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 A B S T R A C T

Wide bandwidth transformer modeling has been a critical part in the power system. However, achieving 
a balance between modeling accuracy and computational efficiency remains a significant challenge. To 
address this, the present study introduces a novel physics-consistent error compensation model (PCEC), which 
integrates a data reconstruction module, an adaptive parameter generation module, and an error compensation 
module. First, the data reconstruction module effectively denoises the input signals. The processed data are 
then utilized to generate RLC model parameters, incorporating time-varying physical properties into the PCEC 
framework. Meanwhile, the same data are re-parameterized and used as input to the error compensation 
module, which corrects deviations in the RLC model. To ensure the reliability of PCEC, a field experiment 
is conducted to gather essential voltage data. The effectiveness of the proposed model is validated through 
three analytical experiments, while the importance of individual modules is further demonstrated through two 
ablation studies.
1. Introduction

The transient performance of power distribution networks plays a 
critical role in ensuring the reliability and stability of modern power 
systems, especially with the increasing integration of renewable en-
ergy sources, distributed generation, and advanced power electronics. 
Transient events, such as lightning strikes and switching operations, 
can induce high-frequency disturbances that pose significant risks to 
equipment and system operation [1]. Effective protection against such 
events requires accurate simulation and optimization of the network’s 
transient response [2]. Transformers, as critical core components of 
the power grid, play a pivotal role in shaping the system’s behavior 
during such disturbances. Accurate modeling of transformers across a 
wide frequency range is therefore essential for capturing the complex 
dynamics of transient phenomena and enabling the design of robust 
protection and mitigation strategies.

In this vein, some researchers proposed a lot modeling methods for 
transformers. The most popular and simplest methods are the multi-
conductor transmission line (MTL) model [3] and the RLC model [4], 
each of which is valid within a certain frequency range. Nevertheless, 
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some inherent problems, such as the difficulty in modeling the dif-
ferences in winding turns length, being computationally intensive and 
time-consuming limit the application of MTL [5]. On the other hand, 
RLC models have been used in the analysis and simulation of trans-
formers with large-scale winding and a large number of turns/disks, 
thanks to their lower complexity and lower computational require-
ments. In [6], a detailed transformer high frequency electric circuit 
model is proposed considering the winding structure, inter-turn capaci-
tance and all mutual inductance. By calculating the model’s parameters 
and comparing with other methods, the accuracy of the proposed model 
is assessed. [7] proposed an improved RLC model by analyzing and 
extracting the circular multi-conductor transmission line (CMTL) [8] 
equations. The accuracy of the new RLC model is proved theoreti-
cally and practically. A winding-core high-frequency equivalent circuit 
model is proposed in [9] to improve the accuracy of simulated signals. 
These researches try to add some electronic components based on 
physical mechanisms of transformers to achieve a trade-off between 
computational complexity and model accuracy. However, these meth-
ods are computationally intensive and cost a lot, especially when the 
model is infinitely subdivided into equivalent capacitors, resistors, and 
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inductors. Therefore, it is necessary to find a way to effectively balance 
computational complexity and physical consistency for equivalent wide 
bandwidth transformer modeling. A potential way is to use the RLC 
model as the core component and to use the efficient computing power 
of artificial intelligence (AI) to compensate for the deviation of the RLC 
model. The details of transformers can be fully compensated for by AI 
models as long as the basic mechanism remains unchanged.

In recent research, AI has been used mainly for transformer fault 
diagnosis and frequency response analysis (FRA) instead of regression 
models [10]. Several machine learning methods are tested in partial 
discharge (PD) localization of transformers, including neural networks, 
support vector machine (SVM), and k-nearest neighbor [11]. They 
are analyzed for near real-time identification of high-risk PDs. The 
convolutional neural network (CNN) is widely utilized in transformer 
fault diagnosis [12,13] using different input signals. [14] uses CNN 
to interpret the frequency responses of power transformer windings 
faults, improving detection accuracy and speed. The balanced isolation 
forest is combined with CNN in [15] to suppress the level of noise of 
the vibration signals for higher fault diagnostic accuracy. Some other 
methods such as residual networks [16], state coding [17] are also 
combined with deep learning methods for fault diagnosis. Although AI 
is widely used for transformer fault diagnosis at this stage, establishing 
a physically consistent deep learning regression model for transformer 
is still a gap.

