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A B S T R A C T

Accurate denoising of strain signals is critical for early damage detection in bridge structural health monitoring 
(SHM). However, signals denoising methods often struggle with the non-stationary and broadband noise 
encountered in real-world environments. This study provides the first comprehensive comparison of various 
denoising techniques specifically tailored for bridge strain signals, emphasizing the maximal overlapping discrete 
wavelet transform (MODWT) for its capacity to handle complex noise profiles. We rigorously compare MODWT 
with time-domain (moving average filter, finite impulse response filter, empirical mode decomposition), 
frequency-domain (bandpass filter, Fourier mode decomposition), and other wavelet-based (discrete wavelet 
transform) approaches. Uniquely, this study employs three datasets from two distinct bridge types (masonry arch 
and steel bowstring) and evaluates performance using both expert assessments and quantitative metrics (signal- 
to-noise ratio, peak signal-to-noise ratio, root mean square error, and correlation coefficient). Our findings 
demonstrate that MODWT exhibits a distinct advantage in high-intensity white noise environments, a common 
scenario in real-world bridge monitoring, offering valuable guidance for engineers in selecting appropriate 
denoising strategies. The results not only validate MODWT as a promising preprocessing technique but also offer 
critical insights into the limitations of existing methods, paving the way for the development of more adaptive 
and robust denoising solutions in bridge SHM.

1. Introduction

Bridges are important components of infrastructure, and their safety 
necessitates reliable structural health monitoring (SHM) (Desjardins and 
Lau, 2024; Tan et al., 2024; Li et al., 2025). SHM systems typically 
involve the installation of sensors, such as accelerometers and strain 
gauges, on bridge components to capture structural responses. Strain 
measurements provide crucial insights into the local behavior of bridge 
structures, enabling the early detection of damage, including cracks, 
corrosion, and material fatigue (Anastasopoulos et al., 2021; Hu et al., 
2017; Huang et al., 2020; Mao et al., 2019). However, strain signals are 
often contaminated by various noises, which can distort the signals and 
diminish the reliability of damage detection and condition assessment. 
The noise in strain measurements typically originates from intrinsic 
working principles, operational systems, and external factors (Glǐsić, 
2024; Vaseghi, 2008). Intrinsic sources include thermal noise, flicker 
noise, and photon shot noise. In resistive strain gauges, system noise 
mainly arises from amplifiers, analog-to-digital converters, and lead 

wire resistance, while fiber optic sensors are affected by Rayleigh and 
Brillouin scattering. External factors include electromagnetic interfer
ence (EMI), temperature fluctuations, and mechanical vibrations.

These noise components generally span a broad frequency range. For 
instance, flicker noise and long-duration mechanical drifts tend to occur 
at lower frequencies, while EMI noise often begins around 50–60 Hz 
(due to power line interference) and extends into the kHz to MHz range 
for high-speed electronics. Consequently, these noises frequently over
lap with structural responses in both frequency and time domains, 
complicating the isolation of genuine strain responses needed for 
detecting potential structural damage. In many cases, simple filtering 
algorithms fail to sufficiently eliminate these noises and may even 
degrade critical strain signal features. Moreover, the non-stationary 
nature of both the structural response and noise adds complexity to 
the denoising process. As ambient conditions, such as traffic, wind, and 
other operational variables, fluctuate throughout the day or across 
seasons, both strain signals and unwanted noise can vary unpredictably. 
Conventional methods designed for stationary signals often 
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underperform under these evolving conditions.
Researchers have proposed various digital signal denoising tech

niques (Vaseghi, 2008), a classic problem in signal processing. These 
methods can generally be categorized into time, frequency, and 
time-frequency (TF) domain approaches. In the time domain methods, 
denoising operate directly on the signal samples. Traditional techniques 
include linear filters such as moving average (MA) filters and finite 
impulse response (FIR) filters (Blackledge, 2006; Hamming, 1989), as 
well as nonlinear filters like median filters. MA filters smooth the signal 
by averaging neighboring samples, while median filters replace each 
sample with the median of its neighbors, effectively removing impulsive 
noise while preserving edges. These two filters are straightforward to 
implement and interpret. Nonetheless, both are sensitive to the filter 
window size, limiting their tuning capabilities. FIR filters offer greater 
design flexibility and effective noise reduction but may introduce ir
regularities in the frequency response if designed for sharp cutoffs.

Time-domain decomposition techniques effectively separate mixed 
signals into individual components, making them a valuable tool for 
noise removal in various applications, including mechanical fault 
diagnosis, audio processing, and biomedical signal analysis (Jiang et al., 
2019; Kaur et al., 2021; Kopsinis and McLaughlin, 2009; Massar et al., 
2025; Yin et al., 2022). By breaking down complex signals, these 
methods facilitate the isolation of noise from the desired signal. One 
prominent example of this approach is empirical mode decomposition 
(EMD) (Huang et al., 1998) and its derivatives, such as variational mode 
decomposition (VMD) (Dragomiretskiy and Zosso, 2013). It is a 
data-adaptive technique that decomposes a signal into intrinsic mode 
functions (IMFs), which represent simple oscillatory modes with 
well-defined instantaneous frequencies. In practice, when applied to a 
noisy signal, EMD can adeptly isolates intrinsic modes that highlight the 
underlying signal structure while effectively filtering out high-frequency 
noise. As a result, the original signal can be reconstructed by selectively 
combining the relevant IMFs and discarding those associated with noise. 
Another compelling approach to signal decomposition and noise 
removal is blind source separation (BSS) methods, particularly inde
pendent component analysis (ICA) (Comon, 1994). These techniques 
operate under assumptions that the observed mixed signals comprise 
non-Gaussian and statistically independent sources. By leveraging 
higher-order statistical analysis, ICA can effectively recover the original 
signals from their linear mixtures. This capability is particularly ad
vantageous in scenarios where noise distinguishes itself based on its 
statistical properties. While the signal decomposition methods have 
advanced signal denoising applications (Aliouat and Djendi, 2025; 
Kopsinis and McLaughlin, 2009; Yin et al., 2022), their computational 
demands can scale significantly with data dimensionality. For instance, 
the sifting process of EMD has a complexity of O(N2) (Huang et al., 
1998), where N is the signal length; and quadratic penalty optimization 
in VMD requires multiple Fourier transforms per iteration 
(Dragomiretskiy and Zosso, 2013). Such high computational costs pre
sent obstacles for real-time implementation.

