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Rechargeable zinc-air batteries (ZABs) have gained extensive research attention as a promising sustainable energy
technology due to their considerable theoretical specific energy density, low toxicity, abundant availability, and
robust safety features. However, the practical implementation of ZABs still faces challenges, primarily attributed
to the sluggish kinetics of oxygen-involved reactions, including oxygen reduction reaction (ORR) and oxygen
evolution reaction (OER) during the discharge and charge process. Therefore, searching for efficient bifunctional
oxygen electrocatalysts is crucial to address these challenges. Dual-atom catalysts (DACs), an extension of single-
atom catalysts (SACs), exhibit flexible architectures that allow for the combination of homogeneous and/or
heterogeneous active sites, making them highly attractive for improving bifunctional activity. In this review, we
first introduce the basic framework of ZABs and the structural characteristics of DACs. Subsequently, we organize
the research progress on applying DACs in liquid and solid-state ZABs and elaborate on their unique catalytic
mechanism. Finally, we highlight the challenges and future research directions for further innovation of DACs in
ZABs. In summary, this review highlights the advantages of DACs compared with SACs used as bifunctional
oxygen electrocatalysts and provides a reference for the broad applications of DACs in energy conversion and

storage.

1. Introduction

With the growing concerns about energy and environment, extensive
endeavors have been devoted to the pursuit of greener and more sus-
tainable energy storage devices [1-6]. Among the various options
available, lithium-ion batteries (LIBs) have long dominated the market
due to their considerable energy density [7-9]. Nonetheless, the high
cost of the raw materials as well as safety concerns pose obstacles to their
further implementation for large-scale energy storage devices [10-12].
To address these concerns, researchers have turned their attention to
rechargeable zinc-air batteries (ZABs). Composed of Zn anode, air cath-
ode, electrolyte, and separator, ZABs offer a theoretical specific energy
density 2.5 times higher than that of LIBs [13,14]. Moreover, the abun-
dance of Zn in the Earth's crust, coupled with the advantages of pro-
longed discharge duration, stability, and operational safety, positions
ZABs as a highly promising alternative to LIBs [15]. Traditionally,
liquid-state systems with alkaline electrolyte solutions have been widely
used in ZABs. However, the increasing demand for portable and wearable
electronics has spurred the development of flexible solid-state ZABs
based on (semi-)solid electrolytes have gained widespread attention [16,
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17]. Compared with traditional liquid-state ZABs, solid-state ZABs offer
enhanced versatility and superior mechanical strength, thus driving
extensive research in this field. Either liquid or solid-state ZABs face
challenges related to the sluggish kinetics of the oxygen reduction reac-
tion (ORR) and oxygen evolution reaction (OER) occurring at the air
cathode. These limitations result in high overpotentials, poor cycling
stability, and low power density, thereby impeding the large-scale
advancement of ZABs [18-20]. State-of-the-art electrocatalysts based
on noble metals such as Pt/C for ORR and IrO; for OER have been widely
used. However, their exorbitant cost, limited reserves, and poor dura-
bility impede their industrial-scale production for ZABs. Consequently,
substantial efforts have been dedicated to the development of efficient
and cost-effective oxygen electrocatalysts, particularly those with
bifunctional catalytic activity.

The field of single-atom catalysts (SACs) emerged in 2011 with the
pioneering work of Zhang et al. [21]. Since then, SACs have gained
widespread attention across various fields due to their nearly 100%
utilization of metal atoms, resulting in excellent activity and selectivity in
a wide range of applications [22-26]. However, SACs also exhibit certain
limitations and shortcomings [27]. Firstly, single metal atoms are prone
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Fig. 1. Schematic diagram of the application of DACs as bifunctional catalysts
in ZABs.

to aggregation due to their high specific surface energy, so the metal
loading is usually kept at a low level to ensure the effective distribution of
isolated active sites, thus weakening the overall activity [28,29]. Sec-
ondly, since most SACs only possess a single type of specific active site,
making it challenging to break the linear scaling relationship between
intermediates in complex reactions involving multiple intermediates
[30]. Moreover, a single active site faces difficulties in catalyzing
multi-step reactions or developing bifunctional catalysts involving mul-
tiple active sites. To overcome these challenges, dual-atom catalysts
(DACs) have emerged as an extension of SACs, offering several advan-
tages. DACs exhibit higher metal loading and flexible active sites that can
adjust the d-band center through the electron orbitals interaction,
thereby optimizing the adsorption energy of intermediates on the active
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sites [31]. Given the tremendous potential of DACs and the need for
developing bifunctional oxygen electrocatalysts for ZABs, a growing
number of publications have focused on this area. Although several re-
views have been published on the synthesis, characterizations, and
electrochemical applications of DACs [32-35], to the best of our
knowledge, no review has specifically addressed DACs as bifunctional
oxygen electrocatalysts for ZABs. Therefore, a comprehensive evaluation
of the utilization of DACs in the realm of ZABs is urgently needed. This
review aims to emphasize the structural characteristics of DACs, eluci-
date the atomic interactions within DACs, and provide an overview of the
current application status of DACs in both liquid and solid-state ZABs.
Furthermore, a concise summary and outlook are provided regarding the
implementation of DACs in ZABs, along with the identification of critical
issues and future development directions for DACs (Fig. 1).

2. Fundamentals of ZABs and oxygen electrocatalysts
2.1. Configuration of ZABs and ORR/OER reaction mechanisms

Rechargeable ZABs are complex electrochemical systems consisting
of four main components: an air cathode, a metal Zn anode, an electrolyte
and an electrically insulating separator. Based on the electrolyte type and
battery structure employed, current ZABs can be categorized into four
main types: aqueous-type [36], sandwich-type [36], cable-type [37], and
all-solid-state ZABs (Fig. 2) [38]. The latter three varieties utilize (semi-)
solid electrolytes, are collectively referred to as solid-state ZABs [39-41].
Table 1 illustrates the redox reactions that occur on ZABs during the
charge and discharge processes.

The air cathode plays a crucial role in catalyzing ORR and OER during
ZABs’ working process, which in turn directly determines the round-trip
efficiency and power density of ZABs. Therefore, it is essential to have a
comprehensive understanding of the mechanisms involved in ORR and
OER to design high-performance bifunctional catalysts [42]. According
to the electron transfer number, ORR can be divided into two categories,
namely two-electron and four-electron transfer processes. The
two-electron reduction process primarily produces hydrogen peroxide,
which can react with the active materials in ZABs, leading to decreased
battery efficiency and lifespan [43-45]. Therefore, the four-electron
pathways for the ORR are highly preferred for ZABs due to its higher
oxygen utilization efficiency and potential for higher energy conversion
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Fig. 2. (a) Schematic illustration of aqueous-type ZABs. (b) Schematic illustration of sandwich-type ZABs. Reprinted with permission from Ref. [36]. Copyright 2020
John Wiley & Sons. (c¢) Schematic illustration of cable-type ZABs. Reprinted with permission from Ref. [37]. Copyright 2014 John Wiley & Sons. (d) Schematic
illustration of all-solid-state zinc-air pouch cell. Reprinted with permission from Ref. [38]. Copyright 2021 Springer Nature.
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Table 1
Discharge and charge reactions of Zn anodes in ZABs.
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Discharge Reactions

Charge Reactions

Zn anode

Air cathode
Overall reactions

Zn+ 40H - Zn(OH),*” + 2¢~
Zn(OH),>” - ZnO + H,O + 20H"
Oz + 2H,0 + 4e~ — 40H
27Zn + Oz — 2Zn0O

Zn(OH),* + 2¢~ — Zn+ 40H"
ZnO + H,0 + 20H- — Zn(OH),*
40H = Oz + 2H20 + 4e”
27Zn0 — 2Zn+ O,

Table 2
Reaction pathways and overall reactions of ORR and OER in ZABs.

