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Many glass products require thermoformed geometry with high precision. However, the traditional approach of
developing a thermoforming process through trials and errors can cause a large waste of time and resources and
often fails to produce successful outcomes. Hence, there is a need to develop an efficient predictive model,
replacing the costly simulations or experiments, to assist the design of precision glass thermoforming. In this
work, we report a surrogate model, based on a dimensionless back-propagation neural network (BPNN), that can
adequately predict the form errors and thus compensate for these errors in mold design using geometric features
and process parameters as inputs. Our trials with simulation and industrial data indicate that the surrogate model
can predict forming errors with adequate accuracy. Although perception errors (mold designers’ decisions) and
mold fabrication errors make the industrial training data less reliable than simulation data, our preliminary
training and testing results still achieved a reasonable consistency with industrial data, suggesting that the

surrogate models are directly implementable in the glass-manufacturing industry.

1. Introduction

Glass, here referring to various optically transparent oxides, is an
important part of modern life and sciences due to its high hardness and
chemical inertness and its ability to deflect light paths with little loss in
intensity. The early scientific giants, such as Galileo, Descartes, Newton,
and Fraunhofer, all devoted significant effort to producing glass lenses
(Gorman, 2002; Kriss, 1998). Nowadays, the continuous research in
glass is propelled by the development of novel technologies and the
advocation for sustainable development. This is represented by the
emergence of the fifth-generation (5G) wireless communication tech-
nology and the increasing applications based on artificial intelligence
(AI) technologies, demanding many more optical products than before
and their quick updating rates (Fernandez, 2019; Ishak, 2019). Today,
the most representative application of glass is probably glass covers for
smartphones and AR/VR devices. These applications are due to the good
processability of glass through thermoforming and the adequate wear
and impact resistance of glass through thermochemical strengthening.
However, as the shapes of these covers become increasingly complex,
generally requiring precisely curved profiles with varied geometrical
features and thicknesses, they pose a fundamental question to the glass
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manufacturing industry: how to manufacture these curved glass prod-
ucts accurately, efficiently, and with high yield.

The traditional methods to fabricate precision glass products are
through grinding, polishing, and lapping, which are very time-
consuming and expensive. For example, single-point diamond turning
is an effective method to fabricate complex glass profiles with high
precision, but it requires several or tens of hours to produce one piece
(Zhang & Liu, 2017). Therefore, lens-makers have switched to the pre-
cision glass molding (PGM) technology to form glass products at high
temperatures where the viscosity of glass is in the range of 107 to 108
Pa-s. Since the earlier time of this century, PGM has been adopted by
many optical manufacturers to fabricate aspherical lenses (Aono et al.,
2000; Yi & Jain, 2005) and more complex optical components (e.g.,
micro-lens arrays) (T. Zhou et al., 2017, 2022). The high precision in
PGM is achieved through the principle of error compensation, whereby
form errors in the final glass product are compensated by incorporating
error compensation in mold designs.

Designing precision molds with forming error compensation is
ubiquitously used in many forming processes. For example, in metal
forming, Gan and Wagoner (2004) proposed a method named
‘displacement adjustment’ (DA) to design the mold profiles to
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compensate for form errors caused by spring-back and compare with
another design method named ‘force descriptor’ (Karafillis & Boyce,
1992) that focuses on evaluating the traction distributions on the metal
sheet to design the mold shape. Compared to metal forming, glass
thermoforming has additional error sources caused by viscous flow at
high temperatures and shrinkage during cooling.

PGM was first attempted by the company Eastman Kodak in the
1970s (Angle et al., 1974). Without numerical simulations, the early
attempts based only on experimental trials failed because the random
errors in mold fabrication defeated the efforts in error compensation to
achieve optical precision. At the beginning of this century, several suc-
cessful cases in PGM appeared, which were due to the help of finite
element (FE) simulations where machining errors did not interfere. For
example, Jain and Yi (2005) developed a viscoelastic model of glass and
demonstrated the feasibility of simulation-based mold design to achieve
a specific lens. Through FE simulations and experiments, Wang et al.
(2009) demonstrated that the error compensation in mold design was
effective in molding high-precision aspherical glass lenses. Zhou et al.
(2009) studied the viscoelasticity behavior of optical glass during the
ultraprecision lens molding process, and they indicated that the creep
and stress relaxation could be described based on Burgers model and
Maxwell model. Yan et al. (2009) investigated the effect of temperature
distribution on PGM through thermo-mechanical FE simulations and
pointed out that incomplete heating worsened the glass-forming
performance.

