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ABSTRACT

The titanium alloy TC4 (Ti-6Al-4V) is widely applied in ultra-precision machining of aerospace optical com-
ponents due to its high specific strength and thermal resistance. Understanding their material removal mecha-
nisms enables optimization of machining parameters, enhancement of surface quality, expansion of advanced
processing techniques, and fulfillment of performance demands in high-end applications. However, existing
predictive models often neglect the coupled effects of mechanical, frictional, and fluid dynamic fields, limiting
their applicability and predictive accuracy. To address this, this study proposes a cutting force prediction
framework integrating the Oxley cutting model with the Johnson—Cook constitutive model. By incorporating a
dynamic friction coefficient, the model’s accuracy is experimentally validated. The effects of different lubrication
modes on surface defects are quantified, and the chip formation and scratch morphologies are examined. The
results show that the model achieves an average prediction error of 8.23 %, with a minimum error of 3.54 %.
Both rake angle and lubrication mode jointly affect the material removal behavior of TC4: a reduced rake angle
intensifies plowing and fracture, whereas the nanolubricant minimum quantity lubrication (NMQL) mode
effectively reduces scratch depth. This approach provides a theoretical foundation for understanding cutting
force evolution in machining TC4 and serves as a reference for tool design and machining parameter selection.

Nomenclature

MQL Minimum quantity lubrication

F; Shear force
A; Cross-sectional area of cutting
layer

a, Depth of cut

\4 Cutting speed

Ve Chip flow velocity

F, Main cutting force

F Resultant cutting force

Fne Normal force on the rake face

€, &, Shear strain, shear strain rate,
£o reference shear strain rate

C Strain rate sensitivity coefficient
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(continued)
m Temperature softening T Temperature of cutting zone

Nanolubricant minimum coefficient
quantity lubrication T, Ambient temperature Tm Material melting point
Shear stress
Cutting layer area
Feed rate 1. Introduction
Rake angle, shear angle,
friction angle Titanium alloy, particularly TC4 (Ti-6Al-4V), is widely applied in

Friction force along the rake
face
Tangential force

aerospace, biomedical, and precision engineering industries due to its
high specific strength, heat resistance, and corrosion resistance [1-3].

Vertical component of However, poor machinability, including low thermal conductivity,
resultant cutting force strong chemical reactivity with tools, and pronounced work hardening
Initial yield stress tendency, presents significant challenges in precision and
Hardening modulus s o P .
ultra-precision machining [4-7]. Investigating the material removal
Strain hardening index mechanism is fundamental for addressing these challenges, as it sup-

ports innovation in processing technology, advances in tool design, and
provides theoretical guidance for manufacturing high-performance

(continued on next column)
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components [8-14]. For example, Xu et al. [15] investigated the mate-
rial removal mechanism of SiC fiber-reinforced Ti alloy matrix com-
posites by proposing a laser-assisted grinding method. Wang and Qu
[16] f analyzed the surface morphologies and composition at the groove
end area to investigate the material removal mechanism in TC4 titanium
alloy. Siva Surya [17] reported that the depth of cut is the most signif-
icant parameter influencing the material removal rate when turning
Ti-6A1-4V using a Micromatic automated computer numerical control
lathe.

The development of a cutting force model is essential for under-
standing the ultra-precision machining behavior of titanium alloys,
enabling quantitative analysis of force responses and material removal
mechanisms under varying cutting parameters [18-21]. Substantial
research has been conducted in this area [22-25]. For instance, Ma et al.
[26] proposed a cutting force prediction model for Ti-6Al-4V, consid-
ering friction at the tool-chip contact interface during ultrasonic longi-
tudinal torsional vibration-assisted milling. The predicted dynamic
milling force agreed well with measured values, with errors in the X and
Y directions of 5.51 % and 10.23 %, respectively. Shen et al. [27]
established Johnson-Cook constitutive models for TC17 titanium alloy
using parameter identification, showing that the model accurately pre-
dicts flow stress at high strain rates and across wide temperature ranges.
Li et al. [28] refined the cutting force and chip breaking model for
vibration-assisted drilling of Ti-6Al-4V, analyzing dynamic motion
angle, parameter effects, and cutting strain during intermittent
vibration-assisted machining.