In contrast to time-domain techniques, frequency-domain methods 
offer a different approach to denoising through transforming signals 
from the time domain into the frequency domain using the Fourier 
transform (FT) (Oppenheim et al., 1999). This transformation is 
fundamental, enabling an in-depth analysis of a signal’s frequency 
components. By decomposing the signal into sinusoids, the FT reveals 
the amplitude and phase of each frequency component, which is 
essential for characterizing signal properties. Unwanted components, 
such as noise, can often be removed based on their frequency-domain 
characteristics, using flexible filtering techniques (Wahab et al., 2021). 
Frequency-domain methods are particularly effective when the noise 
and the desired signal occupy distinct frequency bands. However, they 
are most suited for stationary signals with consistent statistical proper
ties over time and frequency-distinguishable components. Furthermore, 
converting signals to the frequency domain loses temporal information, 
posing challenges for analyzing time-varying signals, a prevalent 

scenario in bridge SHM.
To address these challenges, researchers often employ hybrid ap

proaches that integrate frequency-domain and time-domain techniques, 
collectively known as TF methods. These methods simultaneously 
analyze signals across both domains. Thus, they are particularly effec
tive for signals with time-varying frequency content. Time-frequency 
representations (TFRs) (Boashash, 2016) such as the short-time Four
ier transform (STFT) and wavelet transform (WT), serve as the founda
tion for many denoising techniques. TFR-based denoising typically 
employs thresholding techniques, where coefficients below a predefined 
threshold are suppressed, thereby eliminating noise while preserving 
important signal features. WT excels at capturing both high- and 
low-frequency components across multiple scales, making it particularly 
suitable for analyzing time-varying signals like bridge strain data. There 
are various WT variants, each designed to meet specific analytical needs. 
The discrete wavelet transform (DWT) (Sundararajan, 2015), 
well-regarded for its computational efficiency, is widely applied in 
preprocessing SHM signals. For instance, Wu et al. (2014), Ni et al. 
(2012), Zhao et al. (2019), and Wei et al. (2017) have utilized DWT to 
effectively isolate temperature- or traffic-induced components from 
strain data. Ma et al. (2024) employed DWT to eliminate noise in 
vacuum-process monitoring signals of aerospace vacuum vessel struc
tures. However, despite its advantages, DWT has notable limitations, 
such as issues associated with downsampling and boundary manage
ment (Daubechies, 1992; Strang and Nguyen, 1996).

The maximal overlapping discrete wavelet transform (MODWT) 
(Percival and Walden, 2000), an advanced variant of the traditional 
DWT, offers a refined approach to analyzing TF characteristics in sig
nals. One of MODWT’s outstanding features is its avoidance of down
sampling during transformation, which preserves all data points and 
significantly enhances the resolution of both global and local signal 
features. This capability makes MODWT particularly valuable for ap
plications requiring precise signal reconstruction. Notably, MODWT has 
demonstrated promising results in processing complex and 
non-stationary signals across diverse fields (Barzegar et al., 2021; Li 
et al., 2014; Osmani et al., 2024; Patel et al., 2014), including finance, 
healthcare, and engineering. For example, in biomedical signal pro
cessing (Kumar et al., 2021), MODWT has significantly improved elec
trocardiogram denoising, leading to enhanced accuracy in heart rate 
variability analysis. Recently, Xia et al. (2024) developed a novel 
MODWT-based filter, highlighting its efficacy in denoising applications 
for bridge SHM.

Each denoising method discussed above presents its own strengths 
and limitations, with effectiveness highly dependent on the signal 
characteristics and noise types encountered in real-world applications. 
In the field of bridge SHM, denoising strain signals remains challenging 
due to non-stationary, broadband noise from diverse sources. Currently, 
most studies focus on optimizing individual methods (Jiang et al., 2022), 
offering depth but often lacking comprehensive comparisons. Limited 
comparative studies exist; for example, Deng et al. (2023) compared 
wavelet, mathematical morphology, and low-pass filtering methods for 
cable force monitoring. While these studies provide valuable insights, no 
research has yet comprehensively and systematically compared multiple 
denoising methods using unified datasets that account for diverse bridge 
types and varying noise levels or thoroughly analyzed performance in 
non-stationary, broadband noise environments. This gap emphasizes the 
need for a more holistic understanding of optimal denoising strategies, 
suggesting that future research should integrate existing methods with 
standardized datasets to develop more reliable and effective pre
processing tools for bridge SHM.

In this study, we introduce a systematic approach for selecting the 
most suitable denoising algorithms for complex strain signals specific to 
bridge SHM. We analyzed seven representative methods: three time- 
domain techniques (MA filter, FIR filter, and EMD), two frequency- 
domain approaches (bandpass filter, and frequency mode decomposi
tion), and two TF methods (DWT and MODWT). The selection of the 
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seven denoising methods was driven by their widespread use in bridge 
SHM applications. These methods represent a broad spectrum of tradi
tional approaches, providing a robust baseline. While modern tech
niques, such as deep learning-based denoising (Tian et al., 2020; Yu 
et al., 2019) and adaptive filtering, show promise in certain contexts, 
they often require large training datasets, extensive computational re
sources, or specific assumptions about noise characteristics, which may 
not align with the practical constraints of real-world bridge SHM sys
tems, where data availability and computational efficiency are critical. 
Our study focuses on methods that are readily implementable in current 
SHM frameworks, ensuring immediate applicability for engineers. 
Nonetheless, we recognize the potential of emerging techniques and 
plan to investigate their applicability in future studies.

To ensure fair comparisons, we ensured that each denoising method 
was optimized for performance. We utilized grid search (Liashchynskyi 
and Liashchynskyi, 2019) to determine the most effective hyper
parameters for each technique. The denoising performance of these 
methods was evaluated using both qualitative and quantitative assess
ments. Qualitative evaluations were conducted by experts to confirm 
that the denoised outputs resonated well with human perception. On the 
other hand, quantitative assessments employed four metrics: 
signal-to-noise ratio (SNR), peak signal-to-noise ratio (PSNR), 
root-mean-square error (RMSE), and correlation coefficient (CC). The 
results indicated that the MODWT-based algorithm consistently pro
duced outputs with superior visual quality. In addition, it excelled across 
all performance metrics, effectively balancing noise reduction with the 
preservation of critical signal features.

The remainder of this paper is organized as follows. Section 2 pro
vides a review of existing denoising techniques for digital signals. Sec
tion 3 outlines the methodology of this comparative study, including the 
procedure, datasets, selected methods for comparison, and performance 
metrics. Section 4 presents the results, along with discussions. Finally, 
Section 5 concludes the paper and outlines directions for future work.

2. Existing denoising techniques for digital signals

The removal of noise, defined as unwanted disturbances that obscure 
meaningful information, is a critical research area in digital signal 
processing. Depending on the operational domain, denoising techniques 
can be categorized into time-domain, frequency-domain, and time- 
frequency TF domain approaches. Below, we review several represen
tative denoising methods, highlighting their underlying principles and 
performance across diverse contexts.

2.1. Time-domain methods

2.1.1. Digital filters
Time-domain methods operate directly on signals in their original 

time representation. Among these methods, digital filters (Hamming, 
1989), encompassing linear filters such as MA and FIR filters, as well as 
nonlinear filters like median filters (Pitas and Venetsanopoulos, 1990), 
have long served as foundational tools for signal denoising.

The MA filter smooths the signal by averaging a specified number of 
adjacent samples, thereby reducing rapid fluctuations caused by noise. 
Mathematically, it can be written as: 

y(n)=
1
M

∑M− 1

m=0
x(n − m), (1) 

where x(n) is the discrete input signal, y(n) is the output signal, M is the 
window size of the moving average filter. Its performance depends 
heavily on the choice of window size M. Although a larger M provides 
more noise attenuation, it can blur sharp features, while a smaller M 
better preserves detail but may result in less noise reduction.

Finite impulse response (FIR) filters, offer a more flexible framework 
for digital signal denoising than the moving average approach. It oper

ates by convolving the input signal with a finite sequence of coefficients 
which define the filter’s behavior (Oppenheim et al., 1999): 

y(n)=
∑M− 1

m=0
h(m)x(n − m), (2) 

where ℎ(m) is the impulse response of the filter, which is designed using 
the filter order M and a cutoff frequency, fc; x(n-m) represents the 
delayed input samples. To ensure zero-phase filtering, forward and 
reverse filtering techniques can be employed to effectively mitigate 
phase distortion and keep the original timing of the signal intact. That is, 

y(n)=
∑M− 1

m=0
h(m)[x(n − m)+ x(n+m)]. (3) 

The output signal y(n) is computed as a weighted sum of the current 
and past input values, with the weights determined by the filter 
coefficients.

