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SUMMARY

Evapotranspiration (ET) shapes climatic variability through the land-atmosphere coupling (LAC). While the 

relationship between soil moisture and ET is intuitive, the dynamical interaction among vegetation, soil mois

ture, and ET in LAC is understudied. Here we disentangle soil moisture and the vegetation influence on ET 

interannual variability using the Community Earth System Model. Globally, 55.7% of the land shows high 

soil moisture and vegetation coupling with ET. Soil moisture-ET coupling predominates in low-latitude 

LAC hotspots, while vegetation-ET coupling dominates in arid areas and high latitudes where shrubs and 

grasses prevail. In high-temperature and low-precipitation areas, soil evaporation induces an ET variability 

of 0.072 mm day− 1, whereas transpiration exerts stronger variability of 0.092 mm day− 1. The findings under

score the essentiality of vegetation in ET dynamics, suggesting that its influence may be underestimated in 

current LAC assessments—and that such underestimation could heighten the risk of extreme events in a 

warming climate.

INTRODUCTION

Evapotranspiration (ET) is a key terrestrial hydrological process 

that contributes to energy exchange and the carbon cycle 

through the transition of liquid water to the vapor phase at the 

surface and transfer into the atmosphere.1–4 It is also an impor

tant linkage between the atmosphere and the terrestrial ecosys

tems, manifesting its role in the land-atmosphere coupling 

(LAC).1,5 Here the term ‘‘coupling’’ represents the extent to 

which one variable affects the other, describing a one-way con

trol, whereas the two-way coupling is described as ‘‘feedback’’.1

LAC has been demonstrated to significantly amplify global 

warming,6 influence regional climate interannual variability 

(IAV), and directly contribute to extreme droughts and heatwave 

events,2,7–9 as exemplified by the 2022 persistent compound 

drought and heatwaves in eastern China.10 ET-involved LAC is 

2-fold: it can couple with land components (e.g., soil moisture 

(SM) and vegetation) and the atmospheric variables (e.g., precip

itation and air temperature).11 As ET is composed of soil evapo

ration, interception, and transpiration by definition, ET can be 

mainly regulated by SM and vegetation dynamics, and other 

atmospheric contributors.3 Understanding the control of these 

variables in ET constitute a vital part of the ET-involved LAC 

and sheds light on the coupled land-climate effects.12

Previous studies1,2,13,14 mainly explore the role of SM in 

LAC, quantifying coupling strength and uncovering the mech

anisms through different measurements, such as the GLACE- 

type coupling strength parameter, variance analysis, and 

correlation analysis. By applying these measurements, the in

fluences of LAC on temperature and precipitation are found to 

be mostly regulated through SM-ET coupling.1 Strong SM- 

climate coupling exists in global transition zones where ET is 

sensitive to SM.1,13,14 Meanwhile, the vegetation influence 

on regional climate is not negligible.15,16 As vegetation 

increasingly governs surface energy fluxes and climate dy

namics, it becomes essential to account for vegetation im

pacts in LAC assessments—rather than relying solely on tradi

tional SM-based metrics.17–19 When taking vegetation metrics 

into account, current estimates of LAC could be underesti

mated, and the area affected by LAC may extend beyond 

SM coupling ‘‘hotspots’’.

Moreover, the regulation of climate by SM and vegetation is 

often studied in isolation, overlooking their tight coupling and 

interactive feedbacks.20–22 Currently needed is a better under

standing of global land-ET coupling that includes the synergistic 

effects of both SM and vegetation (SM-vegetation-ET coupling). 

The complex, spatiotemporal interactions between SM and 

vegetation introduce additional uncertainty in diagnosing and 
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quantifying the relative contributions of SM-ET and vegetation- 

ET coupling across the global land surface.

To address these issues, we use the fully coupled Community 

Earth System Model 2 (CESM2)23 to conduct a series of simula

tions to provide global estimations of the land-ET coupling 

(Figure S1). Three simulations are applied to investigate the 

role of SM and leaf area index (LAI) dynamics in regulating the 

ET variability over the historical period from 1985 to 2014. 

The simulations share the same configurations, with the only 

differences in the prescribed monthly LAI and SM time series. 

The control simulation (CTL) includes prescribed monthly dy

namics of both SM and LAI. In comparison, the SMfix simulation 

uses prescribed SM climatology while allowing dynamically 

calculated LAI (same as the prescribed LAI dynamics in CTL), 

whereas the LAIfix experiment applies prescribed LAI clima

tology with dynamically calculated SM (same as the prescribed 

SM dynamics in CTL). All simulations are run from 1980 to 

2014. We discard the first 5 years and restrict the analysis to 

1985–2014 to ensure the simulated fields are balanced.