In applications where surface integrity, dimensional accuracy, and
tool wear control are critical, conventional machining strategies often
fail to meet stringent requirements. To further reduce friction, minimum
quantity lubrication (MQL) has been proposed [29-32]. MQL forms an
oil film that facilitates rapid heat transfer, thus reducing thermal dam-
age. Mohandas et al. [33] compared the effect of cutting speed on sur-
face roughness of Ti-6A1-4V under soluble oil and MQL, finding a
greater effect with MQL. In studies on titanium alloy Ti-5Al-2.5Sn, Shi
et al. [34] found that supercritical carbon dioxide (scC0O2)-oil based on
MQL can address oil film rupture and insufficient wear reduction
observed with MQL or scCO2 cooling alone. Sarma et al. [35] optimized
the processing quality of Ti-6Al-4V under MQL by applying the Jaya
algorithm and support vector regression modeling, resulting in
improved surface roughness. Nanolubricant minimum quantity lubri-
cation (NMQL) can further optimize friction due to the size effect of
nanoparticles, which more effectively fill microscopic gaps between the
tool and workpiece [36-39]. The stable lubricating film formed by
NMQL can enhance friction behavior more efficiently than conventional
MQL. For example, Biyik [40] produced equiaxed nanocrystalline
Ag-7ZnO composite powder (average particle size 1.077 pm) by ball
milling with Y203 doping, achieving fine, uniform dispersion of oxide in
the silver matrix. In another study, Biyik [41] synthesized nanocrystal-
line Cu25Mo composite powder with particle size approximately 2.215
pm via extended ball milling. Both nanoparticles are promising candi-
dates for improving the cooling efficiency and tribological performance
of NMQL technology. Kim et al. [42] analyzed flow and heat transfer
during Ti-6Al-4V milling using a hybrid NMQL and cryogenic nitrogen
lubrication method, finding the hybrid approach preferable. Namlu
et al. [43] investigated the efficiency of multi-axial ultrasonic
vibration-assisted machining with hybrid NMQL for Ti-6Al-4V,
concluding that it enhances machining efficiency.

Addressing the substantial challenges imposed by the thermo-
mechanical properties and dynamic effects during grinding requires
investigation into the mechanical behavior of material removal and the
establishment of a grinding force model. Therefore, this study focuses on
the material removal mechanism and cutting force behavior during the
grinding of titanium alloy TC4 with a diamond tool, and develops a
theoretical prediction framework based on the Oxley cutting model and
the Johnson-Cook constitutive model. On this basis, the distribution law
of cutting force and the mechanical response characteristics of the
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material are systematically analyzed. Combined with analysis of friction
behavior under different lubrication modes, a dynamic friction coeffi-
cient model for the cutting process is established. Corresponding
grinding experiments are then designed and conducted. The theoretical
model is validated against experimental results, and microscopic
mechanisms, such as scratch depth and chip formation, are further
explored.

2. Cutting mechanical behavior of titanium alloy with negative
rake angle

2.1. Cutting force distribution

Understanding the material removal mechanism in metals is funda-
mental for developing a theoretical cutting force prediction model,
which also governs chip formation. The Oxley model is a classic contact
mechanics framework for analyzing the coupled behavior of heat, force,
and material flow within the shear zone during metal cutting processes
[44,45]. Compared with other shear models, it accounts for multiple
variables, including tool rake angle, cutting speed, feed rate, and
lubrication condition. The model enables accurate characterization of
the thermal-force coupling process and effectively simulates the
behavior of difficult-to-machine materials such as titanium alloys [46,
47]. By incorporating strain hardening, strain rate sensitivity, and
thermal softening, the Oxley model balances theoretical rigor with
computational efficiency, resulting in high predictive accuracy and
enhanced applicability across a wide range of cutting conditions [48].

