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A B S T R A C T

Many glass products require thermoformed geometry with high precision. However, the traditional approach of 
developing a thermoforming process through trials and errors can cause a large waste of time and resources and 
often fails to produce successful outcomes. Hence, there is a need to develop an efficient predictive model, 
replacing the costly simulations or experiments, to assist the design of precision glass thermoforming. In this 
work, we report a surrogate model, based on a dimensionless back-propagation neural network (BPNN), that can 
adequately predict the form errors and thus compensate for these errors in mold design using geometric features 
and process parameters as inputs. Our trials with simulation and industrial data indicate that the surrogate model 
can predict forming errors with adequate accuracy. Although perception errors (mold designers’ decisions) and 
mold fabrication errors make the industrial training data less reliable than simulation data, our preliminary 
training and testing results still achieved a reasonable consistency with industrial data, suggesting that the 
surrogate models are directly implementable in the glass-manufacturing industry.

1. Introduction

Glass, here referring to various optically transparent oxides, is an 
important part of modern life and sciences due to its high hardness and 
chemical inertness and its ability to deflect light paths with little loss in 
intensity. The early scientific giants, such as Galileo, Descartes, Newton, 
and Fraunhofer, all devoted significant effort to producing glass lenses 
(Gorman, 2002; Kriss, 1998). Nowadays, the continuous research in 
glass is propelled by the development of novel technologies and the 
advocation for sustainable development. This is represented by the 
emergence of the fifth-generation (5G) wireless communication tech
nology and the increasing applications based on artificial intelligence 
(AI) technologies, demanding many more optical products than before 
and their quick updating rates (Fernandez, 2019; Ishak, 2019). Today, 
the most representative application of glass is probably glass covers for 
smartphones and AR/VR devices. These applications are due to the good 
processability of glass through thermoforming and the adequate wear 
and impact resistance of glass through thermochemical strengthening. 
However, as the shapes of these covers become increasingly complex, 
generally requiring precisely curved profiles with varied geometrical 
features and thicknesses, they pose a fundamental question to the glass 

manufacturing industry: how to manufacture these curved glass prod
ucts accurately, efficiently, and with high yield.

The traditional methods to fabricate precision glass products are 
through grinding, polishing, and lapping, which are very time- 
consuming and expensive. For example, single-point diamond turning 
is an effective method to fabricate complex glass profiles with high 
precision, but it requires several or tens of hours to produce one piece 
(Zhang & Liu, 2017). Therefore, lens-makers have switched to the pre
cision glass molding (PGM) technology to form glass products at high 
temperatures where the viscosity of glass is in the range of 107 to 108 

Pa⋅s. Since the earlier time of this century, PGM has been adopted by 
many optical manufacturers to fabricate aspherical lenses (Aono et al., 
2000; Yi & Jain, 2005) and more complex optical components (e.g., 
micro-lens arrays) (T. Zhou et al., 2017, 2022). The high precision in 
PGM is achieved through the principle of error compensation, whereby 
form errors in the final glass product are compensated by incorporating 
error compensation in mold designs.

Designing precision molds with forming error compensation is 
ubiquitously used in many forming processes. For example, in metal 
forming, Gan and Wagoner (2004) proposed a method named 
‘displacement adjustment’ (DA) to design the mold profiles to 
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compensate for form errors caused by spring-back and compare with 
another design method named ‘force descriptor’ (Karafillis & Boyce, 
1992) that focuses on evaluating the traction distributions on the metal 
sheet to design the mold shape. Compared to metal forming, glass 
thermoforming has additional error sources caused by viscous flow at 
high temperatures and shrinkage during cooling.

PGM was first attempted by the company Eastman Kodak in the 
1970s (Angle et al., 1974). Without numerical simulations, the early 
attempts based only on experimental trials failed because the random 
errors in mold fabrication defeated the efforts in error compensation to 
achieve optical precision. At the beginning of this century, several suc
cessful cases in PGM appeared, which were due to the help of finite 
element (FE) simulations where machining errors did not interfere. For 
example, Jain and Yi (2005) developed a viscoelastic model of glass and 
demonstrated the feasibility of simulation-based mold design to achieve 
a specific lens. Through FE simulations and experiments, Wang et al. 
(2009) demonstrated that the error compensation in mold design was 
effective in molding high-precision aspherical glass lenses. Zhou et al. 
(2009) studied the viscoelasticity behavior of optical glass during the 
ultraprecision lens molding process, and they indicated that the creep 
and stress relaxation could be described based on Burgers model and 
Maxwell model. Yan et al. (2009) investigated the effect of temperature 
distribution on PGM through thermo-mechanical FE simulations and 
pointed out that incomplete heating worsened the glass-forming 
performance.