We adopt the multiple correlation coefficient as an indirect 

indicator to measure the global SM-vegetation-ET coupling 

strength on the inter-annual scale using annual SM, LAI, and 

ET data derived from CTL monthly output. The annual time series 

from the CTL are then used to determine the dominant contribu

tors (SM-dominated or LAI-dominated) on ET variability with 

multiple linear regressions. In specific, we isolate the magnitude 

of the SM-dominated (LAI-dominated) effects by the ET IAV dif

ference between CTL and SMfix (LAIfix) simulations. The magni

tudes of ET IAV are measured as the value of the standard vari

ations of the de-trended ET annual time series.

RESULTS

Overall effects of soil moisture and vegetation on ET 

variation

Using annual time series of SM, LAI, and ET data from the CTL 

output, we find that the coupling strength of SM and vegetation 

on ET, quantified by the multiple correlation coefficient, has great 

spatial variability globally (Figure 1). More than half (55.7%) of the 

analyzed areas with annual mean LAI >0.1 have high correlation 

(≥0.6) between ET and both SM and LAI. Prominent areas include 

central South America, western North America, eastern Africa, and 

the zone stretching from Eastern Europe to central Asia (Figure 1A). 

Spatially, the ET time series has a high correlation with SM and LAI 

mainly in low-to-mid latitude regions, ranging from 10◦ to 50◦ in 

both the northern and the southern hemispheres, except for trop

ical rainforests, East Asia, and eastern North America (Figure 1B). 

The correlations between SM, vegetation, and ET in the high- 

latitude region (>50◦N) are generally weak (<0.6). As shown 

in Figure 1C, on the inter-annual scale, ET is the most sensitive 

to SM and LAI variation in arid regions, having a mean correlation 

coefficient of 0.76 ± 0.15, followed by temperate regions (0.61 ± 

0.24) and tropical regions (0.59 ± 0.27). In addition, ET in cold 

areas has the lowest sensitivity to SM and LAI variabilities 

(0.48 ± 0.23).

The strong coupling across different climate regions suggests 

widespread control of the land components on ET when ac

counting for both SM and vegetation (Figure 1C; also see 

Figure S2). The highest coupling strength occurs in areas domi

nated by bare soil (0.72 ± 0.18; Figure 1D). In climate zones that 

support sparse vegetation, the coupling with ET is also relatively 

high. For example, grasslands have the highest coupling 

strength (0.68 ± 0.21), compared with shrublands (0.61 ± 0.24). 

ET change in forests is generally less sensitive to SM and LAI dy

namics compared with bare soil, grasslands, and shrublands, 

corresponding with the weak coupling strength (0.44 ± 0.24) 

mainly in tropical rainforests and boreal forests (Figure 1A). 

Overall, ET coupling strength is influenced not only by climate 

regime but also by vegetation type, highlighting the varying con

tributions of both vegetation-ET and SM-ET coupling.

Separating SM-coupling and LAI-coupling using linear 

regression

We extend our analysis from SM-LAI-ET coupling in CTL simula

tions to separately considering vegetation-ET and SM-ET 

coupling effects quantified with multiple linear regressions to 

the annual SM, LAI, and ET time series. To exclude autocorrela

tion and multicollinearity between SM and LAI, we applied the 

variance inflation factor (VIF)24 analysis and found that all VIF 

values between SM and LAI are nearly all below five, suggesting 

that our multiple linear regression method is valid (Figure S3). In 

general, ET dynamic in most regions is regulated by both LAI and 

SM, as indicated by the positive SM-ET and LAI-ET correlations, 

respectively. Higher SM (LAI) facilitates ET and smaller SM (LAI) 

reduces ET. Nevertheless, the contributions of SM and LAI 

display distinct latitudinal patterns (Figure S4). LAI has larger 

influence on ET dynamic mainly in mid-to-high latitude regions 

(30◦N-60◦N and 30◦S-60◦S) and in arid areas such as Africa 

(Figure S4A). In comparison, SM largely controls ET dynamic in 

low latitude regions (30◦S–30◦N) and eastern United States 

(Figure S4B).

