilized to down-sample the TEC
feature maps through a transform-merging approach. Initially,
it separates the TEC image into low-frequency and high-
frequency signals. From the high-frequency signal, it extracts
high-frequency component information in different directions
to construct new feature maps [28]. These newly constructed
feature maps are then concatenated with the low-frequency sig-
nal. Finally, convolution is employed for aggregation, ensuring
down-sampling while preserving the maximum possible amount
of feature map information.

3) Aggregated Contextual Transformation Block (AOT
Block): AOT Block employs the segmentation-transformation-
merging strategy. Unlike the original paper, where the AOT
Blocks are placed after the encoder, we have positioned AOT
Blocks with different convolution expansion rates before each
upsampling convolution. This enables us to leverage diverse
short, medium, and long image context information multiple
times across various layers of the decoder for image reconstruc-
tion. AOT Block is derived from residual connections, wherein
for an inputx, the network’s layers can map it toF (x). By adding
the output x from the previous layer to the output F (x) of the
current layer, we obtain H(x), resulting in a residual block. The
mathematical expression for this process is as follows:

H(x) = F (x) + x. (4)
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Therefore, the network does not need to learn the identity
mapping from x to H(x), it can directly learn the changing part
of this identity mapping F (x) = H(x)− x. AOT Block also
uses a gating approach on this basis

H(X) = g ∗ F (x) + (1− g) ∗ x (5)

g = σ

(
k ∗

(
2 ∗ (G(x)−mean(G(x)))

std(G(x))
− 1

))
(6)

G(x) = Gate(x). (7)

To obtain the output x, it undergoes two convolutions: one
part of the convolution yields G(x) as described in (7), while
the other part generates F (x) as depicted in (5). The resulting
G(x) is normalized, and the weight g is learned automatically
through the sigmoid function. This weight is applied to map
F (x), while the remaining part of 1− g is applied to the input
x. This connection scheme ensures that the convolution results
depend as much as possible on valid pixels, thereby reducing
the influence of invalid pixels on the convolution outcomes.
Consequently, it preserves the features of the valid pixel region
and the learned residual features for aggregation.

4) Loss Functions: Three common loss functions were em-
ployed in image inpainting tasks: L1 Loss, Perceptual Loss,
and Adversarial Loss, for loss computation. Each of these loss
functions plays a crucial role in the optimization process of our
model. L1 Loss primarily drives the pixel values of the image to
closely align with the ground truth. Perceptual Loss enhances
the local texture details of the image, while Adversarial Loss
determines the stability of model training. The definitions of the
three loss functions are as follows. L1 Loss is defined as

L1 Loss =
1

n

n∑
i=1

|yi − f (xi)| . (8)

In the TEC inpainting task, there are 64 × 64 total 4096 grid
points. Perceptual loss is defined as

Perceptual loss =
1

N

N∑
i=1

(Fi(x)− Fi(y))
2 (9)

where Fi(x), Fi(y) represents the layer i feature graph in the
pretrained VGG19 network, and N represents the layer number
of the feature graph. The Adversarial loss of the generator is

LG
a d v = Ez∼Pz

[log(1−D(G(z))]. (10)

The Adversarial loss of the discriminator is

LD
a d v=Ex∼Pdata (x)[logD(x)]+Ez∼Pz

(z)[log(1−D(G(z))].
(11)

The above three loss functions are combined into the final loss
function, that is

Loss = λ1 ∗ L1 Loss + λ2 ∗ Perceptual Loss + λ3 ∗ LG
adv

(12)
where λ1, λ2, λ3 is the weight of each loss.

C. Evaluation Metrics

Three metrics are adopted to evaluate the performance of
our proposed framework: root mean square error (RMSE),
missing region RMSE (M-RMSE), and peak signal-to-noise
ratio (PSNR). RMSE evaluates the performance in accuracy by
measuring the average magnitude of the differences between
completed values and ground truth. Its mathematical formula-
tion is defined as

R M S E =

√∑n
i=1 (xo b s,i − xmodel,i)

2

n
. (13)