The force analysis for orthogonal cutting is depicted in Fig. 1. The
resultant force acting on the chip can be decomposed into two sets of
components: (i) the normal force Fy, perpendicular to the rake face and
the frictional force (Fy.) along the rake face, and (ii) the shear force (F)
along the shear plane and the compressive force (Fp) normal to the shear
plane. These force pairs form equilibrium states, with their vector sums
equal in magnitude and opposite in direction. The resultant cutting force
can further be resolved into two orthogonal components: the main
cutting force (F;) in the direction of tool motion and the tangential force
(Fp) perpendicular to the cutting direction.

Assuming uniform shear stress on the primary shear plane and
applying the Von Mises failure criterion, the shear force is given by:

_ A af
*Tsing sing M
B Ts'ap'f

Fi =15 = sin ¢ (2)

where F; is the shear force. s is the shear stress on the shear plane. Ay is
the cross-sectional area of cutting layer. A is the area of cutting layer. a,
is the depth of cut. f is the. ¢ is the shear angle.

Based on the velocity vector distribution in Fig. 1:

sin ¢

- 3
cos(¢ — 7o) ®

where V is the cutting speed. V, is the chip flow velocity. yg is the rake
angle.

According to the geometric relationship between tool and chip in
orthogonal cutting, the following can be established:

F;
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Workpiece

Fig. 1. Force analysis of orthogonal cutting: (a) Geometric model of orthogonal shear force; (b) Diagram of orthogonal cutting forces.
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where F, is the main cutting force. F; is the tangential force. F is the
resultant cutting force. F), is the vertical component force of the resultant
cutting force. Fg is the friction force along the rake face. Fy is the
normal force on the rake face. § is the friction angle.

2.2. Material controlling equation

The accuracy of cutting force prediction is strongly influenced by the
material properties of the workpiece, making the development of an
accurate flow stress model essential. The Johnson-Cook constitutive
model is widely recognized for its ability to capture strain hardening,
strain rate sensitivity, and thermal softening, thus reflecting the complex
behavior of metals during grinding [49,50]. In this study, the
Johnson-Cook model is employed to describe the dynamic mechanical
response of TC4 under high temperature and high strain rate conditions:

s on()] - (1-2)]

where ¢ is the shear strain. ¢ is the shear strain rate. ¢ is the reference
shear strain rate. A is the initial yield stress, B is the hardening modulus,
C is the strain rate sensitivity coefficient, n is the strain hardening
exponent, m is the thermal softening exponent, T is the cutting zone
temperature, T, is the ambient temperature, and Ty, is the material
melting point.

The shear angle (¢) is typically affected by elastic-plastic deforma-
tion on the shear plane and by severe friction at the rake face, and can be
calculated by Eq. (11):

(10)

0S 7o

{—siny, an

¢ =arctan

where ¢ is the chip deformation coefficient. For titanium alloy cutting, &
is about 1.

The friction coefficient (p) between workpiece and tool is given by
Eq. (12):

F, cos y, + F, sin y,

12
F, cos y, — F, siny, a2)

pu=tanp =

Eq. (12) rigorously decouples the interfacial friction from measured
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resultant forces based on orthogonal force resolution, thereby avoiding
dependence on shear angle estimation. Unlike materials such as
aluminum, which exhibit stable shear localization, TC4 displays dy-
namic shear band migration during machining, making this approach
advantageous.

Due to the nonlinear variation in cutting characteristics, lubrication
mode, and cutting force, friction coefficients are more accurately
determined through experimental data rather than direct substitution of
theoretical values. Fig. 2 presents the variation in friction coefficient
with different lubrication modes. As the rake angle decreases, the
pressure between the tool and workpiece increases, resulting in a higher
friction coefficient. Under dry cutting, the absence of lubrication leads to
greater contact damping and the largest increase in friction coefficient.
For instance, decreasing the rake angle from 0° to —30° results in a 45.2
% increase in friction coefficient under dry cutting, and a 35.9 % in-
crease under NMQL. To control for external factors, data at a rake angle
of 0° are compared. Averaged across multiple experiments, the friction
coefficient values are 0.575 (dry), 0.484 (MQL), and 0.387 (NMQL). The
Johnson-Cook model parameters and the physical and mechanical
properties of TC4 are presented in Tables 1 and 2, respectively.