Another problem is the parameter calculation of RLC models. For 
most research, the parameters are determined by the inherent proper-
ties of transformers and some assumptions. Finite element simulations 
can be employed to calculate frequency-dependent circuit parameters 
via the magneto-static and electrostatic equations [7,9]. Optimization 
algorithms can be used for parameters searching of RLC as well such 
as particle swarm optimization [18], shark smell optimization [19], 
and the enhanced logistic chaotic marine predator algorithm [20]. 
Neural networks are also utilized as the parameter searchers based 
on FRA for different transformers with different ratings, sizes, and 
winding structures [21,22]. Nevertheless, these calculated parameters 
are deterministic and can only reflect the average of the properties 
instead of the real-time features of the transformers.

In this context, the primary aim of this research is to develop a deep 
learning regression model that effectively incorporates the underlying 
physical principles of transformers, focusing on error compensation and 
parameter optimization to improve the transformer model accuracy in 
high frequencies. Building on the foundation of the RLC model, we 
present a novel physics-consistent error compensation model, desig-
nated as PCEC. This model integrates three essential components: a data 
reconstruction module, an error compensation module, and an adap-
tive parameter generation module. By employing variational loss and 
reparameterization techniques [23] in the data reconstruction module, 
we successfully decompose the raw sampled data into distinct input 
signals and Gaussian noise. The input signals are subsequently utilized 
as inputs for the RLC models and the adaptive parameter generation 
module to ascertain the outputs and the corresponding parameters 
for the RLC system. Following this, the reparameterized signals from 
the reconstruction module are leveraged to minimize the discrepancy 
between the observed outputs and the simulated outputs of the RLC 
models. The loss functions embedded within PCEC are designed to drive 
the compensated error toward zero, ensuring that the outputs of the 
RLC models align closely with the actual data. Crucially, this innova-
tive architecture possesses the potential for adaptation across various 
domains within regression modeling. To empirically demonstrate the 
efficacy of PCEC, we conducted experiments utilizing real transformers 
and gathered the necessary data for modeling. Comparative analyses 
were performed involving three RLC-based models and four machine 
learning models through rigorous analytical experiments. Furthermore, 
ablation studies were executed to investigate the contributions of the 
data reconstruction module and the adaptive parameter generation 
module. In summary, the key contributions of this paper encompass:
2 
1. For RLC-based transformer modeling, a novel physics-consistent 
error compensation model named PCEC is proposed, using deep 
learning methods, to improve the modeling accuracy.

2. PCEC integrates three primary components: a data reconstruc-
tion module, an error compensation module, and an adaptive 
parameter generation module. These modules effectively denoise 
the raw data, produce real-time parameters for the RLC model 
that accurately reflect the inherent characteristics of transform-
ers, and compensate for errors in the RLC model.

3. A field-based transformer experiment is conducted to collect 
empirical data, which is used to validate the effectiveness of the 
PCEC framework.

4. The analytical and ablation experiments demonstrate the effi-
ciency of PCEC and the importance of the proposed modules, es-
pecially compared with RLC-based models and machine learning 
models.

The paper is organized as follows. Section 2 provides background 
about equivalent wide bandwidth RLC model of transformer and vari-
ational auto encoder. Section 3 describes the detailed information of 
the proposed PCEC, including the data reconstruction module, the error 
compensation module, and the adaptive parameter generation module. 
Section 4 shows the transformer experiments and other experimental 
results, and Section 5 concludes the paper.

2. Preliminaries

2.1. Equivalent wide bandwidth RLC model of transformer

The frequency range of lightning-induced over-voltage is relatively 
broad, typically spanning from 1 Hz to 1 MHz. Hence, an accurate 
equivalent RLC model needs to depict the characteristics of transform-
ers in this situation. However, achieving higher model accuracy inher-
ently increases the computational complexity, posing significant chal-
lenges for practical application. In this section, we introduce an RLC 
model which has the same structure as our real transformer to simulate 
the transformer’s characteristics when struck by lightning [24].

Fig.  1 shows the structure of equivalent wide bandwidth RLC model. 
The left side of the diagram depicts the high-voltage winding, while the 
right side illustrates the low-voltage winding. Points A, B, C denote the 
three-phase taps on the high-voltage side, whereas points a, b, c, and 
o represent the corresponding three-phase taps and the neutral point 
on the low-voltage side. Both ends of the windings are connected in a 
star configuration. In this model, capacitance is employed to represent 
capacitive coupling in the high-frequency range, inductance is utilized 
to signify electromagnetic coupling in the low-frequency range, and 
resistance accounts for energy losses.