In this experiment, the variable n represents the total number
of TEC grid points. We denote xobs,i as the predicted value at
the ith grid point and xmodel,i as the corresponding ground truth
value. Equation (13) represents the comprehensive measure of
the discrepancy between the estimated values and the ground
truth values for all TEC grid points worldwide at a specific time.
Considering that the observational data on land are relatively
complete, the missing pixels primarily occur in regions such as
oceans and polar areas. Therefore, we specifically calculate the
RMSE for the missing region to obtain the evaluation metric
M-RMSE. This metric has better capability to evaluate the
inpainting accuracy for unknown regions, as described in (15)

(xobs−m,j , xmodel−m,j) = select (xobs,i, xmodel,i)i∈(1−mask)

(14)

M −RMSE =

√∑k
j=1 (xobs−m,j − xmodel−m,j)

2

k
(15)

PSNR is used to assess the quality of inpainting and is closely
associated with the mean square error (MSE). It quantifies the
ratio between the maximum possible power of a signal and the
power of the noise presented in the reconstructed image. The
calculation formula for PSNR is given as follows:

M S E =
1

mn

m−1∑
i=0

n−1∑
j=0

[I(i, j)−K(i, j)]2 (16)

P S N R = 10 · log10
(
MAX2

I

MSE

)
(17)

where I is the reference image IGS-GIM, K is the inpainting
image, MAX2

I is the maximum pixel value of all points in the
image, the unit of PSNR is dB, the higher the PSNR value, the
better the reconstruction quality of the image.

III. EXPERIMENTS AND RESULTS

A. Experimental Settings

For this experiment, the MIT-TEC and IGS-GIM datasets
spanning from 2018 to 2022 were selected as training data.
The validation set comprises data from 2015 and 2016, while
the test set encompasses data from 2014 (high solar activity
year) and 2017 (low solar activity year). The training pro-
cess was conducted over 400 epochs, with a single NVIDIA
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TABLE I
ERROR STATISTICS OF THE MODEL COMPLETING DIFFERENT REGIONS IN DIFFERENT TIME PERIODS

Fig. 3. Dst index and Kp index during the two geomagnetic storms. (a) Storm A in 2014 and (b) storm B in 2017.

Tesla V100 GPU. In average, a complete training session took
approximately 8 hours. To ensure optimal performance, the
model hyperparameters were extensively tuned.

In the proposed framework, both the generator and discrimi-
nator were optimized using the Adam optimizer, with a learning
rate of 1e-4, beta1=0.5, and beta2=0.999. The weights assigned
to the loss functions were set as follows: λ1 = 1, λ2 = 0.1, λ3 =
0.05. The batch size was set to 64. Within each AOT-Block, the
dilation rates of the convolutional layers in the different branches
were set to 1, 2, 4, and 8, respectively. The above hyperparam-
eters are finally determined by the optimization method of grid
search.

B. Performance of Models

The WTM-GAN was compared with several representative
generative frameworks, such as deep convolutional generative

adversarial network (DCGAN), gated convolutional autoen-
coder (G-CAE), and spectral normalization patch-based gener-
ative adversarial network (SNP-GAN). The comparison results
are shown in Table I.

To evaluate the generalization ability of our model WTM-
GAN, RMSE, M-RMSE, and PSNR for different regions were
computed in the test dataset. Specifically, the global regions were
separated into three parts for evaluation, low-latitude (−30◦ to
30◦), midlatitude (−60◦ to −30◦ and 30◦ to 60◦), and high-
latitude (−90◦ to −60◦ and 60◦ to 90◦). Both the yearly and the
geomagnetic disturbance periods test datasets were considered
for experiments.

The Kp and Dst indices [39] were utilized to identify periods
of geomagnetic storms. As illustrated in Fig. 3, the dashed blue
line in panels (a) and (b) represents the Dst index, while the or-
ange bar denotes the Kp index. Two representative geomagnetic



YANG et al.: NEW WAVELET TRANSFORM AND MERGING GENERATIVE ADVERSARIAL NETWORK (WTM-GAN) MODEL 20535

storms were selected for analysis: Storm A, spanning 18–22
February 2014, and Storm B, occurring from 7 to 10 Septem-
ber 2017. Both storms exhibited a minimum Dst index below
−100 nT, classified as strong storms.