ORR OER

*+ 0y +H;0+e” — OOH" + OH~
OOH +e — O 4 OH™
0"+ HyO+e — OH + OH-
OH +e —*+ OH"

*4+ OH - OH +e
OH' + OH = 0"+ HyO+ e~
0"+ OH™ —» OOH" + ¢~
OOH" + OH™ — *+ Oy + HyO + e~

Note: * represents the catalytic site of the catalysts and OOH*, O*, and OH* are
the intermediates adsorbed on the catalytic sites.

efficiency. Table 2 provides an illustration of the reaction pathways for
ORR in ZABs, involving oxygen diffusion to the catalyst surface, followed
by its adsorption process. Subsequently, the oxygen bond is weakened
and broken by electrons transferred from the anode, resulting in the
release of hydroxyl ions into the electrolyte from the catalyst surface
[46].

OER, as the reverse process of ORR, is initiated with the adsorption of
and followed by two possible mechanisms [47]. One is the
lattice-oxygen-mediated mechanism (LOM), which involves direct for-
mation of O, through coupling between lattice oxygen and O*. However,
this mechanism usually creates oxygen vacancies leading to poor catalyst
durability and structural evolution issues [48]. The other is the adsorbate
evolution mechanism (AEM), where the oxygen precursor undergoes a
stepwise process of adsorption, deprotonation, coupling, and desorption.
This pathway is completely opposite to the four-electron ORR pathway
illustrated in the previous equation. Hence, OER may follow the AEM as
depicted in Table 2. It is evident that both ORR and OER are complex
processes involving various surface intermediates and multi-step elec-
tron-transfer processes. The intricate mechanism and sluggish kinetics of
the main four-electron pathways necessitate high overpotentials to drive
these reactions, thereby reducing overall energy efficiency of ZABs. This
presents a significant challenge to the practical deployment of ZABs.
Therefore, the design of efficient oxygen electrocatalysts is crucial to
promote the practical application of ZABs.

Since the reaction pathways of ORR and OER are different, their re-
quirements for catalytic active sites are also distinct. The ORR activity is
primarily limited by the OH* reduction step and the oxygen reduction
steps, while the OER activity is restricted by the OOH* and O* formation
steps [49,50]. Therefore, when designing catalysts for ORR and OER, it is
necessary to incorporate active sites that can effectively adsorb and
activate OH* and OOH*/O* intermediates [51]. Recent studies have
demonstrated that DACs exhibit enhanced oxygen electrocatalysis
compared with SACs [31,52]. This improvement can be attributed to the
special structural characteristics of DACs, including increased number of
active sites and improved intermediate adsorption activity. DACs maxi-
mize the potential of SACs in multi-step reactions such as ORR and OER
while allowing for activity and selectivity adjustments, which provides a
new avenue for designing bifunctional catalysts. The application of DACs
has led to significant advancements in the performance of ZABs, which
will be further discussed in Section 3, detailing the breakthroughs in
DACs development for ORR/OER electrocatalysis.

2.2. Evaluation parameters of oxygen electrocatalysts

The use of electrocatalysts can accelerate the reaction kinetics of ORR
and OER in the air cathode. Several crucial parameters and electro-

chemical measurement routes are employed to evaluate the catalytic
activity of oxygen electrocatalysts. The catalytic performance of elec-
trocatalysts is typically examined in a three-electrode system to obtain
important parameters such as overpotential (the difference between
practical potential and the theoretical equilibrium potential of the elec-
trode), electron transfer number, Tafel slope and stability [36,53].
Furthermore, the combination of rotating disk electrode (RDE) and/or
rotating ring disk electrode (RRDE) techniques enables the acquisition of
ORR Kkinetic information, such as overall electron transfer number and
exchange current density. For oxygen reactions involving multi-step
electron transfer processes, a large overpotential is required to over-
come the energy barrier during the reaction. Therefore, overpotential is
one of the fundamental criteria for assessing catalyst performance. In
catalyst design, lower overpotential values are more suitable for
enhancing the utilization efficiency of electric energy. The diffusion
limiting current density, which represents the maximum current density
that ORR can reach at a specific disk/ring speed, is a criterion for ORR.
The larger value provides a larger current value passing through per unit
area, thus speeding up the reaction kinetics [54]. The onset potential
(Eonser refers to the potential at which the current deviates from the
background current under an argon atmosphere) and half-wave potential
(E1 /2, potential at one-half of the diffusion limiting current density) are
regarded as important criterion for evaluating the ORR performance of
the electrocatalysts. A higher E;/, reflects a lower overpotential value
thus signifying an increased catalytic activity. Moreover, the electron
transfer number obtained using RDE or RRDE can be utilized to deter-
mine the dominant mechanism in the ORR.

Regarding OER, the potential at 10 mA/cm? (Ej=10) is an important
indicator for evaluating catalytic performance. Additionally, the Tafel
slope (b) is another criterion used for accessing OER activity, determined
by the relationship between overpotential (57) and current density (j) in
the polarization area: 7 = a + b log j [55]. A smaller Tafel slope indicates
a more favorable kinetic process. The extrinsic or apparent OER activity
of a catalyst depends on the specific surface area and catalyst loading,
and the intrinsic activity can be obtained by further normalizing the
current density to the electrochemical active surface area (ECSA) or mass
loading [56]. At the same time, stability determines the lifespan of a
catalyst, which is crucial for practical applications. Typically, it can be
examined by using chronoamperometry or chronopotentiometry (CP)
techniques.

For catalysts exhibiting ORR/OER bifunctional activity, the potential
difference AE (AE =Ej_10 — E1,2) is used to evaluate the overall activity,
where a smaller AE value indicates the superior catalytic activity of the
bifunctional catalyst. By designing high-performance ORR and OER
catalysts, the polarization of ZABs during discharge and charge can be
effectively mitigated, thereby enhancing the overall performance of the
battery.

2.3. Evaluation parameters of ZABs

The performance of ZABs is an important basis for evaluating the
actual performance of electrocatalysts. As energy storage devices, the
performance of ZABs can be split into two aspects: their discharge
properties and their rechargeability [57]. Discharge performance is
characterized by the following indicators: the battery's open-circuit
voltage (OCV), power density, and specific capacity. OCV refers to the
voltage difference between the cathode and anode when no current is
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flowing, which reflects the activity of the air cathode. Through the
discharge curve (current polarization potential response under different
discharge current densities), the power density is obtained by multi-
plying the discharge potential by the corresponding current density. The
higher peak power density supports improved output performance of the
device. The specific capacity is determined by discharging the battery
under fixed current densities until the voltage drops to a preset cutoff
value, and further normalized to the mass of Zn consumed during
discharge, which can be compared with the theoretical specific capacity
(820 mAh/gyz;,) to estimate the battery performance [58].

On the other hand, the rechargeability of ZABs is evaluated through
round-trip efficiency and cycle life test. Specifically, an accelerated
testing technique of Galvanostatic cycling is applied, whereby alternately
applying fixed negative and positive currents, and simultaneously
recording the corresponding discharge and charge voltages. The round-
trip efficiency is defined as the ratio of discharge voltage to charge
voltage, which represents the energy utilization efficiency of the ZABs.
Therefore, efficient ORR/OER catalytic activity is beneficial to reducing
the overpotentials of discharge and charge reactions, thereby improving
the round-trip efficiency. For galvanostatic cycle test, the test parameters
(such as current density, time length and the number of cycles) will affect
the test results. Currently, standard parameters have not been established
for in-lab testing of ZABs. In the future, common standards for test pa-
rameters should be established based on different battery applications,
including electric vehicles, smart grids, and personal electronics [13].