Finite element (FE) simulation of a glass forming process generally 
takes tens of hours even for two-dimensional problems, therefore, it is 
inefficient to achieve error compensations through direct simulations, 
leaving alone the uncertainties in actual material and process parame
ters and mold machining errors when launching an FE-simulation-based 
mold design in actual production. Hence, the research on PGM was 
based on case studies, i.e., having a specific lens shape and exhibiting 
success in making it through simulation-assisted mold design and PGM 
(Jain & Yi, 2005; Wang et al., 2009). There is not a breakthrough in the 
design tool for PGM that can compensate for the form errors of glass to 
suit the fast update of curved glass products which happens in the cover 
glass industry (unlike lenses, the product cycle of cover glass is generally 
less than a year).

A fundamental requirement of a design tool for PGM is the use of a 
surrogate model (SM) to predict error compensation profiles based on 
the input of glass geometry and process parameters. Consequently, 
machine learning (ML) approaches, which make predictions by learning 
from large, well-defined datasets, are worth exploring. Recently, neural 
network (NN) models have been used in a wide range of engineering 
fields because of their excellent approximation performance and 
adaptability to multiple variables (Xu et al., 2025). For example, Siva
naga et al. (2017) proposed an NN model to predict the optimum process 
parameters of wire-cut electric discharge machining. Choi et al. (2022)
established an NN model to predict the spring-back behavior in forming 
an electric-vehicle motor component based on geometric features and 
material properties. In addition, combining NN-based surrogate models 
with optimization algorithms can realize automatic parametric optimi
zation. Tsai and Luo (2017) combined NN and genetic algorithm (GA) to 
determine the optimal injection molding parameters to fabricate plastic 
lenses. They demonstrated that the model could help to meet the desired 
forming accuracy. While NN-based surrogate models have been used in 
multiple engineering fields, such as metal forming and plastic molding 
for the prediction of processing parameters, the use of NN for the pre
diction of form errors in glass molding, the key information in mold 
designs to achieve precision optical products (such as lenses and glass 
covers), is unseen in the open literature.

This work proposes a dimensionless backward propagation neural 
network (BPNN) model to replace time-consuming FE simulations or 
experiments in PGM. The model relates the inputs, i.e., geometric fea
tures and forming parameters, to the outputs, i.e., error compensation 
profiles for precision mold designs. First, we used the dataset generated 

by FE simulations to train the BPNN. Then, we test the method based on 
industrial mold design data after trial-and-error cycles to meet the 
required accuracy of curved cover glass products. It is shown that the 
BPNN, after training, can be used to predict mold designs for molding 3D 
glass bodies with a tolerance of ~ 0.2 % of the maximum glass dimen
sion. Therefore, with the validations using both FE simulations and in
dustrial data, it is asserted that the proposed surrogate model can 
replace the costly simulations and experimental trials to quickly realize 
precision thermoforming.

2. Methods

2.1. Materials selection and properties determination

We aim to deform a piece of flat glass into a target 3D shape by 
molding with a set of upper and lower molds. Graphite is the mold 
material commonly used in the glass manufacturing industry due to the 
advantages such as low fabrication costs and nonstick to glass at high 
temperatures. It is also possible to use glassy carbon (GC) as the mold 
material with mechanical properties superior to graphite but difficult to 
machine (Sharma, 2018). To minimize the time cost of FE simulation, 
the molds in our simulations are set to be rigid so that the deformation of 
them will not consume computational resources. The only property of 
molds needed to be considered is thermal expansion which significantly 
influences the forming results of glass products. Hence, we set a thermal 
expansion to the rigid molds with the coefficients of thermal expansion 
(CTEs) referring to GC or graphite, as shown in Table 1 (Burdick et al., 
1951; Markushev et al., 2017).