The results presented in Table I clearly indicate that the WTM-
GAN framework outperforms the alternative generative models
in terms of inpainting errors for the same test dataset. For the
entire year of 2014, the solar maximum year in SC24, the RMSE
and PSNR values all achieved lowest level in the statistical
results, which are recorded as 2.117 TECu and 32.309 dB,
respectively. Similarly, for the entire year of 2017, the RMSE
and PSNR values are 0.908 TECu and 32.931 dB, respectively.
Notably, these values are significantly lower than those com-
puted by DCGAN, G-CAE, and SNP-GAN, highlighting the
superior performance of the proposed framework. Regarding
the M-RMSE metric, which specifically focuses on the error in
the missing regions, it is noticed that models can only rely on
limited information from the surrounding pixels since there is no
ground truth mapping available for these regions. Consequently,
the error tends to increase to a certain extent. In regions with
larger missing areas and notable TEC variations, such as the EIA
region, the error tends to further escalate. However, owing to the
distinctive network architecture of WTM-GAN, the model ex-
hibits exceptional capability in extracting valuable information
from the valid regions of the image and inferring the missing
regions more accurately. Thus, the M-RMSE values for 2014
and 2017 are only 2.326 TECu and 1.011 TECu, respectively.
These results manifest the lowest test errors among the compared
models, with an increase of merely 0.209 TECu and 0.103 TECu,
respectively.

During the two geomagnetic storms, the performance of
WTM-GAN remains superior. In Storm A, the test errors in
the low-latitude, midlatitude, high-latitude, and global average
regions are slightly higher compared to the entire year of 2014.
However, WTM-GAN still achieves remarkable performance,
with a global RMSE, M-RMSE, and PSNR of 2.315 TECu,
2.537 TECu, and 32.217 dB, respectively. These values are
significantly lower than those obtained by the other models.
Similarly, in Storm B, WTM-GAN exhibits a global RMSE,
M-RMSE, and PSNR of 1.196 TECu, 1.343 TECu, and
32.963 dB, respectively, indicating a slight increase in errors
compared to the entire year. For different latitudes, it is observed
that the low-latitude region experiences larger errors compared
to the midlatitude and high-latitude regions. This discrepancy
can primarily be attributed to the presence of the equatorial ion-
ization anomaly, characterized by higher TEC values and more
significant TEC variations. This region is prone to abnormal
TEC values that exceed the normal range. Consequently, when
completing in the vicinity of this region, the model tends to
underestimate the TEC variation features, only aligning it with
the normal TEC features. In contrast, the midlatitude and high-
latitude regions generally exhibit lower TEC values and normal
cyclic variations, with less response to geomagnetic storms.
Therefore, completing in these regions can follow their expected
trends. Additionally, it is important to consider the nonuniform
distribution of the MIT mask across different latitudes and
longitudes, reflecting the distribution pattern of stations located

on land and certain islands. The low-latitude region has less
reference data available, while the midlatitude regions, with
more land coverage, possess a greater number of reference data
and more reliable information from the adjacent pixels. As a
result, the completing reliability in these regions is higher.

Fig. 4 presents the inpainting results of multiple frameworks at
four specific time points during a geomagnetic quiet period from
00:00 to 06:00 UT on 1 January 2017. The first column depicts
the masked GIM data requiring inpainting, while the last column
displays IGS-GIM. These inpainting results demonstrate that
WTM-GAN consistently achieves the highest level of inpainting
accuracy and preserves image continuity, closely resembling the
inpainting process of IGS-GIM. Notably, WTM-GAN exhibits
minimal errors in reconstructing the overall TEC contours and
capturing fine structures in regions that exhibit extreme values.
To provide a more intuitive evaluation of the inpainting accuracy
and the challenges encountered by each model in different
regions, the errors of individual pixels within the TEC maps were
further analyzed throughout the entire test datasets or during the
periods of geomagnetic storms.