3. Classification and structural characterization of DACs
3.1. Classification

For SACs, single atoms are commonly dispersed randomly and iso-
lated from each other, resulting in a lack of interaction between active
sites [59]. As an extension of the SAC family, DACs have more advantages
in terms of the coordination environment and active site density [31,59].
They have become an emerging frontier by utilizing multiple active sites
or synergistic effects to achieve efficient catalysis, especially for
multi-step processes of OER and ORR [35,60]. Many researchers have
successfully synthesized DACs with excellent catalytic properties through
carefully designed strategies to regulate the electronic structure, the
binding energy of the reaction intermediates or the local structural
conversion, which provides an important foundation for advancing the

Bonded

Bridged

Classification

of DACs

Non-bonded

@ Metal A @ Metal B
@ Coordination atoms

Fig. 3. Conclusive illustration of different type of DACs.
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application and performance optimization of ZABs [61,62]. Based on the
structural characteristics of DACs, they can generally be divided into
three main categories: bonded, bridged, and non-bonded DACs (Fig. 3).
Moreover, some catalysts cover two or three of the above structural
characteristics [63-66]. By deeply understanding the structural charac-
teristics of DACs, we can better comprehend their catalytic performance
and reaction mechanisms, thereby offering guidance and inspiration for
the synthesis of more efficient DACs.

3.2. Structural characterization

Precise characterization of DACs is crucial for establishing reliable
structure-activity relationship and designing and optimizing catalysts for
specific catalytic reactions. In recent years, several advanced character-
ization techniques have been employed to determine the atomic con-
figurations and dual-atom structures of DACs. In this section, we discuss
two major characterization techniques: transmission electron microscopy
(TEM) and X-ray absorption spectroscopy (XAS).

TEM is a widely used tool for identifying catalyst morphology and
visualizing atomic structures. Especially, the aberration-corrected high-
angle annular dark-field scanning transmission electron microscopy (AC
HAADF-STEM) mode has gained considerable attention in the charac-
terization of DACs [67], which enables the identification of adjacent
metal atoms and their atomic distances, as well as the evaluation of the
degree of uniformity of surface species. The bimetallic catalyst atoms
usually appear brighter since they have higher atomic numbers than the
elements in the catalyst support (typically composed of carbon and ni-
trogen) [68,69]. Additionally, element-specific energy-dispersed X-ray
spectroscopy (EDS) and electron energy-loss spectroscopy (EELS) can be
performed to identify the chemical species of metal elements, which
further aids the identification of dual-atom pairs [70]. One example
shown in Fig. 4 illustrates the identification of adjacent Fe and Ni single
atoms on a nitrogen-doped carbon support using AC HAADF-STEM [71].
The majority of the paired bright spots (typically enclosed in red boxes)
correspond to Fe-Ni single atom pairs (Fig. 4a). Moreover, in the
randomly selected regions of Fig. 4a, the atomic pairs identified based on
intensity distribution exhibit distances close to 4.1 A, confirming the
formation of diatomic structures (Fig. 4b). Furthermore, EELS line scans
revealed the presence of one iron atom and one nickel atom in the DACs,
providing strong evidence for the formation of Fe-Ni DACs (Fig. 4c and
d). This work demonstrates the application of advanced TEM techniques
in the characterization of DACs.

XAS is another indispensable technique to characterize DAGCs,
including X-ray absorption near-edge spectroscopy (XANES) and
extended X-ray absorption fine structure (EXAFS). This technique can
provide valuable information on the average geometric and electronic
structure of single atoms. XANES is more sensitive to chemical infor-
mation, such as valence states, d-band occupancy, and local symmetry.
On the other hand, EXAFS offers valuable information regarding coor-
dinating atoms, coordination numbers, and bond lengths [72]. In Wu
et al.'s work, XAS was employed to investigate the coordination envi-
ronment and electronic structure of CoIn-N-C DAC [73]. XANES analysis
indicated that the oxidation state of Co is between 0 and +2, while the
oxidation state of In is between 0 and +3 (Fig. 4e). EXAFS analysis
further elucidated the structure of the active site (Fig. 4f). The peak at 1.4
A corresponded to the Co-N coordination path, whereas the peak at 1.7 A
corresponded to the In-N coordination path in CoIn-N-C. Additionally, a
minor peak at 2.4 A in Co K-edge EXAFS fitting curve was observed,
suggesting the presence of a paired Co-In diatomic configuration. The
fitting results demonstrated that the coordination numbers of Co-N and
In-N were approximately 4, while the coordination numbers of Co-In
were both around 1. These results indicated that the local structure of
Co-In diatomic sites is in the form of CoInNg, as depicted in the inset of
Fig. 4f. This work highlights the importance of XAS in determining the
local coordination environment and atomic structure of DACs.
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Fig. 4. (a) AC HAADF-STEM image of Fe-Ni DACs. (b) Line-scanning intensity profiles obtained from the region 1-3 highlighted in panel a. (c¢) Simultaneously
acquired HAADF-STEM image intensity profile accompanied by EELS mapping of Fe-Ni DACs presented in panel c. (d) Single-atom EELS spectra extracted from two
atomic positions highlighted in red and green in panel c. Reprinted with permission from Ref. [71]. Copyright 2021 American Chemical Society. (e) Co (top) and In
(down) K-edge XANES. (f) Fourier-transform EXAFS spectra of CoIn-N-C and other reference samples (left). EXAFS fitting curves of Co and In K-edge EXAFS of
CoIn-N-C (right). The left inset is the illustration of the coordination structure of CoIn-N-C. Reprinted with permission from Ref. [73]. Copyright 2023 Springer Nature.

4. Catalytic promotion effects of different types of DACs

As mentioned above, according to the different structural character-
istics, DACs can be divided into three main categories. This structural
diversity provides more opportunities for DACs to be explored as
bifunctional oxygen electrocatalysts. Here, we discuss catalytic promo-
tion effects of different types of DACs in specific oxygen electrocatalytic
reactions.

(@)

4.1. Bonded DACs

Bonded DACs are a category of catalysts where metal active sites are
directly bonded to each other, resulting in strong interactions between
two neighboring metal atoms [34]. Depending on the bonding metal,
DACs can be further classified into homonuclear and heteronuclear
bonded DACs. Homonuclear bonded DACs, characterized by metal-metal
interactions, demonstrate unique atomic configurations and coordination
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Fig. 5. Homonuclear bonded DACs as bifunctional electrocatalysts. (a) Schematic diagram of the preparation of dual-atom iron catalysts. (b) AC HAADF-STEM image
of Fe,-GNCL. Right insets are the corresponding intensity profiles from the atomic sites 1 and 2 (top and bottom, respectively). (c) The thermal clustering fashions of
iron pairs in MOF encapsulated Fe,Zn complex within the channels. Reprinted with permission from Ref. [76]. Copyright 2020 John Wiley & Sons.
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environments. These distinctive characteristics facilitate the optimiza-
tion of reaction intermediate adsorption, thereby significantly enhancing
catalytic performance [74,75]. For example, Wei et al. have developed a
“heteroatom modulator approach” to construct dual-atom iron catalysts
[76]. They utilized a unique metal-organic framework (MOF) named
AIST-1 as a precursor. AIST-1 is characterized by well-ordered aromatic
ring arrays and abundant micropores, providing spacious channels for
encapsulating a trinuclear FeHIzZnH(pg-O) (CH3CO0)6(H20)3 complex.
Following high-temperature pyrolysis, they obtained Feo-GNCL (Fig. 5a).
The existence of dual iron atoms in Fe;-GNCL was directly confirmed by
HAADF-STEM images, where numerous small bright spot pairs (high-
lighted in yellow boxes) were observed (Fig. 5b). The formation mech-
anism of homonuclear Fe,-GNCL involves the presence of Zn" during the
high-temperature carbonization process, effectively preventing the ag-
gregation of Fe atoms into clusters. Subsequently, Zn evaporates, leaving
stable iron dimers (Fig. 5c). Notably, intensity profiles distinctly identify
dual Fe sites approximately 2.6 A apart, indicating a strong interaction
between the two atoms (Fig. 5b). Combined with reduced adsorption
energies of oxygen intermediates, Feo-GNCL exhibits lower OER over-
potential compared with IrO,, as well as comparable ORR performance to