Regions with a multiple correlation coefficient r(ET; SM, LAI) ≥

0.6 were retained, such that the joint effects of SM and LAI are 

regarded as the major contributors to the ET variations. Within 

these grids, we further analyzed whether SM or LAI is more 

dominant in the variations of ET and categorized them into four 

types based on the signs of the regression coefficients for 

LAI/SM (Figure 2). Globally, ET dynamics in 45.41% of the 

analyzed grids are dominated by the jointly contributions of 

SM and LAI. There are also areas where ET variation is domi

nated by SM or LAI only. In the mid-to-high latitude region of 

the northern hemisphere, the LAI-only type (3.28%) accounts 

for a larger proportion compared to the SM-only type (2.28%). 

The LAI-only type is identified in areas with high multiple 

correlation coefficients, implying strong vegetation-ET coupling 

(Figures 1A and 2A).

SM and LAI exert varying degrees of control on ET variation 

across different climatic regions (Figure 2B). In tropical areas, 

52.70% of the grids are impacted by SM-ET/LAI-ET coupling. 

36.03% of the grids are dominated by SM-ET coupling 

(32.69% for SM-dominated and 3.34% for SM-only). Meanwhile, 

vegetation-ET coupling is weak: LAI-dominated and LAI-only 

account for only 15.77% and 0.90% of the areas, respectively. 

The predominance of SM-ET coupling is also observed in 

temperate regions, accounting for 33.18% of the temperate 

grid cells (30.02% for SM-dominated and 3.16% for SM-only). 
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The situation changes in arid regions where 64.02% of the grids 

are LAI-dominated (56.11%) or solely contributed (7.91%) 

by vegetation-ET coupling. The prevalence of vegetation-ET 

coupling still exists in cold regions where 23.66% of the grids 

are LAI-dominated and LAI-only grids, confirming the leading 

role of vegetation-ET coupling in high-latitude areas compared 

with the small proportion of SM-ET coupling (5.86%).

Spatial differences between SM-ET coupling and vegetation- 

ET coupling are evident across different plant functional types 

(PFTs; Figure 2C). ET is more sensitive to variations in LAI and 

SM over bare ground and grasslands, where 77.79% and 

66.07% of grid cells, respectively, are dominated by either LAI 

or SM effects. Specifically, LAI is more prevalent in inducing 

ET variation in bare ground, shrublands, and grasslands where 

LAI values are small. As for the forests, SM variability is more 

responsible for ET change, but the overall coupling is weak as 

only 23.09% of the grids are regulated by SM (14.58%) or LAI 

(8.51%). The LAI dominance on grassland is further supported 

within each climate region: a higher proportion of grassland is 

involved in strong LAI-ET coupling than in SM-ET coupling 

across tropical, arid, and cold regions, whereas higher propor

tion of tree is more frequently associated with strong SM-ET 

coupling (Tables S1 and S2).

Quantification of soil moisture and vegetation effects on 

ET IAV

In addition to the correlations that indicating the coupling 

strength, we further quantify the magnitude of SM and LAI con

trol on ET variability. We find that LAI variability induces ET 

change on a broader coverage than SM, ranging from 60◦S to 

60◦N; meanwhile SM-induced ET IAV change is mostly restricted 

within 40◦S to 40◦N (Figures 3A and 3B). Both the LAI and SM ef

fect are weak at the equator and near the two poles. The LAI in

fluence increases as the latitude decreases and reaches the 

strongest influence along the two sides of the equator. Mean

while, SM shows a similar trend but a smaller magnitude in the 

Figure 1. SM-vegetation-ET coupling strength 

(A) Global spatial distribution of the multiple correlation coefficient between ET, SM, and LAI, denoted as r(ET; SM, LAI). Areas where annual LAI <0.1 

are excluded. 

(B) The latitudinal distribution of r(ET; SM, LAI). 

(C) Mean r(ET; SM, LAI) for different climate regions. 

(D) Mean r(ET; SM, LAI) for different dominant plant functional types (PFT). 

Error bars indicate the standard error of the mean values. The asterisks denote statistical differences in mean values (Student’s t test). ****p < 0.0001; n.s. p > 0.05.
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northern hemisphere and a comparative maximum value in the 

southern hemisphere along the equator (Figure 3C).

Within different climate regions, the largest difference be

tween the LAI and the SM effect are found in arid regions—where 

LAI-induced changes in ET IAV average 0.083 ± 0.062 mm 

day− 1, relating to the strong LAI effect in southern South Amer

ica, central Africa, and Australia. The mean SM-induced ET 

changes are 0.060 ± 0.055 mm day− 1. Because LAI has stronger 

effects in mid-to-high latitude regions than SM, vegetation- 

induced changes on ET IAV are 45% and 103% stronger than 

SM-induced ET IAV changes in temperate and cold regions, 

respectively (Figure 3D).