The impulse response of the filter ℎ(m) can be expressed as 

h(m)=
∑M− 1

k=0

ak⋅w(m − k), (4) 

where ak are the coefficients for the desired frequency response, w(n-k) 
is the window function used, e.g., Hamming window or Hanning win
dow. The ideal frequency response of an FIR filter is 

H
(
ejω)=

{ 1 0 ≤ |ω| < ωc

0 otherwise
, (5) 

where ωc is the cutoff angular frequency, H(ejω) is the frequency 
response of the filter, and ω = 2πf. Unlike MA filters, where the weights 
are all equal, the FIR filter allows for varying coefficients that can 
optimize different performance criteria, such as rapid roll-off in the 
frequency domain.

2.1.2. Time-domain decomposition method
Time-domain decomposition techniques are powerful methods for 

separating a mixed signal into its individual components, providing an 
effective means of eliminating noise in digital signals. These methods are 
especially effective for nonstationary signals, where traditional 
frequency-domain techniques may struggle. Two prominent approaches 
in this category are EMD and BSS, which can also be considered as two 
families of methods.

EMD is a data-driven technique that decomposes a signa decomposes 
a signal x(t) into amplitude- and frequency-modulated components 
called intrinsic mode functions (IMFs) and a residual r(t) (Huang et al., 
1998): 

x(t)=
∑L

i=1
IMFi(t)+ r(t), (6) 

where L is the total number of IMFs. Each IMF satisfies two conditions: 
(1) The number of extrema and zero crossings must either be equal or 
differ by at most one; and (2) the mean value of the envelope defined by 
the local maxima and minima is zero. Many adaptive methods like VMD 
(Dragomiretskiy and Zosso, 2013) have been developed based on EMD.

In the context of denoising, EMD can be used to separate noise from 
the signal by identifying and removing IMFs that primarily contain 
noise. For example, high-frequency IMFs often correspond to noise. 
Then a denoised signal y(t) can be reconstructed by summing only the 
relevant IMFs: 

y(t)=
∑L

i=lc

IMFi(t), (7) 

where lc is the cutoff level, or the index of the first IMF deemed to 
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contain meaningful signal information.
BSS is a family of techniques that separate mixed signals based on 

their statistical properties rather than their oscillatory characteristics. 
Suppose we have observed signals represented by the vector x(t)=(x1(t), 
x2(t), …, xp(t))T, where p is the number of measurement channels and t 
indexes time. These signals are created by mixing original sources s(t)=
(s1(t), s2(t), …, sn(t))T using a mixing matrix A, with added noise n(t) 
(Cardoso, 1998): 

x(t)=As(t) + n(t) (8) 

Recovering the sources means estimating both A and s(t), which is 
challenging because both are unknown. A popular BSS method is ICA 
(Hyvärinen et al., 2009), which assumes that the source signals are 
statistically independent. By maximizing independence, ICA identifies a 
separating matrix W such that 

ŝ(t)=Wx(t), (9) 

where ŝ(t) is the estimated version of s(t). If the noise n(t) is not too 
strong and the signals are non-Gaussian and independent, ICA can 
effectively denoise the signals.

While time-domain decomposition methods like EMD and BSS are 
powerful, they can be computationally intensive. For example, EMD 
involves iterative sifting, which can be slow for long signals or high 
sampling rates. ICA requires optimization routines to maximize statis
tical independence, which can be time-consuming for large datasets. 
Additionally, BSS techniques typically require multi-channel data, 
limiting their applicability to single-channel signals.

Given that ICA necessitates multi-channel data and assumes that the 
signal sources are non-Gaussian and independent, this study does not 
utilize this method as a comparative approach. The focus of this study is 
on denoising single-channel signals, where the signal components may 
not readily satisfy the non-Gaussian condition.

2.2. Frequency-domain methods

Frequency-domain methods perform digital signal denoising by 
isolating specific frequency components. Rather than operating in the 
time domain, where signals can appear convoluted or overlapping, 
frequency-domain methods convert signals into representations that 
clearly show which frequency bands contain noise or meaningful in
formation. This transformation allows us to selectively reduce noise in 
the frequency domain.

The foundation of frequency-domain analysis is the discrete Fourier 
transform (DFT) (Oppenheim et al., 1999). For a discrete signal x(n) of 
length N, the DFT is given by 

X(k)=
∑N− 1

n=0
x(n)e− j2π

N kn, k = 0, 1,…,N − 1, (10) 

where X(k) represents the signal in the frequency domain, and k indexes 
the frequency bins. This transformation reveals how different fre
quencies contribute to the original signal. It enables targeted noise 
reduction through filtering. By analyzing the magnitudes and phases of 
X(k), specific frequency components associated with noise can be 
identified and selectively attenuated. Once the unwanted components 
are reduced or eliminated, the signal can be reconstructed using the 
inverse discrete Fourier transform (IDFT) 

x(n)=
1
N

∑N− 1

k=0

X(k)ej2π
N kn (11) 

This process effectively converts the filtered signal back to its orig
inal time-domain representation, preserving the essential features while 
minimizing noise.

One particularly effective method for noise reduction in the time 
domain is frequency bandpass (FB) filtering (Proakis and Manolakis, 

2021). This technique permits only a specific range of frequencies, 
defined by a lower frequency fmin and an upper frequency fmax, to pass 
through while attenuating frequencies outside this range. The filtering 
process can be expressed as follows: 

Xfiltered(k)=
{ X(k) iffmin ≤ fk ≤ fmax

0 otherwise
, (12) 

where fk represents the frequency corresponding to the kth Fourier co
efficient. By selectively retaining frequencies within the desired range, 
FB filtering removes noise components that lie outside the band of in
terest. This method is particularly advantageous due to its straightfor
ward implementation, flexibility in adjusting frequency parameters, and 
precise control over noise reduction.

For a more nuanced approach, frequency mode decomposition 
(FMD) can be employed. FMD represents a signal as a sum of distinct 
frequency modes, each characterized by its angular frequency ωl and a 
complex coefficient αl (Oppenheim et al., 1997): 

x(n)=
∑L

l=1

αlejωln, (13) 

where L is the number of frequency modes.
The Fourier coefficients X(k) can be viewed as a form of αl 

(Bracewell, 2000), revealing the distribution of the signal’s energy 
across different frequencies. The amplitude spectrum A(k) and the phase 
spectrum φ(k) are derived from X(k) as follows: 

A(k)= |X(k)|,φ(k) = arg(X(k)). (14) 

FMD allows for the selective filtering of frequency modes based on 
their energy contributions, facilitating noise reduction. Modes domi
nated by noise, typically characterized by low energy or irregular fre
quency patterns, can be identified and suppressed.

In this study, a dynamic thresholding approach was utilized to 
distinguish signal components from noise. The noise threshold was 
determined using the amplitude spectrum A(k), and statistical measures 
such as the median and standard deviation: 

τ=meadian(A(k)) + p⋅σA(k), (15) 

where p is a user-defined parameter that controls the sensitivity of noise 
detection.

Filtering in the frequency domain can be straightforward, particu
larly when noise is concentrated in specific frequency bands. As a result, 
Fourier-based techniques work well for stationary signals, where noise 
characteristics stay mostly the same over time.

2.3. TF methods

TF methods build on traditional time- or frequency-domain tech
niques by combining both perspectives into one framework. This dual 
approach gives a detailed view of signal characteristics across time and 
frequency. It is especially useful for signals that change over time. 
Wavelet-based thresholding is a popular technique because it is simple 
and effective. It decomposes a signal into coarse and fine components. 
This facilitates targeted noise reduction while preserving important 
structures in the original waveform.