Energy Reviews 3 (2024) 100076

Pt/C. This study presents a promising strategy for designing homonuclear
bonded DACs with excellent bifunctional electrocatalytic capability at
atomic level. Furthermore, computational screening is an effective
approach for investigating the bifunctional activity of homonuclear
bonded DACs. For example, Huang et al. employed density functional
theory (DFT) calculations to design a series of DACs supported on CsN,
including 30 homonuclear My—CyN structures, to systematically explore
their electrocatalytic potential for the ORR and OER [77]. Their research
revealed that Pd;-CyN and Pty—CoN exhibit the most promising perfor-
mance as bifunctional catalysts, owing to the well-balanced adsorption
strength of reaction intermediates. This study underscores that compu-
tational screening can provide a clear framework for future DACs design.
Based on the above discussion, although several homonuclear bonded
DACs with satisfactory ORR or ORR/OER performance have been
developed [78], more examples demonstrating bifunctional homonu-
clear catalysts are still lacking. Therefore, further research is required to
explore homonuclear bonded DACs as outstanding bifunctional catalysts
at the atomic level.

Heteronuclear bonded DACs involve the direct bonding of two
distinct central metal atoms, resulting in the formation of asymmetric
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Fig. 6. Modulation effect of heteronuclear bonded DACs as bifunctional electrocatalysts. (a) Bader charge distributions for the Ni-N,, Fe-N4 and Ni(N3)-Fe(N3)
moieties, with insets showing the corresponding structures. (b) Proposed ORR and OER mechanism on Ni(N3) (OH)-Fe(N3)-C,. Reprinted with permission from
Ref. [80]. Copyright 2020 Elsevier. (c) Schematic diagram of the synthesis process of diatomic IrCo-N-C catalysts. (d) The EXAFS-WT of the Ir Ls-edge for IrCo-N-C.
(e) Charge density difference for IrCoNs. (f) Schematic representation of bond formation of Co-O bonds at sites CoN4 (left) and IrCoNs (right). Reprinted with
permission from Ref. [81]. Copyright 2021 American Chemical Society.
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adsorption sites for reactant intermediates. This unique configuration
facilitates the creation of novel coordination environments, which in turn
optimizes the binding energies of the oxygen intermediates. Conse-
quently, these DACs exhibit exceptional performance as bifunctional
oxygen catalysts [52,79]. Based on the classification of existing catalysts,
their mechanisms for enhancing bifunctional activity can be summarized
into three main types. The first type involves the introduction of sec-
ondary metal species that can modulate the primary catalytic center,
providing distinct absorption formations of different intermediates, and

ultimately improving overall activity. For example, Ma et al. synthesized
a NigegFe34-NC sample with abundant presence of N3-Fe-Ni-N3 moieties
(Fig. 6a) [80]. DFT simulations revealed that the Fe site in Ni(Ng)
(OH)-Fe(N3) possesses moderate adsorption properties for O-containing
intermediates and serves as the primary active site for both ORR and
OER. The neighboring Ni site, coordinated with OH, acts as an excellent
mediator, adjusting the properties of the Fe site for efficient formation,
association, and dissociation of OOH*, thereby accelerating catalytic
kinetics (Fig. 6b). A similar modulation effect can be observed in
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combinations of noble and non-noble metals. In Chen et al.'s work,
IrCo-N-C was prepared using a bimetallic organic framework encapsu-
lation strategy (Fig. 6¢) [81]. EXAFS fitting curves revealed a diatomic
Ir-Co configuration contribution with a bond length of 2.30 A, and the
EXAFS-wavelet transform (WT) analysis further confirmed this structure
(Fig. 6d). In this work, they discovered that the Co d-orbital electron
configuration could be modulated by the introduced noble metal Ir single
atom, thereby enhancing bifunctional activity. Theoretical calculations
suggested that the Co site in an Ir-Co pair acts as the dominant active site
for both ORR and OER catalysis. Meanwhile, the Ir site functions as an
electronic modifier, inducing stronger spin polarization of the Co site,
strengthening the Co-O binding affinity, and accelerating oxygen elec-
trocatalysis (Fig. 6e and f).

In addition to the modulation effect, the synergistic effect of metal-
-metal atomic pairs can also be achieved [82,83]. For instance, Han et al.
successfully synthesized Co-Ni DACs through the carbonization of
dopamine-coated MOFs (Fig. 7a) [84]. The EXAFS spectra clearly indi-
cated the presence of Co-N, Ni-N, and Co-Ni coordination. According to
DFT simulations, the oxygen intermediate could be co-adsorbed by the
Co-Ni pair, leading to reduced reaction energy barrier of the ORR and
OER, thereby significantly enhancing the electrocatalytic activity
(Fig. 7b). Zhang et al. further demonstrated that this synergistic effect can
overcome the scaling factor and substantially improve bifunctional ac-
tivity [85]. Moreover, the introduction of metal pairs could inhibit the
competing two-electron-transfer reaction, thereby facilitating the
four-electron-transfer ORR. These findings suggest that the synergistic
interaction in heteronuclear bonded DACs endows them with consider-
able potential as bifunctional catalysts.

Random dispersion
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Moreover, the distinct metal active sites in heteronuclear bonded
DACs can independently catalyze the ORR and OER, thereby achieving
bifunctional electrocatalytic performance. For instance, Zhu et al. syn-
thesized Fe-NiNC using the dual-solvent ion deposition method [86].
The presence of Ni-Fe moieties was confirmed by XANES. DFT calcula-
tions were used to investigate the origin of the bifunctional activity of
Fe-NiNC. As depicted in Fig. 7c, during the ORR process, Oz was initially
adsorbed on the Ni-Fe bridge. When the O-O bond was broken, O
adsorbed on the Fe atom at a lower formation energy. Subsequently, O*
continuously reacted with HO to form *OH, and finally OH™, to com-
plete the ORR cycle. During the OER process, all intermediates were
adsorbed on Ni sites, which were more active for OER (Fig. 7d).