3. Experimental validation and result analysis
3.1. Experimental setup

The experimental setup is illustrated in Fig. 3. As depicted in Fig. 3
(a), all machining procedures were conducted on a four-axis ultra-pre-
cision lathe (Moore Nanotech 350 FG, Moore Nanotechnology Systems,
USA). This system integrates Fast Tool Servo capability with hydrostatic-
bearing stages along the X, Z, and C axes, as well as a high-stiffness B
axis. Cutting forces in two directions were measured using a Kistler

[CInmoL [FIMQL [ Dry cutting
|
-30°F /’ ‘
// |
/
©-20°F [
2 |
g T
o 35.9%
o |
& 100k | 45.2%
0°F |
|
! ! ! !
0.0 0.2 0.4 0.6 0.8 1.0

Friction coefficient

Fig. 2. Changes in friction coefficient under different lubrication modes.
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Table 1
Johnson-Cook parameters of TC4 [51].
A (MPa) B (MPa) C n m & (s7h) T (°C) T, (°C)
782 498 0.028 0.28 1 0.00001 1650 20
Table 2
Physical and mechanical property parameters of TC4 [51].
Elastic Thermal Specific heat Density Poisson’s
modulus conductivity (W/ capacity (J/ (kg/m3) ratio
(GPa) (m°Q)) (kg°Q)
136 7.6 611 4500 0.34

9256C dynamometer, with sensitivity set to 24.63 and a natural fre-
quency of 5.1 kHz. Data acquisition was performed at a sampling rate of
50 kHz. The Dynoware software (Kistler) was employed for synchro-
nized analysis and visualization of the cutting force data. As shown in
Fig. 3(f), an external lubrication device provided coolant delivery. As
depicted in Fig. 3(g), chip morphology was examined using a Hitachi
HT3030 scanning electron microscope (SEM). Microstructural charac-
terization was performed with a field-emission SEM (Hitachi TM3000
Desk-top SEM), achieving a resolution of 30 nm.

Tool geometry is presented in Fig. 3(c). The single-crystal diamond
tool, sourced from Contour Fine Tooling LLC (USA), features a Type Ila
crystal structure with <110> orientation, a nose radius of 1 mm, and a
clearance angle of 15°. The Mohs hardness of the diamond tool is 10. As
shown in Fig. 3(d), TC4 titanium alloy specimens with dimensions D12
x 2 mm were selected as the workpiece material. The sample was
secured on fixture 1 using screws, with the configuration depicted in

Journal of Materials Research and Technology 38 (2025) 1302-1312

Fig. 3(e). Fig. 3(b) provides a schematic of the local cutting method.

To overcome the challenge that conventional abrasive grains often
generate scratches too shallow for detailed morphological or mecha-
nistic analysis, this study employed single-grit diamond tools, which
offer superior hardness and wear resistance. The use of diamond tools
increases scratch depth and enhances morphological contrast, enabling
stable cutting conditions and accurate surface characterization. This
approach facilitates clear elucidation of the material removal mecha-
nisms. Four different rake angles (0°, —10°, —20°, and —30°) were
evaluated. For each rake angle, three lubrication modes—dry cutting,
MOQL, and NMQL—were implemented. The nano-lubricant was prepared
by dispersing a mixture of 200 nm MoS; and 20 nm Fe304 nanoparticles
in a commercial oil using mechanical stirring and ultrasonic vibration.
The mass ratio of MoS;/Fe304 was set to 1:1, and the total nanoparticle
mass fraction was 6 %. Scratch tests were conducted at a cutting speed of
1 m/min, a feed rate of 3 pm/rev, and a depth of cut that was progres-
sively varied from O to 5 pm per pass. Each combination of rake angle
and lubrication mode was tested in duplicate to ensure the reliability
and reproducibility of the data. For each individual scratch, the tool was
engaged with the workpiece under the specified parameters; following a
sustained cutting period, the tool was retracted in a controlled manner
until the cutting force returned to zero prior to commencing the next test
or repetition.