Specifically, 𝐶ℎ𝑔 and 𝐶𝑙𝑔 in the figure indicate the capacitance 
between the windings and the transformer shell. 𝐶ℎ and 𝐶𝑙 represent 
the total equivalent capacitance between layers as well as inter-turn 
capacitance. 𝐶1 = 𝐶2 = 𝐶3 = 𝐶4 denotes the inter-phase capacitance 
of the high-voltage winding. 𝐶ℎ𝑙 illustrates inter-winding capacitance. 
𝑅1 and 𝑅2 indicate leakage resistance. 𝐿1 and 𝐿2 represent leakage 
inductance. 𝑅𝑚 and 𝐿𝑚 correspond to excitation resistance and excita-
tion inductance, respectively. The ideal ratio is represented by 𝑘. The 
calculation of the parameters are based on the transformer nameplate 
and the inter structure parameters [25].

2.2. Variational auto-encoder

Variational auto-encoder (VAE) is a probabilistic model created by 
variational inference.

Assuming that the input dataset is denoted as 𝐱 =
{

𝑥𝑖
}𝑁
𝑖=1 and the 

output is denoted as 𝐱̂ =
{

𝑥̂𝑖
}𝑁
𝑖=1. The implicit variable is denoted 

as 𝐳 =
{

𝑧
}𝑁 . The encoder is used to approach the real posterior 
𝑖 𝑖=1
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Fig. 1. Equivalent wide bandwidth RLC model [24].

distribution 𝑝𝜃(𝑧|𝑥) by estimated 𝑞𝜙(𝑧|𝑥). Assuming that 𝑝𝜃(𝑧|𝑥) follows 
the standard normal distribution 𝑁(0, 1) and can be written as 

𝑝𝜃(𝑧|𝑥) =
𝑝𝜃(𝑥|𝑧)𝑝𝜃(𝑧)

𝑝𝜃(𝑥)
(1)

where 𝑝𝜃(𝑧) is the prior distribution following the standard normal 
distribution. 𝑝𝜃(𝑥|𝑧) is the probabilistic decoder. To evaluate the differ-
ence between real and estimated posterior distributions, the Kullback–
Leibler (KL) divergence is utilized in loss function. 
𝐾𝐿(𝑁(𝜇, 𝜎2) ∥ 𝑁(0, 1))

= ∫
1

√

2𝜋𝜎2
𝑒−(𝑥−𝜇)

2∕2𝜎2
(

𝑙𝑜𝑔
𝑒−(𝑥−𝜇)2∕2𝜎2∕

√

2𝜋𝜎2

𝑒−𝑥2∕2∕
√

2𝜋

)

𝑑𝑥

= 1
2 ∫

1
√

2𝜋𝜎2
𝑒−(𝑥−𝜇)

2∕2𝜎2 [−𝑙𝑜𝑔𝜎2 + 𝑥2 − (𝑥 − 𝜇)2∕𝜎2]𝑑𝑥

= 1
2
(−𝑙𝑜𝑔𝜎2 + 𝜇2 + 𝜎2 − 1)

(2)

where 𝜇 and 𝜎 are separately the estimated the mean and variance. 
The decoder is then used to reconstruct the inputs after sampling by 
introducing the reconstruction loss in loss function. 

𝐿𝑟 =
1
𝑁

𝑁
∑

𝑖=1
(𝑥𝑖 − 𝑥𝑖)2 (3)

Therefore, the training goal for VAE is minimizing the KL divergence 
and the reconstruction loss.

3. Physics-consistent error compensation model

The physics-consistent error compensation model is divided into 
three modules: data reconstruction module, adaptive parameter gener-
ation module, and error compensation module to deal with the inherent 
noise of sampled data, the lack of real-time features in RLC model, and 
the potential error compensation.

