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ARTICLE INFO ABSTRACT

Handling Editor: Ms. Yanwei Li Accurate denoising of strain signals is critical for early damage detection in bridge structural health monitoring

(SHM). However, signals denoising methods often struggle with the non-stationary and broadband noise

Keywords: encountered in real-world environments. This study provides the first comprehensive comparison of various
Structural health monitoring denoising techniques specifically tailored for bridge strain signals, emphasizing the maximal overlapping discrete
];t:?::ilgnal wavelet transform (MODWT) for its capacity to handle complex noise profiles. We rigorously compare MODWT
Waveletg with time-domain (moving average filter, finite impulse response filter, empirical mode decomposition),

frequency-domain (bandpass filter, Fourier mode decomposition), and other wavelet-based (discrete wavelet
transform) approaches. Uniquely, this study employs three datasets from two distinct bridge types (masonry arch
and steel bowstring) and evaluates performance using both expert assessments and quantitative metrics (signal-
to-noise ratio, peak signal-to-noise ratio, root mean square error, and correlation coefficient). Our findings
demonstrate that MODWT exhibits a distinct advantage in high-intensity white noise environments, a common
scenario in real-world bridge monitoring, offering valuable guidance for engineers in selecting appropriate
denoising strategies. The results not only validate MODWT as a promising preprocessing technique but also offer
critical insights into the limitations of existing methods, paving the way for the development of more adaptive

and robust denoising solutions in bridge SHM.

1. Introduction

Bridges are important components of infrastructure, and their safety
necessitates reliable structural health monitoring (SHM) (Desjardins and
Lau, 2024; Tan et al., 2024; Li et al., 2025). SHM systems typically
involve the installation of sensors, such as accelerometers and strain
gauges, on bridge components to capture structural responses. Strain
measurements provide crucial insights into the local behavior of bridge
structures, enabling the early detection of damage, including cracks,
corrosion, and material fatigue (Anastasopoulos et al., 2021; Hu et al.,
2017; Huang et al., 2020; Mao et al., 2019). However, strain signals are
often contaminated by various noises, which can distort the signals and
diminish the reliability of damage detection and condition assessment.
The noise in strain measurements typically originates from intrinsic
working principles, operational systems, and external factors (Glisic,
2024; Vaseghi, 2008). Intrinsic sources include thermal noise, flicker
noise, and photon shot noise. In resistive strain gauges, system noise
mainly arises from amplifiers, analog-to-digital converters, and lead
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wire resistance, while fiber optic sensors are affected by Rayleigh and
Brillouin scattering. External factors include electromagnetic interfer-
ence (EMI), temperature fluctuations, and mechanical vibrations.
These noise components generally span a broad frequency range. For
instance, flicker noise and long-duration mechanical drifts tend to occur
at lower frequencies, while EMI noise often begins around 50-60 Hz
(due to power line interference) and extends into the kHz to MHz range
for high-speed electronics. Consequently, these noises frequently over-
lap with structural responses in both frequency and time domains,
complicating the isolation of genuine strain responses needed for
detecting potential structural damage. In many cases, simple filtering
algorithms fail to sufficiently eliminate these noises and may even
degrade critical strain signal features. Moreover, the non-stationary
nature of both the structural response and noise adds complexity to
the denoising process. As ambient conditions, such as traffic, wind, and
other operational variables, fluctuate throughout the day or across
seasons, both strain signals and unwanted noise can vary unpredictably.
Conventional methods designed for stationary signals often
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underperform under these evolving conditions.

Researchers have proposed various digital signal denoising tech-
niques (Vaseghi, 2008), a classic problem in signal processing. These
methods can generally be categorized into time, frequency, and
time-frequency (TF) domain approaches. In the time domain methods,
denoising operate directly on the signal samples. Traditional techniques
include linear filters such as moving average (MA) filters and finite
impulse response (FIR) filters (Blackledge, 2006; Hamming, 1989), as
well as nonlinear filters like median filters. MA filters smooth the signal
by averaging neighboring samples, while median filters replace each
sample with the median of its neighbors, effectively removing impulsive
noise while preserving edges. These two filters are straightforward to
implement and interpret. Nonetheless, both are sensitive to the filter
window size, limiting their tuning capabilities. FIR filters offer greater
design flexibility and effective noise reduction but may introduce ir-
regularities in the frequency response if designed for sharp cutoffs.

Time-domain decomposition techniques effectively separate mixed
signals into individual components, making them a valuable tool for
noise removal in various applications, including mechanical fault
diagnosis, audio processing, and biomedical signal analysis (Jiang et al.,
2019; Kaur et al., 2021; Kopsinis and McLaughlin, 2009; Massar et al.,
2025; Yin et al.,, 2022). By breaking down complex signals, these
methods facilitate the isolation of noise from the desired signal. One
prominent example of this approach is empirical mode decomposition
(EMD) (Huang et al., 1998) and its derivatives, such as variational mode
decomposition (VMD) (Dragomiretskiy and Zosso, 2013). It is a
data-adaptive technique that decomposes a signal into intrinsic mode
functions (IMFs), which represent simple oscillatory modes with
well-defined instantaneous frequencies. In practice, when applied to a
noisy signal, EMD can adeptly isolates intrinsic modes that highlight the
underlying signal structure while effectively filtering out high-frequency
noise. As a result, the original signal can be reconstructed by selectively
combining the relevant IMFs and discarding those associated with noise.
Another compelling approach to signal decomposition and noise
removal is blind source separation (BSS) methods, particularly inde-
pendent component analysis (ICA) (Comon, 1994). These techniques
operate under assumptions that the observed mixed signals comprise
non-Gaussian and statistically independent sources. By leveraging
higher-order statistical analysis, ICA can effectively recover the original
signals from their linear mixtures. This capability is particularly ad-
vantageous in scenarios where noise distinguishes itself based on its
statistical properties. While the signal decomposition methods have
advanced signal denoising applications (Aliouat and Djendi, 2025;
Kopsinis and McLaughlin, 2009; Yin et al., 2022), their computational
demands can scale significantly with data dimensionality. For instance,
the sifting process of EMD has a complexity of O(N?) (Huang et al.,
1998), where N is the signal length; and quadratic penalty optimization
in VMD requires multiple Fourier transforms per iteration
(Dragomiretskiy and Zosso, 2013). Such high computational costs pre-
sent obstacles for real-time implementation.

In contrast to time-domain techniques, frequency-domain methods
offer a different approach to denoising through transforming signals
from the time domain into the frequency domain using the Fourier
transform (FT) (Oppenheim et al., 1999). This transformation is
fundamental, enabling an in-depth analysis of a signal’s frequency
components. By decomposing the signal into sinusoids, the FT reveals
the amplitude and phase of each frequency component, which is
essential for characterizing signal properties. Unwanted components,
such as noise, can often be removed based on their frequency-domain
characteristics, using flexible filtering techniques (Wahab et al., 2021).
Frequency-domain methods are particularly effective when the noise
and the desired signal occupy distinct frequency bands. However, they
are most suited for stationary signals with consistent statistical proper-
ties over time and frequency-distinguishable components. Furthermore,
converting signals to the frequency domain loses temporal information,
posing challenges for analyzing time-varying signals, a prevalent
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scenario in bridge SHM.