3.2. Experimental validation

Fig. 4 presents the experimental cutting force values for four rake
angles under three lubrication modes in cylindrical grinding experi-
ments. All tests were conducted at a spindle speed of 1 m/min, a depth of
cut of 5 pm, and a feed per revolution of 3 pm/rev.

The results indicate that the combined effect of lubrication mode and

i Tool nose H
: iRake angle:

I

Hitachi TM3000

Fig. 3. Experimental system: (a) Ultra-precision cutting machine, (b) Local view of cutting method, (c) Diamond tool, (d) Material and fixture 1, (e) Fixture 1, (f)

Lubrication device, (g) Field-emission SEM.
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Fig. 4. Effect of rake angle and lubrication mode on cutting force: (a;) Rake angle = 0°, dry cutting; (a;) Rake angle = 0°, MQL; (a3) Rake angle = 0°, NMQL; (b;)
Rake angle = —10°, dry cutting; (b2) Rake angle = —10°, MQL; (b3) Rake angle = —10°, NMQL; (c;) Rake angle = —20°, dry cutting; (c,) Rake angle = —20°, MQL;
(c3) Rake angle = —20°, NMQL; (d;) Rake angle = —30°, dry cutting; (d2) Rake angle = —30°, MQL; (d3) Rake angle = —30°, NMQL.

tool rake angle significantly affects cutting forces. Cutting forces in-
crease with larger absolute values of negative rake angle. A more
negative rake angle promotes the formation of thicker chips and in-
creases the tool-workpiece contact area, making chip separation more
difficult and causing a notable increase in cutting force. Lubrication
mode critically influences this relationship. Under dry cutting, the effect
of rake angle is amplified; decreasing the negativity of the rake angle
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facilitates chip flow and reduces force through lower frictional dissipa-
tion. Conversely, under both MQL and NMQL conditions, the lubricant
reduces friction between the chip and tool, thereby moderating the ef-
fect of rake angle. Nevertheless, the beneficial effect of increasing rake
angle in reducing cutting force remains observable.

Additionally, as seen in Fig. 4, decreasing the rake angle reduces the
difference between tangential force and normal force, which is primarily
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attributable to changes in the material removal mechanism. At a rake
angle of 0°, chip formation occurs mainly via plastic shear flow. At
negative rake angles, chip formation is dominated by squeezing and
plowing actions. With a more negative rake angle, tool penetration be-
comes more difficult, resulting in an increased normal force.

Fig. 5 compares experimental and simulated cutting force values for
four rake angles under three lubrication modes, with all other parame-
ters held constant. In Fig. 5(a), under dry cutting, the experimental
tangential and normal forces for rake angles of 0°, —10°, —20°, and —30°
are2.83Nand 1.33N,3.18 Nand 2.12N, 3.71 N and 2.24 N, and 4.15N
and 3.52 N, respectively. The minimum simulation error occurs at a rake
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Fig. 5. Effect of rake angle and lubrication mode on cutting force: (a) Dry
cutting; (b) MQL; (c) NMQL.
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angle of —10°, with a deviation of 6.13 % between the experimental and
simulated normal forces. In Fig. 5(b), under MQL, the experimental
tangential and normal forces for the same rake angles are 2.79 N and
1.28 N, 3.11 N and 2.01 N, 3.40 N and 2.14 N, and 4.11 N and 3.44 N,
respectively. Here, the minimum simulation error is 3.54 % at —10°. In
Fig. 5(c), under NMQL, the corresponding forces are 2.53 N and 1.26 N,
2.81 Nand 1.97 N, 3.05 N and 2.01 N, and 3.72 N and 3.28 N. Again, the
minimum simulation error is 3.54 % at —10°. Most predicted errors are
approximately 10 %, indicating that the model exhibits satisfactory
predictive accuracy. However, larger errors are observed in groups such
as the 0° rake angle under dry cutting and MQL modes, which is mainly
due to the small magnitude of the normal force—thus, small absolute
deviations produce relatively large percentage errors. Furthermore,
changes in lubrication mode may lead to deviations in the friction co-
efficient, and the Oxley model does not fully capture the non-uniform
lubrication state.