The SM-ET coupling and vegetation-ET coupling are most 

evident in low-precipitation areas (annual mean precipitation 

(AMP) < 1,500 mm). Furthermore, SM-ET coupling is more 

concentrated in areas with high temperatures (annual mean tem

perature (AMT) > 20◦C), corresponding with the latitudinal and 

climatic patterns (Figures S5A and S5B). Strong vegetation-ET 

coupling regions are characterized by low LAI values, especially 

over grasslands where LAI-induced ET IAV changes of 0.068 ± 

0.069 mm day− 1—compared with 0.040 ± 0.050 mm day− 1 for 

SM-induced ET IAV changes (Figures S5C, S5D, and 3E). Simi

larly, SM-ET coupling is most obvious in relatively low SM areas, 

covering locations of both high and low LAI values but exhibiting 

Figure 2. Classification of SM/LAI contribution on ET dynamics 

(A) Five classifications based on the relative contribution of LAI and SM on ET dynamics. Grids with r(ET; SM; LAI) <0.6 are classified as ‘‘Other contribution in ET.’’ 

The inset figure shows the grid percentage of the five categories. 

(B and C) The bar plots show the grid percentage of the four categories (except ‘‘Other contributes in ET’’) in different (B) climate regions and (C) dominant plant 

functional types (PFT). 

The colors in the bar plots correspond with the four categories in (A). The numbers indicate percentages of each category.
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a smaller magnitude than vegetation-ET coupling in low-LAI 

regions. Therefore, stronger SM-ET coupling occurs in forests 

than vegetation-ET coupling (0.023 ± 0.046 mm day− 1 of SM- 

induced ET IAV change compared with 0.013 ± 0.037 mm 

day− 1 of LAI-induced ET IAV change); and weaker SM-ET 

coupling is associated with the bare ground, shrublands, and 

grasslands (Figures S5C, S5D, and 3E).

Soil moisture-vegetation interactions on ET 

components

To further investigate how variability in SM and LAI, as well as 

their interactions, influence ET change, we analyze the individual 

ET components. Specifically, we examine soil evaporation, can

opy interception, and transpiration across three model simula

tions: the LAI effect (CTL minus LAIfix) and the SM effect (CTL 

minus SMfix) (Figure 4). Vegetation mainly affects ET IAV by 

modulating the variability of transpiration, which shows consid

erable spatial variability (Figures 4A–4C). The transpiration 

pattern is possibly related to regions dominated by shrublands 

and grasslands with relatively low LAI values. This pattern likely 

reflects the high water use efficiency and rapid climate respon

siveness of these ecosystems, where small changes in LAI can 

trigger large shifts in transpiration.25 In areas where AMT 

>20◦C and AMP <1500 mm, LAI variability increases the IAV of 

transpiration (maximum increment: 0.17 mm day− 1; mean: 

0.092 mm day− 1) and reduces the IAV of soil evaporation 

(maximum reduction: − 0.020 mm day− 1; mean: − 0.0038 mm 

day− 1). These trends indicate higher control of LAI on ET IAV 

through transpiration, resulting in a smaller proportion of water 

directly evaporated by soil, which reduces the SM contribution 

to ET IAV. In areas where 15◦C < AMT <30◦C and 

1500 mm < AMP <2500 mm, LAI variability not only regulates 

ET through transpiration but also promotes IAV of soil evapora

tion (maximum value: 0.038 mm day− 1). The similar characteris

tics are also displayed in areas where AMT <10◦C and AMP 

<1000 mm (maximum soil evaporation increase: 0.039 mm 

day− 1). This influence is possibly due to the LAI shading effect26

that induces soil evaporation variability and stemflow-root chan

nelization which facilitates water infiltration, thus affecting SM.27

In areas where AMT >20◦C and AMP >2500 mm, the LAI influ

ence on SM becomes weak and insignificant. The transpiration 

enhancement decreases to 0.011 mm day− 1 on average, which 

Figure 3. Spatial distribution of effects of SM and LAI on ET IAV 

(A) The difference of ET IAV between CTL and LAIfix. 

(B) The difference in ET IAV between CTL and SMfix. 

(C) The zonal mean of ET IAV difference for CTL and LAIfix, and for CTL and SMfix. Green and orange shading refers to one standard error of the zonal mean for LAI 

and SM, respectively. 

(D and E) Mean ET IAV difference among climate regions (D) and dominant PFT (E) for CTL minus LAIfix (LAI effect) and CTL minus SMfix (SM effect). 

Error bars indicate one standard error. The asterisks denote statistical differences in mean values (Student’s t test). ****p < 0.0001; ***p < 0.001; **p < 0.01; n.s. 

p > 0.05.
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is comparable to the canopy interception over the area (mean 

value: 0.010 mm day− 1).