4.2. Bridged DACs

Apart from bonded DACs, dual-atom sites with non-metal atoms (such
as oxygen [87], nitrogen [88], and sulfur [89]) as bridges represent
another type of DACs, which significantly increase the diversity of co-
ordination structures. The bridging non-metal atom can redistribute
electron densities between the dual single-metal sites in the bridged
DAGCs, altering the charge state of the metals and thereby enhancing
catalytic performance [90,91]. In addition, the theoretical calculation
results showed that this structure is conducive to weakening the O—0
bonds and had a high selectivity toward four-electron ORR pathway [92].
For example, Liu et al. employed a zeolitic imidazolate frameworks-8
(ZIF-8) template in a “precursor encapsulation-node substitution" strat-
egy to synthesize RuMN,/C (M = Co, Fe, and Ni) DACs (Fig. 8a) [93].
Among these, RuCoN,/C exhibited exceptional ORR/OER activity with a
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low AE of 0.603 V. XANES and EXAFS results indicated that the two
metals in RuCoN,/C were coordinated in Ru-N3 and Co-N3 environment
within a RuCoNg structure. Theoretical calculations further revealed that
the combination of the d-block metal Co, with its electron-donating
properties, can adjust the electronic state of the Ru atom, thereby
balancing its strong adsorption properties for reactants in ORR (Fig. 8b).
Bridged DACs exhibit modulation [94], synergistic [95-97], and
bifunctional effects [91,98] in promoting bifunctional activity, similar to
bonded DAC:s. Different coordination structures can lead to the electronic
redistribution of metal active sites and consequently produce different
reaction mechanisms [99]. For example, Zhang et al. proposed a dual-site
cascade mechanism on the Fe/Mn-Ny-C catalysts during the ORR process
[100]. DFT calculations revealed that the first three steps of ORR pref-
erentially occur on the Fe-N sites due to the generated *OOH, *O, and
*OH intermediates. Subsequently, *OH was transferred to adjacent
Mn-Ny sites to complete the ORR process. It is worth noting that such
synergistic cascade mechanisms may significantly influence reactions
with multiple intermediates and should be considered in catalyst design.

4.3. Non-bonded DACs

0The third category is non-bonded DACs, which consist of two distinct
single-atom metals that do not bond with each other. Through precise
chemical modulation, the spatial arrangement and distribution of isolated
single-atom sites in the catalyst can show random or ordered distribution,
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which enables various challenging catalytic reactions to proceed smoothly
[102,103]. For example, Li et al. found that non-bonded DACs can adjust
the adsorption configuration of ORR and improve catalytic performance
due to long-range interactions between different active sites [104]. In
addition, the absence of bonding between different metal sites introduces a
wider range of structural possibilities. For instance, Ma and his colleagues
incorporated Fe(II) phthalocyanine (FePc) into the surface of a NiNy4 pre-
cursor (SiO2@[Ni(CN)4]o—@GO) via n-r stacking, subsequently obtaining
non-bonded dual single-atom sites (Ni-N4 and Fe-N4) doped graphene
hollow nanospheres (Ni-N4/GHSs/Fe-Ny4) through calcination and etching
(Fig. 8c) [101].The AC HAADF-STEM and EXAFS spectral results
confirmed the presence of single-atom Ni and Fe species on the graphene
(Fig. 8d). The unique Janus hollow graphene structure allowed for the
deposition of Fe single atoms on the outer surface and Ni single atom sites
on the inner surface, facilitating their respective functions as active sites of
ORR and OER reactions, respectively, which avoids the competition of
active sites on the same catalyst surface, thereby achieving superior
bifunctional activity (Fig. 8e). Finally, the Ni-N4/GHSs/Fe-N4 exhibited a
small AE of 0.790 V, demonstrating that non-bonded DACs can achieve
spatial structural diversity of active sites for efficient bifunctional catalytic
activity.

With further research, it has become increasingly apparent that the
separation distance between two individual single atom sites in non-
bonded DACs significantly influences catalyst performance. Molecular
catalysts, characterized by their well-designed and flexible active centers,

Table 3
Bifunctional performance comparison of DACs in liquid-state ZABs.
Configuration Catalyst E (V vs. RHE) Liquid-state ZABs Ref.
Ey)2 Ej_10 AE OCV (V) Peak power Specific capacity Stability (h) Round-trip
density (mAh/gz,) at current efficiency (%)
(mW/cm?) at current density density
(mA/cm?) (mA/cm?)
Bonded Fey/Co:-GNCL 0.846 1.58 0.734 1.527 218 - - - [76]
Coy-N-HCS-900 0.86 1.563 0.703 1.45 188.2 754.2@10 800@5 58.1 [116]
IrCo-N-C 0.911 1.56 0.649 1.46 138.8 - 225@5 62.1 [81]
Fe;Co3-NC-1100 0.877 1.579 0.702 1.479 372 - 190@10 - [82]
Co;Fe;-N-C 0.933 1.67 0.677 227.7 782.4@20 230@2 68 [112]
Fe,Co/DSA-NSC 0.879 1.44 0.561 1.52 240 748@10 60@10 - [113]
NiggFe34-NC 0849 1.697 0.848 1.44 140.1 765.5@10 334@20 - [80]
FeNi-NPC HT 0.859 1.551 0.692 1.48 226.5 661@20 150@3 100@10 66.3 [83]
Fe-NiNC-50 0.85 1.58 0.73 1.41 220 752.14@5 100@2 56.1 [86]
FeNi SAs/NC 0.84 1.50 0.654 1.45 42.22 779.4@5 45@1 - [117]
CoNi-SAs/NC 0.76 1.57 0.81 1.45 101.4 750.9@20 31@5 59.4 [84]
Ni-SAs/HCNFs/Co-NAs 0.89 1.544 0.654 1.45 140.7 806.8@100 200@10 - [118]
Bridged Fe/Co-N/S;.o—C 0.836 1.524 0.688 1.52 138 763.2@20 16.66@10 - [89]
CoFe-N-C 0.897 1.59 0.69 1.494 142.1 917.4@20 200@5 - [971]
Fe;Co,-CNF 0.87 1.73 0.86 1.45 201.7 814@10 200@20 - [119]
NiFe-CNG 0.82 1.5 0.68 - 185.9 - - - [87]1
Fe/Ni(1:3)-NG 0.842 1.71 0.868 1.50 164.1 824.3@5 120@5 - [98]
Fe,Mn/N-C 0.928 1.62 0.692 1.4 160.8 902@5 81@5 - [94]
FeCu-NC - - 0.63 1.492 231 - 300@5 58 [114]
RuFe-N-C 0.92 1.55 0.63 1.52 139.9 916.1@20 200@5 - [88]
IrFe-N-C 0.92 1.58 0.66 1.5 113.9 - 30@5 - [91]
RuCoNy/C 0.895 1.498 0.603 - 130 - 70@2 - [93]
Non-bonded Ni-N4/GHSs/Fe-N4 0.83 1.62 0.79 1.45 - 777.6@5 200@10 52.2 [101]
FeCo-DACs/NC 0.877 1.6 0.723 1.5 175 - 240@10 - [105]
PPcFeCo/3D-G 0.89 1.58 0.7 1.35 222 792@10 120@10 - [106]
FeCo-NS-HNCs 0.87 1.525 0.655 1.48 168.0 846.5@10 250@5 60 [120]
Fe,Co-SA/CS 0.86 1.59 0.73 1.43 86.65 819.6@5 100@5 - [121]
Fe,Co,N-C 0.90 1.64 0.74 1.40 198.4 726@2 51@5 57.14 [102]
Fe/CoNy-C 0.85 1.56 0.71 1.52 134.97 798.25@10 80@10 51.48 [122]
Mn/Fe-HIB-MOF 0.883 1.51 0.627 1.50 195 769@5 1000@10 62.33 [107]
FeN4-SC-NiNy 0.844 1.476 0.632 - - - 67@5 - [123]
Fe, Ni-SAs/DNSC 0.93 1.58 0.65 - 160 802.5@10 32@10 - [124]
FeNi-SAs@NC 0.907 1.528 0.621 1.54 260 950@5 140@5 - [125]
100@20
Cu-Co/NC 0.92 1.565 0.645 1.45 295.9 752.2@20 510@10 60.1 [115]
Ni; Co;-CNF 0.749 1.667 0.918 1.49 95.7 530@10 500@5 - [126]
Co7-PNC/Ni;-PCN 0.88 1.62 0.74 1.59 252 874@100 45@10 - [127]
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have recently been utilized to design catalysts with uniformly distributed
diatomic sites. For instance, Bu et al. proposed a “pre-constrained metal
twins" strategy to create FeCo-DACs/NC DACs containing adjacent FeN4
and CoN4 moieties in a homogeneous geometric configuration (Fig. 9b)
[105]. The atomic distribution of Fe and Co atoms was confirmed by AC
HAADF-STEM and EXAFS spectral results (Fig. 9c and d). Compared with
the randomly dispersed FeN4/CoN4 moiety obtained by traditional
methods (Fig. 9a), catalysts with a uniform geometric structure could
optimize the d-band center position of the metal sites through electronic
correlation between Fe and Co, thereby optimizing the free energy of the
*O intermediate and resulting in improved catalytic activity (Fig. 9e).
Similarly, Wang et al. successfully synthesized conjugated polymerized
iron-cobalt phthalocyanine (PPcFeCo) by solid-state method, which was
subsequently mixed with three-dimensional graphene (3D-G, Fig. 9f)
[106]. The resulting PPcFeCo/3D-G DACs exhibited excellent bifunc-
tional activity, which is attributed to the structural stability and uniform
atomic anchoring of metal atoms provided by PPcFeCo. Lee and
co-workers synthesized a novel three-dimensional dual-linked hex-
aiminobenzene MOF (Mn/Fe-HIB-MOF)-based oxygen electrocatalyst,
which demonstrated a positive E; ;, of 0.883 V for ORR and a low over-
potential of 280 mV for OER (Fig. 9g) [107]. Fourier-transformed
(FT)-EXAFS spectra verified the successful formation of the conjugated
systems in Mn/Fe-HIB-MOF (Fig. Sh). Furthermore, DFT calculations
indicated that the well-defined planar structure of Mn/Fe-HIB-MOF
(non-deformation along the basal plane) contributed to enhanced
bifunctional activity. These examples illustrate that the strategic con-
struction of diatomic sites in molecular catalysts and the design of cata-
lyst structures with uniformly distributed active sites are advantageous
for improving the bifunctional properties of the catalyst. However, our
current understanding of the relationship between the atomic distance
between diatomic sites and the performance in non-bonded DACs is not
yet well-defined. When two metal atoms are in close proximity, they
interact not only spatially but also electronically, facilitating intricate
catalytic reactions [108,109]. Nevertheless, existing characterization
methods primarily provide an average representation of active site pa-
rameters in catalysts, making it challenging to precisely define the
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distance between dual atoms and establish an accurate
structure-property relationship [110,111]. Therefore, further compre-
hensive exploration and research are necessary in order to address this
gap.