Finite element (FE) simulation of a glass forming process generally
takes tens of hours even for two-dimensional problems, therefore, it is
inefficient to achieve error compensations through direct simulations,
leaving alone the uncertainties in actual material and process parame-
ters and mold machining errors when launching an FE-simulation-based
mold design in actual production. Hence, the research on PGM was
based on case studies, i.e., having a specific lens shape and exhibiting
success in making it through simulation-assisted mold design and PGM
(Jain & Yi, 2005; Wang et al., 2009). There is not a breakthrough in the
design tool for PGM that can compensate for the form errors of glass to
suit the fast update of curved glass products which happens in the cover
glass industry (unlike lenses, the product cycle of cover glass is generally
less than a year).

A fundamental requirement of a design tool for PGM is the use of a
surrogate model (SM) to predict error compensation profiles based on
the input of glass geometry and process parameters. Consequently,
machine learning (ML) approaches, which make predictions by learning
from large, well-defined datasets, are worth exploring. Recently, neural
network (NN) models have been used in a wide range of engineering
fields because of their excellent approximation performance and
adaptability to multiple variables (Xu et al., 2025). For example, Siva-
naga et al. (2017) proposed an NN model to predict the optimum process
parameters of wire-cut electric discharge machining. Choi et al. (2022)
established an NN model to predict the spring-back behavior in forming
an electric-vehicle motor component based on geometric features and
material properties. In addition, combining NN-based surrogate models
with optimization algorithms can realize automatic parametric optimi-
zation. Tsai and Luo (2017) combined NN and genetic algorithm (GA) to
determine the optimal injection molding parameters to fabricate plastic
lenses. They demonstrated that the model could help to meet the desired
forming accuracy. While NN-based surrogate models have been used in
multiple engineering fields, such as metal forming and plastic molding
for the prediction of processing parameters, the use of NN for the pre-
diction of form errors in glass molding, the key information in mold
designs to achieve precision optical products (such as lenses and glass
covers), is unseen in the open literature.

This work proposes a dimensionless backward propagation neural
network (BPNN) model to replace time-consuming FE simulations or
experiments in PGM. The model relates the inputs, i.e., geometric fea-
tures and forming parameters, to the outputs, i.e., error compensation
profiles for precision mold designs. First, we used the dataset generated

Machine Learning with Applications 21 (2025) 100701

by FE simulations to train the BPNN. Then, we test the method based on
industrial mold design data after trial-and-error cycles to meet the
required accuracy of curved cover glass products. It is shown that the
BPNN, after training, can be used to predict mold designs for molding 3D
glass bodies with a tolerance of ~ 0.2 % of the maximum glass dimen-
sion. Therefore, with the validations using both FE simulations and in-
dustrial data, it is asserted that the proposed surrogate model can
replace the costly simulations and experimental trials to quickly realize
precision thermoforming.

2. Methods
2.1. Materials selection and properties determination

We aim to deform a piece of flat glass into a target 3D shape by
molding with a set of upper and lower molds. Graphite is the mold
material commonly used in the glass manufacturing industry due to the
advantages such as low fabrication costs and nonstick to glass at high
temperatures. It is also possible to use glassy carbon (GC) as the mold
material with mechanical properties superior to graphite but difficult to
machine (Sharma, 2018). To minimize the time cost of FE simulation,
the molds in our simulations are set to be rigid so that the deformation of
them will not consume computational resources. The only property of
molds needed to be considered is thermal expansion which significantly
influences the forming results of glass products. Hence, we set a thermal
expansion to the rigid molds with the coefficients of thermal expansion
(CTEs) referring to GC or graphite, as shown in Table 1 (Burdick et al.,
1951; Markushev et al., 2017).