The regulation of SM on ET IAV is directly associated with the 

modulation of soil evaporation variability, with the highest effect 

occurring in areas with high temperature (AMT >20◦C) and low 

precipitation (AMP <2000 mm; mean increase in soil evaporation 

IAV: 0.072 mm day− 1; Figure 4D). Compared with LAI-induced 

change in transpiration, the SM effect on soil evaporation is 

relatively smaller. Meanwhile, SM also displays vegetation 

interaction by affecting canopy interception and transpiration 

at a smaller magnitude (Figures 4E and 4F). In areas where 

AMT >20◦C and AMP >2000 mm, the variation of SM promotes 

both the variability of plant canopy evaporation (mean value: 

0.010 mm day− 1) and plant transpiration (mean value: 

0.014 mm day− 1), supporting the conclusion of the SM effect 

on canopy conductance in tropical forests.28 The indirect SM 

effects on ET (by affecting vegetation transpiration and evapora

tion) are not limited in water-abundant regions, but also in other 

areas. For example, the enhancement of transpiration IAV is also 

observed in areas where AMP <2,000 mm. This suggests the 

widespread control of SM on plant stomatal conductance in re

gions where precipitation is limited.29

DISCUSSION AND IMPLICATIONS

We find that SM dominates ET variation in most of the previously 

defined SM coupling hotspots in transitional climate zones of the 

low-latitude, such as India, central North America, and central 

Africa.13 This is consistent with the spatial patterns of strong 

SM-ET coupling strength using various data sources in previous 

studies.11,30–32 Meanwhile, in most of the arid and cold regions 

whose ET variation is strongly coupled with LAI and SM, LAI 

plays the leading role in regulating ET, which is in agreement 

with the patterns derived in a past study.33 These findings are 

not affected by the choice of climate classification method, as 

we further performed our analysis classified based on aridity 

index, using the Global-AI_PET_v3 dataset34 (Figure S6). The 

combined effect of SM and LAI is the strongest in areas with 

the highest aridity and weakens as aridity decreases 

(Figure S7A). LAI maintains the dominant role in ET variation in 

all arid areas (from hyper arid to dry sub-humid) and exerts a 

higher impact than SM in regulating ET IAV (Figures S7B 

and S7C).

Separate experiments were conducted to identify the spatial 

patterns and quantify SM and LAI on ET IAV, respectively. 

Uncertainty exists on whether the use of standard deviation 

can represent the ET variation controlled by SM/LAI. To test 

the robustness of using standard deviation as a measurement 

of ET IAV, we analyzed ET sensitivity to SM and LAI. The results 

show that regions with high ET sensitivity to either SM or LAI 

correspond well with regions exhibiting large ET IAV changes 

induced by SM or LAI variability (Figure S8). This confirms that 

standard deviation can effectively capture the magnitude of ET 

IAV and its correspondence with SM (LAI) dynamics. We also 

Figure 4. SM and LAI effect on ET components 

(A–C) Difference of CTL and LAIfix on the IAV of soil evaporation (QSOIL, A), interception (QVEGE, B), and transpiration (QVEGT, C). 

(D–F) Also shown is the difference of CTL and SMfix on the IAV of QSOIL (D), QVEGE (E), and QVEGT (F). Values are binned as the function of 30-year mean 

precipitation and temperature. The black dots denote mean values statistically different from zero using t test at p < 0.05.
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compare the SM effect on ET with results from previously con

ducted experiments in the Land Surface, Snow, and Soil Mois

ture Model Intercomparison Project (LS3MIP).35 In LS3MIP, six 

participating models performed simulations in which SM dy

namics were replaced with their respective climatological 

values. Comparing SM effect on ET IAV in our simulation (CTL 

minus SMfix) and the mean value of the six models (historical 

run minus fixed SM run) shows that our results are in agreement 

with model ensembles in most of the climate zones and domi

nant PFTs (Figure S9). Although our simulation presents smaller 

values compared to the model ensemble data in arid regions and 

shrublands, the overall trend is successfully captured. For 

example, our simulation and the model ensemble data both 

demonstrate the highest value in arid regions and the second- 

highest value in tropical regions, reflecting consistency in the 

trend despite differences in specific magnitudes. The SM effects 

on precipitation IAV in our study also align with the model ensem

bles, suggesting that the ET changes are due to surface pro

cesses instead of the indirect effects of climate feedback 

(Figure S10).