As shown in Table 3, simulation errors remain within a reasonable
range, with a relatively uniform distribution, demonstrating good
applicability of the model for dry cutting. Nevertheless, some fluctua-
tions and systematic deviations are present. In particular, under dry
cutting at a rake angle of —30°, the simulation error of the main cutting
force reaches 0.45, the highest among all groups. This may be attributed
to severe built-up edge formation; at —30°, the tool-chip contact length
increases and chip flow becomes unfavorable. The absence of lubrica-
tion under dry cutting facilitates material adhesion to the rake face,
promoting built-up edge formation, which dramatically reduces the
effective rake angle, increases resistance, and introduces instability in
chip formation. It is also noteworthy that only at the rake angle of —10°
are the experimental values across all lubrication modes consistently
lower than the simulation values, resulting in negative errors. This may
reflect a transitional behavior in the plastic deformation mechanism of
TC4; as the rake angle decreases from 0° to —10°, the deformation mode
shifts from uniform sliding to one dominated by local shear bands. This
critical transition is not adequately represented by the simulation model,
resulting in negative errors.

Fig. 6 displays the experimental and simulated cutting force values
for four rake angles under different lubrication modes and varying
friction coefficients, with all other parameters constant. As the friction
coefficient increases, both the main cutting force and the normal force
increase. In Fig. 6(a), a higher friction coefficient increases sliding
resistance between the chip and tool, resulting in a higher main cutting
force. In contrast, the growth rate of the normal force in Fig. 6(b) is
lower, as it is mainly affected by the lateral plastic deformation of the
workpiece and is less affected by the friction coefficient.

3.3. Scratch depth and chip formation

Scratch morphology provides a direct visual observation of the
microscopic interaction processes between the tool and workpiece,
revealing the material removal method, crack propagation, and adhe-
sion state. This facilitates a mechanistic understanding of tool wear and
cutting behavior during the grinding of titanium alloys, particularly
regarding the evolution of scratch characteristics under different rake
angles and friction conditions. As shown in Fig. 7, the scratch mor-
phologies illustrate typical surface features formed by diamond tools on
TC4 under different rake angles and lubrication modes. The six
scratches, progressing from left to right, correspond to dry cutting, MQL,

Table 3
Simulation error under different lubrication modes and rake angles.
0° —-10° —20° —-30°
Fy Fy Fx Fy Fy Fy Fy Fy
Dry Cutting 0.30 0.22 0.32 -0.15 0.30 0.31 0.45 0.24
MQL 0.27 0.21 0.11 -0.23 0.22 0.27 0.25 0.24
NMQL 0.26 0.13 0.11 —-0.25 0.28 0.33 0.38 0.3
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Fig. 6. Effect of lubrication modes on cutting force: (a) Fy, (b) Fy.

Fig. 7. Scratch morphologies under four rake angles: (a) 0°, (b) —10°, (c)
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and NMQL, with two scratches for each lubrication condition. The
scratch morphologies clearly demonstrate the significant effect of
lubrication mode on surface quality. Under dry cutting, substantial heat
accumulation occurs, leading to a higher propensity for surface damage.
MOQL mode offers notable improvement compared with dry cutting;
however, insufficient lubrication persists in high-load regions. NMQL
further enhances lubrication and cooling, as the presence of nano-
particles suppresses irregular scratches and material tearing. Rake angle
also plays a key role: decreasing rake angle increases both cutting force
and heat accumulation, leading to localized damage and elevated sur-
face roughness.