Two types of glass material are considered in this study. One is
aluminosilicate, represented by Corning’s gorilla glass (GG); the other is
borosilicate, referring to Schott’s BK7 glass. Table 1 (Li et al., 2020) lists
the mechanical and thermal properties of glass and mold materials used
in our simulations.

The viscoelastic behavior of glass in the time domain is described by
the Prony series (i.e., the generalized Maxwell model), which expresses
the dimensionless relaxation modulus using three parameters: g, k, and
7, representing the shear modulus ratio, bulk modulus ratio, and stress
relaxation time at a reference temperature Ty, respectively. In this study,
bulk relaxation of glass is neglected (occurring primarily in high-
pressure experiments), so k is set to be 0. The Prony series parameters
for both glass types are listed in Table 2 (Li et al., 2020), and the
mathematical model is expressed as:

gH)=1-3"" g(l—exp(—t/m) &)

The effect of temperature on viscoelasticity can be described by the
dependence of the instantaneous stress on temperature and by a reduced
time concept. The shear stress influenced by temperature is written as:

T@z%@/%@—wW®$ @
0

where the shear modulus Gy is temperature dependent and £&(s) is the
reduced time with defined as:

Table 1
The properties of glass, glassy carbon, and graphite.
Material Property Value
Glass Density (g/cm®) 2.5
Young’s Modulus (GPa) 76.7 (GG), 82 (BK7)
Poisson’s Ratio 0.275 (GG), 0.206 (BK7)
CTE (107%/ °C) 8.1 (GG), 8.3 (BK7) for T < T,
12 (GG), 18.6 (BK7) for T > T,
Molds CTE (107%/°C) 2.5 (GC), 4.5 (Graphite)
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Table 2
The parameters of the Prony series functions.
Glass g k T
GG 0.999 0 37.143
BK7 0.999 0 0.00012
t
d0 = [ /a6 ®)
[}

In Eq. (3), A(T(s)) is named shift function to reflect the temperature
effect on the time scale (i.e., temperature-time superposition (TTS)). In
this work, the Williams-Landel-Ferry (WLF) function is employed as the
shift function which is mathematically defined as:

Ci(T—Ty)

Cy + (T — To) @

log,pA = —

where T is the reference temperature at which the relaxation data are
given, and C; and C, are constants, respectively. Table 3 (Li et al., 2020)
shows the values of the parameters in the WLF function used in our
simulations.

2.2. Numerical models of glass and molds

3D glass covers have a wide variety of complex geometries, espe-
cially for VR/AR glasses. In this work, we start with the glass products
having revolved profiles, which can be simplified as axisymmetric
models in FE simulations. The outer profiles of these models are defined
by aspherical or spherical surfaces, expressed by the function:

cx?

Yo = AT ke

where c is the surface curvature, K is the conic constant, g; is the aspheric
coefficient, x is the radial coordinate and y, is the height coordinate. We
assume that the thickness of a cover glass product is uniform; hence a
cover glass product is represented by Eq. (5) and thickness t and the
inner profiles y; are obtained though CAD software. A flat glass blank to
be deformed into a curved body must have the same volume as the final
product. In our cases, the initial thickness of a flat blank shall be within
10 % larger.

In a molding process, softened glass will fill the forming cavity
during the molding step at the highest temperature, named the molding
temperature, and then begin to shrink with decreasing temperature.
Therefore, the dimension of the forming cavity shall be the same as that
of the glass cover at the molding temperature. Due to the difference in
coefficients of thermal expansion of glass and mold material (e.g.,
graphite), the dimensions of molds shall multiply a coefficient m
expressed as:

+ a1+ agx* +asx® + ... 5)

1+ AT

m=———— 6
1+ Amoa AT ©®

where a is CTE with subscript refereeing to a specific material, and AT is
the temperature difference between the molding temperature and room
temperature.