To process digital signals like those studied in this paper, a common 
approach begins by applying the DWT to a finite-length signal x(n). At 
each decomposition level j, the DWT produces an approximation coef
ficient aj,k and a detail coefficient dj,k. This is typically conducted 
through filter-bank operations. For each level j, these can be written as 
(Sundararajan, 2015) 

aj,k =
∑N− 1

n=0
x(n)ϕj,k(n), dj,k =

∑N− 1

n=0
x(n)ψ j,k(n), (16) 
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where ϕj,k(n) is the scaling function, and ψ j,k(n) is the wavelet function. 
Both are at scale 2j and translation k. These functions are defined as: 

ϕj,k(n) = 2− j/2ϕ
(
2− jn − k

)
ψ j,k(n) = 2− j/2ψ

(
2− jn − k

)
. (17) 

The scaling function ϕj,k(n) obtains coarse or low-frequency infor
mation, while the wavelet function ψ j,k(n) captures fine or high- 
frequency details.

Once the coefficients are obtained, thresholding helps isolate and 
remove noise-dominated components. A widely used thresholding rule 
is soft thresholding. Let λ be the threshold value, then the transformed 
detail coefficients d̂jk become (Donoho and Johnstone, 1994) 

d̂j(k)=
{ sgn

(
dj(k)

)( ⃒
⃒dj(k)

⃒
⃒ − λ

)
if
⃒
⃒dj(k)

⃒
⃒ ≥ λ,

0 otherwise.
(18) 

This approach shrinks coefficients that appear to be contaminated by 
noise while retaining those that likely represent the true signal structure. 
The threshold parameter λ is typically determined using the universal 
threshold principle: 

λ= σ
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2 log N

√
(19) 

where σ represents the noise standard deviation, often estimated from 
the median absolute deviation of the finest-scale wavelet coefficients.

Despite its usefulness, the traditional DWT incorporates down
sampling at each level of decomposition, potentially resulting in the loss 
of critical information. Its non-overlapping nature and reduced data 
points may obscure local characteristics within the signal. Furthermore, 
the DWT can introduce artifacts and distortions at the boundaries of 
finite-length signals due to the inherent assumptions made during 
wavelet decomposition.

In contrast, MODWT addresses these limitations by eliminating the 
decimation step, thereby ensuring shift invariance and retaining the full 
temporal resolution of the original signal. This property is a significant 
advantage over traditional DWT, as it prevents the loss of data points 
and maintains alignment between the wavelet coefficients and the 
original time series. For bridge SHM applications, where strain signals 
are often non-stationary and exhibit abrupt changes due to dynamic 
loading, environmental effects, or structural anomalies, this property is 
critical. It ensures that subtle temporal features, such as sudden strain 
spikes or transient responses due to traffic, are not distorted or mis
aligned during decomposition.

For a given signal x(n), the MODWT coefficients at level j are 
computed as follows (Strang and Nguyen, 1996): 

Wj(n)=
∑Lf − 1

l=0

h̃j(l)x(n − l),Vj(n) =
∑Lf − 1

l=0

g̃j(l)x(n − l), (20) 

where h̃j(l) and g̃j(l) are the MODWT scaling and wavelet filters, 
respectively, and Lf is the filter length. These filters are designed to 
capture both low-frequency trends (scaling coefficients) and high- 
frequency details (wavelet coefficients) in the signal. Unlike the tradi
tional DWT, MODWT does not discard samples between decomposition 
levels, resulting in a redundant representation that preserves all time 
points. This redundancy enhances its robustness when analyzing com
plex signals, such as those with significant noise, or abrupt variations, 
which are common characteristics of bridge strain data under opera
tional conditions. In the context of bridge strain denoising, MODWT 
provides a higher resolution of detail coefficients at each decomposition 
level by avoiding downsampling, improving the separation of noise from 
meaningful signal features. This enhances denoising performance, as 
noise-dominated coefficients can be more effectively isolated and sup
pressed without compromising the integrity of low-amplitude structural 
responses. In addition, MODWT reduces boundary distortions, a com
mon issue in DWT when processing finite-length bridge strain records, 

ensuring that edge effects do not obscure critical information near the 
signal boundaries. These improvements make MODWT well-suited for 
denoising bridge strain signals, where maintaining signal fidelity and 
capturing subtle, time-varying features are paramount for reliable 
structural assessment.

3. Methodology

3.1. Procedure

The flowchart in Fig. 1 illustrates the procedure of this comparative 
study. The acquisition of strain datasets is the initial and essential step. 
Once the datasets are available, noise is introduced into the signals to 
generate noisy signals that simulate real-world challenges. These syn
thesized noisy signals serve as the benchmark for evaluating the 
denoising methods. Subsequently, parameters for the benchmark sig
nals, including the SNR and PSNR, are calculated. Various methods are 
then applied to clean the noisy strain signal. After denoising, the per
formance of these techniques is compared to identify the most effective 
methods for reducing noise while maintaining signal integrity.

3.2. Datasets

This study uses three strain datasets. Signals in each dataset repre
sent a distinct strain pattern. The datasets are publicly available 
(Alexakis et al., 2021; Maes and Lombaert, 2020) and are described 
below.

Dataset 1 is drawn from the Marsh Lane Bridge, an arch-type railway 
structure in the UK built between 1865 and 1869. This bridge carries 

Fig. 1. Flowchart for comparative study on denoising methods for strain signals 
in bridge SHM.
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two electrified tracks and currently accommodates over 200 trains per 
day. Prolonged exposure to environmental factors coupled with 
increasingly heavy train loads led to notable damage. Consequently, in 
2015 the bridge underwent repairs, involving concrete infilling of the 
pier relieving arches and the installation of steel ties to control trans
verse movements of both the piers and the spandrel walls. The most 
serious damage centers on the relieving arches located mid-pier, where a 
spreading mechanism causes the keystone to drop and the pier walls to 
bow outward. The pier between Arches 37 and 38 is surrounded by 
transverse cracks, resulting from the pronounced out-of-plane rocking 
response under train loads prior to the 2015 intervention. Longitudi
nally, separation cracks were found between the spandrel walls and arch 
barrels of Arches 37 and 38, and a longitudinal crack developed beneath 
the north track of Arch 37.

In July 2016, only a few months after the repair, a network of FBG 
strain sensors was installed beneath Arches 37 and 38 to capture 
detailed dynamic deformations. Then, in November 2017, this tempo
rary setup was superseded by a permanent FBG monitoring system 
beneath Arches 37, 38, and 39, designed to evaluate the long-term 
effectiveness of the 2015 retrofit and monitor ongoing structural 
health (Alexakis et al., 2021). The FBG network comprises 47 longitu
dinal and 17 transverse strain sensors, 4 sensors on steel wires con
necting the springs of Arches 37 and 39 (beneath the longitudinal strain 
arrays) to record changes in arch span, and 5 temperature sensors. Data 
collection relies on a four-channel sm130 Optical Sensing Interrogator 
(Micron Optics, Inc.), which can sample each sensor at 1 kHz with a 
resolution of ±2 micro-strain (με). Each of the four channels is con
nected to a fiber optic cable carrying 20 FBG sensors, totaling 80. The 
cables are pre-tensioned, with each grating clamped to measure strain 
over approximately 1 m between two fixed points. A data logger triggers 
acquisition upon train passages, and the measurements are transmitted 
via 4G to the University of Cambridge.