Fig. 8 presents three-dimensional scratch morphologies under NMQL
at different rake angles. A clear progression is observed: at a rake angle
of 0° (Fig. 8(ay)), the scratch appears shallow, narrow, and uniform,
indicative of a shearing-dominated cutting process. Material is removed
efficiently with low resistance, and NMQL further reduces friction and
heat, resulting in high surface integrity with minimal bulging or tearing
along the scratch edges. At rake angles of —10° and —20° (Fig. 8(by),
(c1)), the increased contact angle restricts chip flow, causing a shift from
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Fig. 8. Scratch morphologies under NMQL mode at four rake angles: (a;) 0°,
(by) —10°, (c1) —20°, and (d;) —30°, and scratch depth under three lubrication
modes at four rake angles: (a;) 0°, (b2) —10°, (c3) —20°, and (dy) —30°.
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pure shearing to a combination of shearing and plowing. Localized
groove deepening and edge bulging are more prominent, and the ma-
terial experiences increased compressive and shear stresses, resulting in
plastic accumulation ahead of the tool and lateral flow. At —30° (Fig. 8
(dy)), the removal mechanism is dominated by severe plowing, micro-
fracture, and localized tearing; chip flow is significantly hindered, and
the resulting morphology is characterized by discontinuous, rough, and
fragmented traces. Such features indicate intense plastic strain, potential
microcrack initiation, and even brittle delamination within the
deformed layer. Although NMQL helps reduce interfacial friction and
temperature, the pronounced mechanical interaction associated with
the aggressive negative rake geometry dominates, leading to aggravated
surface damage and reduced surface quality.

Fig. 8 also displays the cross-sectional profiles of scratches across
four rake angles and three lubrication modes. Scratch depth increases as
rake angle decreases. Under dry cutting, the maximum scratch depth
rises from 4.461 pm at 0° to 5.332 pm at —30°, an increase of approx-
imately 19.5 %. This is attributed to the effective bluntness of the tool
edge at more negative rake angles, which shifts the material removal
mechanism from shear-dominated to extrusion-dominated. This transi-
tion results in more severe plastic deformation and material pile-up,
yielding deeper scratches. Lubrication mode also has a substantial ef-
fect. At a given rake angle, scratch depth decreases progressively from
dry cutting to MQL to NMQL. For example, at 0°, scratch depth under
NMQL is 4.282 pm-0.179 pm less than under dry cutting. This reduction
is due to the enhanced lubricating effect of the nanofluid in NMQL, as
nanoparticles fill micro-grooves and form a stable lubricating film at the
tool-chip interface. The film reduces friction and cutting temperature,
suppresses material adhesion and extrusion, and ultimately leads to a
shallower, more refined scratch morphology.

Scratch morphology reflects the plastic flow and damage evolution
on the titanium alloy surface at the micro- and nano-scale. In parallel,
chip morphology analysis provides insight into the dynamic shear
characteristics and energy dissipation during macroscopic material
removal. Fig. 9 presents chip morphologies at different rake angles
under dry cutting. At 0° (Fig. 9(a;), (ay)), chips are spiral, with small
curvature and moderate bending; the chip edge is smooth, shear bands
are clear and continuous, surface quality is high, and deformation is
uniform, indicating a well-developed shear slip layer. At —10° (Fig. 9
(by), (by)), chip curling increases markedly, and deformation intensifies.
Local adhesions and discontinuous edge marks appear, reflecting that
decreasing rake angle increases the shear surface angle, causing the
material to adhere and separate incompletely, resulting in rough chip
edges and fluctuations in the slip layer. At —20° (Fig. 9(c1), (c2)), chip
curvature further increases, chips become tightly curled, and obvious
non-smooth structures appear at the edge. Enlarged images reveal
dense, disordered slip lines; the material in the slip layer is more
intensely deformed, but instability increases. At —30° (Fig. 9(d;), (d2)),
chips are severely curled, curvature is maximal, and clear brittle fracture
occurs locally. The edge is rough and discontinuous, and obvious
adhesion and tearing marks are present in several regions. At this rake
angle, the cutting process is highly unstable, tool loading is significant,
and surface quality is further compromised, with an increased risk of
tool damage.