Table 3

The parameters of the WLF function.
Glass To (°C) C1 Cs
GG 570 36.84842 1204.485
BK7 685 5.01 179.4
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2.3. Form error compensation

The forming cavity of molds can be established through the profile
points of the generatrix. The sets of profile points of molds are labeled by
their horizontal coordinates, given by x. Hence, the profile heights
Yum(x) and yy, (x), corresponding to the upper mold and lower mold, are
to be updated during compensation, with initial values y%,, (x) and 9 (x)
derived from the scaled glass profile y(mx). After forming simulation
with the initial version of molds, the obtained room-temperature glass
profiles lead to another set of profile points, denoted by y;¢(x) and y,q(x),
where the subscript ig and og denote the inner and outer surfaces of the
molded glass. The surface profile deviations between the molded glass
and designed glass can be used as error compensations to redesign the
mold, and the error compensation profiles for upper and lower molds are
then defined as Ay, (x) = yi(x) ~ Yig(x) and Ayi(x) = Yo(x) — Yog(x),
respectively. Finally, these compensations shall be added to mold pro-
files of the last step (i) to get a new version (i + 1) of molds until the
molds that can form the glass profile with required accuracy are ob-

tained, i.e., ¥l (x) = ¥, (%) + Ayu(x) and yii (x) = yi (%) + Ayi(x).

2.4. Neural network (NN) model

The profile deviations between initial molds and precision molds
after error compensations are the key information in PGM mold design.
This information, named form-error compensations (FECs), can be ob-
tained through FE simulations or trial-and-error experiments. In this
work, we test the hypothesis that a BPNN model can replace FE simu-
lations to predict FECs.

The geometry of a smooth curved surface profile can be represented
by using a finite set of grid points with local geometric information
extending to second-order derivatives, specifically through its inclina-
tion and curvature, defined as: angle(x) = tan™!(dx /dy(x)), and k(x) =

00/ (145 ()?%)"”
design as they affect the local stress and strain states during a forming
process, as the strains of a plate under bending can in principle be
expressed as functions of inclination angle and curvature. As shown in
Fig. 1, four geometrical features of glass product are selected as input
variables: coordinate, thickness, Gaussian curvature (K), and inclination
for a BPNN. The PGM parameters, in particular annealing rate and
molding temperature, are also considered to be critical and set as input
variables. Moreover, we use the maximum radial coordinate, Ry, of the
revolved glass body, to nondimensionalize the geometrical features and
compensations. The details of nondimensionalization are as follows: X =
X/Rmax, representing the dimensionless coordinate with the maximum
value of 1; T = t/Rpmq, defining the dimensionless thickness of the
revolved glass body; K = K x R?

max>

. These geometrical features are critical for the mold

representing the dimensionless

Gaussian curvature; FEC = FEC/Rmax, characterizing the dimensionless
of form-error compensation, which is the output of the BPNN.

3. Results and discussion
3.1. Precision molds

We first present the results of error compensation derived from
simulations using glassy carbon molds (i.e., assuming a small CTE of 2.5
x 107% / °C) to achieve a pre-defined glass profile specified as:

V) = A+ 1.1 x 1075x + 3.9 X 1077x° + 7.3 x 10710x%.

The axisymmetric models of the glass and molds used in FE simu-
lation are shown in Fig. 2(a), and the contact statuses between the glass
and molds after the forming, annealing, and cooling stages are shown in
Fig. 2(b—d). As temperature decreases, the glass loses contact with the
mold surfaces, resulting in thickness and profile deviations. These de-
viations are quantified to evaluate forming performance, as shown in
Fig. 3. With the molds designed according to the geometry of the glass



Y. Zhang et al.
~ |yﬂl
Ki=— =%
(1+y?)2
K = Kq X Ky
Inclination

Coordinate

A
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Upper mold

Lower mold

( ) S, Max. Principal

(Avg: 75%)
+8.812e-01
+7.744e-01
+6.676e-01
+5.609e-01
+4.541e-01
+3.473e-01
+2.406e-01
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Thickness

Fig. 1. Geometric features used as input variables in the BPNN model.