Two types of glass material are considered in this study. One is 
aluminosilicate, represented by Corning’s gorilla glass (GG); the other is 
borosilicate, referring to Schott’s BK7 glass. Table 1 (Li et al., 2020) lists 
the mechanical and thermal properties of glass and mold materials used 
in our simulations.

The viscoelastic behavior of glass in the time domain is described by 
the Prony series (i.e., the generalized Maxwell model), which expresses 
the dimensionless relaxation modulus using three parameters: g, k, and 
τ, representing the shear modulus ratio, bulk modulus ratio, and stress 
relaxation time at a reference temperature T0, respectively. In this study, 
bulk relaxation of glass is neglected (occurring primarily in high- 
pressure experiments), so k is set to be 0. The Prony series parameters 
for both glass types are listed in Table 2 (Li et al., 2020), and the 
mathematical model is expressed as: 

g(t) = 1 −
∑N

i=1
gi(1 − exp( − t / τi)) (1) 

The effect of temperature on viscoelasticity can be described by the 
dependence of the instantaneous stress on temperature and by a reduced 
time concept. The shear stress influenced by temperature is written as: 

τ(t) = G0(θ)
∫t

0

g(ξ(t) − ξ(s))γ̇(s)ds (2) 

where the shear modulus G0 is temperature dependent and ξ(s) is the 
reduced time with defined as: 

Table 1 
The properties of glass, glassy carbon, and graphite.

Material Property Value

Glass Density (g/cm3) 2.5
Young’s Modulus (GPa) 76.7 (GG), 82 (BK7)
Poisson’s Ratio 0.275 (GG), 0.206 (BK7)
CTE (10− 6/ ◦C) 8.1 (GG), 8.3 (BK7) for T < Tg 

12 (GG), 18.6 (BK7) for T > Tg

Molds CTE (10− 6/ ◦C) 2.5 (GC), 4.5 (Graphite)
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ξ(t) =
∫t

0

(1 /A(T(s)))ds (3) 

In Eq. (3), A(T(s)) is named shift function to reflect the temperature 
effect on the time scale (i.e., temperature-time superposition (TTS)). In 
this work, the Williams-Landel-Ferry (WLF) function is employed as the 
shift function which is mathematically defined as: 

log10A = −
C1(T − T0)

C2 + (T − T0)
(4) 

where T0 is the reference temperature at which the relaxation data are 
given, and C1 and C2 are constants, respectively. Table 3 (Li et al., 2020) 
shows the values of the parameters in the WLF function used in our 
simulations.

2.2. Numerical models of glass and molds

3D glass covers have a wide variety of complex geometries, espe
cially for VR/AR glasses. In this work, we start with the glass products 
having revolved profiles, which can be simplified as axisymmetric 
models in FE simulations. The outer profiles of these models are defined 
by aspherical or spherical surfaces, expressed by the function: 

yo(x) =
cx2

1 +
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − (K + 1)c2x2

√ + a1x2 + a2x4 + a3x6 + ...… (5) 

where c is the surface curvature, K is the conic constant, ai is the aspheric 
coefficient, x is the radial coordinate and yo is the height coordinate. We 
assume that the thickness of a cover glass product is uniform; hence a 
cover glass product is represented by Eq. (5) and thickness t and the 
inner profiles yi are obtained though CAD software. A flat glass blank to 
be deformed into a curved body must have the same volume as the final 
product. In our cases, the initial thickness of a flat blank shall be within 
10 % larger.

In a molding process, softened glass will fill the forming cavity 
during the molding step at the highest temperature, named the molding 
temperature, and then begin to shrink with decreasing temperature. 
Therefore, the dimension of the forming cavity shall be the same as that 
of the glass cover at the molding temperature. Due to the difference in 
coefficients of thermal expansion of glass and mold material (e.g., 
graphite), the dimensions of molds shall multiply a coefficient m 
expressed as: 

m =
1 + αglassΔT
1 + αmoldΔT

(6) 

where α is CTE with subscript refereeing to a specific material, and ΔT is 
the temperature difference between the molding temperature and room 
temperature.