3.1. Data reconstruction module

For industrial modeling, the noise is inevitable when data is sampled 
from field devices, resulting in model drift. Thus, it is necessary to 
reconstruct the input dataset for denoising. We assume that the input 
sampled data 𝐱 =

{

𝑥
}𝑁 ∈ R𝑁  is consist of the real signals and the 
𝑖 𝑖=1

3 
Fig. 2. Data reconstruction module.

white noise: 
𝑥𝑖 = 𝑥𝑖 + 𝜖𝑖 (4)

where 𝑥𝑖 is the actual input signals and 𝜖𝑖 is the white noise following 
the Gaussian distribution 𝑁(0, 𝜎2𝑖 ). Therefore, the 𝑥𝑖 ∼ 𝑁(𝑥𝑖, 𝜎2𝑖 ). To 
improve the modeling accuracy, the noise 𝜖𝑖 needs to be extracted 
before modeling and parameter tuning.

The data reconstruction module is composed of 1D-convolution 
layers and 1D convolution transpose layers, which is depicted in Fig. 
2. Before being imported into the data reconstruction module, the raw 
sampled data is cut into multiple segments with 𝑘 sampling points as 
data pre-processing. Based on the principle of VAE, the input data can 
be projected to a standard normal distribution 𝑞𝜃(𝑧|𝑥) and then decoded 
into the original data. However, due to the existence of noise, the out-
puts are assumed to be drawn from the distribution 𝑥𝑖 ∼ 𝑁(𝑥𝑖, 𝜎2𝑖 ). Thus, 
the reconstruction loss becomes the maximum likelihood estimation 
(MLE) instead of mean squared error (MSE) in Eq. (3). This is achieved 
by minimizing the negative log likelihood loss function: 

𝐿𝑟 =
1
𝑘

𝑘
∑

𝑖=1

1
2
𝑙𝑜𝑔(2𝜋𝜎2𝑥𝑖 ) +

(𝑥𝑖 − 𝑥𝑖)2

2𝜎2𝑥𝑖
(5)

where 𝑥𝑖 is the estimated mean of 𝑥𝑖 and the 𝜎𝑥𝑖  is the estimated vari-
ance of 𝑥𝑖. By minimizing the 𝑙𝑜𝑠𝑠𝐷 = 𝐿𝐾𝐿+𝐿𝑟, the data reconstruction 
module can separate noise 𝜖 from raw data.

3.2. Adaptive parameter generation module

For RLC models, the essential parameters such as capacitance, resis-
tance, and inductance determines the performance of models. However, 
the optimized deterministic parameters are hard to present the time-
varying characteristics of transformers especially in a fixed model 
structure. Therefore, we create a super-network called the adaptive 
parameter generation module to generate these time-varying key pa-
rameters.

The adaptive parameter generation module is composed of several 
fully connected layers after flattening the estimated mean 𝑥𝑖, which 
is shown in Fig.  3. The model can be denoted as 𝐶𝑖, 𝐿𝑖, 𝑅𝑖 = 𝛷𝜃(𝑥𝑖). 
Here, we need to notice that the input of the module 𝛷𝜃(⋅) is a vector, 
including the input from time 𝑡 − 𝑘 to 𝑡 instead of a scalar. This is 
due to one of our assumptions: the characteristics of the transformer 
do not change in a very short time. Hence, within 𝑘 sampling points, 
the parameters of the RLC model remain unchanged. Consequently, we 
will simulate the RLC model 𝑘 times to calculate the output 𝑦𝑅𝐿𝐶 , since 
that we have 𝑘 inputs. The corresponding loss is 

𝐿𝑅𝐿𝐶 = 1
𝑘

𝑘
∑

𝑖=1
(𝑦𝑖 − 𝑦𝑅𝐿𝐶,𝑖)2 (6)

where, the 𝑦 is the sampled output, 𝑦𝑅𝐿𝐶 is calculated output.

3.3. Error compensation module

Since the RLC model cannot fully reflect the detailed information 
of transformer under lightning strike, the error compensation module 
is used to compensate for this potential bias.
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Fig. 3. Adaptive parameter generation module.

Fig. 4. Error compensation module.