(b)

S, Max. Principal
(Avg: 75%6)
+4.136e+00
+3.729e+00
+3.321e+00
+2.913e+00
+2.506e+00
+2.098e+00
+1.690e+00
+1,282e+00
+8.746e-01
+4.669e-01
+5.913e-02
-3.486e-01
-7.563e-01

(c)

S, Max. Principal
(Avg: 75%)
+1.696e+01
+1.545e+01
+1.394e+01
+1.242e+01
+1.091e+01
+9.399e+00
+7.886e+00
+6.373e+00
+4.860e+00
+3.348e+00
+1.835e+00
+3.222e-01
-1.191e+00

Fig. 2. (a) axisymmetric models of glass and molds, (b) the contact status after forming stage, (c) the contact status after annealing stage, (d) the contact status after

cooling stage.

cover, the forming accuracy is low. With a target thickness of 0.7 mm,
the actual thickness of the molded glass varies with a maximum devia-
tion of 4.0 pm. For the surface profiles, as shown in Fig. 3, the deviation
of the inner surface gradually increases from the center area to the edge
with a maximum deviation of 65 pm, and the deviation of the outer
surface varies similarly with a maximum value of 60 pm. Such surface

and thickness deviations cannot meet the accuracy requirements of
precision forming of 3D glass, so corrections must be applied in mold
designs.

The approach described in Section 2.3 is adopted to update the lower
and upper molds, and the updated molds are used for the next simula-
tion. Fig. 4 exhibits the forming performance after applying
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compensation, the surface deviations can be reduced to below 2 pm and
the thickness deviation is <3 pm, therefore, the one-step error
compensation already achieves a good forming accuracy.

As graphite is more commonly adopted as mold material in the cover
glass industry, we repeat the mold design process using the thermal
properties of graphite. Fig. 5 shows both the surface deviation and
thickness deviation of a glass cover formed by molds without and after
compensation. Before the molds are compensated, the maximum de-
viations in thickness, inner profile, and outer profile are 3.5, 28, and 22
pm, respectively. After the compensation, the forming accuracy has been
significantly improved. The thickness deviations are reduced to <2 pm,
and the deviations of the inner and outer surfaces are also below 2 pm.
Therefore, it can be concluded that the error-compensation method is
suitable for carbon-based molds with CTE between 2.5 - 4.5 x 1076 / °C.

3.2. Effect of machining errors on surface deviation

The above process is based on the premise that there are no fabri-
cation errors on the mold surfaces, and the molds after the error
compensation can be regarded as precision molds. However, in actual
conditions, this premise is impossible to realize because machining er-
rors will be generated during the mold manufacturing process. There-
fore, it is necessary to study the effect of machining errors on the surface
deviation of molded glass when the compensations have been deter-
mined through simulations.

We study the effect of machining errors by adding them to the pre-
cision molds introduced in the previous section. As shown in Fig. 6, a set
of random numbers y, are added to the profile heights of molds y,m(x)
and y;,(x) to obtain the mold profiles with random errors yj: and yj¢,
where the superscript ma represents the mold with machining errors.
The effect of machining errors can be quantitatively characterized by an
amplification factor defined as amq = Ay/y™.

We anticipate that the largest machining error must be below 30 pm,
which is achievable using common CNC machining systems. Therefore,
we study the effect of three different levels of quality control, i.e., the
tolerances of +£10 pm, +20 pm, and +30 pm, and focus on how the
different levels of tolerance applied to the molds lead to different levels
of forming errors in molded glass, i.e., the tolerance amplification factor
from machining capability to forming accuracy. In this study, the glass
surface deviations (below 2 pm) formed by precision can be neglected,
because the surface deviations formed by the molds with machining
errors become much larger than those. To generalize our work, many
glass profiles are studied and herein we choose three of them (named
Glass I, Glass II, and Glass III) to demonstrate and evaluate the tolerance

amplification. The profiles of Glass I and Glass III are y(x) =12 —

\/144 — 2:x2 and y(x) = 55:x?, while Glass II is the same as the glass
cover discussed in Section 3.1.