2.3. Form error compensation

The forming cavity of molds can be established through the profile 
points of the generatrix. The sets of profile points of molds are labeled by 
their horizontal coordinates, given by x. Hence, the profile heights 
yum(x) and ylm(x), corresponding to the upper mold and lower mold, are 
to be updated during compensation, with initial values y0

um(x) and y0
lm(x)

derived from the scaled glass profile y(mx). After forming simulation 
with the initial version of molds, the obtained room-temperature glass 
profiles lead to another set of profile points, denoted by yig(x) and yog(x), 
where the subscript ig and og denote the inner and outer surfaces of the 
molded glass. The surface profile deviations between the molded glass 
and designed glass can be used as error compensations to redesign the 
mold, and the error compensation profiles for upper and lower molds are 
then defined as Δyu(x) = yi(x) − yig(x) and Δyl(x) = yo(x) − yog(x), 
respectively. Finally, these compensations shall be added to mold pro
files of the last step (i) to get a new version (i + 1) of molds until the 
molds that can form the glass profile with required accuracy are ob
tained, i.e., yi+1

um (x) = yi
um(x) + Δyu(x) and yi+1

lm (x) = yi
lm(x)+ Δyl(x).

2.4. Neural network (NN) model

The profile deviations between initial molds and precision molds 
after error compensations are the key information in PGM mold design. 
This information, named form-error compensations (FECs), can be ob
tained through FE simulations or trial-and-error experiments. In this 
work, we test the hypothesis that a BPNN model can replace FE simu
lations to predict FECs.

The geometry of a smooth curved surface profile can be represented 
by using a finite set of grid points with local geometric information 
extending to second-order derivatives, specifically through its inclina
tion and curvature, defined as: angle(x) = tan− 1(dx /dy(x)), and κ(x) =

ÿ¨(x)/
(
1 + ẏ(x)2)3/2. These geometrical features are critical for the mold 

design as they affect the local stress and strain states during a forming 
process, as the strains of a plate under bending can in principle be 
expressed as functions of inclination angle and curvature. As shown in 
Fig. 1, four geometrical features of glass product are selected as input 
variables: coordinate, thickness, Gaussian curvature (K), and inclination 
for a BPNN. The PGM parameters, in particular annealing rate and 
molding temperature, are also considered to be critical and set as input 
variables. Moreover, we use the maximum radial coordinate, Rmax, of the 
revolved glass body, to nondimensionalize the geometrical features and 
compensations. The details of nondimensionalization are as follows: X =

x/Rmax, representing the dimensionless coordinate with the maximum 
value of 1; T = t/Rmax, defining the dimensionless thickness of the 
revolved glass body; K = K× R2

max, representing the dimensionless 
Gaussian curvature; FEC = FEC/Rmax, characterizing the dimensionless 
of form-error compensation, which is the output of the BPNN.

3. Results and discussion

3.1. Precision molds

We first present the results of error compensation derived from 
simulations using glassy carbon molds (i.e., assuming a small CTE of 2.5 
× 10− 6 / ◦C) to achieve a pre-defined glass profile specified as:

y(x) = 0.04x2

1+
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1+0.042x2

√ + 1.1× 10− 5x4 + 3.9× 10− 7x6 + 7.3× 10− 10x8.
The axisymmetric models of the glass and molds used in FE simu

lation are shown in Fig. 2(a), and the contact statuses between the glass 
and molds after the forming, annealing, and cooling stages are shown in 
Fig. 2(b–d). As temperature decreases, the glass loses contact with the 
mold surfaces, resulting in thickness and profile deviations. These de
viations are quantified to evaluate forming performance, as shown in 
Fig. 3. With the molds designed according to the geometry of the glass 

Table 2 
The parameters of the Prony series functions.

Glass g k τ

GG 0.999 0 37.143
BK7 0.999 0 0.00012

Table 3 
The parameters of the WLF function.

Glass T0 (◦C) C1 C2

GG 570 36.84842 1204.485
BK7 685 5.01 179.4
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cover, the forming accuracy is low. With a target thickness of 0.7 mm, 
the actual thickness of the molded glass varies with a maximum devia
tion of 4.0 μm. For the surface profiles, as shown in Fig. 3, the deviation 
of the inner surface gradually increases from the center area to the edge 
with a maximum deviation of 65 μm, and the deviation of the outer 
surface varies similarly with a maximum value of 60 μm. Such surface 

and thickness deviations cannot meet the accuracy requirements of 
precision forming of 3D glass, so corrections must be applied in mold 
designs.