To address these challenges, researchers often employ hybrid ap-
proaches that integrate frequency-domain and time-domain techniques,
collectively known as TF methods. These methods simultaneously
analyze signals across both domains. Thus, they are particularly effec-
tive for signals with time-varying frequency content. Time-frequency
representations (TFRs) (Boashash, 2016) such as the short-time Four-
ier transform (STFT) and wavelet transform (WT), serve as the founda-
tion for many denoising techniques. TFR-based denoising typically
employs thresholding techniques, where coefficients below a predefined
threshold are suppressed, thereby eliminating noise while preserving
important signal features. WT excels at capturing both high- and
low-frequency components across multiple scales, making it particularly
suitable for analyzing time-varying signals like bridge strain data. There
are various WT variants, each designed to meet specific analytical needs.
The discrete wavelet transform (DWT) (Sundararajan, 2015),
well-regarded for its computational efficiency, is widely applied in
preprocessing SHM signals. For instance, Wu et al. (2014), Ni et al.
(2012), Zhao et al. (2019), and Wei et al. (2017) have utilized DWT to
effectively isolate temperature- or traffic-induced components from
strain data. Ma et al. (2024) employed DWT to eliminate noise in
vacuum-process monitoring signals of aerospace vacuum vessel struc-
tures. However, despite its advantages, DWT has notable limitations,
such as issues associated with downsampling and boundary manage-
ment (Daubechies, 1992; Strang and Nguyen, 1996).

The maximal overlapping discrete wavelet transform (MODWT)
(Percival and Walden, 2000), an advanced variant of the traditional
DWT, offers a refined approach to analyzing TF characteristics in sig-
nals. One of MODWT’s outstanding features is its avoidance of down-
sampling during transformation, which preserves all data points and
significantly enhances the resolution of both global and local signal
features. This capability makes MODWT particularly valuable for ap-
plications requiring precise signal reconstruction. Notably, MODWT has
demonstrated promising results in processing complex and
non-stationary signals across diverse fields (Barzegar et al., 2021; Li
et al., 2014; Osmani et al., 2024; Patel et al., 2014), including finance,
healthcare, and engineering. For example, in biomedical signal pro-
cessing (Kumar et al., 2021), MODWT has significantly improved elec-
trocardiogram denoising, leading to enhanced accuracy in heart rate
variability analysis. Recently, Xia et al. (2024) developed a novel
MODWT-based filter, highlighting its efficacy in denoising applications
for bridge SHM.

Each denoising method discussed above presents its own strengths
and limitations, with effectiveness highly dependent on the signal
characteristics and noise types encountered in real-world applications.
In the field of bridge SHM, denoising strain signals remains challenging
due to non-stationary, broadband noise from diverse sources. Currently,
most studies focus on optimizing individual methods (Jiang et al., 2022),
offering depth but often lacking comprehensive comparisons. Limited
comparative studies exist; for example, Deng et al. (2023) compared
wavelet, mathematical morphology, and low-pass filtering methods for
cable force monitoring. While these studies provide valuable insights, no
research has yet comprehensively and systematically compared multiple
denoising methods using unified datasets that account for diverse bridge
types and varying noise levels or thoroughly analyzed performance in
non-stationary, broadband noise environments. This gap emphasizes the
need for a more holistic understanding of optimal denoising strategies,
suggesting that future research should integrate existing methods with
standardized datasets to develop more reliable and effective pre-
processing tools for bridge SHM.

In this study, we introduce a systematic approach for selecting the
most suitable denoising algorithms for complex strain signals specific to
bridge SHM. We analyzed seven representative methods: three time-
domain techniques (MA filter, FIR filter, and EMD), two frequency-
domain approaches (bandpass filter, and frequency mode decomposi-
tion), and two TF methods (DWT and MODWT). The selection of the
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seven denoising methods was driven by their widespread use in bridge
SHM applications. These methods represent a broad spectrum of tradi-
tional approaches, providing a robust baseline. While modern tech-
niques, such as deep learning-based denoising (Tian et al., 2020; Yu
et al.,, 2019) and adaptive filtering, show promise in certain contexts,
they often require large training datasets, extensive computational re-
sources, or specific assumptions about noise characteristics, which may
not align with the practical constraints of real-world bridge SHM sys-
tems, where data availability and computational efficiency are critical.
Our study focuses on methods that are readily implementable in current
SHM frameworks, ensuring immediate applicability for engineers.
Nonetheless, we recognize the potential of emerging techniques and
plan to investigate their applicability in future studies.

To ensure fair comparisons, we ensured that each denoising method
was optimized for performance. We utilized grid search (Liashchynskyi
and Liashchynskyi, 2019) to determine the most effective hyper-
parameters for each technique. The denoising performance of these
methods was evaluated using both qualitative and quantitative assess-
ments. Qualitative evaluations were conducted by experts to confirm
that the denoised outputs resonated well with human perception. On the
other hand, quantitative assessments employed four metrics:
signal-to-noise ratio (SNR), peak signal-to-noise ratio (PSNR),
root-mean-square error (RMSE), and correlation coefficient (CC). The
results indicated that the MODWT-based algorithm consistently pro-
duced outputs with superior visual quality. In addition, it excelled across
all performance metrics, effectively balancing noise reduction with the
preservation of critical signal features.

The remainder of this paper is organized as follows. Section 2 pro-
vides a review of existing denoising techniques for digital signals. Sec-
tion 3 outlines the methodology of this comparative study, including the
procedure, datasets, selected methods for comparison, and performance
metrics. Section 4 presents the results, along with discussions. Finally,
Section 5 concludes the paper and outlines directions for future work.

2. Existing denoising techniques for digital signals

The removal of noise, defined as unwanted disturbances that obscure
meaningful information, is a critical research area in digital signal
processing. Depending on the operational domain, denoising techniques
can be categorized into time-domain, frequency-domain, and time-
frequency TF domain approaches. Below, we review several represen-
tative denoising methods, highlighting their underlying principles and
performance across diverse contexts.

2.1. Time-domain methods

2.1.1. Digital filters

Time-domain methods operate directly on signals in their original
time representation. Among these methods, digital filters (Hamming,
1989), encompassing linear filters such as MA and FIR filters, as well as
nonlinear filters like median filters (Pitas and Venetsanopoulos, 1990),
have long served as foundational tools for signal denoising.

The MA filter smooths the signal by averaging a specified number of
adjacent samples, thereby reducing rapid fluctuations caused by noise.
Mathematically, it can be written as:

1 M-1
y(n)=3; > _x(n—m), ¢))
m=0

where x(n) is the discrete input signal, y(n) is the output signal, M is the
window size of the moving average filter. Its performance depends
heavily on the choice of window size M. Although a larger M provides
more noise attenuation, it can blur sharp features, while a smaller M
better preserves detail but may result in less noise reduction.