« Profile point of mold without machining error

« Profile point of mold with machining error

Machining
/ EITOr ~_

/

Fig. 6. Schematic of adding machining errors to a mold profile.
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Fig. 7 exhibits three machining error distributions and the surface
deviations of glass covers formed by the molds with the corresponding
machining errors. It is noticeable that the distribution of surface devi-
ation on a glass surface is analogous to the corresponding machining
error distribution. Fig. 7(b) exhibits the surface deviations of Glass I
when the tolerance of machining errors is +10 pm. At the point x = 8
mm, the inner surface deviation maximizes at 11.6 pm, which can be
considered as an amplifying effect due to the machining error of 9.4 pm,
leading to an amplification factor of 1.2. As shown in Fig. 7(c) and (d),
the outer surface deviation of Glass II at point x = 2.6 mm is 27.1 pm,
which is 1.4 times the corresponding machining error (18.7 pm) added
to the lower mold. When the machining error added to the upper mold at
point x = 12.3 mm is 16.1 pm, the inner surface deviation of Glass II is
27.9 pm, which is 1.7 times the machining error. Fig. 7(e) and (f) show
the distribution of machining errors with a tolerance of +30 pm and the
forming performance of Glass III. At point x = 2.9 mm on the upper
mold, the machining error added on is 26.6 pm; at a similar location on
the glass inner surface, the surface deviation is about 40.8 pm, ~ 1.53
times the machining error. Similarly, a machining error of about 18.5
pm is added to the lower mold profile at point x = 9.7 mm, leading to a
deviation of 29.2 pm on the outer glass surface, ~1.57 times the
machining error.

The above results indicate that error tolerance amplification from
mold machining to glass thermoforming is less than a factor of 2, based
on knowledge of idealized mold geometries.. Note that when the toler-
ance of machining errors is £30 pm, the glass form errors can reach 50
pm, which is almost the limit of 3D cover glass products in the industry.
Hence, it is expected that when the ideal smooth molds are unknown, it
is very difficult to control the form errors for 3D cover glass
manufacturing. In this case, a predictive model to provide compensa-
tions for mold design is of great significance for the industry.

3.3. NN model for FEC prediction

3.3.1. NN model based on simulation data

A BPNN model with eight hidden layers is established to predict the
FECs. The hyperparameters directly influence the prediction accuracy of
the BPNN model, determining its architecture, training efficiency and
optimization method (Hassanien et al., 2023). As critical information,
specifying these hyperparameters enables precise replication of the
prediction performance of the BPNN model. Fig. 8 shows the structure of
the BPNN, while Table 4 exhibits other detailed information of the
hyperparameters. There are six neurons in the input layer and one
neuron in the output layer. The numbers of neurons in eight hidden
layers are 12, 12, 12, 12, 10, 10, 8, and 8 respectively. The ReLU
function is chosen as the activation function in the model, while the
mean square error is selected as the loss function to evaluate the accu-
racy of the model. Adam optimizer is chosen due to its high efficiency
and strong adaptability. The learning rate is 8 x 10>, while the model is
trained 1.8 x 10° times in total.

The training dataset is obtained based on several virtual mold
compensation processes with varied forming conditions and 3D glass
profiles through FE simulations. 280 data sets are used to train and test
the model with a ratio of 7:3, and R in the database is smaller than 20.
Note that the number of data sets is small compared to current data-
driven methods. However, it is commensurate with other efforts in the
manufacturing field to develop SMs replacing FE simulations and trial-
and-error experiments (e.g., Sivanaga et al. (2017)), and our aim here
is to test if the geometric features extracted from simulation-based mold
designs, though limited in the size of datasets, are sensible to develop a
SM with a reasonable prediction capability for PGM molds.

Fig. 9 exhibits the results of training in terms of the comparisons
between the BPNN predictions and non-dimensional training and testing
data (denoted by FEC in the figures). For the training group, the loss
value is 1.94x1073. R? value, commonly used to describe the
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Fig. 7. (a) Machining errors distribution with a tolerance of +10 pm, (b) surface deviation of Glass I when machining errors tolerance is £10 pm, (c) machining
errors distribution with a tolerance of +20 pm, (d) surface deviation of Glass II when machining errors tolerance is +20 pm, (e) machining errors distribution with a
tolerance of +30 pm, (f) surface deviation of Glass III when machining errors tolerance is +30 pm.

performance of a NN model, is close to 1 for the training group. For the
prediction of data in the testing group, the loss value is 4.39x107>, and
R? = 0.92. In this research, the 95 % confidence interval (CI) and 95 %
prediction interval (PI) are employed to evaluate the performance of the
model prediction. The CIs and PIs of training and testing groups are
narrow and overlap, which means that the prediction of the BPNN is
accurate for these two groups. The results exhibited in Fig. 9 demon-
strate that the BPNN has been adequately trained with a dimensionless
prediction tolerance <0.01 %.