The strain signals in Dataset 1 were collected from the FBG sensors 
labeled 37NA3A4 and 37NA6A7 on Arch #37, oriented along the lon
gitudinal direction of the arch. This dataset contains 257 fragments of 
transient dynamic strain variations recorded during train passages. In 
this study, we focus solely on the transient dynamic strain due to passing 
trains. Within such a brief time window, temperature-induced wave
length variations are considered negligible.

Datasets 2 and 3 were collected from the KW51 railway bridge in 
Belgium, a bowstring arch structure measuring 115 m in length and 
12.4 m in width. The bridge accommodates two ballasted, electrified 
tracks (Track A on the north side and Track B on the south side) with a 
maximum operational speed of 160 km/h. Both tracks are curved, 
featuring radius of 1125 m for Track A and 1121 m for Track B. The 
bridge, primarily used by passenger trains, opened for service in 2003 
and has been monitored since October 2, 2018. Between May 15 and 
September 27, 2019, it underwent retrofitting to correct a construction 
issue identified during inspection, which involved welding steel boxes 
around the original bolted connections where the diagonals meet the 
arches and the bridge deck.

Strains on the deck and diagonals are measured via 12 uniaxial 
Micro-Measurements CEA-06-250UN-350 strain gauges (nominal resis
tance RG = 350 Ω) (Maes and Lombaert, 2021). Of these, eight are 
installed on the bridge deck to capture longitudinal strain in the main 
girders; they are placed near midspan between consecutive transverse 
beams, and their channels are labeled with the format sgBDα1α1α2α2βδ. 
The remaining four gauges measure axial strain (dominated by axial 
force and bending) in two diagonals connecting to the bridge deck at 
measurement lines 20 and 23 on the south side (leaning toward Leuven). 
Each gauge is positioned on a rectangular-section diagonal profile, 85 
cm from the bottom.

All gauges utilize a quarter-bridge Wheatstone configuration with an 
NI 9237 module providing bridge completion, data acquisition, signal 
conditioning, and a 5 V excitation source. A physical resistor of R3 =
350 Ω is added for bridge balancing. The NI 9237 features an A/D range 

of ±25 mV/V and a 24-bit resolution. LabVIEW converts the measured 
output voltage into strain (ε) using the nominal gauge parameters 
(gauge factor k = 2.16, RG = 350 Ω) and the lead wire resistance RL 
measured during installation. Positive strain indicates tension, while 
negative strain denotes compression. Each gauge is protected with a 
Micro-Measurements M-Coat F coating. Data sampling is performed at 
1651.6 Hz, followed by decimation by a factor of two, then processed 
with an eighth-order Chebyshev Type I lowpass filter at 16 Hz (0.1 dB 
passband ripple), applied in both forward and reverse directions to 
remove high-frequency noise. Lastly, the signals are shifted so that the 
first sample of each event corresponds to zero strain.

Dataset 2 includes data from strain gauges labeled sgBD1011A, 
sgBD1718A, and sgBD1718C, located on opposite sides of the bridge 
deck, which measure the longitudinal strains in the main bridge girders. 
In contrast, Dataset 3 was collected from two strain gauges labeled 
sgDI20ALB and sgDI23ALL, installed on two diagonal members. Similar 
to Dataset 1, signals in Datasets 2 and 3 also reflect transient dynamic 
strain variations during a train’s passage, comprising 234 and 307 re
cordings, respectively.

Further details regarding the sensors and data in the three datasets 
can be found in (Alexakis et al., 2021; Maes and Lombaert, 2021). This 
paper primarily focuses on the strain patterns associated with the static 
effects of vehicles. To facilitate this analysis, we preprocessed the raw 
data using low-pass filters. It is important to note that this filtering does 
not imply that high-frequency components are uninformative; rather, 
the dynamic responses of the bridge structures are retained within those 
components.

Fig. 2(a)–(c) display samples of the strain signals from Datasets 1 to 
3, respectively. Negative values indicate contraction, while positive 
values indicate expansion. It is evident that the passage of each train 
elicits a distinct response signature. The number of peaks corresponds 
directly to the number of cars in the train. For instance, in the signals 
from Dataset 1 (the first row in Fig. 2), the first positive peak marks the 
moment when the first bogie passes above the sensor, while the last 
positive peak corresponds to the passage of the last bogie. The inter
mediate double peaks indicate the passage of intermediate pairs of bo
gies. The duration of signal fluctuations correlates with the speed of the 
trains.

There are significant differences in signal patterns among the three 
datasets. The strain from Dataset 1 oscillates around a value of zero, 
whereas the signal from Dataset 2 fluctuates around a positive value. 
This discrepancy is primarily attributed to the differences in bridge 
lengths. The Marsh Lane Bridge associated with Dataset 1 measures 7.7 
m in length, while the KW51 Bridge corresponding to Dataset 2 is 115 m 
long. Consequently, when a train passes over the Marsh Lane Bridge, it is 
unlikely for the entire train to be on the arch simultaneously, as the 
wheels load the arch one by one. In contrast, the KW51 Bridge can 
accommodate the entire length of a train, resulting in an offset in the 
strain oscillation due to the overall weight of the train.

Although Datasets 2 and 3 were obtained from the same bridge, their 
strain signals exhibit notable differences. A significant distinction is that 
the signal from Dataset 3 displays cycles of both positive and negative 
values, whereas the signal from Dataset 2 predominantly resides in the 
positive range. This variation arises from the fact that the signals were 
collected from different structural components. As mentioned earlier, 
Dataset 2 was recorded from the main bridge girders, specifically the ties 
of a bowstring bridge, while Dataset 3 was measured from the diagonals 
connecting the deck to the arches. When a train traverses the bridge, 
particularly when a substantial portion of it is on the structure, the ties 
are tense, whereas the diagonals experience cycles of tension and 
compression as the gravity center of the train moves across the bridge.

The various shapes of strain signals indicate the temporal and 
spectral complexity of these signals. To establish a data benchmark for 
comparative studies, we utilized these preprocessed strain signals as 
clean signal x0(n) and added Gaussian white noise xnoise(n) at varying 
intensities. The resulting noisy signal x(n) is defined by the following 
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equation: 

x(n)= x0(n) + xnoise(n) = x0(n) + I⋅σx0⋅N(0,1). (21) 

In this expression, I is a predefined noise intensity factor, taking values 
of 0.1, 0.5, 1, and 3; σx0 represents the standard deviation of x0(n); and N 
(0,1) denotes a standard normal distribution. The data used in this study 
is summarized in Table 1, where the data corresponding to a noise in
tensity factor of 0 represents the original signal.

We employ the Gaussian white noise because of its well-established 
utility as a rigorous and standardized noise model in signal processing 
research. Its uniform power spectral density and lack of temporal cor
relation mean it overlaps with the signal in both time and frequency 

domains, making it particularly hard to filter out. Consequently, it 
provides a rigorous test for denoising methods. Furthermore, the 
Gaussian nature of the noise reflects the cumulative effect of many 
small, independent disturbances, which is a simplified yet relevant 
model for real-world noise in strain signals. By varying the noise in
tensity factor I, we can systematically explore the performance limits of 
the compared denoising methods under progressively harsher condi
tions. This controlled setup thus serves as a foundational step for the 
comparative study of strain signal denoising methods before extending it 
to more complex, real-world noise scenarios.