The approach described in Section 2.3 is adopted to update the lower 
and upper molds, and the updated molds are used for the next simula
tion. Fig. 4 exhibits the forming performance after applying 

Fig. 1. Geometric features used as input variables in the BPNN model.

Fig. 2. (a) axisymmetric models of glass and molds, (b) the contact status after forming stage, (c) the contact status after annealing stage, (d) the contact status after 
cooling stage.
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Fig. 3. Simulation results before compensation: (a) thickness deviation, (b) surface deviation.

Fig. 4. Simulation results after compensation: (a) thickness deviation, (b) surface deviation.

Fig. 5. Simulation results using graphite molds. (a) thickness deviation before mold compensation, (b) surface deviation before mold compensation, (c) thickness 
deviation after mold compensation, (d) surface deviation after mold compensation.
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compensation, the surface deviations can be reduced to below 2 μm and 
the thickness deviation is <3 μm, therefore, the one-step error 
compensation already achieves a good forming accuracy.

As graphite is more commonly adopted as mold material in the cover 
glass industry, we repeat the mold design process using the thermal 
properties of graphite. Fig. 5 shows both the surface deviation and 
thickness deviation of a glass cover formed by molds without and after 
compensation. Before the molds are compensated, the maximum de
viations in thickness, inner profile, and outer profile are 3.5, 28, and 22 
μm, respectively. After the compensation, the forming accuracy has been 
significantly improved. The thickness deviations are reduced to <2 μm, 
and the deviations of the inner and outer surfaces are also below 2 μm. 
Therefore, it can be concluded that the error-compensation method is 
suitable for carbon-based molds with CTE between 2.5 – 4.5 × 10− 6 / ◦C.

3.2. Effect of machining errors on surface deviation

The above process is based on the premise that there are no fabri
cation errors on the mold surfaces, and the molds after the error 
compensation can be regarded as precision molds. However, in actual 
conditions, this premise is impossible to realize because machining er
rors will be generated during the mold manufacturing process. There
fore, it is necessary to study the effect of machining errors on the surface 
deviation of molded glass when the compensations have been deter
mined through simulations.

We study the effect of machining errors by adding them to the pre
cision molds introduced in the previous section. As shown in Fig. 6, a set 
of random numbers ye are added to the profile heights of molds yum(x)
and ylm(x) to obtain the mold profiles with random errors yma

um and yma
lm , 

where the superscript ma represents the mold with machining errors. 
The effect of machining errors can be quantitatively characterized by an 
amplification factor defined as ama = Δy/yma.

We anticipate that the largest machining error must be below 30 μm, 
which is achievable using common CNC machining systems. Therefore, 
we study the effect of three different levels of quality control, i.e., the 
tolerances of ±10 μm, ±20 μm, and ±30 μm, and focus on how the 
different levels of tolerance applied to the molds lead to different levels 
of forming errors in molded glass, i.e., the tolerance amplification factor 
from machining capability to forming accuracy. In this study, the glass 
surface deviations (below 2 μm) formed by precision can be neglected, 
because the surface deviations formed by the molds with machining 
errors become much larger than those. To generalize our work, many 
glass profiles are studied and herein we choose three of them (named 
Glass I, Glass II, and Glass III) to demonstrate and evaluate the tolerance 

amplification. The profiles of Glass I and Glass III are y(x) = 12 −
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

144 − 9
25x2

√

and y(x) = 8
225x

2, while Glass II is the same as the glass 
cover discussed in Section 3.1.

Fig. 7 exhibits three machining error distributions and the surface 
deviations of glass covers formed by the molds with the corresponding 
machining errors. It is noticeable that the distribution of surface devi
ation on a glass surface is analogous to the corresponding machining 
error distribution. Fig. 7(b) exhibits the surface deviations of Glass I 
when the tolerance of machining errors is ±10 μm. At the point x = 8 
mm, the inner surface deviation maximizes at 11.6 μm, which can be 
considered as an amplifying effect due to the machining error of 9.4 μm, 
leading to an amplification factor of 1.2. As shown in Fig. 7(c) and (d), 
the outer surface deviation of Glass II at point x = 2.6 mm is 27.1 μm, 
which is 1.4 times the corresponding machining error (18.7 μm) added 
to the lower mold. When the machining error added to the upper mold at 
point x = 12.3 mm is 16.1 μm, the inner surface deviation of Glass II is 
27.9 μm, which is 1.7 times the machining error. Fig. 7(e) and (f) show 
the distribution of machining errors with a tolerance of ±30 μm and the 
forming performance of Glass III. At point x = 2.9 mm on the upper 
mold, the machining error added on is 26.6 μm; at a similar location on 
the glass inner surface, the surface deviation is about 40.8 μm, ~ 1.53 
times the machining error. Similarly, a machining error of about 18.5 
μm is added to the lower mold profile at point x = 9.7 mm, leading to a 
deviation of 29.2 μm on the outer glass surface, ~1.57 times the 
machining error.