In this section, we discuss DACs with different structure characteris-
tics, highlighting how homonuclear bonded DACs can augment catalytic
activity by optimizing the adsorption of reactants or key intermediates. In
heteronuclear DACs, two distinct single-atom metals can be metal-
bonded, bridged, or exist in isolated structures, thereby promoting cat-
alytic reactions through modulation, synergistic, and bifunctional effects.
Moreover, molecular catalysts with dual atom sites offer greater flexi-
bility in the construction of active sites.

5. Applications of DACs in ZABs

Based on the excellent structural characteristics of DACs mentioned
previously, in this section, we will discuss their practical performance as
bifunctional catalysts in liquid and solid-state ZABs.

5.1. Applications in liquid-state ZABs

Table 3 presents a comprehensive overview of the performance of
DAGCs in liquid-state ZABs in recent years. With the advancement of
liquid-state ZABs and the unique structural advantages offered by DACs
as bifunctional catalysts, this section focuses on the remarkable
achievements of three types of DACs: bonded, bridged, and non-bonded
DACs. Xu and his coworkers synthesized dual-atom CoFe—N—C nanorods
(CojFe;—N—C NRs) using a ZIF-derived strategy followed by thermal
fixation treatment [112]. The CoFe—N—C bonded DAC exhibited excel-
lent ORR activity and stability, enabling stable charge/discharge cycles
in liquid-state ZABs. The author also conducted theoretical calculations,
revealing that the adjacent Co—Fe diatomic sites acted synergistically as
unique adsorption sites, endowing CoFe—N—C with the potential for
iodine oxidation. By incorporating potassium iodide (KI) additive into
the assembled liquid-state ZAB, it achieved a charge voltage as low as
1.76V and demonstrated ultra-long cycle stability of over 230 h,
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significantly enhancing energy efficiency (Fig. 10a and b). Additionally,
Zhao et al. developed an atomic-interfacial-regulation method to fabri-
cate a FeCo-bonded DAC (Fe,Co/DSA-NSC, Fig. 10c) [113]. The Fe/Co
dual atomic sites, characterized by an asymmetric arrangement of N and
S coordination, effectively facilitated charge transfer, reduced the energy
barrier of oxygenated reaction intermediates, and enhanced reaction
kinetics. Thus, Fe,Co/DSA-NSC exhibited excellent bifunctional activity,
with a remarkably low AE of 0.56V (Fig. 10d). Experimental results from
continuous charge/discharge cycles over 60 h demonstrated negligible
changes in the voltage gaps of the Fe,Co/DSA-NSC-based battery,
highlighting its commendable robustness (Fig. 10e).

Furthermore, bridged DACs and non-bonded DACs also show strong
potential for applications in liquid-state ZABs. For instance, Li et al.
utilized DFT calculations to compare DACs composed of late transition
metals (Mn, Co, Ni, Cu, and Zn) with Fe to those containing early tran-
sition metals (Sc, Ti, V, and Cr, Fig. 11a) [114].The former exhibited
more effective optimization of ORR and OER by lowering the
adsorption-free energy at Fe sites. Practical experiments confirmed that
FeCu-NC bridged DAC exhibited superior bifunctional properties,
achieving a remarkably low AE of 0.63V. Assembled liquid-state ZABs
based on this catalyst delivered a high OCV of 1.492V, a high peak power
density of up to 231 mW/cm? and demonstrated stable charge/discharge
performance for over 300 h at a current density of 5.0 mA/cm? (Fig. 11b
and d). Li et al. synthesized a non-bonded DAC by dispersing Cu-Co
diatomic sites on a high-porosity nitrogen-doped carbon support
(Cu-Co/NC, Fig. 11e) [115]. Theoretical calculations indicated that the
synergistic effect between the bimetallic sites, characterized by a met-
al-N4 coordination structure, induced asymmetric charge distribution
and facilitated optimal adsorption/desorption behavior of oxygen in-
termediates. Liquid-state ZABs assembled using Cu-Co/NC as cathode
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material achieved a maximum peak power density of 231 mW/cm? and
demonstrated stable charge/discharge performance for over 300 h at a
current density of 5.0 mA/cm? (Fig. 11f).