Fig.  4 depicts the data flow in error compensation module. The 
model can be denoted as 𝑦𝐸𝐶,𝑖 = 𝐸(𝑥𝑖, 𝜎𝑥𝑖 , 𝜈𝑖), where 𝐸(⋅) is the 
nonlinear function and 𝜈 is a new variable for reparameterization. 
Different from the adaptive parameter generation module, the input 
of this module is the reparameterized 𝑥𝑟,𝑖 instead of 𝑥𝑖 to improve 
the robustness of error compensation. Because the noise 𝜖𝑖 follows 
the Gaussian distribution 𝑁(0, 𝜎2𝑖 ), the reparameterization 𝑥𝑟,𝑖 can be 
achieved by introducing a new variable 𝜈, which follows the standard 
normal distribution: 
𝑥𝑟,𝑖 = 𝑥𝑖 + 𝜈𝑖 ∗ 𝜎𝑖 (7)

where 𝜈𝑖 is sampled from 𝑁(0, 1). Then, the long short-term memory 
(LSTM) is utilized to extract the underlying temporal relationships in 
the data for further error compensation. To ensure that the module is 
the error compensation of RLC model, the output 𝑦𝐸𝐶 is constrained in 
loss function: 

𝐿𝐸𝐶 = 1
𝑘

𝑘
∑

𝑖=1
(𝑦𝑖 − 𝑦𝑅𝐿𝐶,𝑖 − 𝑦𝐸𝐶,𝑖)2 (8)

3.4. Model structure and loss function

The physics-consistent error compensation model is realized by 
cleverly combining above mentioned modules, which is shown in Fig. 
5.

The sampled input data is reconstructed to reduce the effect of 
noise on the RLC parameter generation and the corresponding RLC 
model output. In another aspect, the reconstructed data is reparame-
terized for error compensation module to improve the robustness of 
the whole model. The whole loss function of physics-consistent error 
compensation model is 
𝐿𝑜𝑠𝑠 = 𝐿𝐾𝐿 + 𝐿𝑟 + 𝐿𝑅𝐿𝐶 + 𝐿𝐸𝐶 (9)

where 𝐿𝑅𝐿𝐶 and 𝐿𝐸𝐶 make sure that RLC model takes the dominant 
position in the whole model. Based on VAE theory, the new introduced 
parameter 𝜈 does not affect the training process.
4 
Fig. 5. Physics-consistent error compensation model.

Fig. 6. The schematic diagram of the experiment.

4. Experimental results

4.1. Experiment setup

Surge response experiments are conducted on a ‘Dyn11’ transformer 
with the load applied to the high-voltage side. The schematic diagram 
of the experiment is shown in Fig.  6.

This distribution transformer is an oil-immersed type with a rated 
capacity of 630 kVA, a rated voltage of 10/0.4 kV, and a rated fre-
quency of 50 Hz. The core is a three-legged laminated type, made of 
silicon steel sheets. The windings adopt a three-phase, dual-winding 
structure, and are made of enameled rectangular copper wire. Two ex-
tra 400 Ω resistances are added on the high-voltage side in experiments 
to equalize the cable resistance. The transformer tank is a rectangular 
corrugated oil tank. The low-voltage bushing uses a standard porcelain 
bushing for lead-out. A current transformer is installed at the low-
voltage terminal to monitor the current on the low-voltage side, and 
the lead is connected to the end of the bushing and routed outside 
the tank for low-voltage side voltage measurement. The high-voltage 
bushing integrates an AC sensor that measures voltage on the high-
voltage side. The combination wave generator is connected to either 
the high-voltage or low-voltage side of phase A.

Fig.  7 gives the detailed information of the experiment, including 
the transformer, the combined wave generator, the oscilloscope, and 
the isolation transformer. The parameters of the ‘Dyn11’ transformer 
are summarized in Table  1. We use the CWS 1000N combined wave 
generator to generate the 1.2/50∼8/20 μs hybrid-surge pulse, which 
conforms to IEC/EN 61000-4-5. The isolation transformer 𝐺𝐵𝐾2 −
500 VA is used to protect the TDS3054C oscilloscopes. We collect the 
output voltages of all phases, and each voltage contains 10,000 sampled 
data with 0.1 μs sample time.