Our study highlights the importance of considering both SM 

and LAI effects in the terrestrial segments for the LAC. In land-at

mosphere interactions, a large portion of the current change of 

climate IAV may be attributed to LAC associated with SM-ET- 

climate and vegetation-ET-climate interactions. As global warm

ing continues, transitional regimes are expected to emerge in 

high latitudes, suggesting stronger SM-atmosphere coupling 

over the area.36 Combined with the vegetation-ET coupling 

and vegetation effect on promoting soil evaporation variability 

over high latitudes, climate interannual variability may be further 

amplified through LAC in these areas, increasing the risks of 

extreme weather events. As global vegetation greening is pre

dicted to continue during the 21st century,37 the uncertainty of 

the complex SM-vegetation interaction in LAC may expand in 

the future, considering the current increasing vegetation sensi

tivity to drying SM.38 Moreover, as arid region water cycles are 

strongly coupled with carbon cycle,39,40 our findings provide in

sights into variability in regional carbon cycles. Accurate SM and 

LAI simulation and improved representation of SM-vegetation in

teractions will advance climate projections under future climate 

change scenarios.

Conclusions

Our study suggests that LAC may have a bigger impact on 

climate than previously thought. As these couplings intensify, 

they could lead to more frequent or severe climate extremes in 

the future. Our findings show that both SM and vegetation play 

important roles in shaping evapotranspiration (ET) variability 

across the globe. While SM remains the dominant factor on ET 

dynamics in the low-latitude regions, vegetation has a surpris

ingly strong influence in arid regions and high-latitude wet 

regions—especially through its control over transpiration. We 

also find that the way vegetation and SM interact is not uniform: 

in high-temperature and low-precipitation areas, vegetation 

tends to reduce soil evaporation, but in other climates, it can 

increase it. Meanwhile, SM influences not just evaporation 

from the soil but also canopy processes like interception and 

transpiration, especially in warmer and wetter areas. By high

lighting the complex and regionally diverse ways in which land 

conditions influence climate, this study points to the need for 

models and climate assessments to better account for the joint 

effects of vegetation and SM.

Limitations of the study

There are also uncertainties and limitations in our study. We 

focus on the coupling between land conditions of SM and LAI 

on ET variability, however, other factors involved in the coupling 

with ET and atmospheric variables such as vapor pressure 

deficit, temperature, and precipitation41 were not included in 

this study. How SM and LAI interact with these factors directly 

or indirectly remain to be explored. Meanwhile, our study is 

also limited by the deficiencies in the earth system model. Vege

tation and SM feedbacks on climate are highly dependent on ET 

sensitivity to LAI and SM changes, within which the fraction of 

transpiration in ET (T/ET) plays an important role. The lack of ac

curate representation of transpiration partitioning in current earth 

system models may cause bias to the estimation of SM and 

vegetation feedbacks on ET.42,43
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using Python 3.7. The python scripts can be retrieved from the corresponding 

author upon request.
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KEY RESOURCES TABLE

METHOD DETAILS

Fully-coupled Earth System Model simulation

We characterize and decouple the SM-vegetation interaction on ET using the fully-coupled CESM model (version 2.1.3), which con

sists of the atmosphere component Community Atmosphere Model Version 6 (CAM6), the ocean component Parallel Ocean Program 

Version 2 (POP2), the sea ice component Los Alamos Sea Ice Model Version 5.1.2 (CICE5), the land ice component Community Ice 

Sheet Model Version 2.1 (CISM2.1), the land component Community Land Model Version 5 (CLM5), and the river component Model 

for Scale Adaptive River Transport (MOSART). The coupler Common Infrastructure for Modeling the Earth (CIME) controls the state 

and flux changes between these components.23 The CESM2 is improved in historical simulations compared with the previous model 

version and observation data.23 The model has contributed to the Coupled Model Intercomparison Project Phase 6 (CMIP6). Spe

cifically, for the land component, the CLM5 is implemented with an updated soil-plant-atmosphere continuum model and reduces 

transpiration and SM bias, which improves simulations on land-climate feedbacks.44

The description of the experimental design is shown in Figure S1. Four simulations were conducted in total, with one simulation 

(BGC-run) providing the input data for the rest of the three experiments (CTL, LAIfix, and SMfix). The outputs from these three ex

periments were applied to study the role of vegetation and SM in ET variability. Since the historical simulations end in 2014, the study 

period was restricted to the last 30 years of the historical runs, i.e., from 1985 to 2014. All four experiments were configured with the 

fully coupled historical (‘‘BHIST’’) component set without dynamic crop management, and forced by prognostic atmospheric CO2, 

which was computed from surface fluxes of the land and the ocean model. All components (land, ocean, atmosphere, etc.) were 

active in ‘‘BHIST’’ simulations to enable full interactions between the components to provide more realistic climate simulations. 