5.2. Applications in solid-state ZABs

In recent years, there has been a growing interest in the applications
of flexible devices in wearable and portable electronic devices, leading to
the development for solid-state ZABs. The key difference between solid-
state ZABs and liquid-state ZABs lies in the use of (semi-)solid electro-
lytes. Currently, gel polymers such as polyacrylamide (PAM), polyacrylic
acid (PAA), polyvinyl alcohol (PVA), and sodium polyacrylate (PANa)
hydrogel are commonly employed as electrolytes [128]. Among these,
PAM-based electrolytes have demonstrated superior robustness and
adaptability to a wide temperature range [129-133]. However,
solid-state ZABs face challenges such as sluggish kinetics for ORR/OER
and limited oxygen diffusion properties in (semi-)solid electrolytes,
highlight the need of bifunctional catalysts with improved activity. To
address these challenges, researchers have focused on the application of
DAC:s for solid-state ZABs, which were inspired by the excellent perfor-
mance of DACs in liquid-state ZABs. Table 4 provides a detailed summary
of the performance of various DACs as bifunctional oxygen electro-
catalysts in solid-state ZABs.

Among the studies conducted, notable progress has been achieved
by designing bifunctional oxygen electrocatalysts with unique structural
features. For example, Deng et al. developed a bio-cooperative process
to design FeNi diatomic sites on N and P co-doped carbon hollow tyre,
resulting in the formation of FeNi-NPC HT (Fig. 12a) [83]. This unique
combination of Fe-Ni dual centers and N, P heteroatoms synergistically
enhanced the ORR/OER activity. The highly porous carbon structure
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Table 4
Bifunctional performance comparison of DACs in solid-state ZABs.
Configuration Catalyst E (V vs. RHE) Solid-state ZABs Ref.
Eyp Ej_y AE (V) OCV (V) Peak power Specific capacity Stability (h) Round-trip Electrolyte
density (mAh/gz,) at current at current efficiency (%)
(mW/cm?) density (mA/cm?) density
(mA/cmZ)

Bonded Fe-Se/NC? 0.925 1.623 0.698 1.47 (25°C) 135 (25 °C) 764@5 (25 °C) 200@20 (25 °C) 68.51 PAM [138]

1.44 (—40 °C) 71 (40 °QC) 697@1 (—40 °C) 741@1 (—40 °C)

133@5 (—40 °C)
Fe;Co;-CNF 0.87 1.73 0.86 - - - 3@2 - PVA [119]
Fe;Co3-NC-1100 0.877 1.579 0.702 - - - 6@10 - PAA [82]
NCAG/Fe-Co 0.89 1.523 0.633 1.47 117 - 1000 cycles@5 - PAM [140]
FeNi-NPC HT 0.859 1.551 0.692 - - - 100 cycles@4 - PAA [83]
CoNi-SAs/NC 0.76 1.57 0.81 - - - 6.66@1 - PVA [84]
Ni-SAs/HCNFs/Co-NAs 0.89 1.544 0.654 1.38 57.6 - 82@10 59.4 PVA [118]
Bridged FeMn-DSAC 0.922 1.635 0.713 1.45 (25°C) 184 (25 °C) 734@2 (25 °C) 80@2 (25 °C) 63.21 PAM [95]

1.44 (—40 °C) 30 (—40°C) 631@2 (—40 °C) 29@2 (—40 °C)
Fe,Mn/N-C 0.928 1.62 0.692 1.333 - - 6@1 - PVA [94]
Fe/Ni-N-C 0.861 1.552 0.691 - - - 10@5 - PVA [96]
Non-bonded FeCo-DACs/NC 0.877 1.6 0.723 1.466 - - 28@10 - PAA [105]
FeCo-NS-HNCs 0.87 1.525 0.655 1.439 206.4 1123@10 30@1 60 - [120]
Fe3Co7-NC 0.893 1.573 0.68 1.51 133 (30 °C) 747 @2 400@2 (30 °C) 62.89 PAA [139]

34 (-30°Q) 666@2 (—30 °C)

156 (60 °C) 110@2 (60 °C)
Fe,Co,N-C 0.90 1.64 0.74 1.33 158 - 34@2 67.4 PVA [102]
Fe/CoNy-C 0.85 1.56 0.71 1.51 62.16 - 43.33@1 51.48 PAA [122]
FeNi-SAs@NC 0.907 1.528 0.621 1.23 70 - 13@1 - PVA [125]
NCAG/Fe-Cu 0.94 1.61 0.67 1.51 186 - 800 cycles@5 57 PANa [141]
Mn/Fe-HIB-MOF 0.883 1.51 0.627 1.442 194 750@5 600@25 65.24 Bio-cellulose [107]

nanofibrous

PPcFeCo/3D-G 0.89 1.58 0.7 - 59 - 25@5 - PVA [106]
Ni;Co;-CNF 0.749 1.667 0.918 - - - 6.66@1 - PVA [126]

Note: Except for special mark, all solid-state ZABs are sandwich-type and operate at room temperature. ¥ Represents cable-type solid-state ZAB.
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Fig. 12. (a) Sandwich-type ZABs based on FeNi-NPC HT as a cathode. (b) Galvanostatic charge/discharge profiles of the solid-state ZABs in different bending states.
Reprinted with permission from Ref. [83]. Copyright 2023 Elsevier. (c) Schematic illustration of FeMn-DSAC as a bifunctional catalyst for solid-state ZABs. (d)
Galvanostatic cycling stability at 2 mA/cm? of FeMn-DSAGC and Pt/C + Ir/C as a bifunctional catalyst at —40 °C. Reprinted with permission from Ref. [95]. Copyright

2022 John Wiley & Sons.

with a hollow center not only generated a large number of active sites
but also facilitated rapid kinetics in the operation of solid-state ZABs.
Moreover, the FeNi-NPC HT-based batteries demonstrated stable char-
ge/discharge curves under various bending states (Fig. 12b). Another

noteworthy study was conducted by Cui et al., who employed a molten
salt-assisted pyrolysis strategy to prepare a novel bridged dual
single-atom catalyst (FeMn-DSAC) [95]. Fe-N4 and Mn-Ny4 sites were

constructed on 2D ultrathin N-doped carbon nanosheets with a porous
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Fig. 13. Fourier-transform EXAFS spectra and fit in R space of Fe (a) and Se (b) in Fe-Se/NC. (c) Bifunctional polarization curves of Fe-Se/NC and Pt/C + Ir/C. (d)
Comparison with reported low-temperature ZABs. (e) Optical images of LED screens powered by Fe-Se/NC-based battery under i-puncture and ii-cutting. Reprinted
with permission from Ref. [138]. Copyright 2023 John Wiley & Sons. (f) Schematic illustration of Fe3Co,-NC as a bifunctional catalyst for solid-state ZABs. (g) Cycling
tests of the Fe3Co,-NC at 2 and 5 mA/cm? and at different temperatures. Reprinted with permission from Ref. [139]. Copyright 2022 John Wiley & Sons.
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structure (Fig. 12c). FeMn-DSAC exhibited remarkable bifunctional ac-
tivity with a low AE of 0.713 V, which was attributed to the synergistic
effect of Fe/Mn dual-sites facilitating *OOH dissociation and the porous
2D nanosheet structure. Notably, at a current density of 2 mA/cm?,
FeMn-DSAC-based solid-state ZABs exhibited stable cycling for up to 30
h, twice as long as commercial catalysts (Fig. 12d).