Finite impulse response (FIR) filters, offer a more flexible framework
for digital signal denoising than the moving average approach. It oper-
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ates by convolving the input signal with a finite sequence of coefficients
which define the filter’s behavior (Oppenheim et al., 1999):
M-1

y(m) = h(m)x(n—m), 2

m:

]
o

where h(m) is the impulse response of the filter, which is designed using
the filter order M and a cutoff frequency, f; x(n-m) represents the
delayed input samples. To ensure zero-phase filtering, forward and
reverse filtering techniques can be employed to effectively mitigate
phase distortion and keep the original timing of the signal intact. That is,

M-1

y(n) = h(m)[x(n—m) +x(n+m)]. €]

The output signal y(n) is computed as a weighted sum of the current
and past input values, with the weights determined by the filter
coefficients.

The impulse response of the filter h(m) can be expressed as
h(m) aw(m—k), @
k=0

where ay are the coefficients for the desired frequency response, w(n-k)
is the window function used, e.g., Hamming window or Hanning win-
dow. The ideal frequency response of an FIR filter is

) 1 0<|ow| <o,
) - { , ®)

0 otherwise

where w, is the cutoff angular frequency, H(¢”) is the frequency
response of the filter, and w = 2zf. Unlike MA filters, where the weights
are all equal, the FIR filter allows for varying coefficients that can
optimize different performance criteria, such as rapid roll-off in the
frequency domain.

2.1.2. Time-domain decomposition method

Time-domain decomposition techniques are powerful methods for
separating a mixed signal into its individual components, providing an
effective means of eliminating noise in digital signals. These methods are
especially effective for nonstationary signals, where traditional
frequency-domain techniques may struggle. Two prominent approaches
in this category are EMD and BSS, which can also be considered as two
families of methods.

EMD is a data-driven technique that decomposes a signa decomposes
a signal x(tf) into amplitude- and frequency-modulated components
called intrinsic mode functions (IMFs) and a residual r(t) (Huang et al.,
1998):

x(t) = XL: IMF;(t) +r(t), (6)

where L is the total number of IMFs. Each IMF satisfies two conditions:
(1) The number of extrema and zero crossings must either be equal or
differ by at most one; and (2) the mean value of the envelope defined by
the local maxima and minima is zero. Many adaptive methods like VMD
(Dragomiretskiy and Zosso, 2013) have been developed based on EMD.

In the context of denoising, EMD can be used to separate noise from
the signal by identifying and removing IMFs that primarily contain
noise. For example, high-frequency IMFs often correspond to noise.
Then a denoised signal y(t) can be reconstructed by summing only the
relevant IMFs:

y(£)="> IMF(1), %)
i=le

where [ is the cutoff level, or the index of the first IMF deemed to
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contain meaningful signal information.

BSS is a family of techniques that separate mixed signals based on
their statistical properties rather than their oscillatory characteristics.
Suppose we have observed signals represented by the vector x(£)=(x;(t),
xo(®), ..., xp(t))T, where p is the number of measurement channels and ¢
indexes time. These signals are created by mixing original sources s(t)=
(5100, s20), ..., saO)T using a mixing matrix A, with added noise n(t)
(Cardoso, 1998):

x(t) =As(t) +n(t) (€)]

Recovering the sources means estimating both A and s(t), which is
challenging because both are unknown. A popular BSS method is ICA
(Hyvarinen et al., 2009), which assumes that the source signals are
statistically independent. By maximizing independence, ICA identifies a
separating matrix W such that

S(t) = Wix(t), ©)]

where §(t) is the estimated version of s(¢). If the noise n(t) is not too
strong and the signals are non-Gaussian and independent, ICA can
effectively denoise the signals.

While time-domain decomposition methods like EMD and BSS are
powerful, they can be computationally intensive. For example, EMD
involves iterative sifting, which can be slow for long signals or high
sampling rates. ICA requires optimization routines to maximize statis-
tical independence, which can be time-consuming for large datasets.
Additionally, BSS techniques typically require multi-channel data,
limiting their applicability to single-channel signals.

Given that ICA necessitates multi-channel data and assumes that the
signal sources are non-Gaussian and independent, this study does not
utilize this method as a comparative approach. The focus of this study is
on denoising single-channel signals, where the signal components may
not readily satisfy the non-Gaussian condition.

2.2. Frequency-domain methods

Frequency-domain methods perform digital signal denoising by
isolating specific frequency components. Rather than operating in the
time domain, where signals can appear convoluted or overlapping,
frequency-domain methods convert signals into representations that
clearly show which frequency bands contain noise or meaningful in-
formation. This transformation allows us to selectively reduce noise in
the frequency domain.

The foundation of frequency-domain analysis is the discrete Fourier
transform (DFT) (Oppenheim et al., 1999). For a discrete signal x(n) of
length N, the DFT is given by

N-1 o
X(k)="Y x(m)en*" k=0,1,..,N-1, (10)

n=

where X(k) represents the signal in the frequency domain, and k indexes
the frequency bins. This transformation reveals how different fre-
quencies contribute to the original signal. It enables targeted noise
reduction through filtering. By analyzing the magnitudes and phases of
X(k), specific frequency components associated with noise can be
identified and selectively attenuated. Once the unwanted components
are reduced or eliminated, the signal can be reconstructed using the
inverse discrete Fourier transform (IDFT)

1 = 'hkn
x(n) = > X(k)en @an
k=0

This process effectively converts the filtered signal back to its orig-
inal time-domain representation, preserving the essential features while
minimizing noise.

One particularly effective method for noise reduction in the time
domain is frequency bandpass (FB) filtering (Proakis and Manolakis,
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2021). This technique permits only a specific range of frequencies,
defined by a lower frequency fnin and an upper frequency fmqx, to pass
through while attenuating frequencies outside this range. The filtering
process can be expressed as follows:

X(k) iffmin ka Sfmax
Xﬁltered (k) = { 5 (12)

0 otherwise

where fj represents the frequency corresponding to the kth Fourier co-
efficient. By selectively retaining frequencies within the desired range,
FB filtering removes noise components that lie outside the band of in-
terest. This method is particularly advantageous due to its straightfor-
ward implementation, flexibility in adjusting frequency parameters, and
precise control over noise reduction.

For a more nuanced approach, frequency mode decomposition
(FMD) can be employed. FMD represents a signal as a sum of distinct
frequency modes, each characterized by its angular frequency w; and a
complex coefficient ¢; (Oppenheim et al., 1997):

L
x(n)= Z e, 13)
1

where L is the number of frequency modes.

The Fourier coefficients X(k) can be viewed as a form of g
(Bracewell, 2000), revealing the distribution of the signal’s energy
across different frequencies. The amplitude spectrum A(k) and the phase
spectrum ¢(k) are derived from X(k) as follows:

A(k) = |X(Kk)|, p(k) = arg(X(k)). 149

FMD allows for the selective filtering of frequency modes based on
their energy contributions, facilitating noise reduction. Modes domi-
nated by noise, typically characterized by low energy or irregular fre-
quency patterns, can be identified and suppressed.

In this study, a dynamic thresholding approach was utilized to
distinguish signal components from noise. The noise threshold was
determined using the amplitude spectrum A(k), and statistical measures
such as the median and standard deviation:

r=meadian(A(k)) + p-caw), 15)

where p is a user-defined parameter that controls the sensitivity of noise
detection.