During periods of geomagnetic storms characterized by sig-
nificant TEC variations, the inpainting results of each framework
was presented at the stages of storm occurrence in Figs. 5 and
6. Fig. 5 showcases the results during the occurrence of storm A
on 18 February 2014, from 20:00 to 22:00 UT, while Fig. 6
displays the results during the occurrence of storm B on 8
September 2017, from 14:00 to 16:00 UT. the masked GIM
data were input into each framework to obtain the correspond-
ing inpainting results: these four frameworks considered were
DCGAN, G-CAE, SNPGAN, and WTM-GAN. Results are then
compared with the IGS-GIM ground truth data. The inpainting
results clearly demonstrate that WTM-GAN excels in recovering
a more comprehensive TEC structure compared to the other
models, particularly in capturing the equatorial ionospheric
dual-peak structure during the geomagnetic storms. SNP-GAN
and G-CAE also exhibit relatively good performance during
storm A and storm B, respectively. For the Global RMSE, it
consistently reveals that WTM-GAN achieves the lowest RMSE
values during the periods of geomagnetic storms. Specifically,
at 20:00 and 22:00 UT, the RMSE values are computed as 2.726
TECu and 2.443 TECu, respectively, slightly higher than the
annual values of 2.117 TECu in 2014. During storm B, at 14:00
and 16:00 UT, the RMSE values are 1.409 TECu and 1.543
TECu, respectively, slightly higher than the annual values of
0.908 TECu in 2017. Notably, the increase in RMSE remains
within 0.65 TECu, demonstrating the consistent and reliable
inpainting capability of WTM-GAN under various geomagnetic
conditions.

Fig. 7 illustrates the global distribution of RMSE for four
effective inpainting models. Fig. 7(a), (c), (e), and (g) shows the
annual mean RMSE values for 2014, while Fig. 7(b), (d), (f),
and (h) depicts the annual mean RMSE values for 2017. Fig. 7
reveal that in 2014, the models exhibit relatively large errors. For
instance, in 7(a) and (c), DCGAN and G-CAE display a signifi-
cant portion of RMSE values around 10 TECu in the midlatitude
and low-latitude regions, as indicated by the red areas. Similarly,
in Fig. 7(e), SNP-GAN shows areas with substantial errors in the
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Fig. 4. Model inpainting results in 1 January 2017 00:00–06:00UT (Quiet period).

Fig. 5. Inpainting results during geomagnetic Storm A (18–22 February 2014).

low-latitude region. However, compared to G-CAE, SNP-GAN
successfully reduces the errors. In Fig. 7(g), WTM-GAN further
decreases the inpainting errors in the low-latitude region, with
the majority of the inpainting areas exhibiting RMSE values
below 6 TECu, and a considerable portion achieving RMSE

values below 4 TECu. In 2017, owing to lower solar activity
levels and stable TEC variations, the inpainting errors of the
models in the low-latitude region are generally reduced by
approximately 3-6 TECu compared to 2014. However, Fig. 7(d)
and 7(f) still indicates some regions with relatively large errors
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Fig. 6. Inpainting results during geomagnetic Storm B (7–10 September 2017).

Fig. 7. Global RMSE distribution of each model. (a)–(d) in 2014 and (e)–(h)
in 2017.

in the low-latitude region. In contrast, Fig. 7(h) demonstrates
the inpainting results of WTM-GAN, which consistently exhibit
low errors in a global scale, demonstrating the excellent TEC
inpainting capability during both the solar maximum and solar
descending years.

A statistical analysis of RMSE was conducted for those four
GAN-based frameworks based on the test datasets. The results
are presented in the RMSE occurrence distribution histograms
shown in Fig. 8. Fig. 8(a) and (b) shows the results for 2014 and
2017, respectively, while Fig. 8(c) and (d) displays the results
for Storm A and Storm B. The x-axis of all subplots represents
the RMSE values, while the y-axis represents the occurrence
values. Regarding the RMSE distribution, the inpainting results
of WTM-GAN consistently reveal a left-skewed distribution in
every tested time period, indicating fewer outliers. To assess
the error reduction capability of WTM-GAN, we calculated the
proportions of RMSE distributions below 5 TECu for 2014 and
Storm A, as well as the proportions below 2 TECu for 2017
and Storm B, as shown in Table II. WTM-GAN achieves a
proportion of RMSE distributions below 5 TECu of 99.12%
for 2014 and 98.46% for Storm A, which is significantly higher
compared to G-CAE and SNP-GAN. In the low solar activity
year of 2017, WTM-GAN achieves an impressive proportion of
RMSE distributions below 2 TECu of 97.90%, demonstrating its
stability in inpainting during periods of low solar activity. In the
case of Storm B, the proportion of RMSE distributions below
2 TECu slightly decreases for WTM-GAN but still reaches
94.31%.
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Fig. 8. Histogram of global RMSE frequency distribution for each model.