The grid resolution was set as ‘‘f09_g17_gl4’’ with a model resolution of 0.9◦ × 1.25◦ for land and the atmosphere. The historical simu

lation of active biogeochemistry (BGC) mode starting from 1850 was first run (BGC-run) to produce the monthly dynamic data of LAI 

(BGC-LAI) and SM (BGC-SM) from 1980 to 2014. The monthly climatological LAI and SM time series were calculated from their dy

namic series. The dynamic and climatological series were used as input data for the three experiments.

To modify LAI and SM series in CESM, all three experiments were conducted using the satellite phenology (SP) mode with pre

scribed LAI and SM monthly series and run between 1980 and 2014. The differences between the three experiments were the pre

scribed SM and LAI conditions. The control (CTL) run was prescribed with the dynamic monthly BGC-LAI and BGC-SM data. In the 

LAIfix run, the variability of LAI was fixed by prescribing the monthly climatological time series of BGC-LAI, and the SM variability was 

maintained with prescribed monthly dynamic BGC-SM. For the SMfix run, the LAI variability was retained by prescribing LAI with 

monthly dynamic BGC-LAI, and SM variability was fixed by prescribing the monthly climatology of BGC-SM. All three experiments 

began from 1980 as branch runs of the BGC-run with identical initial states. The difference between CTL and LAIfix (SMfix) then re

veals the roles of LAI (SM) variability on climate. The first 5 years were excluded in the analysis.

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Global Land Evaporation Amsterdam 

Model version 3.8a

European Space Agency, Ghent University, 

and Vrije Universiteit Amsterdam

https://www.gleam.eu/

Global PEW Land Evapotranspiration 

Dataset

National Tibetan Plateau Data Center https://data.tpdc.ac.cn/en/data/bc567cf8-4fe6- 

4d2f-8e36-2262bdb3c2ff

‘‘Trends in the land carbon cycle’’ 

project (TRENDY-v11)

Global Carbon Project https://blogs.exeter.ac.uk/trendy/

CMIP6 historical dataset World Climate Research Program (WCRP) https://pcmdi.llnl.gov/CMIP6/

LS3MIP dataset World Climate Research Program (WCRP) https://pcmdi.llnl.gov/CMIP6/

Global Aridity Index and Potential 

Evapo-Transpiration (ET0) Database v3 

(Global-AI_PET_v3)

Consortium for Spatial Information 

(CGIAR-CSI)

https://figshare.com/articles/dataset/Global_ 

Aridity_Index_and_Potential_Evapotranspiration_ 

ET0_Climate_Database_v2/7504448/5

Software and algorithms

CESM v2.1.3 National Center for Atmospheric Research 

(NCAR)

https://www.cesm.ucar.edu:/models/cesm2

Python 3.7 Open-source software https://www.python.org/
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Model performance

We first used near-observation ET data to evaluate CESM performance on ET simulation. The 30-year annual mean ET and ET IAV of 

the CTL simulation were compared with the Global Land Evaporation Amsterdam Model version 3.8a (GLEAM)45,46 and the Global 

PEW Land Evapotranspiration Dataset (PEW) developed by the National Tibetan Plateau Data Center.47 Based on satellite and re

analysis data, GLEAM estimates global ET and individual components at a spatial resolution of 0.25◦ spanning from 1980 to 2022. 

The PEW dataset is derived from the Global Land Surface Satellite (GLASS) data and reanalysis products using a modified Priestly- 

Taylor equation, with a spatial resolution of 0.1◦ and a time period of 1982–2018. The annual mean ET in GLEAM dataset and the 

monthly mean ET in PEW dataset were derived. The annual series of the two near-observation datasets between 1985 and 2014 

were resampled to the spatial resolution of the CTL and compared with the CTL grids.

The spatial patterns of the 30-year average and IAV of ET in CTL simulation showed consistency with GLEAM and PEW (Figure S11). 