With the diversity of human activities, such as polar inspection,
aerospace, deep-sea exploration, etc., the development of solid-state
ZABs that can operate under extreme conditions has attracted much
attention in recent years. However, under extreme conditions, the
slowdown of ORR/OER kinetics [134,135] and extremely high O—=0
bond energy [136,137] led to serious deterioration of the performance of
ZABs. In this context, DACs also show potential for application in
low-temperature solid-state ZABs. One notable example is the work of
Wang et al., who synthesized a bifunctional electrocatalyst consisting of
atomically dispersed Fe-Se atomic pairs supported on N-doped carbon
(Fe-Se/NC) [138]. The EXAFS spectra confirmed the existence of Fe-Se
bonds (Fig. 13a and b). Through experimental and theoretical studies,
they discovered that the introduction of Se could regulate the electronic
structure and micro-environment of the Fe sites through unconventional
p-d orbital hybridization, thus optimizing the adsorption/desorption
behavior during the ORR/OER processes. Fe-Se/NC exhibited a low AE of
0.698 V, far superior to that of reported Fe-based single-atom catalysts.
(Fig. 13c). When assembling solid-state ZABs with a cable structure,
utilizing a modified organohydrogel as the electrolyte resistant to tem-
peratures as low as —40 °C, Fe-Se/NC-based ZABs demonstrated superior
cycling  performance compared with  previously reported
low-temperature ZABs employing other types of catalysts. Moreover,
when operated at current densities of 1 and 5 mA/cm? under —40 °C, the
battery exhibited impressive long-term stability, with continuous oper-
ation for up to 741 and 133 h, respectively (Fig. 13d). Furthermore, an
intriguing observation was made regarding the performance of a
light-emitting diode (LED) powered by this battery. Despite being sub-
jected to puncturing or cutting, the LED remained functional, under-
scoring the robustness and reliability of Fe-Se/NC bonded DAC
(Fig. 13e). In another study, Cu et al. synthesized a non-bonded DAC
featuring isolated Fe and Co dual sites, which was guided by
first-principles calculations (Fig. 13f) [139]. The presence of Fe-Co
bimetal promoted oxygen binding with low activation energy, promot-
ing ORR, while the formation of the Fe-O-O-Co bond served as a crucial
intermediate for OER. These characteristics endowed Fe3Co7-NC with
excellent ORR/OER properties. Upon integration into the sandwich-type
ZABs, Fe3Co7-NC-based ZABs exhibited excellent cycling performance.
They could be cycled at 2 mA/cm? for over 2000 cycles at
low-temperature (—30 °C) and over 340 cycles at high-temperature (60
°C) without obvious fading in the operating voltage (Fig. 13g). These
results highlight the robust cycling stability of Fe3Co;-NC-based ZABs,
underscoring their potential as reliable and flexible energy storage de-
vices that adapt well across a wide temperature range.

In conclusion, this section has summarized the applications of
different types of DACs as bifunctional catalysts in liquid and solid-state
ZABs. The application of DACs has significantly improved the perfor-
mance of liquid-state ZABs, especially the long-term cycling stability. In
addition, DACs can also be applied to liquid-state ZABs modified with
potassium iodide to further improve energy efficiency and service life. By
applying DACs to solid-state ZABs (cable and sandwich-type), the battery
can operate normally in harsh environments such as puncturing, cutting,
bending, and low temperatures, demonstrating the strong adaptability of
DAGs.

6. Summary and perspectives

Rechargeable ZABs hold great promise to address contemporary en-
ergy and environmental challenges. However, the practical application of
ZABs requires the development of efficient bifunctional oxygen electro-
catalysts. In recent years, the utilization of DACs in ZABs has garnered
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significant attention. This comprehensive review highlights the advan-
tages of DACs with unique configurations (bonded, bridged, and non-
bonded) as bifunctional catalysts. Furthermore, we provide a summary
of the current applications of DACs in both liquid and solid-state ZABs.
Despite notable progress, the research on DAGCs is still in its early stages,
presenting both challenges and opportunities for further advancements.

(1) Precise design and controlled synthesis of DACs. The controlled
synthesis of DACs with specific configurations remains a signifi-
cant challenge. Current methodologies, such as high-temperature
pyrolysis, suffer from drawbacks such as unpredictable coordi-
nation configurations, metal site aggregation, and low metal
loading. To overcome these limitations, alternative strategies need
to be explored. For instance, the pyrolysis-free synthesis of cata-
lysts derived from covalent organic frameworks/hydrogen-
bonded organic frameworks offers well-defined active sites and
controllable coordination environments, providing valuable in-
sights for the future design and synthesis of DACs [142]. Further
research is required to investigate the structure-performance
relationship of different types of DACs. It is important to address
the limitations of characterization methods and controllable syn-
thesis in order to obtain a comprehensive understanding.

Currently, many studies fail to acknowledge the simultaneous

existence of multiple types of active sites within the same catalytic

system [70,79]. This oversight can have a significant impact on
the establishment of accurate structure-performance relationship.

Therefore, it is crucial to establish a comprehensive

structure-activity-mechanism relationship for different DAC

structures, which can pave the way for the rational design and
optimization of DACs for enhanced ORR/OER performance.

Identification of dynamic evolution of diatomic active sites. Cat-

alytic reactions involve dynamic cyclic processes generating

numerous intermediates, necessitating the identification of the
dynamic evolution of active sites. Advanced in-situ characteriza-
tion techniques are crucial to track these dynamic changes and
guide the design and synthesis of next-generation catalysts. For
example, in-situ/operando spectro-electrochemical techniques
can be employed to detect the dynamic evolution of active sites, as
demonstrated by Tong et al., who combined in-situ XANES and

DFT to reveal the impact of evolved Mn*38_N3C and Mn32-N,C,

structures on ORR activity [143].

Expanding and optimizing the combination of diverse elements

and precisely regulating the diatomic coordination environment

represent pivotal strategies for enhancing the bifunctional elec-
trocatalytic performance of DACs. While the majority of DACs
currently based on transition metal elements, the periodic table
offers a plethora of unexplored possibilities. Notably, the rare
earth elements, characterized by the occupation of their 4f or-

bitals, have demonstrated remarkable potential [144,145].

Furthermore, meticulous control over the coordination environ-

ment of DACs presents an effective avenue for improving their

bifunctional electrocatalytic performance. However,
vestigations targeting the modification of DACs pertaining to the
first and second shells, as well as carbon support, remain relatively
scarce, thus underscoring the expansive scope for future research

endeavors [142].

(4) Strengthening the guiding role of theoretical calculations in DAC
research is of utmost importance. In addition to DFT, harnessing
advanced tools such as machine learning is imperative for accu-
rate predictions and effective guidance in experimental synthesis.
Through comprehensive collection and analysis of existing data-
bases, we can delve into the intricate reaction mechanisms and
provide meticulous guidance for experimental design. Moreover,
microkinetic models should be developed to study the kinetics of
intermediate catalytic reactions. By employing such theoretical
calculations, we can propel the advancement of DAC research,
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)

expedite the discovery and development of novel catalysts, and
ultimately realize more efficient and sustainable energy conver-
sion and storage technologies.

Enhancing cycling performance of ZABs. Improving the stability
and longevity of ZABs during charge/discharge cycles, especially
under high current densities, is pivotal for practical applications.
Carbon-based catalysts suffer from carbon oxidation/corrosion at
high OER potentials, limiting their stability. Therefore, strategies
such as reinforcing the anchoring of diatomic active sites on
corrosion-resistant carbon supports of DACs is a promising solu-
tion. Additionally, how to experimentally evaluate the intrinsic
catalytic activity is in urgent need. Current experimental evalua-
tion is usually mixed up with many extrinsic factors, such as the
morphology and conductivity of the catalyst support, macro- and
micro-environment of catalyst, pH values, and temperature, etc.
These extrinsic factors can obscure the true intrinsic catalytic ac-
tivity and hinder accurate assessments. To further enhance the
cycle life of ZABs, it is also essential to comprehensively improve
the performance of each key component, such as optimizing zinc
electrodes. By focusing on the optimization of zinc electrodes, the
overall performance of ZABs can be further enhanced, leading to
improved cycle life and practical viability [146].
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