TABLE II
PERCENTAGE OF MODEL ERRORS WITHIN ACCEPTABLE THRESHOLDS: <5

TECU FOR 2014 AND <2 TECU FOR 2017

C. Single Point Error Statistics At Different Locations

To assess the accuracy of the models in inpainting at different
latitudes (as longitude has a lesser impact on inpainting errors
compared to latitude, it is not extensively discussed), quantitative
evaluations using RMSE and PSNR were conducted at selected
locations. In the selection, each three points in low, middle,
and high latitudes in MIT-TEC data coverage were considered,
together with each three points at the same region without
MIT-TEC data coverage.

The geographical coordinates of these selected points are
provided in Table III. The first two rows represent the chosen
points within areas covered by MIT-TEC observation data,
while the third and fourth rows represent the points in regions
where MIT-TEC data was missing. The spatial distribution of
the selected points and the statistical analysis of their RMSE

and PSNR values are presented in Fig. 9. It is noticed that for
the selected points shown in Fig. 9(c), their RMSE values are
equivalent to the M-RMSE metric defined in Section III. As
they are located in regions without MIT-TEC data coverage.
During the calculation process, taking into account the limited
grid resolution (5.625◦ in longitude and 2.8125◦ in latitude), the
selected points were assigned to the corresponding grid points
and the grid point errors were considered as the errors for those
points.

In Fig. 9(b) and (d), the subplots labeled as (I), (II), (III),
and (IV) represent the statistical results for 2014, Storm A,
2017, and Storm B, respectively. The bar charts illustrate the
RMSE values, while the line charts depict the PSNR values. The
findings demonstrate that RMSE levels within the same latitude
range are relatively consistent, displaying a pattern of slightly
larger errors at low latitudes and smaller errors at mid-to-high
latitudes. Moreover, low latitude points are more susceptible to
the impact of storms, resulting in increased errors. In contrast,
mid-to-high latitude points, especially those at high latitudes,
are less affected by storms and exhibit relatively stable errors
during storm periods. The comparative analysis of the three
frameworks reveals that WTM-GAN consistently maintains the
lowest errors across all selected points and exhibits the smallest
increment in errors during storm periods. This indicates that
WTM-GAN possesses stable inpainting capabilities even during
geomagnetic storm periods, surpassing the performance of the
G-CAE and SNP-GAN models. When the selected points are
situated in regions without MIT-TEC data coverage, there is a
slight increment in test errors. This is attributed to the fact that
the land regions in the inpainting process utilize the ground truth
as the background condition, while the missing regions need
to learn the mapping of the network. However, the proposed
framework has significantly reduced this error and preserved
the available ground truth data as much as possible, resulting in
a low overall average error level.

Finally, the daily average PSNR on the test dataset was
computed and presented in Fig. 10. Fig. 10(a) and (b) displays
the statistical outcomes for 2014 and 2017, respectively. It shows
that WTM-GAN consistently achieves the highest PSNR values
throughout the entire year on the test datasets. In both Fig. 10(a)
and (b), the PSNR values for WTM-GAN are predominantly
above 30 dB. Furthermore, when compared to SNP-GAN and
G-CAE, WTMGAN exhibits smaller fluctuations in PSNR val-
ues, indicating a more stable quality of image reconstruction.
The inpainting outcomes for the masked GIM unequivocally
demonstrate that our framework surpasses others in terms of
inpainting quality and stability.

D. Completion of MIT-TEC

In practical applications, since there already exists a
complete IGS-GIM dataset as a reference, the main purpose of
completing the Masked GIM, as mentioned earlier, is to validate
the effectiveness of GANs in inpainting. The inpainting results
serve as a reference solely for comparing the performance
of different frameworks. However, the MIT-TEC dataset,
which represents the actual observation values from land-based
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TABLE III
LATITUDE-LONGITUDE DISTRIBUTION OF SELECTED MIT-TEC MEASUREMENT POINTS: LAND LOCATIONS (TOP ROW) AND OCEAN/POLAR REGIONS

(BOTTOM ROW)

Fig. 9. Spatial distribution and error calculation results. (a) and (b) Land points and errors. (c) and (d) Ocean/polar points and errors.