When the generated lightning waves are injected into the high-
voltage side of a three-phase distribution transformer, the high
-frequency characteristics of the waves can significantly impact the 
internal characteristics of the transformer. The distributed capacitance 
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Table 1
The parameters of the ‘Dyn11’ transformer.
 Basic Parameters Structural Parameters
 Rated capacity (kVA) 630 Phase number 3  
 Rated voltage (KV) 25 Number of windings 2  
 Tap range ±2 × 2.5 Winding material Copper  
 Rated frequency (Hz) 50 Core structure Three-column laminated core  
 Maximum ambient temperature (◦ C) 40 Insulation type Mineral oil  
 No-load loss (W) 510 Insulation class A  
 Load loss (W) 4960 Cooling method ONAN  
 Impedance voltage (%) 4.5 Model Dyn11  
 Winding average temperature rise (K) 65 Voltage regulation method non-excitation voltage regulation 
of the transformer windings provides a coupling path for the lightning 
waves, resulting in strong electromagnetic coupling between the three-
phase windings, which induces interference and ultimately manifests 
as high-frequency voltage spikes on the low-voltage side. Furthermore, 
high-frequency lightning waves trigger complex multiple reflections 
and superpositions within the windings, leading to an uneven dis-
tribution of voltage between winding layers and phases. In addition 
to capacitive coupling and high-frequency reflections, the injection 
of lightning waves can exacerbate interference through magnetic flux 
coupling in the windings. The combined effects of these factors result 
in more uneven distributions of voltage, current, and magnetic fields 
within the transformer, increasing insulation stress and operational 
risks for the equipment.

Our experiments are used to explore the characteristics of the trans-
former when it receives a sudden high-frequency signal. Therefore, the 
collected data is limited to explore all characteristics of transformers. 
Meanwhile, due to limited resources, the experiments are conducted 
on a ‘Dyn11’ transformer, which cannot reflect the characteristics of 
all transformers with different configurations.

4.2. Model setup

For each block of PCEC, we have different parameters. In the 
data reconstruction module, the features are extracted by two 1D-
convolution layers with 64 filters, and each kernel is 3 × 3. The 
transpose layers have the corresponding parameters to reconstruct the 
data. The adaptive parameter generation module is composed of four 
fully connected layers after flattening the estimated mean 𝑥̂. Each layer 
has 512 neurons and ‘PReLU’ [26] as the activation function. The 
error compensation module has two LSTM layers with 256 neurons 
to find the potential relationships in the reparameterized data. The 
subsequent fully connected layers have the same parameters as the 
adaptive parameter generation module.

We train the model with a batch size of 64 using the ‘‘NAdam’’ 
optimizer [27], with an initial learning rate of 0.01. The learning rate 
decays with a factor of 0.1 if the accuracy change over 5 consecutive 
epochs is no more than 1 × 10−4. We set the number of epochs to 100 
to ensure proper convergence. The dataset is split into training and 
test sets with a ratio of 0.8: 0.2. The experiments are implemented in 
Tensorflow using a CPU Intel i7-11800H processor at 2.3 Hz and a GPU 
NVIDIA T600.

4.3. Evaluation indicators

In order to compare the performance of different models, we use 
four different evaluation indicators to evaluate the regression accuracy, 
including mean absolute error (MAE), MSE, R-Square (𝑅2), and mean 
absolute percentage error (MPAE). The indicators have been widely 
accepted in regression model evaluation. MAE measures the average 
magnitude of errors between predicted and actual values. MSE mea-
sures the average of the squared errors, emphasizing larger errors due 
to squaring. 𝑅2 quantifies the proportion of variance in the dependent 
5 
Fig. 7. Transformer experiment.

variable explained by the model and MAPE expresses errors as a 
percentage of actual values, providing a relative measure. 
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∑
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𝑅2 = 1 −
∑𝑁
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𝑁

𝑁
∑

𝑖=1
|

𝑦𝑖 − 𝑦𝑖
𝑦𝑖

|

(10)

where 𝑦𝑖 is the experimental output, 𝑦𝑖 is the model output and 𝑦𝑖 is 
the mean of experimental output.

4.4. Analytical experiments

In this section, the effectiveness of the proposed method is evaluated 
by comparing PCEC with several RLC-based models, including those 
with physics-based parameters [25] (RLC) and optimization-based pa-
rameters [28] (OptRLC). Additionally, the efficiency of PCEC is assessed 
through comparisons with several machine learning techniques, in-
cluding traditional neural networks (NN), K-nearest neighbor (KNN) 
regression, extra trees regression (ET), random forest regression (RF), 
convolution neural networks (CNN) and eXtreme Gradient Boosting 
(XGB). In order to make the comparison more targeted, we retain the 
data reconstruction module and adaptive parameter generation module 
when machine learning models are used.

4.4.1. The comparisons among RLC models and PCEC
Using the parameters of the ‘Dyn11’ transformer , we calculate the 

capacitance, leakage, and resistance variables for the RLC model. These 
calculated variables also serve as the initial input for the Particle Swarm 
Optimization (PSO) algorithm to obtain potentially improved variables.