4. Results analysis and discussion

The material removal mechanism in ultra-precision cutting of TC4
titanium alloy is predominantly controlled by the synergistic effects of
tool rake angle and lubrication mode, as quantitatively demonstrated
through chip morphology evolution and thermomechanical analysis of
the shear zone (Fig. 10). Under dry cutting conditions, elevated inter-
facial friction promotes severe adiabatic shear localization, resulting in
chaotic shear bands with irregular spacing and blocky chip segments.
This instability is attributed to excessive heat accumulation, which ac-
celerates crater wear via Ti-6Al-4V adhesion and diffusion, and leads to
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rapid progression of flank wear. This observation is consistent with the a tribo-film, which further reduces friction, shortens the sticking zone
findings of Gupta et al. [52] on carbide tool wear during Ti-6Al-4V length, and narrows shear band spacing. These changes enable the for-
machining. Sarma et al. [53] investigated the machinability of mation of continuous, thin-band chips with nearly uniform curvature,
Ti-6Al-4V alloy under MQL conditions, revealing that MQL reduces the signifying a transition to quasi-steady-state shear.
friction angle and lowers shear stress through oil-mist penetration at the Simultaneously, the rake angle plays a critical role in modulating
tool-chip interface. The improved heat dissipation supports the forma- shear mechanics and chip formation. Previous studies by Wu and To
tion of periodic adiabatic shear bands and the production of short, Ref. [54] investigated rake angles of 0°, 10°, and 20°, without
curled chips with controlled curvature radii, indicating stabilized plastic addressing negative rake angles. Li et al. [55] analyzed chip formation
flow. over a range from —15° to 15°. Building on these works, the present
Expanding on this foundation, the present study investigates the ef- study extends the analysis to include negative rake angles down to —30°.
fects of NMQL. The addition of nanoparticles facilitates the formation of Extreme negative geometry (y = -—30°) significantly increases
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compressive stress, raising frictional work and producing thick, nodular
debris with fragmented lamellae, ultimately degrading surface integrity.
In contrast, a neutral rake angle (y = 0°) optimizes shear plane orien-
tation, minimizing shear stress and enabling the formation of stable
ribbon chips with smooth edges and minimal subsurface damage. The
observed transition from unstable fracture (dry cutting, y = —30°) to
controlled shear (NMQL, y = 0°) highlights the critical influence of
interfacial tribology on precision removal efficiency in titanium alloy
machining.

5. Conclusions

This study investigates the material removal mechanism and cutting
force behavior during diamond tool grinding of TC4 titanium alloy,
focusing on the effects of rake angle and lubrication mode. The findings
provide guidance for optimizing cutting parameters for TC4. The main
conclusions are as follows.

(i) By integrating friction effects, thermal-force coupling, and
stress—strain evolution, a predictive model was established based
on the classical Oxley shear model and the Johnson-Cook
constitutive equation. The influence of various rake angles on
cutting force and material removal during ultra-precision
machining with diamond tools was systematically investigated.
Experimental validation confirmed the model’s reliability, with a
minimum prediction error of 3.54 % and an average error of 8.23
%. The predicted cutting force values exhibited strong agreement
with experimental results, and the overall trends were consistent
between theoretical and experimental data.

During grinding of TC4 titanium alloy, smaller rake angles in-
crease both the depth of scratch and the extent of chip defor-
mation, with material removal dominated by plowing and brittle
fracture. As the lubrication mode transitions from dry to MQL and
then to NMQL, the scratch depth decreases accordingly. Rake
angle and lubrication mode together modulate the material
removal mechanism, thereby controlling surface quality in ultra-
precision machining.

(i)

(iii)

This study demonstrates notable progress in ultra-precision
machining through the application of NMQL. Nonetheless, several key
areas merit further investigation: (a) Advancing lubrication and cooling
technologies remains a critical topic. The development of new nano-
lubricants with low friction coefficients and high thermal conductivity
may further enhance processing quality. (b) Continued improvement in
tool design and surface modification is necessary. The use of topology
optimization algorithms is proposed as a promising research direction to
reduce cutting force fluctuations and improve chip control.
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