The above results indicate that error tolerance amplification from 
mold machining to glass thermoforming is less than a factor of 2, based 
on knowledge of idealized mold geometries.. Note that when the toler
ance of machining errors is ±30 μm, the glass form errors can reach 50 
μm, which is almost the limit of 3D cover glass products in the industry. 
Hence, it is expected that when the ideal smooth molds are unknown, it 
is very difficult to control the form errors for 3D cover glass 
manufacturing. In this case, a predictive model to provide compensa
tions for mold design is of great significance for the industry.

3.3. NN model for FEC prediction

3.3.1. NN model based on simulation data
A BPNN model with eight hidden layers is established to predict the 

FECs. The hyperparameters directly influence the prediction accuracy of 
the BPNN model, determining its architecture, training efficiency and 
optimization method (Hassanien et al., 2023). As critical information, 
specifying these hyperparameters enables precise replication of the 
prediction performance of the BPNN model. Fig. 8 shows the structure of 
the BPNN, while Table 4 exhibits other detailed information of the 
hyperparameters. There are six neurons in the input layer and one 
neuron in the output layer. The numbers of neurons in eight hidden 
layers are 12, 12, 12, 12, 10, 10, 8, and 8 respectively. The ReLU 
function is chosen as the activation function in the model, while the 
mean square error is selected as the loss function to evaluate the accu
racy of the model. Adam optimizer is chosen due to its high efficiency 
and strong adaptability. The learning rate is 8 × 10− 5, while the model is 
trained 1.8 × 105 times in total.

The training dataset is obtained based on several virtual mold 
compensation processes with varied forming conditions and 3D glass 
profiles through FE simulations. 280 data sets are used to train and test 
the model with a ratio of 7:3, and Rmax in the database is smaller than 20. 
Note that the number of data sets is small compared to current data- 
driven methods. However, it is commensurate with other efforts in the 
manufacturing field to develop SMs replacing FE simulations and trial- 
and-error experiments (e.g., Sivanaga et al. (2017)), and our aim here 
is to test if the geometric features extracted from simulation-based mold 
designs, though limited in the size of datasets, are sensible to develop a 
SM with a reasonable prediction capability for PGM molds.

Fig. 9 exhibits the results of training in terms of the comparisons 
between the BPNN predictions and non-dimensional training and testing 
data (denoted by FEC in the figures). For the training group, the loss 
value is 1.94×10− 3. R2 value, commonly used to describe the Fig. 6. Schematic of adding machining errors to a mold profile.

Y. Zhang et al.                                                                                                                                                                                                                                   Machine Learning with Applications 21 (2025) 100701 

6 



performance of a NN model, is close to 1 for the training group. For the 
prediction of data in the testing group, the loss value is 4.39×10− 3, and 
R2 = 0.92. In this research, the 95 % confidence interval (CI) and 95 % 
prediction interval (PI) are employed to evaluate the performance of the 
model prediction. The CIs and PIs of training and testing groups are 
narrow and overlap, which means that the prediction of the BPNN is 
accurate for these two groups. The results exhibited in Fig. 9 demon
strate that the BPNN has been adequately trained with a dimensionless 
prediction tolerance <0.01 %.

The applicability of this BPNN depends on whether it can assist the 
design of precision molds for thermoforming thin glass covers with 
different geometries. We first demonstrate its predictions of FECs for two 
glass profiles different from those in the training and testing datasets. FE 
Simulations to form these two glass covers were also conducted to 
determine the actual compensation values. The comparisons are shown 
in Fig. 10, demonstrating a good consistency with the loss values and R2 

similar to those shown in Fig. 9(a). It is noted that the differences be
tween the two methods are <0.01 % of Rmax, much smaller than 
machining errors (note that our Rmax = 20 mm, hence the deviation is 
<2 μm). Hence, this BPNN model can predict the FECs needed to form 
revolved cover glass products with different profiles.