Fig.  8 illustrates the output voltages of two selected phases when 
the combined wave generator is connected to Phase A and Phase a, 
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Fig. 8. The comparisons among RLC models and PCEC. The upper two figures depict 
the output voltages at Phase B and a when the combined wave generator is connected 
to Phase A. The down two figures depict the output voltages at Phase A and b when 
the combined wave generator is connected to Phase a.

Table 2
Evaluation metrics among RLC models and PCEC (combined wave generator is 
connected to Phase A).
 Model Phase MAE MSE 𝑅2 MAPE  
 

RLC

B 17.32 1592.41 0.83 2.46  
 C 17.57 1748.59 0.81 3.07  
 a 1.36 6.91 0.99 11.99  
 b 0.97 3.66 0.99 5.18  
 c 0.42 1.28 0.33 1515.64 
 

OptRLC

B 16.37 1559.13 0.82 2.29  
 C 16.66 1691.36 0.87 2.30  
 a 1.32 6.82 0.99 6.79  
 b 1.03 3.81 0.99 4.06  
 c 0.42 1.29 0.46 327.52  
 

PCEC

B 11.57 370.02 0.93 6.73  
 C 8.82 283.76 0.94 6.61  
 a 1.23 6.11 0.99 9.08  
 b 0.69 2.18 0.99 3.83  
 c 0.40 1.17 0.91 5.04  

respectively. The upper two plots show that the voltage gains of both 
the RLC and OptRLC models are excessively high, deviating from the 
experimental data. While the OptRLC model outperforms the original 
RLC model, it still does not match the performance of PCEC. Addi-
tionally, the voltage drop rate following the gain is faster under PCEC 
than in the other two models. In the lower two plots, PCEC facilitates 
the adaptive parameter generation within the embedded RLC model, 
resulting in less bias compared to the other RLC models. Despite some 
deviations in the error compensation module, the voltage obtained 
using PCEC closely matches the experimental data.

Tables  2 and 3 present the evaluation metrics. Due to the effective 
integration of the RLC model with error compensation, the evaluation 
metrics for PCEC are notably lower than those of the other models, 
with the exception of 𝑅2. The deterministic capacitance, leakage, and 
resistance variables, which are either calculated or optimized based on 
the transformer parameters, fail to fully capture the dynamic behavior 
of transformers. As a result, error compensation is crucial for improving 
model performance. Interestingly, while some studies suggest that op-
timizing RLC variables can enhance modeling accuracy, this approach 
does not seem to outperform PCEC in the current comparison.

4.4.2. The comparisons among several machine learning methods using 
same dataset

To evaluate the efficiency of PCEC on the same dataset as in 
Section 4.4.1, several machine learning techniques are employed to 
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Fig. 9. The comparisons among machine learning models and PCEC. The upper two 
figures depict the enlarged output voltages at Phase B and a when the combined wave 
generator is connected to Phase A. The down two figures depict the output voltages at 
Phase A and b when the combined wave generator is connected to Phase a.

Table 3
Evaluation metrics among RLC models and PCEC (combined wave generator is 
connected to Phase 𝑎).
 Model Phase MAE MSE 𝑅2 MAPE  
 

RLC

A 285.15 187765.47 0.76 10.62  
 B 25.19 1066.79 0.60 3289.32  
 C 323.86 214620.78 0.73 8.89  
 b 6.68 88.69 0.79 72099.01 
 c 7.94 135.88 0.69 78574.56 
 

OptRLC

A 283.29 184114.05 0.77 4.63  
 B 25.19 1066.84 0.61 7293.93  
 C 319.18 209028.25 0.75 5.25  
 b 6.59 85.69 0.80 37309.72 
 c 7.88 132.36 0.70 58938.81 
 

PCEC

A 66.12 8302.21 0.98 2.29  
 B 11.28 261.47 0.66 0.73  
 C 65.03 7772.54 0.99 0.97  
 b 2.42 10.51 0.97 4.81  
 c 2.75 13.59 0.96 4.93  

construct models as alternatives to the LSTM-based error compensation 
approach.