Fig. 10. Daily average value of PSNR for each model (a) 2014. (b) 2017.

stations, holds greater importance as the primary reference. The
ultimate objective in this work is to effectively complete the
MIT-TEC dataset with the proposed GAN-based framework.
Having obtained a trained WTM-GAN inpainting model
for the Masked GIM inpainting task, the model mentioned in
Section III is used as a pretrained model for MIT-TEC inpainting.
It is reasonable since MIT-TEC exhibits a similar data
distribution to the Masked GIM, as shown in Fig. 11
(where zero-free distributions represent original data, while
zero-included distributions show MIT-TEC with missing values
filled as zeros). With a “pretraining and fine-tuning” learning

strategy shown in Fig. 12, the proposed model can be further
proceeded to accomplish the MIT-TEC inpainting task.

For the reference data required during the transfer learning
training, a fusion method was employed that combines MIT-
TEC with IGS-GIM. The proposed fusion method involves
incorporating the MIT-TEC values in observed areas such as
land into the IGS-GIM values in data vacancy areas such as
oceans and polar regions. The fused image is obtained through
bilateral filtering [40], which not only preserves the ground truth
of MIT-TEC but also retains some gradient information from the
MIT-TEC images.
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Fig. 11. Data distribution of MIT-TEC and Masked GIM. (a) and (b) 2014 with/without zeros. (c) and (d) 2017 with/without zeros.

Fig. 12. Flowchart of MIT-TEC Inpainting via preptraining and Fine-tuning: Model training with MIT-TEC/GIM fusion and 20% masked-point evaluation.
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Fig. 13. MIT-TEC inpainting results during quiet period and storm. (a): results at 22 UT December 30, 2017 (Quiet Period); (b): results at 12 UT February 20,
2014 (Storm A); and (c): results at 06 UT September 8, 2017 (Storm B).

The results of MIT-TEC completion using the fine-tuned
WTM-GAN model are presented in Fig. 13. It shows the in-
painting outcomes during one quiet period and two storm peri-
ods, then compares them with the MIT-TEC inpainting results
obtained from other models. The RMSE values indicated in the
title of each subplot represent the RMSE calculated specifi-
cally for the 20% hidden points, rather than the error of the
entire image. It is worth noticing that the error of the entire
image is significantly lower than the RMSE calculated by 20%
hidden points. The inpainting results clearly demonstrate that
WTM-GAN achieves the lowest inpainting errors. It is capable
of reconstructing ionospheric maps with minimal errors not only
during geomagnetic quiet periods but also during geomagnetic
storm periods. Furthermore, during geomagnetic storm peri-
ods, WTM-GAN exhibits the greatest ability to reconstruct the
equatorial dual-peak structure of the ionosphere, as depicted in
Fig. 13(b) and (c).

Similarly, the RMSE and PSNR for the entire year and geo-
magnetic storm periods were computed, as shown in Table IV.
The results indicate that WTM-GAN demonstrates superior
inpainting performance. The RMSE values for 2014 and 2017
are 7.075 TECu and 2.604 TECu, respectively, which fall within
a reasonable range. During Storm A and Storm B, the RMSE val-
ues are 5.661 TECu and 3.143 TECu, respectively. WTM-GAN
consistently achieves PSNR values greater than 30 dB in all
events, indicating a high quality of reconstruction for MIT-TEC
images. In contrast, the PSNR values of the other comparative
models all fall below 30 dB. Consequently, WTM-GAN can
be regarded as a new framework for effectively inpainting TEC
maps, with improved inpainting performance.

IV. DISCUSSION

The above experiments verified the completion capability for
WTM-GAN with data from different solar phases (2014 and
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TABLE IV
ERROR STATISTICS OF MODELS INPAINTING MIT-TEC IN DIFFERENT TIME

PERIODS

2017) and different geomagnetic storm events (the February
2014 and September 2017 geomagnetic storms) [41], [42]. The
performance of WTM-GAN was compared with three GAN
frameworks: DCGAN, G-CAE, and SNP-GAN.