After validating the BPNN model, we further test its prediction per
formance when the glass dimensions (i.e., the range of x coordinate) are 
much larger than those in the training set. This is to check whether the 
input of dimensionless geometric features is adequate to determine 
FECs. Considering that the maximum Rmax in the database is 20 mm, we 
demonstrate two revolved glass covers with larger radii of 40 mm and 68 
mm. The prediction performance of the BPNN is still satisfactory in these 
two cases, as shown in Fig. 11. The prediction errors of FEC are mostly 
within 0.01 %, except for the predictions at the edges of two glass ge
ometries. The results shown in Fig. 11 indicate that the non
dimensionalized BPNN can mitigate the impact of glass dimension on 
the prediction, allowing the BPNN trained by data of small glass covers 
to predict the FECs required for large glass covers. The loss curves, 
which track how loss decreases during training to reveal sufficient 
learning from the data and help guide hyperparameters tuning while 
detecting overfitting (Zhou & Yao, 2024), are shown in Fig. 12. After 
tens of thousands of iterations, the loss generated when training the 
model tends to a stable value, and the losses generated by predicting the 
four validation groups are also reduced to below 0.005.

Fig. 7. (a) Machining errors distribution with a tolerance of ±10 μm, (b) surface deviation of Glass I when machining errors tolerance is ±10 μm, (c) machining 
errors distribution with a tolerance of ±20 μm, (d) surface deviation of Glass II when machining errors tolerance is ±20 μm, (e) machining errors distribution with a 
tolerance of ±30 μm, (f) surface deviation of Glass III when machining errors tolerance is ±30 μm.
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3.3.2. NN model based on industrial data
The data used to develop an NN-based SM in the previous section is 

idealized and greatly simplified. It is necessary to test whether the same 
method can be extended to industrial data, i.e., whether a NN model 
based on the proposed geometrical inputs of glass designs can predict 
the corrections to assist in achieving PGM. In this section, smartphone 
cover glass molding data with different geometries and dimensions 
provided by the company (Biel Crystal Manufactory (H.K.) limited) are 
adopted to train a NN model. The cover glass designs are no longer 
axisymmetric, hence, the geometric data are labelled by their in-plane 
coordinates (x, y), which are normalized by the maximum in-plane 
size of each glass design. The NN is re-designed because the glass ge
ometries are more complicated, as shown in Fig. 13. There are four 
neurons in the input layer (different from Fig. 8, the inputs of process 
parameters are omitted because the company adopted the same process 

parameters), one neuron in the output layer for FEC and nine hidden 
layers. The numbers of neurons in the nine hidden layers are 13, 12, 12, 
12, 6, 4, 4, 4, and 4, respectively.

The industrial mold designs were obtained after tens of trial-and- 
error cycles to update corrections. Unlike simulations, these mold de
signs were determined under the condition that mold fabrication inev
itably brought about random errors to the designed profiles. Therefore, 
these mold designs might be biased to correct fabrication errors which 
do not have a zero mean and the accuracy of molded glass must be 
compromised with the tolerance of former errors being tens of micro
meters. By discretizing 4 sets of mold designs adopted in production, we 
obtain 2473 sets of geometrical data for training and testing and 618 sets 
of data for validation. The detailed information about the hyper
parameters of the BPNN is shown in Table 5. The learning rate is set to 
0.01, while the BPNN model for industrial data is trained 2 × 105 times. 
Different from the model trained by simulation data, Sigmoid function is 
chosen as the activation function for the industrial BPNN model.

Fig. 14 exhibits an example of the cover glass model and the com
parisons between prediction results of the NN model and the industrial 
data, showing a satisfactory training result with R2 = 0.96. The differ
ences between the predicted and actual values are within 0.05 % of the 
maximum glass dimension. But for the testing group and validation 
group, the prediction results are not as accurate as those for the training 
group, with R2 values of 0.84 and 0.83 respectively. The maximum 
prediction errors of testing and validation groups are also larger than 
that of the training group with a value of 0.2 %. Fig. 15 depicts the losses 

Fig. 8. Structure of the BPNN based on simulation data.