The applicability of this BPNN depends on whether it can assist the
design of precision molds for thermoforming thin glass covers with
different geometries. We first demonstrate its predictions of FECs for two
glass profiles different from those in the training and testing datasets. FE
Simulations to form these two glass covers were also conducted to
determine the actual compensation values. The comparisons are shown
in Fig. 10, demonstrating a good consistency with the loss values and R?
similar to those shown in Fig. 9(a). It is noted that the differences be-
tween the two methods are <0.01 % of Rpyay, much smaller than
machining errors (note that our Ryax = 20 mm, hence the deviation is
<2 pm). Hence, this BPNN model can predict the FECs needed to form
revolved cover glass products with different profiles.

After validating the BPNN model, we further test its prediction per-
formance when the glass dimensions (i.e., the range of x coordinate) are
much larger than those in the training set. This is to check whether the
input of dimensionless geometric features is adequate to determine
FECs. Considering that the maximum Rp,ax in the database is 20 mm, we
demonstrate two revolved glass covers with larger radii of 40 mm and 68
mm. The prediction performance of the BPNN is still satisfactory in these
two cases, as shown in Fig. 11. The prediction errors of FEC are mostly
within 0.01 %, except for the predictions at the edges of two glass ge-
ometries. The results shown in Fig. 11 indicate that the non-
dimensionalized BPNN can mitigate the impact of glass dimension on
the prediction, allowing the BPNN trained by data of small glass covers
to predict the FECs required for large glass covers. The loss curves,
which track how loss decreases during training to reveal sufficient
learning from the data and help guide hyperparameters tuning while
detecting overfitting (Zhou & Yao, 2024), are shown in Fig. 12. After
tens of thousands of iterations, the loss generated when training the
model tends to a stable value, and the losses generated by predicting the
four validation groups are also reduced to below 0.005.
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Fig. 8. Structure of the BPNN based on simulation data.

Table 4
Detailed information of the BPNN model trained by simulation
data.
Hyperparameters Setting
Learning rate 8x107°
Batch size 280
Training epochs 1.8 x 10°
Optimizer Adam optimizer

Activation function Relu function

3.3.2. NN model based on industrial data

The data used to develop an NN-based SM in the previous section is
idealized and greatly simplified. It is necessary to test whether the same
method can be extended to industrial data, i.e., whether a NN model
based on the proposed geometrical inputs of glass designs can predict
the corrections to assist in achieving PGM. In this section, smartphone
cover glass molding data with different geometries and dimensions
provided by the company (Biel Crystal Manufactory (H.K.) limited) are
adopted to train a NN model. The cover glass designs are no longer
axisymmetric, hence, the geometric data are labelled by their in-plane
coordinates (x, y), which are normalized by the maximum in-plane
size of each glass design. The NN is re-designed because the glass ge-
ometries are more complicated, as shown in Fig. 13. There are four
neurons in the input layer (different from Fig. 8, the inputs of process
parameters are omitted because the company adopted the same process

(@12
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parameters), one neuron in the output layer for FEC and nine hidden
layers. The numbers of neurons in the nine hidden layers are 13, 12, 12,
12, 6, 4, 4, 4, and 4, respectively.

The industrial mold designs were obtained after tens of trial-and-
error cycles to update corrections. Unlike simulations, these mold de-
signs were determined under the condition that mold fabrication inev-
itably brought about random errors to the designed profiles. Therefore,
these mold designs might be biased to correct fabrication errors which
do not have a zero mean and the accuracy of molded glass must be
compromised with the tolerance of former errors being tens of micro-
meters. By discretizing 4 sets of mold designs adopted in production, we
obtain 2473 sets of geometrical data for training and testing and 618 sets
of data for validation. The detailed information about the hyper-
parameters of the BPNN is shown in Table 5. The learning rate is set to
0.01, while the BPNN model for industrial data is trained 2 x 10° times.
Different from the model trained by simulation data, Sigmoid function is
chosen as the activation function for the industrial BPNN model.