Filtering in the frequency domain can be straightforward, particu-
larly when noise is concentrated in specific frequency bands. As a result,
Fourier-based techniques work well for stationary signals, where noise
characteristics stay mostly the same over time.

2.3. TF methods

TF methods build on traditional time- or frequency-domain tech-
niques by combining both perspectives into one framework. This dual
approach gives a detailed view of signal characteristics across time and
frequency. It is especially useful for signals that change over time.
Wavelet-based thresholding is a popular technique because it is simple
and effective. It decomposes a signal into coarse and fine components.
This facilitates targeted noise reduction while preserving important
structures in the original waveform.

To process digital signals like those studied in this paper, a common
approach begins by applying the DWT to a finite-length signal x(n). At
each decomposition level j, the DWT produces an approximation coef-
ficient gjx and a detail coefficient dj. This is typically conducted
through filter-bank operations. For each level j, these can be written as
(Sundararajan, 2015)

N-1 N-1
Gie= Y x(M)y(n),dix =Y x(n)y;(n), (16)
n=0 n=0
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where ¢;x(n) is the scaling function, and y;x(n) is the wavelet function.
Both are at scale 2 and translation k. These functions are defined as:

$x(n) =277¢(27n - k) Wix(n) = 2792y (27n — k). a7

The scaling function ¢;x(n) obtains coarse or low-frequency infor-
mation, while the wavelet function yjx(n) captures fine or high-
frequency details.

Once the coefficients are obtained, thresholding helps isolate and
remove noise-dominated components. A widely used thresholding rule
is soft thresholding. Let A be the threshold value, then the transformed

detail coefficients Ejk become (Donoho and Johnstone, 1994)

- { sgn(dj(k)) (|d;(k)| - 4)

0 otherwise.

~ if |dj(k)| > 4,
d;(k) (18)

This approach shrinks coefficients that appear to be contaminated by
noise while retaining those that likely represent the true signal structure.
The threshold parameter 4 is typically determined using the universal
threshold principle:

A=04/21og N 19)

where o represents the noise standard deviation, often estimated from
the median absolute deviation of the finest-scale wavelet coefficients.

Despite its usefulness, the traditional DWT incorporates down-
sampling at each level of decomposition, potentially resulting in the loss
of critical information. Its non-overlapping nature and reduced data
points may obscure local characteristics within the signal. Furthermore,
the DWT can introduce artifacts and distortions at the boundaries of
finite-length signals due to the inherent assumptions made during
wavelet decomposition.

In contrast, MODWT addresses these limitations by eliminating the
decimation step, thereby ensuring shift invariance and retaining the full
temporal resolution of the original signal. This property is a significant
advantage over traditional DWT, as it prevents the loss of data points
and maintains alignment between the wavelet coefficients and the
original time series. For bridge SHM applications, where strain signals
are often non-stationary and exhibit abrupt changes due to dynamic
loading, environmental effects, or structural anomalies, this property is
critical. It ensures that subtle temporal features, such as sudden strain
spikes or transient responses due to traffic, are not distorted or mis-
aligned during decomposition.

For a given signal x(n), the MODWT coefficients at level j are
computed as follows (Strang and Nguyen, 1996):

L1 Li—1
Wj(n) = IZ hi(D)x(n—1), V;(n) = Zéﬂ)x(n -1, (20)
—0 =0

where Ej(l) and gj(l) are the MODWT scaling and wavelet filters,
respectively, and Ly is the filter length. These filters are designed to
capture both low-frequency trends (scaling coefficients) and high-
frequency details (wavelet coefficients) in the signal. Unlike the tradi-
tional DWT, MODWT does not discard samples between decomposition
levels, resulting in a redundant representation that preserves all time
points. This redundancy enhances its robustness when analyzing com-
plex signals, such as those with significant noise, or abrupt variations,
which are common characteristics of bridge strain data under opera-
tional conditions. In the context of bridge strain denoising, MODWT
provides a higher resolution of detail coefficients at each decomposition
level by avoiding downsampling, improving the separation of noise from
meaningful signal features. This enhances denoising performance, as
noise-dominated coefficients can be more effectively isolated and sup-
pressed without compromising the integrity of low-amplitude structural
responses. In addition, MODWT reduces boundary distortions, a com-
mon issue in DWT when processing finite-length bridge strain records,
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ensuring that edge effects do not obscure critical information near the
signal boundaries. These improvements make MODWT well-suited for
denoising bridge strain signals, where maintaining signal fidelity and
capturing subtle, time-varying features are paramount for reliable
structural assessment.

3. Methodology
3.1. Procedure

The flowchart in Fig. 1 illustrates the procedure of this comparative
study. The acquisition of strain datasets is the initial and essential step.
Once the datasets are available, noise is introduced into the signals to
generate noisy signals that simulate real-world challenges. These syn-
thesized noisy signals serve as the benchmark for evaluating the
denoising methods. Subsequently, parameters for the benchmark sig-
nals, including the SNR and PSNR, are calculated. Various methods are
then applied to clean the noisy strain signal. After denoising, the per-
formance of these techniques is compared to identify the most effective
methods for reducing noise while maintaining signal integrity.

3.2. Datasets

This study uses three strain datasets. Signals in each dataset repre-
sent a distinct strain pattern. The datasets are publicly available
(Alexakis et al., 2021; Maes and Lombaert, 2020) and are described
below.

Dataset 1 is drawn from the Marsh Lane Bridge, an arch-type railway
structure in the UK built between 1865 and 1869. This bridge carries

Strain datasets

L

Noise addition

Noisy strain signal

Parameter calculation for benchmark signals
eg., SNR, and PSNR

<

Signal denoising using comparative methods

Clean strain signal

Comparison of signal denoising performance

&

Optimal denoising technique

Fig. 1. Flowchart for comparative study on denoising methods for strain signals
in bridge SHM.
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two electrified tracks and currently accommodates over 200 trains per
day. Prolonged exposure to environmental factors coupled with
increasingly heavy train loads led to notable damage. Consequently, in
2015 the bridge underwent repairs, involving concrete infilling of the
pier relieving arches and the installation of steel ties to control trans-
verse movements of both the piers and the spandrel walls. The most
serious damage centers on the relieving arches located mid-pier, where a
spreading mechanism causes the keystone to drop and the pier walls to
bow outward. The pier between Arches 37 and 38 is surrounded by
transverse cracks, resulting from the pronounced out-of-plane rocking
response under train loads prior to the 2015 intervention. Longitudi-
nally, separation cracks were found between the spandrel walls and arch
barrels of Arches 37 and 38, and a longitudinal crack developed beneath
the north track of Arch 37.