Taking the data from the second column of Fig. 2 as an example, the 
resulting noisy signals with varying intensities of Gaussian white noise 
are illustrated in Fig. 3. It can be seen that the original signals gradually 
become obscured by the noise, making the details of the signal patterns 
difficult to discern as I increases, particularly beyond a value of 1. 
Moreover, the added noise also overlaps with the original signals in the 
frequency spectrum, as shown in Fig. 4. The presence of noise in both the 
time and frequency domains poses a significant challenge for signal 
denoising.

3.3. Compared methods

After a comprehensive review of existing signal denoising ap
proaches in Section 2, we selected seven representative methods to 
denoise the strain signals across the three datasets. These include three 
time-domain methods, two frequency-domain methods, and two TF- 
domain methods. The time-domain methods are the MA filter, FIR fil
ter, and EMD. The frequency-domain methods include the FB filter and 
FMD. And the TF methods refer to the DWT- and MODWT thresholding 
methods.

To ensure a fair comparison, it is essential that each method achieves 
optimal performance when analyzing the same data. This study uses 

Fig. 2. Signal samples from the three datasets: (a) Dataset 1, (b) Dataset 2, and (c) Dataset 3.

Table 1 
Information of data used in this study.

Dataset Data 
source

Sensor tag Number of 
original 
signals

Sampling 
rate (Hz)

Noise 
intensity 
factor, I

1 Marsh 
Lane 
Bridge

37NA3A4 
37NA6A7

257 1000 0
0.1
0.5
1
3

2 KW51 
Bridge

sgBD1011A 
sgBD1718A 
sgBD1718C

234 825.8 0
0.1
0.5
1
3

3 KW51 
Bridge

sgDI20ALB 
sgDI23ALL

307 825.8 0
0.1
0.5
1
3
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SNR as a quantitative measure and employes grid search (Xia et al., 
2024) to identify optimal hyperparameters for each technique. The 
search ranges and step sizes for these hyperparameters are detailed in 

Table 2. In this table, J1 and J2 denote the decomposition levels of DWT 
and MODWT, respectively. the minimum frequency (fmin) is set to 0 Hz 
across all datasets. Other symbols are defined in Section 2 and remain 

Fig. 3. Samples of noisy signals generated from: (a) Dataset 1, (b) Dataset 2, and (c) Dataset 3.

Fig. 4. Frequency spectra of original signals and added noises: (a) Dataset 1, (b) Dataset 2, and (c) Dataset 3.

Table 2 
Search ranges and step sizes for denoising hyperparameters.

Dataset Noisy data (I) MA (M1) FIR (fc) EMD (lc) FB (fmax) FMD (p) DWT (J1) MODWT (J2)

1 0.1 10:10:100 15:1:20 2:1:8 4:0.2:8 0.1:0.1:1 4:1:9 4:1:9
0.5 50:10:200 12:1:18 4:0.2:8 0.4:0.2:2
1 80:10:240 4:0.5:6 3:0.2:6 1:0.2:3
3 100:20:300 3:0.5:5 2:0.2:4 2:0.5:5

2 0.1 10:10:100 0.1:0.5:5 2:1:8 5:0.2:7 0.1:0.1:1 5:1:9 5:1:9
0.5 80:10:200 0.1:0.5:5 1:0.2:4 0.4:0.2:3
1 100:10:240 3:0.1:4.5 1:0.2:3 1:0.5:4
3 200:10:400 2:0.5:5 1:0.2:2 1:0.5:6

3 0.1 10:10:100 10:0.2:14 2:1:8 4:0.2:6 0.1:0.1:1 5:1:9 5:1:9
0.5 80:10:240 4:0.1:5 1:0.2:3 0.4:0.2:2
1 100:10:300 3:0.1:4 1:0.2:3 1.1:0.5:4
3 260:10:500 1.2:0.2:3 1:0.2:3 2:0.5:6
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consistent throughout. In both DWT and MODWT thresholding, the db4 
wavelet basis is selected for its ideal balance of compactness and 
smoothness, making it especially suitable for capturing the 
non-stationary characteristics of bridge strain signals. The thresholding 
strategy employed soft thresholding with a universal threshold. These 
choices were optimized through preliminary experiments to maximize 
denoising performance while preserving signal features. Taking signals 
with noise intensities of 3 in Dataset 3 as an example, Fig. 5 illustrates 
how the average SNR varies within the search range for each denoising 
method. The optimal parameters for the seven compared denoising 
methods are presented in Table 3.

3.4. Performance metrics

The performance of the seven denoising methods was evaluated both 
qualitatively and quantitatively. First, experts assessed the effectiveness 
of signal denoising by visually analyzing waveform graphs. They 
checked if noise was removed while keeping the critical features of the 
original signal. Subsequently, quantitative metrics, including SNR, 
PSNR, RMSE, and CC, were employed to further evaluate the 
performance.

SNR is a fundamental metric used to evaluate the quality of a signal 
by comparing the strength of the desired signal to the level of back
ground noise. It is mathematically defined as 

SNR=10⋅log10

∑N− 1

n=0
x2

0(n)

∑N− 1

n=0
[x0(n) − y(n)]2

, (22) 

where x0(n) is the original signal, y(n) is the denoised signal, and N is the 
total number of samples. A higher SNR value generally indicates a 
cleaner signal with less noise interference, which is often desirable in 

applications such as medical imaging and SHM.
For a more nuanced assessment of signal quality, PSNR is commonly 

employed. This metric is based on the mean squared error (MSE) be
tween the original and denoised signals: 

PSNR=10⋅log10
max

(
x2

0(n)
)

MSE
(23) 

The MSE is calculated as 

MSE=
1
N

∑N− 1

n=0
[x0(n) − y(n)]2 (24) 

Higher PSNR values indicate a closer match between the denoised 
and original signals, suggesting better preservation of signal integrity.

Another widely recognized metric is RMSE, which quantifies the 
average magnitude of differences between the original and denoised 
signals. It is expressed as: 

RMSE=
̅̅̅̅̅̅̅̅̅̅
MSE

√
=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N

∑N− 1

n=0
[x0(n) − y(n)]2

√
√
√
√ (25) 

Unlike SNR and PSNR, lower RMSE values are preferable, as they 
indicate that the denoised signal is closer to the original.

Last but not least, CC measures the degree of linear relationship 
between the original and denoised signals. It provides a statistical 
assessment of the relationship between the original and denoised sig
nals: 

CC=

∑N

n=1
[x0(n) − x0(n)]2[y(n) − y(n)]2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

n=1
[x0(n) − x0(n)]2

√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1
[y(n) − y(n)]2

√ (26) 

Fig. 5. Average SNR vs. hyperparameter search ranges for different denoising methods: (a) MA, (b) FIR, (c) FB, (d) FMD, (e) DWT, and (f) MODWT.
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In this equation, x0(n) and y(n) represent the mean values of the original 
and denoised signals, respectively. A CC close to 1 signifies a strong 
positive relationship, indicating that the denoised signal retains the 
structure of the original signal well. Conversely, a CC close to 0 implies 
little to no relationship between the signals, indicating a potential loss of 
information during the denoising process.

4. Results and discussions

The present study extensively investigates the denoising perfor
mance of various existing techniques. Three datasets, each comprising 
more than 200 strain signals, were used to synthesize noisy signals at 
four levels of noise intensity. Seven denoising methods were compared 
using all these noisy signals, totaling over 3000 instances.

The outputs from the seven compared denoising methods are illus
trated in Fig. 6, which depicts samples of noisy signal with a noise 

intensity ratio of 3.0 for each dataset. As detailed in subsection 3.2, the 
noisy signals were synthesized from each of the three datasets. The 
denoised images clearly demonstrate that the MODWT thresholding 
method outperforms the others across all three samples. It achieves 
effective denoising while preserving the signal’s amplitude and main
taining the intricate features of the original signal.