Fig. 14 exhibits an example of the cover glass model and the com-
parisons between prediction results of the NN model and the industrial
data, showing a satisfactory training result with R> = 0.96. The differ-
ences between the predicted and actual values are within 0.05 % of the
maximum glass dimension. But for the testing group and validation
group, the prediction results are not as accurate as those for the training
group, with R? values of 0.84 and 0.83 respectively. The maximum
prediction errors of testing and validation groups are also larger than
that of the training group with a value of 0.2 %. Fig. 15 depicts the losses
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Fig. 9. Prediction results of the BPNN: (a) training group, (b) testing group.
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Fig. 12. Loss evolution over epochs of the BPNN trained by simulation data.

evolution trend, demonstrating that the train loss decreases to approx-
imately 0.01 and stabilizes, while the test and validation losses undergo
a sharp initial drop, then exhibit slight variations. Compared to the
prediction results of the simulation data, it is obvious that for the pre-
diction results of the industrial data, the PI is much wider than CI, and
there are more points outside the PI. While these phenomenon shows
that the predictions based on the proposed NN trained using industrial
data have larger errors than those based on simulation data, it must be
noted that the industrial mold design process is affected by many un-
certainties, which can be discussed from two aspects, data noise and
process variability. The real thermoforming process in industry is
accompanied by machining errors and measurement errors, which are

the main source of noises in industrial data. These noises cause the
model to learn random fluctuations in the data during the training
process, rather than capturing the true intrinsic relationships, thereby
reducing the prediction accuracy of the model. In industry, the prop-
erties of materials used to manufacture the molds vary, and the forming
parameters were not optimized. Most importantly, the mold designs
were modified by engineers with various personal experiences (habits)
of form error compensation. The uncontrollable variability of these
factors affects the manufacturing accuracy and makes the distribution of
industrial data difficult to learn. Therefore, models trained with indus-
trial data have lower generalization ability and higher prediction errors.
Due to the data noise and process variability, the BPNN tends to fit
specific trends in the training data influenced by noise and variability,
resulting in reduced prediction accuracy for new data. Considering that
the accuracy requirements in actual production are not strict, after data
screening, most of the prediction results of the BPNN trained with in-
dustrial data can still be used to compensate the molds. Hence, we argue
that the proposed data-driven approach can assist mold design for
curved glass production.

4. Conclusions

Based on the simulations of the PGM process for shaping revolved
glass profiles, the form errors can be compensated onto mold surfaces to
achieve a forming accuracy of <2 pm. With the smooth surfaces of
molds, the amplification factor from mold machining errors to glass
forming errors is <2, which can be used to regulate the tolerance of mold
machining errors in the industry of cover glass manufacturing.
Designing molds to realize PGM requires the determination of form-
error compensations. Though they can be obtained through FE simula-
tions or trial-and-error experiments (due to the existence of machining
errors), these processes are very time-consuming and costly, sometimes
impractical for complicated geometries. Mold designers may need faster
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Fig. 13. Structure of the BPNN based on experimental data.

Table 5
Detailed information of the BPNN model trained by industrial
data.

Hyperparameters Setting

Learning rate 0.01

Batch size 2473

Training epochs 2 x 10°

Optimizer Adam optimizer

Activation function

Sigmoid function
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tools to determine compensations even with a sacrifice of some accu-
racy; hence, the main contribution of this work is a dimensionless BPNN
model which acts as a surrogate model replacing FE simulations. The
BPNN model established in this work is proved to have a good perfor-
mance in predicting the FECs based on the inputs of geometric features
(inclination angles and curvatures) and thermoforming parameters. In
the tested cases, the difference between the BPNN prediction results and
FE simulation results is <0.01 % of the maximum radial dimension of
revolved glass covers. Because of the nondimensionalization, this BPNN,
trained using data generated based on small glass profiles, can predict
the FECs needed for glass profiles with much larger dimensions. Based
on the industrial data, it is demonstrated that a BPNN model with the
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Fig. 14. (a) An example of the smartphone cover glass model, (b) training group results, (c) testing group results, (d) validation group results.
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Fig. 15. Loss evolution over epochs of the BPNN trained by industrial data.

proposed geometrical inputs can also assist mold designs by predicting
the FECs in the same accuracy level of the contemporary industrial
practice.
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