In July 2016, only a few months after the repair, a network of FBG
strain sensors was installed beneath Arches 37 and 38 to capture
detailed dynamic deformations. Then, in November 2017, this tempo-
rary setup was superseded by a permanent FBG monitoring system
beneath Arches 37, 38, and 39, designed to evaluate the long-term
effectiveness of the 2015 retrofit and monitor ongoing structural
health (Alexakis et al., 2021). The FBG network comprises 47 longitu-
dinal and 17 transverse strain sensors, 4 sensors on steel wires con-
necting the springs of Arches 37 and 39 (beneath the longitudinal strain
arrays) to record changes in arch span, and 5 temperature sensors. Data
collection relies on a four-channel sm130 Optical Sensing Interrogator
(Micron Optics, Inc.), which can sample each sensor at 1 kHz with a
resolution of +2 micro-strain (ue). Each of the four channels is con-
nected to a fiber optic cable carrying 20 FBG sensors, totaling 80. The
cables are pre-tensioned, with each grating clamped to measure strain
over approximately 1 m between two fixed points. A data logger triggers
acquisition upon train passages, and the measurements are transmitted
via 4G to the University of Cambridge.

The strain signals in Dataset 1 were collected from the FBG sensors
labeled 37NA3A4 and 37NA6A7 on Arch #37, oriented along the lon-
gitudinal direction of the arch. This dataset contains 257 fragments of
transient dynamic strain variations recorded during train passages. In
this study, we focus solely on the transient dynamic strain due to passing
trains. Within such a brief time window, temperature-induced wave-
length variations are considered negligible.

Datasets 2 and 3 were collected from the KW51 railway bridge in
Belgium, a bowstring arch structure measuring 115 m in length and
12.4 m in width. The bridge accommodates two ballasted, electrified
tracks (Track A on the north side and Track B on the south side) with a
maximum operational speed of 160 km/h. Both tracks are curved,
featuring radius of 1125 m for Track A and 1121 m for Track B. The
bridge, primarily used by passenger trains, opened for service in 2003
and has been monitored since October 2, 2018. Between May 15 and
September 27, 2019, it underwent retrofitting to correct a construction
issue identified during inspection, which involved welding steel boxes
around the original bolted connections where the diagonals meet the
arches and the bridge deck.

Strains on the deck and diagonals are measured via 12 uniaxial
Micro-Measurements CEA-06-250UN-350 strain gauges (nominal resis-
tance RG = 350 Q) (Maes and Lombaert, 2021). Of these, eight are
installed on the bridge deck to capture longitudinal strain in the main
girders; they are placed near midspan between consecutive transverse
beams, and their channels are labeled with the format sgBDalala2a2f5.
The remaining four gauges measure axial strain (dominated by axial
force and bending) in two diagonals connecting to the bridge deck at
measurement lines 20 and 23 on the south side (leaning toward Leuven).
Each gauge is positioned on a rectangular-section diagonal profile, 85
cm from the bottom.

All gauges utilize a quarter-bridge Wheatstone configuration with an
NI 9237 module providing bridge completion, data acquisition, signal
conditioning, and a 5 V excitation source. A physical resistor of R3 =
350 Q is added for bridge balancing. The NI 9237 features an A/D range
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of £25 mV/V and a 24-bit resolution. LabVIEW converts the measured
output voltage into strain (¢) using the nominal gauge parameters
(gauge factor k = 2.16, RG = 350 Q) and the lead wire resistance RL
measured during installation. Positive strain indicates tension, while
negative strain denotes compression. Each gauge is protected with a
Micro-Measurements M-Coat F coating. Data sampling is performed at
1651.6 Hz, followed by decimation by a factor of two, then processed
with an eighth-order Chebyshev Type I lowpass filter at 16 Hz (0.1 dB
passband ripple), applied in both forward and reverse directions to
remove high-frequency noise. Lastly, the signals are shifted so that the
first sample of each event corresponds to zero strain.

Dataset 2 includes data from strain gauges labeled sgBD1011A,
sgBD1718A, and sgBD1718C, located on opposite sides of the bridge
deck, which measure the longitudinal strains in the main bridge girders.
In contrast, Dataset 3 was collected from two strain gauges labeled
sgDI20ALB and sgDI23ALL, installed on two diagonal members. Similar
to Dataset 1, signals in Datasets 2 and 3 also reflect transient dynamic
strain variations during a train’s passage, comprising 234 and 307 re-
cordings, respectively.

Further details regarding the sensors and data in the three datasets
can be found in (Alexakis et al., 2021; Maes and Lombaert, 2021). This
paper primarily focuses on the strain patterns associated with the static
effects of vehicles. To facilitate this analysis, we preprocessed the raw
data using low-pass filters. It is important to note that this filtering does
not imply that high-frequency components are uninformative; rather,
the dynamic responses of the bridge structures are retained within those
components.

Fig. 2(a)—(c) display samples of the strain signals from Datasets 1 to
3, respectively. Negative values indicate contraction, while positive
values indicate expansion. It is evident that the passage of each train
elicits a distinct response signature. The number of peaks corresponds
directly to the number of cars in the train. For instance, in the signals
from Dataset 1 (the first row in Fig. 2), the first positive peak marks the
moment when the first bogie passes above the sensor, while the last
positive peak corresponds to the passage of the last bogie. The inter-
mediate double peaks indicate the passage of intermediate pairs of bo-
gies. The duration of signal fluctuations correlates with the speed of the
trains.

There are significant differences in signal patterns among the three
datasets. The strain from Dataset 1 oscillates around a value of zero,
whereas the signal from Dataset 2 fluctuates around a positive value.
This discrepancy is primarily attributed to the differences in bridge
lengths. The Marsh Lane Bridge associated with Dataset 1 measures 7.7
m in length, while the KW51 Bridge corresponding to Dataset 2 is 115 m
long. Consequently, when a train passes over the Marsh Lane Bridge, it is
unlikely for the entire train to be on the arch simultaneously, as the
wheels load the arch one by one. In contrast, the KW51 Bridge can
accommodate the entire length of a train, resulting in an offset in the
strain oscillation due to the overall weight of the train.

Although Datasets 2 and 3 were obtained from the same bridge, their
strain signals exhibit notable differences. A significant distinction is that
the signal from Dataset 3 displays cycles of both positive and negative
values, whereas the signal from Dataset 2 predominantly resides in the
positive range. This variation arises from the fact that the signals were
collected from different structural components. As mentioned earlier,
Dataset 2 was recorded from the main bridge girders, specifically the ties
of a bowstring bridge, while Dataset 3 was measured from the diagonals
connecting the deck to the arches. When a train traverses the bridge,
particularly when a substantial portion of it is on the structure, the ties
are tense, whereas the diagonals experience cycles of tension and
compression as the gravity center of the train moves across the bridge.

The various shapes of strain signals indicate the temporal and
spectral complexity of these signals. To establish a data benchmark for
comparative studies, we utilized these preprocessed strain signals as
clean signal xo(n) and added Gaussian white noise xpoise(11) at varying
intensities. The resulting noisy signal x(n) is defined by the following
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Fig. 2. Signal samples from the three datasets: (a) Dataset 1, (b) Dataset 2, and (c) Dataset 3.
equation: domains, making it particularly hard to filter out. Consequently, it

x(n) =Xo(1n) + Xnoise (1) = Xo(n) + I-0x-N(0,1). (21)
In this expression, I is a predefined noise intensity factor, taking values
of 0.1, 0.5, 1, and 3; oy represents the standard deviation of xy(n); and N
(0,1) denotes a standard normal distribution. The data used in this study
is summarized in Table 1, where the data corresponding to a noise in-
tensity factor of 0 represents the original signal.