In contrast, both the EMD and FMD methods exhibit relatively poor 
denoising performance, retaining a significant amount of residual noise 
and compromising some essential signal details, which results in a 
decreased amplitude of the strain signal. Furthermore, the application of 
FIR filters during denoising is susceptible to edge effects; for instance, 
severe edge effects can be observed when processing samples from 
Datasets 2 and 3. Although the DWT provides comprehensive denoising, 
it also removes critical details from the signal.

The MA and FB approaches yield comparatively better denoising 
results. However, due to constraints related to fixed windows or fixed 

Table 3 
Key hyperparameters for the seven methods compared.

Dataset Noisy data (I) MA (M1) FIR (M2, fc) EMD (lc) FB (fmax) FMD (p) DWT (J1) MODWT (J2)

1 0.1 50 100, 17 3 5.4 0.2 6 6
0.5 90 100, 15 4 5.0 1 6 7
1 120 500, 5 4 4.2 2 7 7
3 200 500, 4 5 2.2 4 7 7

2 0.1 60 100, 4.6 3 5.6 0.2 7 6
0.5 130 200, 4.6 5 2.4 1 7 7
1 180 400, 3.8 5 1.8 2 7 7
3 290 400, 2.6 6 1.4 4 8 8

3 0.1 60 100, 10.8 4 5.4 0.2 6 6
0.5 160 200, 4.5 5 1.8 1.2 7 7
1 210 400, 3.5 5 1.6 2.1 7 7
3 350 400, 2.2 6 1.4 4 8 8

Fig. 6. Denoised strain signals using compared methods for samples from: (a) Database 1, (b) Database 2, and (c) Database 3.

Y.-X. Xia et al.                                                                                                                                                                                                                                  Journal of Infrastructure Intelligence and Resilience 4 (2025) 100155 

10 



frequency bands, these methods also exhibit considerable residual noise 
and may further diminish the detailed features of the signal.

The boxplots of the four quantitative metrics, i.e., SNR, PSNR, RMSE, 
and CC, to evaluate the denoising performance of the compared 
methods, are presented in Figs. 7–9. The mean values of these metrics 
are listed in Tables 4–7. These statistical plots and tables result from 
experiments conducted on noisy data at noise intensities of 0.1, 0.5, 1, 
and 3, synthesized from all signals in the three datasets listed in Table 1.

The MODWT thresholding method demonstrates excellent perfor
mance across all noisy signal datasets, consistently achieving superior 
performance metrics. The four metrics of this method reveal not only 
outstanding mean values but also smaller variances, as evidenced by the 
boxplots, indicating stable denoising performance. In contrast, the DWT 
thresholding method, also a wavelet approach, exhibits considerably 
inferior denoising performance when applied to these experimental 
signals. This discrepancy is highlighted by significant differences in 
performance metric values and their larger variability. In addressing 
complex signals, such as actual bridge strain, the downsampling 
employed by DWT to enhance computational efficiency may lead to a 
loss of critical information that cannot be overlooked. This limitation is 
particularly evident in Fig. 10, where the reduced number of coefficients 
in DWT obscures fine details and introduces noticeable edge effects at 

signal boundaries, compared to the comprehensive and undistorted 
coefficient set provided by MODWT.

Further insight is gained from Fig. 11, which compares the co
efficients used for signal reconstruction. Even when DWT and MODWT 
employ the same wavelet basis functions, the denoising performance of 
DWT reaches its optimal limit but remains suboptimal due to the 
inherent restrictions of its methodology, namely, the downsampling 
process that discards significant signal information. This loss compro
mises DWT’s ability to accurately reconstruct the signal, especially in 
the presence of noise or abrupt changes typical of bridge strain data. 
Conversely, MODWT’s elimination of downsampling ensures that all 
temporal information is retained, resulting in a more robust and accu
rate reconstruction of the original signal. This is reflected in the 
consistently lower variance and higher fidelity of the MODWT denoised 
outputs across Databases 1, 2, and 3.

The denoising performance of the EMD method also shows a signif
icant gap. One contributing factor may be its susceptibility to mode 
mixing, which causes signals of varying frequencies to be combined 
within the resulting IMFs. Furthermore, its sensitivity to sharp discon
tinuities and nonlinearities, which are common characteristics of strain 
measurements, can result in distorted IMFs that fail to accurately 
represent the underlying signal.

Fig. 7. Boxplots of denoising performance metrics for seven methods compared using Dataset 1: (a) I = 0.1, (b) I = 0.5, (c) I = 1.0, and (d) I = 3.0.
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The two time-domain methods, MA and FIR, along with the two 
frequency-domain methods, FB and FMD, display commendable per
formance in denoising most noisy signal datasets; however, their overall 
performance lacks stability. In other words, while they may perform 
well on certain datasets, they can yield only ordinary results on others. 
Conversely, the MODWT method consistently maintains superior per
formance across all noisy signal datasets.

Based on the results presented, it can be concluded that among the 
methods compared for removing noise from strain signals collected from 
real bridges, the MODWT-based technique is the most effective, partic
ularly under high noise conditions. This method preserves both the 
amplitude and pattern of the impulses, which reflect the static effects of 
vehicle weights crossing the bridge. This preservation is advantageous 
for more accurate structural condition assessments and improved 
decision-making regarding maintenance and repair strategies. For sig
nals characterized by low noise levels, MA or FB filters also perform 
effectively. Therefore, in such cases, these two methods can be 
employed, especially as they are often computationally more efficient 
than MODWT. However, for signals containing strong or complex noise 
that is challenging to manage, the MODWT-based method is strongly 
recommended.

Regarding computational efficiency, MODWT requires more 

processing time than other denoising methods for the same signal. To 
assess its suitability for real-time bridge SHM, we measured MODWT’s 
computation time across the three datasets examined in this study. 
Fig. 12 presents boxplots of MODWT’s processing times for denoising all 
signals in these datasets. Computations were performed on a PC with an 
Intel® Xeon® E5-1620 v4 CPU (3.50 GHz) and 16 GB RAM. Results 
show that MODWT processes signals of 40,000–50,000 points, sampled 
at 1000 Hz, in approximately 0.1 s. This means that 40 s of data are 
denoised in just 0.1 s, satisfying the real-time requirements of most 
bridge SHM applications.

5. Conclusions and future work

To address the challenges posed by non-stationary signals and 
broadband noise in bridge SHM, we conducted a comprehensive inves
tigation on various techniques for denoising strain signals. Special 
attention was paid to MODWT, which excels in processing non- 
stationary and complex signals. Three datasets obtained from two 
different types of bridges were employed for this comparative study. 
Noisy signals with four different intensity levels were synthesized from 
these datasets. Seven representative denoising methods were compared 
using all these noisy signals. Both qualitative and quantitative 

Fig. 8. Boxplots of denoising performance metrics for seven methods compared using Dataset 2: (a) I = 0.1, (b) I = 0.5, (c) I = 1.0, and (d) I = 3.0.
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assessments were employed to evaluate the effectiveness of the methods 
being compared. The main conclusions can be drawn as follows. 

(1) Among the seven methods compared, MODWT proved to be the 
most effective in denoising the strain signals analyzed. In the 
graphical representation of the denoised signals, it preserves the 

signal’s amplitude and maintains the intricate features of the 
original signal effectively. Furthermore, it consistently achieves 
superior performance metrics in terms of SNR, PSNR, RMSE, and 
CC.