The CTL produced consistent ET means in areas such as tropical forests, East Asia, and North America, with high spatial correlation with 

both GLEAM (r = 0.90) and PEW (r = 0.93, Figures S11A, S11C, and S11E). The ET IAV generally exhibited smaller consistency than the 

ET average, but the spatial distribution of ET IAV was well-captured including North America, Australia, and South America, with a 

spatial correlation of approximately 0.6 (r = 0.58 between GLEAM and CTL, r = 0.61 between PEW and CTL; Figures S11B, S11D, 

and S11F). We also evaluated the overall global performance of ET simulations with the two observation-based datasets and model 

ensembles, including 54 models in the CMIP648 and 15 dynamic global vegetation models (DGVMs) in the ‘‘Trends in the land carbon 

cycle’’ project version 11 (TRENDY49; Figure S12). The CTL simulated ET mean (1.86 mm day− 1) was within the range of near-obser

vation datasets and model ensembles (1.61–1.95 mm day− 1). The global IAV of CTL was close to the CMIP6 ensemble mean, with a 

difference of less than 0.01 mm day− 1, confirming the ability of CESM2 in the ET simulation.

Computation of ET IAV

We defined the IAV of ET as the standard deviation of annual mean values over the 30 years, following Seneviratne et al.2 To avoid 

trend-induced inflation on the standard deviation, the time series of the climate variables were linearly de-trended. The regional cal

culations among climate regions and dominant PFT were based on the Koppen-Geiger climate classification50 and the land cover in 

the CESM2, respectively (Figure S2). The grids were area-weighted regionally and globally.

SM-vegetation-ET coupling and relative contribution

Traditional metrics usually measure the impacts of one factor on another one factor (e.g., correlations between SM and temperature, 

correlations between LAI and evaporative factor, and correlations between SM and ET). Here we adopted the multiple correlation 

coefficient to consider the combined effects of multiple factors on one factor and conducted multiple linear regression to separate 

their individual impacts. The coupling strength of SM and vegetation on ET in the CTL simulation was estimated by the multiple cor

relation coefficient (r)18:

r(ET;SM;LAI) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
r2(ET ;SM)+r2(ET ;LAI) − 2 × r(ET ;SM) × r(ET ; LAI) × r(SM; LAI)

√

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − r2(SM; LAI)

√ (Equation 1) 

where r(ET ;SM), r(ET ;LAI), and r(SM; LAI) denote the Pearson’s correlation coefficient between the variables in parentheses. Larger 

r(ET;SM;LAI) values indicate higher strength of SM-LAI combined effects on ET IAV. The contributions of SM and LAI were determined 

based on multiple linear regression. The autocorrelation and multicollinearity of annual SM and LAI were first examined using the 

Variance Inflation Factor (VIF) analysis24 to ensure the independence of the variables. VIF values between 5 and 10 suggest moderate 

collinearity and values over 10 suggest severe collinearity, which will require elimination in the analysis. For each grid, the VIF value 

was calculated as:

VIFj =
1

1 − R2
j

(Equation 2) 

where VIFj refers to the VIF values of SM or LAI; and R2
j denotes the R-square value of the regression of SM (LAI) on LAI (SM).51 The 

VIF values of SM and LAI showed little difference, with nearly all VIF values below 5, suggesting weak correlation and no statistically 

significant multicollinearity between annual SM and LAI series, which enabled the application of multiple linear regression (Figure S3). 

The multiple linear regression was constructed as:

ET = b1 × SM + b2 × LAI + b0 (Equation 3) 

where bi represent partial regression coefficients of SM, LAI, and other factors, respectively. To compare the importance of SM and 

LAI, the partial regression coefficients were standardized:

Bi = bi ×
σx

σy
(Equation 4) 

where Bi denotes the standardized regression coefficient and σx denotes the standard deviation of SM or LAI, and σy represents the 

standard deviation of ET.18

iScience 28, 113008, August 15, 2025 e2 

iScience
Article

ll
OPEN ACCESS



The dominance of SM and LAI on ET was determined based on the Bi, as shown in Figure 2. Positive Bi values indicate SM or LAI 

contribution to ET, as the increase (decrease) of SM or LAI increases (reduces) ET; and negative values denote ET control on SM or 

LAI, as increased (decreased) ET reduces (retains or increases) SM content or limits (promotes) vegetation growth.1,52 If both BSM and 

BLAI are positive and BSM is larger (smaller) than BLAI, then ET is contributed by both SM and LAI, with SM (LAI) exerting higher contri

bution. If BSM (BLAI) is positive and BLAI (BSM) is negative, then ET is contributed by SM (LAI) only. If both BSM and BLAI are negative, 

then ET is affected by other factors.

QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical analyses and data visualization were performed using Python. The analyses included calculations of standard deviation 

to measure variability, Pearson’s correlation coefficient to assess coupling strength, and multiple linear regression to model variable 

dependencies. Detailed statistical parameters (including statistical test types and p-values) are provided in Figures 1, 2, 3, and 4, the 

figure legends, and the results section.
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