Table 4 
Detailed information of the BPNN model trained by simulation 
data.

Hyperparameters Setting

Learning rate 8 × 10− 5

Batch size 280
Training epochs 1.8 × 105

Optimizer Adam optimizer
Activation function Relu function

Fig. 9. Prediction results of the BPNN: (a) training group, (b) testing group.
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evolution trend, demonstrating that the train loss decreases to approx
imately 0.01 and stabilizes, while the test and validation losses undergo 
a sharp initial drop, then exhibit slight variations. Compared to the 
prediction results of the simulation data, it is obvious that for the pre
diction results of the industrial data, the PI is much wider than CI, and 
there are more points outside the PI. While these phenomenon shows 
that the predictions based on the proposed NN trained using industrial 
data have larger errors than those based on simulation data, it must be 
noted that the industrial mold design process is affected by many un
certainties, which can be discussed from two aspects, data noise and 
process variability. The real thermoforming process in industry is 
accompanied by machining errors and measurement errors, which are 

the main source of noises in industrial data. These noises cause the 
model to learn random fluctuations in the data during the training 
process, rather than capturing the true intrinsic relationships, thereby 
reducing the prediction accuracy of the model. In industry, the prop
erties of materials used to manufacture the molds vary, and the forming 
parameters were not optimized. Most importantly, the mold designs 
were modified by engineers with various personal experiences (habits) 
of form error compensation. The uncontrollable variability of these 
factors affects the manufacturing accuracy and makes the distribution of 
industrial data difficult to learn. Therefore, models trained with indus
trial data have lower generalization ability and higher prediction errors. 
Due to the data noise and process variability, the BPNN tends to fit 
specific trends in the training data influenced by noise and variability, 
resulting in reduced prediction accuracy for new data. Considering that 
the accuracy requirements in actual production are not strict, after data 
screening, most of the prediction results of the BPNN trained with in
dustrial data can still be used to compensate the molds. Hence, we argue 
that the proposed data-driven approach can assist mold design for 
curved glass production.

4. Conclusions

Based on the simulations of the PGM process for shaping revolved 
glass profiles, the form errors can be compensated onto mold surfaces to 
achieve a forming accuracy of <2 μm. With the smooth surfaces of 
molds, the amplification factor from mold machining errors to glass 
forming errors is <2, which can be used to regulate the tolerance of mold 
machining errors in the industry of cover glass manufacturing. 
Designing molds to realize PGM requires the determination of form- 
error compensations. Though they can be obtained through FE simula
tions or trial-and-error experiments (due to the existence of machining 
errors), these processes are very time-consuming and costly, sometimes 
impractical for complicated geometries. Mold designers may need faster 

Fig. 10. Prediction results of BPNN model: (a) validation group for glass with profile I, (b) validation group for glass with profile II.

Fig. 11. Prediction results of the BPNN for large glass profiles: (a) radius of 40 mm and (b) radius of 68 mm.

Fig. 12. Loss evolution over epochs of the BPNN trained by simulation data.
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tools to determine compensations even with a sacrifice of some accu
racy; hence, the main contribution of this work is a dimensionless BPNN 
model which acts as a surrogate model replacing FE simulations. The 
BPNN model established in this work is proved to have a good perfor
mance in predicting the FECs based on the inputs of geometric features 
(inclination angles and curvatures) and thermoforming parameters. In 
the tested cases, the difference between the BPNN prediction results and 
FE simulation results is <0.01 % of the maximum radial dimension of 
revolved glass covers. Because of the nondimensionalization, this BPNN, 
trained using data generated based on small glass profiles, can predict 
the FECs needed for glass profiles with much larger dimensions. Based 
on the industrial data, it is demonstrated that a BPNN model with the 

Fig. 13. Structure of the BPNN based on experimental data.

Table 5 
Detailed information of the BPNN model trained by industrial 
data.

Hyperparameters Setting

Learning rate 0.01
Batch size 2473
Training epochs 2 × 105

Optimizer Adam optimizer
Activation function Sigmoid function

Fig. 14. (a) An example of the smartphone cover glass model, (b) training group results, (c) testing group results, (d) validation group results.
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proposed geometrical inputs can also assist mold designs by predicting 
the FECs in the same accuracy level of the contemporary industrial 
practice.
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