TEC data completion with large vacancy ratios always poses
challenge for those traditional GAN-based frameworks, leading
to unsatisfactory performances. To solve the problem, WTM-
GAN adopts a more flexible modeling scheme, in face of some
defects hidden in traditional frameworks: for instance, to treat
all the pixels equally despite the lack of observations; to employ
a gated mask for improvement of model accuracy but with
imperfect network constructions, too simple network or too
complicated network.

With only a small number of additional hidden layers,
the proposed WTM-GAN framework rightly leverages the
computational burdens. With gated convolution and Haar
wavelet transformation, those defined effective pixels can be
easily distinguished from the mask, preserving as much feature
map information as possible. The segmentation-aggregation-
transformation strategy of the AOT Block makes sure the
decoding process with global multiscale information for
effective image reconstruction [26]. Therefore, the overall
structure of WTM-GAN has more effective feature extraction
and restoration capabilities. The experimental results show
that the TEC inpainting framework based on the WTM-GAN
model archives better completion capabilities compared to other
traditional GAN models. The WTM-GAN model has a relatively
compact structure and a shorter training time. Most importantly,
it can easily keep balance between completion accuracy and
computational complexity. In the ablation experiments, as shown
in Table V, it should be noted that “1” represents the model with
only the addition of AOT-Block, and “2” represents the model
with the addition of both AOT-Block and HWD. The table

data demonstrates the different contributions of each module in
the WTM-GAN model for better performance, indicating the
necessity for all modules in the WTM-GAN framework.

The performance stability of WTM-GAN has been validated
during different geomagnetic conditions, showing the strong ro-
bustness of this framework in completion of real MIT-TEC data.
For further validation, two types of input data are considered
in the experiments, one type is IGS-GIM with MIT mask, the
other is directly MIT-TEC. It shows that WTM-GAN achieves
the best performance in terms of multiple evaluation metrics.
This should be attributed to the fact that the construction of
WTM-GAN usefully learns the advantages and defects of other
GAN-based frameworks. The original goal of the task is to
complete the MIT-TEC to get a combined and refined global
TEC morphology.

Despite the satisfied performance of the current WTM-GAN
framework, there still remains a problem to be noticed. The
performance of this framework is influenced by the extensive
missing data of TEC in middle-to-low latitudes as well as the
unpredictable occurrence of geomagnetic storms. Although the
network in WTM-GAN has learned various TEC fluctuation
patterns during both geomagnetic quiet and disturbed periods,
it may still underestimate the unexpected patterns. In future
work, the underestimation of the network during geomagnetic
storms will be focused on, and a possible solution is to introduce
physical information with parameters, such as the solar activity
indices and geomagnetic indices, meanwhile to fully consider
the coupling mechanisms in the space physical nature of the
ionosphere [43]. With a physics-informed strategy, the problem
mentioned above may be well and even completely solved.

V. CONCLUSION

In this work, a novel ionospheric TEC spatial inpainting
framework, namely WTM-GAN, is proposed and evaluated.
WTM-GAN utilizes an encoder with gated convolutions and
Haar wavelet down-sampling, and a decoder with layer-wise
segmentation, transformation, and merging. The new framework
achieves efficient performance in image restoration.

RMSE, M-RMSE, and PSNR were used to evaluate the in-
painting results. Through comprehensive experiments, WTM-
GAN demonstrates outstanding inpainting performance in lat-
itudes regions, during both geomagnetic quiet and disturbed
periods. It consistently achieves the lowest error values among
several comparative models in multiple error metrics, and it
successfully captured the features and reproduced the equatorial
anomaly dual-peak structure in the ionosphere during geomag-
netic storms.

Moreover, the test errors for different latitude positions were
calculated with varying degrees of MIT mask coverage and
missing regions. The results consistently indicate that WTM-
GAN outperforms other comparative models. Even when in-
painting MIT-TEC images with 20% hidden points, our model
still achieves the lowest error, highlighting its stable inpainting
performance for diverse input data, showing the potential appli-
cability of WTM-GAN in more practical scenarios.
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TABLE V
ABLATION EXPERIMENT OF THE WTM-GAN MODEL
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