We employ the Gaussian white noise because of its well-established
utility as a rigorous and standardized noise model in signal processing
research. Its uniform power spectral density and lack of temporal cor-
relation mean it overlaps with the signal in both time and frequency

Table 1
Information of data used in this study.
Dataset  Data Sensor tag Number of Sampling Noise
source original rate (Hz) intensity
signals factor, I
1 Marsh 37NA3A4 257 1000 0
Lane 37NA6A7 0.1
Bridge 0.5
1
3
2 KW51 sgBD1011A 234 825.8 0
Bridge sgBD1718A 0.1
sgBD1718C 0.5
1
3
3 KW51 sgDI20ALB 307 825.8 0
Bridge sgDI23ALL 0.1
0.5
1
3

provides a rigorous test for denoising methods. Furthermore, the
Gaussian nature of the noise reflects the cumulative effect of many
small, independent disturbances, which is a simplified yet relevant
model for real-world noise in strain signals. By varying the noise in-
tensity factor I, we can systematically explore the performance limits of
the compared denoising methods under progressively harsher condi-
tions. This controlled setup thus serves as a foundational step for the
comparative study of strain signal denoising methods before extending it
to more complex, real-world noise scenarios.

Taking the data from the second column of Fig. 2 as an example, the
resulting noisy signals with varying intensities of Gaussian white noise
are illustrated in Fig. 3. It can be seen that the original signals gradually
become obscured by the noise, making the details of the signal patterns
difficult to discern as I increases, particularly beyond a value of 1.
Moreover, the added noise also overlaps with the original signals in the
frequency spectrum, as shown in Fig. 4. The presence of noise in both the
time and frequency domains poses a significant challenge for signal
denoising.

3.3. Compared methods

After a comprehensive review of existing signal denoising ap-
proaches in Section 2, we selected seven representative methods to
denoise the strain signals across the three datasets. These include three
time-domain methods, two frequency-domain methods, and two TF-
domain methods. The time-domain methods are the MA filter, FIR fil-
ter, and EMD. The frequency-domain methods include the FB filter and
FMD. And the TF methods refer to the DWT- and MODWT thresholding
methods.

To ensure a fair comparison, it is essential that each method achieves
optimal performance when analyzing the same data. This study uses
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Table 2. In this table, J; and J5 denote the decomposition levels of DWT

and MODWT, respectively. the minimum frequency (fnin) is set to 0 Hz
across all datasets. Other symbols are defined in Section 2 and remain

SNR as a quantitative measure and employes grid search (Xia et al.,
2024) to identify optimal hyperparameters for each technique. The
search ranges and step sizes for these hyperparameters are detailed in

Table 2
Search ranges and step sizes for denoising hyperparameters.
Dataset Noisy data (I) MA (M) FIR (f2) EMD (L) FB (fmax) FMD (p) DWT (J1) MODWT (J3)
1 0.1 10:10:100 15:1:20 2:1:8 4:0.2:8 0.1:0.1:1 4:1:9 4:1:9
0.5 50:10:200 12:1:18 4:0.2:8 0.4:0.2:2
1 80:10:240 4:0.5:6 3:0.2:6 1:0.2:3
3 100:20:300 3:0.5:5 2:0.2:4 2:0.5:5
2 0.1 10:10:100 0.1:0.5:5 2:1:8 5:0.2:7 0.1:0.1:1 5:1:9 5:1:9
0.5 80:10:200 0.1:0.5:5 1:0.2:4 0.4:0.2:3
1 100:10:240 3:0.1:4.5 1:0.2:3 1:0.5:4
3 200:10:400 2:0.5:5 1:0.2:2 1:0.5:6
3 0.1 10:10:100 10:0.2:14 2:1:8 4:0.2:6 0.1:0.1:1 5:1:9 5:1:9
0.5 80:10:240 4:0.1:5 1:0.2:3 0.4:0.2:2
1 100:10:300 3:0.1:4 1:0.2:3 1.1:0.5:4
3 260:10:500 1.2:0.2:3 1:0.2:3 2:0.5:6
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consistent throughout. In both DWT and MODWT thresholding, the db4
wavelet basis is selected for its ideal balance of compactness and
smoothness, making it especially suitable for capturing the
non-stationary characteristics of bridge strain signals. The thresholding
strategy employed soft thresholding with a universal threshold. These
choices were optimized through preliminary experiments to maximize
denoising performance while preserving signal features. Taking signals
with noise intensities of 3 in Dataset 3 as an example, Fig. 5 illustrates
how the average SNR varies within the search range for each denoising
method. The optimal parameters for the seven compared denoising
methods are presented in Table 3.

3.4. Performance metrics

The performance of the seven denoising methods was evaluated both
qualitatively and quantitatively. First, experts assessed the effectiveness
of signal denoising by visually analyzing waveform graphs. They
checked if noise was removed while keeping the critical features of the
original signal. Subsequently, quantitative metrics, including SNR,
PSNR, RMSE, and CC, were employed to further evaluate the
performance.

SNR is a fundamental metric used to evaluate the quality of a signal
by comparing the strength of the desired signal to the level of back-
ground noise. It is mathematically defined as

N-1 5
> xg(n)
SNR =10-10g; 57—

. (22)
2 [xo(m) - y(m)?

where xo(n) is the original signal, y(n) is the denoised signal, and N is the
total number of samples. A higher SNR value generally indicates a
cleaner signal with less noise interference, which is often desirable in
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applications such as medical imaging and SHM.

For a more nuanced assessment of signal quality, PSNR is commonly
employed. This metric is based on the mean squared error (MSE) be-
tween the original and denoised signals:

_ max (xj ()
PSNR = 10'l°g1°M75E (23)
The MSE is calculated as
MSE =& i [xo(n) — y(n))? 24
N n=0

Higher PSNR values indicate a closer match between the denoised
and original signals, suggesting better preservation of signal integrity.

Another widely recognized metric is RMSE, which quantifies the
average magnitude of differences between the original and denoised
signals. It is expressed as:

RMSE — +/MSE — %;[xo(n) —y(m)P? 25)

Unlike SNR and PSNR, lower RMSE values are preferable, as they
indicate that the denoised signal is closer to the original.

Last but not least, CC measures the degree of linear relationship
between the original and denoised signals. It provides a statistical

assessment of the relationship between the original and denoised sig-
nals:

(26)
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Table 3
Key hyperparameters for the seven methods compared.
Dataset Noisy data (I) MA (M;) FIR (M, f) EMD (L) FB (fmax) FMD (p) DWT (J;) MODWT (J5)
1 0.1 50 100, 17 3 5.4 0.2 6 6
0.5 90 100, 15 4 5.0 1 6 7
1 120 500, 5 4 4.2 2 7 7
3 200 500, 4 5 2.2 4 7 7
2 0.1 60 100, 4.6 3 5.6 0.2 7 6
0.5 130 200, 4.6 5 2.4 1 7 7
1 180 400, 3.8 5 1.8 2 7 7
3 290 400, 2.6 6 1.4 4 8 8
3 0.1 60 100, 10.8 4 5.4 0.2 6 6
0.5 160 200, 4.5 5 1.8 1.2 7 7
1 210 400, 3.5 5 1.6 2.1 7 7
3 350 400, 2.2 6 1.4 4 8 8

In this equation, X (n) and y(n) represent the mean values of the original
and denoised signals, respectively. A CC close to 1 signifies a strong
positive relationship, indicating that the denoised signal retains the
structure of the original signal well. Conversely, a CC close to 0 implies
little to no relationship between the signals, indicating a potential loss of
information during the denoising process.