(2) Traditional methods, such as MA and FB filters, perform well in 
specific scenarios, particularly when the noise is low. Therefore, 

Fig. 9. Boxplots of denoising performance metrics for seven methods compared using Dataset 3: (a) I = 0.1, (b) I = 0.5, (c) I = 1.0, and (d) I = 3.0.

Table 4 
Comparison of mean SNR from different denoising methods.

Dataset Noisy data (I) MA FIR EMD FB FMD DWT MODWT

1 0.1 35.79 36.57 31.60 39.57 38.15 25.91 38.78
0.5 24.84 23.79 21.11 25.65 23.45 15.68 25.44
1 20.12 20.79 8.57 19.68 18.35 13.33 21.18
3 12.58 12.38 9.05 10.12 10.62 6.93 12.33

2 0.1 37.74 36.87 32.50 34.76 36.64 29.85 38.52
0.5 26.99 26.73 20.27 28.20 26.41 18.04 28.11
1 22.33 22.29 18.70 23.04 21.35 13.68 22.55
3 14.96 13.79 10.09 13.83 12.61 8.57 15.52

3 0.1 36.31 36.67 33.55 34.53 35.04 29.35 36.61
0.5 26.62 26.41 23.42 27.36 26.82 20.19 27.21
1 22.23 21.69 18.79 22.27 22.14 14.73 21.76
3 14.97 13.39 11.29 13.05 12.19 8.69 15.17
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under low-noise conditions, these methods can be considered 
effective denoising techniques, especially due to their straight
forward algorithms.

(3) In cases where strong or complex noise is difficult to handle, the 
MODWT-based method is recommended. Unlike traditional 
techniques, MODWT does not involve downsampling, thus pre
serving all data points and significantly enhancing the resolution 
of both global and local signal features. Therefore, extensive ex
periments demonstrate that MODWT is stable and robust in 
effectively removing noise from all signals.

This research provides valuable insights into preprocessing tech
niques in SHM, which are essential for improved structural assessments 
and maintenance strategies. While we used Gaussian white noise to 
simulate noise in bridge strain signals, real-world conditions involve 
more complex noise profiles such as gradual baseline shifts from thermal 
expansion, pink noise (1/f noise) from material fatigue, impulse noise 
triggered by construction or lightning, and intrinsic sensor noise (e.g., 
thermal or quantization noise, calibration drift). To address this, our 

future work will develop a more comprehensive noise model incorpo
rating these mixed sources. We plan to collect extensive strain data 
across diverse conditions, such as seasonal temperature changes, elec
tromagnetic interference, extreme weather, and high traffic, to validate 
MODWT and other preprocessing methods under realistic noises. We 
will also expand our dataset to include a broader range of bridge types 
(e.g., suspension, truss, arch, cable-stayed) to ensure robust perfor
mance under diverse scenarios. To bridge the gap between simulation 
and real-world deployment, we will explore the integration of these 
advanced preprocessing techniques into operational SHM systems. This 
will involve collaborating with bridge operators to conduct field tests, 
where the performance of our methods can be assessed under actual 
mixed noise conditions. These efforts will provide a more thorough 
understanding of the applicability and limitations of our approach, 
paving the way for more reliable and effective SHM solutions.

CRediT authorship contribution statement
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Table 5 
Comparison of mean PSNR from different denoising methods.

Dataset Noisy data (I) MA FIR EMD FB FMD DWT MODWT

1 0.1 52.25 53.03 48.07 56.04 54.62 42.38 55.25
0.5 41.31 40.26 37.58 42.12 39.92 32.15 41.90
1 36.59 37.26 25.03 36.15 34.82 29.80 37.64
3 29.04 28.84 25.52 26.58 27.08 23.40 28.79

2 0.1 50.15 49.27 44.90 47.17 49.05 42.25 50.93
0.5 39.40 39.13 32.68 40.60 38.82 30.45 40.52
1 34.74 34.69 31.10 35.44 33.76 26.09 34.96
3 27.36 26.19 22.50 26.24 25.02 20.97 27.92

3 0.1 50.31 50.67 47.55 48.53 49.04 43.35 50.61
0.5 40.62 40.41 37.42 41.36 40.82 34.19 41.21
1 36.23 35.69 32.79 36.27 36.14 28.73 35.76
3 28.97 27.39 25.29 27.05 26.19 22.69 29.17

Table 6 
Comparison of mean RMSE from different denoising methods.

Dataset Noisy data (I) MA FIR EMD FB FMD DWT MODWT

1 0.1 0.13 0.12 0.21 0.08 0.10 0.41 0.09
0.5 0.46 0.52 0.71 0.42 0.54 1.36 0.43
1 0.79 0.73 3.49 0.83 0.97 1.77 0.70
3 1.88 1.93 2.83 2.49 2.36 3.64 1.93

2 0.1 6.83E-08 7.41E-08 1.27E-07 9.45E-08 7.69E-08 1.68E-07 6.24E-08
0.5 2.35E-07 2.41E-07 6.08E-07 2.04E-07 2.51E-07 6.50E-07 2.08E-07
1 4.02E-07 4.09E-07 6.18E-07 3.76E-07 4.60E-07 1.09E-06 3.99E-07
3 9.38E-07 1.10E-06 1.62E-06 1.09E-06 1.26E-06 1.99E-06 8.87E-07

3 0.1 1.27E-07 1.22E-07 1.83E-07 1.60E-07 1.47E-07 2.81E-07 1.23E-07
0.5 3.97E-07 4.06E-07 6.08E-07 3.61E-07 3.87E-07 8.46E-07 3.68E-07
1 6.63E-07 7.06E-07 9.84E-07 6.56E-07 6.69E-07 1.61E-06 6.97E-07
3 1.55E-06 1.85E-06 2.41E-06 1.91E-06 2.12E-06 3.25E-06 1.49E-06

Table 7 
Comparison of mean CC from different denoising methods.

Dataset Noisy data (I) MA FIR EMD FB FMD DWT MODWT

1 0.1 0.9999 0.9999 0.9996 0.9999 0.9999 0.9993 0.9999
0.5 0.9983 0.9978 0.9957 0.9985 0.9976 0.9929 0.9984
1 0.9950 0.9955 0.8577 0.9943 0.9921 0.9869 0.9959
3 0.9702 0.9685 0.9370 0.9518 0.9527 0.9359 0.9700

2 0.1 0.9999 0.9999 0.9996 0.9997 0.9999 0.9998 0.9999
0.5 0.9987 0.9986 0.9758 0.9990 0.9985 0.9964 0.9990
1 0.9963 0.9962 0.9887 0.9969 0.9952 0.9908 0.9965
3 0.9793 0.9726 0.9235 0.9749 0.9635 0.9668 0.9817

3 0.1 0.9999 0.9999 0.9996 0.9997 0.9998 0.9997 0.9999
0.5 0.9988 0.9988 0.9967 0.9990 0.9988 0.9979 0.9990
1 0.9968 0.9963 0.9931 0.9968 0.9966 0.9926 0.9965
3 0.9829 0.9746 0.9579 0.9747 0.9664 0.9642 0.9841
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Fig. 10. Comparison of detail coefficients (Di) and approximation coefficients (Ai) obtained by DWT and MODWT for samples from: (a) Database 1, (b) Database 2, 
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Fig. 11. Comparison of detail coefficients and approximation coefficients used by DWT and MODWT to reconstruct signals for samples from: (a) Database 1, (b) 
Database 2, and (c) Database 3.
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