4. Results and discussions

The present study extensively investigates the denoising perfor-
mance of various existing techniques. Three datasets, each comprising
more than 200 strain signals, were used to synthesize noisy signals at
four levels of noise intensity. Seven denoising methods were compared
using all these noisy signals, totaling over 3000 instances.

The outputs from the seven compared denoising methods are illus-
trated in Fig. 6, which depicts samples of noisy signal with a noise

intensity ratio of 3.0 for each dataset. As detailed in subsection 3.2, the
noisy signals were synthesized from each of the three datasets. The
denoised images clearly demonstrate that the MODWT thresholding
method outperforms the others across all three samples. It achieves
effective denoising while preserving the signal’s amplitude and main-
taining the intricate features of the original signal.

In contrast, both the EMD and FMD methods exhibit relatively poor
denoising performance, retaining a significant amount of residual noise
and compromising some essential signal details, which results in a
decreased amplitude of the strain signal. Furthermore, the application of
FIR filters during denoising is susceptible to edge effects; for instance,
severe edge effects can be observed when processing samples from
Datasets 2 and 3. Although the DWT provides comprehensive denoising,
it also removes critical details from the signal.

The MA and FB approaches yield comparatively better denoising
results. However, due to constraints related to fixed windows or fixed
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frequency bands, these methods also exhibit considerable residual noise
and may further diminish the detailed features of the signal.

The boxplots of the four quantitative metrics, i.e., SNR, PSNR, RMSE,
and CC, to evaluate the denoising performance of the compared
methods, are presented in Figs. 7-9. The mean values of these metrics
are listed in Tables 4-7. These statistical plots and tables result from
experiments conducted on noisy data at noise intensities of 0.1, 0.5, 1,
and 3, synthesized from all signals in the three datasets listed in Table 1.

The MODWT thresholding method demonstrates excellent perfor-
mance across all noisy signal datasets, consistently achieving superior
performance metrics. The four metrics of this method reveal not only
outstanding mean values but also smaller variances, as evidenced by the
boxplots, indicating stable denoising performance. In contrast, the DWT
thresholding method, also a wavelet approach, exhibits considerably
inferior denoising performance when applied to these experimental
signals. This discrepancy is highlighted by significant differences in
performance metric values and their larger variability. In addressing
complex signals, such as actual bridge strain, the downsampling
employed by DWT to enhance computational efficiency may lead to a
loss of critical information that cannot be overlooked. This limitation is
particularly evident in Fig. 10, where the reduced number of coefficients
in DWT obscures fine details and introduces noticeable edge effects at
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signal boundaries, compared to the comprehensive and undistorted
coefficient set provided by MODWT.

Further insight is gained from Fig. 11, which compares the co-
efficients used for signal reconstruction. Even when DWT and MODWT
employ the same wavelet basis functions, the denoising performance of
DWT reaches its optimal limit but remains suboptimal due to the
inherent restrictions of its methodology, namely, the downsampling
process that discards significant signal information. This loss compro-
mises DWT’s ability to accurately reconstruct the signal, especially in
the presence of noise or abrupt changes typical of bridge strain data.
Conversely, MODWT’s elimination of downsampling ensures that all
temporal information is retained, resulting in a more robust and accu-
rate reconstruction of the original signal. This is reflected in the
consistently lower variance and higher fidelity of the MODWT denoised
outputs across Databases 1, 2, and 3.

The denoising performance of the EMD method also shows a signif-
icant gap. One contributing factor may be its susceptibility to mode
mixing, which causes signals of varying frequencies to be combined
within the resulting IMFs. Furthermore, its sensitivity to sharp discon-
tinuities and nonlinearities, which are common characteristics of strain
measurements, can result in distorted IMFs that fail to accurately
represent the underlying signal.
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Fig. 8. Boxplots of denoising performance metrics for seven methods compared using Dataset 2: (a) I = 0.1, (b) I = 0.5, (c¢) I = 1.0, and (d) I = 3.0.

The two time-domain methods, MA and FIR, along with the two
frequency-domain methods, FB and FMD, display commendable per-
formance in denoising most noisy signal datasets; however, their overall
performance lacks stability. In other words, while they may perform
well on certain datasets, they can yield only ordinary results on others.
Conversely, the MODWT method consistently maintains superior per-
formance across all noisy signal datasets.

Based on the results presented, it can be concluded that among the
methods compared for removing noise from strain signals collected from
real bridges, the MODWT-based technique is the most effective, partic-
ularly under high noise conditions. This method preserves both the
amplitude and pattern of the impulses, which reflect the static effects of
vehicle weights crossing the bridge. This preservation is advantageous
for more accurate structural condition assessments and improved
decision-making regarding maintenance and repair strategies. For sig-
nals characterized by low noise levels, MA or FB filters also perform
effectively. Therefore, in such cases, these two methods can be
employed, especially as they are often computationally more efficient
than MODWT. However, for signals containing strong or complex noise
that is challenging to manage, the MODWT-based method is strongly
recommended.

Regarding computational

efficiency, MODWT requires more

12

processing time than other denoising methods for the same signal. To
assess its suitability for real-time bridge SHM, we measured MODWT’s
computation time across the three datasets examined in this study.
Fig. 12 presents boxplots of MODWT’s processing times for denoising all
signals in these datasets. Computations were performed on a PC with an
Intel® Xeon® E5-1620 v4 CPU (3.50 GHz) and 16 GB RAM. Results
show that MODWT processes signals of 40,000-50,000 points, sampled
at 1000 Hz, in approximately 0.1 s. This means that 40 s of data are
denoised in just 0.1 s, satisfying the real-time requirements of most
bridge SHM applications.

5. Conclusions and future work

To address the challenges posed by non-stationary signals and
broadband noise in bridge SHM, we conducted a comprehensive inves-
tigation on various techniques for denoising strain signals. Special
attention was paid to MODWT, which excels in processing non-
stationary and complex signals. Three datasets obtained from two
different types of bridges were employed for this comparative study.
Noisy signals with four different intensity levels were synthesized from
these datasets. Seven representative denoising methods were compared
using all these noisy signals. Both qualitative and quantitative
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Fig. 9. Boxplots of denoising performance metrics for seven methods compared using Dataset 3: (a) I = 0.1, (b) I = 0.5, (c¢) I = 1.0, and (d) I = 3.0.
Table 4
Comparison of mean SNR from different denoising methods.
Dataset Noisy data (I) MA FIR EMD FB FMD DWT MODWT
1 0.1 35.79 36.57 31.60 39.57 38.15 25.91 38.78
0.5 24.84 23.79 21.11 25.65 23.45 15.68 25.44
1 20.12 20.79 8.57 19.68 18.35 13.33 21.18
3 12.58 12.38 9.05 10.12 10.62 6.93 12.33
2 0.1 37.74 36.87 32.50 34.76 36.64 29.85 38.52
0.5 26.99 26.73 20.27 28.20 26.41 18.04 28.11
1 22.33 22.29 18.70 23.04 21.35 13.68 22.55
3 14.96 13.79 10.09 13.83 12.61 8.57 15.52
3 0.1 36.31 36.67 33.55 34.53 35.04 29.35 36.61
0.5 26.62 26.41 23.42 27.36 26.82 20.19 27.21
1 22.23 21.69 18.79 22.27 22.14 14.73 21.76
3 14.97 13.39 11.29 13.05 12.19 8.69 15.17

assessments were employed to evaluate the effectiveness of the methods
being compared. The main conclusions can be drawn as follows.

(1) Among the seven methods compared, MODWT proved to be the
most effective in denoising the strain signals analyzed. In the
graphical representation of the denoised signals, it preserves the
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signal’s amplitude and maintains the intricate features of the
original signal effectively. Furthermore, it consistently achieves
superior performance metrics in terms of SNR, PSNR, RMSE, and

CC.

(2) Traditional methods, such as MA and FB filters, perform well in
specific scenarios, particularly when the noise is low. Therefore,
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Table 5
Comparison of mean PSNR from different denoising methods.
Dataset Noisy data (I) MA FIR EMD FB FMD DWT MODWT
1 0.1 52.25 53.03 48.07 56.04 54.62 42.38 55.25
0.5 41.31 40.26 37.58 42.12 39.92 32.15 41.90
1 36.59 37.26 25.03 36.15 34.82 29.80 37.64
3 29.04 28.84 25.52 26.58 27.08 23.40 28.79
2 0.1 50.15 49.27 44.90 47.17 49.05 42.25 50.93
0.5 39.40 39.13 32.68 40.60 38.82 30.45 40.52
1 34.74 34.69 31.10 35.44 33.76 26.09 34.96
3 27.36 26.19 22.50 26.24 25.02 20.97 27.92
3 0.1 50.31 50.67 47.55 48.53 49.04 43.35 50.61
0.5 40.62 40.41 37.42 41.36 40.82 34.19 41.21
1 36.23 35.69 32.79 36.27 36.14 28.73 35.76
3 28.97 27.39 25.29 27.05 26.19 22.69 29.17
Table 6
Comparison of mean RMSE from different denoising methods.
Dataset Noisy data (I) MA FIR EMD FB FMD DWT MODWT
1 0.1 0.13 0.12 0.21 0.08 0.10 0.41 0.09
0.5 0.46 0.52 0.71 0.42 0.54 1.36 0.43
1 0.79 0.73 3.49 0.83 0.97 1.77 0.70
3 1.88 1.93 2.83 2.49 2.36 3.64 1.93
2 0.1 6.83E-08 7.41E-08 1.27E-07 9.45E-08 7.69E-08 1.68E-07 6.24E-08
0.5 2.35E-07 2.41E-07 6.08E-07 2.04E-07 2.51E-07 6.50E-07 2.08E-07
1 4.02E-07 4.09E-07 6.18E-07 3.76E-07 4.60E-07 1.09E-06 3.99E-07
3 9.38E-07 1.10E-06 1.62E-06 1.09E-06 1.26E-06 1.99E-06 8.87E-07
3 0.1 1.27E-07 1.22E-07 1.83E-07 1.60E-07 1.47E-07 2.81E-07 1.23E-07
0.5 3.97E-07 4.06E-07 6.08E-07 3.61E-07 3.87E-07 8.46E-07 3.68E-07
1 6.63E-07 7.06E-07 9.84E-07 6.56E-07 6.69E-07 1.61E-06 6.97E-07
3 1.55E-06 1.85E-06 2.41E-06 1.91E-06 2.12E-06 3.25E-06 1.49E-06
Table 7
Comparison of mean CC from different denoising methods.
Dataset Noisy data (I) MA FIR EMD FB FMD DWT MODWT
1 0.1 0.9999 0.9999 0.9996 0.9999 0.9999 0.9993 0.9999
0.5 0.9983 0.9978 0.9957 0.9985 0.9976 0.9929 0.9984
1 0.9950 0.9955 0.8577 0.9943 0.9921 0.9869 0.9959
3 0.9702 0.9685 0.9370 0.9518 0.9527 0.9359 0.9700
2 0.1 0.9999 0.9999 0.9996 0.9997 0.9999 0.9998 0.9999
0.5 0.9987 0.9986 0.9758 0.9990 0.9985 0.9964 0.9990
1 0.9963 0.9962 0.9887 0.9969 0.9952 0.9908 0.9965
3 0.9793 0.9726 0.9235 0.9749 0.9635 0.9668 0.9817
3 0.1 0.9999 0.9999 0.9996 0.9997 0.9998 0.9997 0.9999
0.5 0.9988 0.9988 0.9967 0.9990 0.9988 0.9979 0.9990
1 0.9968 0.9963 0.9931 0.9968 0.9966 0.9926 0.9965
3 0.9829 0.9746 0.9579 0.9747 0.9664 0.9642 0.9841

under low-noise conditions, these methods can be considered
effective denoising techniques, especially due to their straight-
forward algorithms.

(3) In cases where strong or complex noise is difficult to handle, the
MODWT-based method is recommended. Unlike traditional
techniques, MODWT does not involve downsampling, thus pre-
serving all data points and significantly enhancing the resolution
of both global and local signal features. Therefore, extensive ex-
periments demonstrate that MODWT is stable and robust in
effectively removing noise from all signals.

This research provides valuable insights into preprocessing tech-
niques in SHM, which are essential for improved structural assessments
and maintenance strategies. While we used Gaussian white noise to
simulate noise in bridge strain signals, real-world conditions involve
more complex noise profiles such as gradual baseline shifts from thermal
expansion, pink noise (1/f noise) from material fatigue, impulse noise
triggered by construction or lightning, and intrinsic sensor noise (e.g.,
thermal or quantization noise, calibration drift). To address this, our

future work will develop a more comprehensive noise model incorpo-
rating these mixed sources. We plan to collect extensive strain data
across diverse conditions, such as seasonal temperature changes, elec-
tromagnetic interference, extreme weather, and high traffic, to validate
MODWT and other preprocessing methods under realistic noises. We
will also expand our dataset to include a broader range of bridge types
(e.g., suspension, truss, arch, cable-stayed) to ensure robust perfor-
mance under diverse scenarios. To bridge the gap between simulation
and real-world deployment, we will explore the integration of these
advanced preprocessing techniques into operational SHM systems. This
will involve collaborating with bridge operators to conduct field tests,
where the performance of our methods can be assessed under actual
mixed noise conditions. These efforts will provide a more thorough
understanding of the applicability and limitations of our approach,
paving the way for more reliable and effective SHM solutions.
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