Fig.  9 compares the output voltages from the machine learning 
models and PCEC. As shown in the upper two plots, there are notable 
discrepancies between the machine learning models and PCEC. Specif-
ically, KNN, RF, XGB and ET exhibit significant oscillations, leading 
to substantial deviations in the voltage on side a compared to the 
experimental values. Although the NN model produces a smoother 
voltage response, it shows a slower voltage drop, as seen in Fig.  9(a), 
resulting in simulation errors. In the lower two plots, these issues 
become even more apparent. The voltage fluctuations in KNN, RF, 
XGB and ET models are even more pronounced than in the exper-
imental data, particularly on the high-voltage side, with noticeable 
voltage deviations. The NN-based simulation, while smoother, is still 
outperformed by the other methods. In contrast, PCEC delivers the 
best performance by effectively integrating the RLC model with error 
compensation.

Tables  A.7 and A.8 present the evaluation metrics. Although oscilla-
tions are observed in Fig.  9(b), there is no significant difference in the 
overall evaluation metrics, as shown in Table  A.7. The used machine 
learning models demonstrate the potential to capture high-voltage vari-
ations, provided that additional parameters are incorporated. However, 
when the combined wave enters the transformer from the low-voltage 
side (Phase a), the discrepancy between the machine learning mod-
els and PCEC becomes evident. As depicted in Figs.  9(c) and 9(d), 
PCEC consistently outperforms all other methods across all evaluation 
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Fig. 10. The comparisons among machine learning models and PCEC. The upper two 
figures depict the enlarged output voltages at Phase A and a when the combined wave 
generator is connected to Phase C. The down two figures depict the output voltages at 
Phase A and a when the combined wave generator is connected to Phase c.

metrics. In situations where the low-voltage side of the transformer 
experiences a surge, traditional machine learning methods fail to accu-
rately model the rapid response of the high-voltage side. By comparing 
the evaluation matrix in Table  A.8 with PCEC, the PCEC outperforms 
other models at almost all phases, especially phase A.

4.4.3. The comparisons among several machine learning methods using 
additional dataset

To further verify the scalability and the priority of PCEC, we test 
PCEC using a new dataset in which the combination wave generator is 
connected to either the high-voltage or low-voltage side of phase C and 
the extra 400 Ω resistances are deleted in this experiment.

Fig.  10 shows the simulation results of all models. Different from 
the dataset from Section 4.4.1, the input signals in this section do not 
have a very high gain, which makes it easier to distinguish from the 
previous data. When the wave generator is connected to Phase C, all 
models perform equally well especially at phase A. In contrast, some 
extra oscillations in phase A are observed from other machine learning 
models occur when wave generator is connected to Phase c, resulting 
in the bias of simulation. Due to the low gain, the trend of all models 
are correct.

Table  4 shows the evaluation metrics of PCEC using additional 
dataset when the wave generator is connected to Phase C and c. Tables 
A.9 and A.10 shows the evaluation metrics of other machine learning 
models. Due to the low gain, the evaluation metrics are very close 
among all the methods. When the wave generator is connected to high 
voltage side, the models perform similarly, which is consistent with the 
performance in the figure. However, when wave generator is connected 
to low voltage side, PCEC outperforms other models. The evaluation 
metrics has been slightly improved when we use LSTM-based error 
compensation module.

4.5. Ablation experiments

This subsection explores the importance of data reconstruction mod-
ule and adaptive parameter generation module by deleting them sepa-
rately in PCEC.

4.5.1. The importance of data reconstruction
The data reconstruction module is designed to filter potential noise 

from peripheral sources, thereby enhancing modeling accuracy. Table 
5 presents the simulation results for both the high-voltage side (HV) 
and the low-voltage side (LV). When the combined wave is applied 
from Phase A, the data reconstruction module does not perform well, 
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Table 4
Evaluation metrics of PCEC using additional dataset (combined wave generator is 
connected to Phase C and c). 
 Model Phase MAE MSE 𝑅2 MAPE 
 

HV

A 0.21 0.10 0.99 0.25  
 B 0.14 0.09 0.99 0.12  
 a 0.04 0.02 0.92 4.45  
 b 0.04 0.02 0.78 0.62  
 c 0.08 0.12 0.97 0.92  
 

LV

A 4.19 95.74 0.99 0.43  
 B 5.72 92.92 0.98 7.21  
 C 2.10 52.98 0.99 0.30  
 a 0.20 0.10 0.99 1.20  
 b 0.27 0.15 0.98 1.74  

Table 5
Evaluation metrics of PCEC without data reconstruction module. 
 Model Phase MAE MSE 𝑅2 MAPE 
 

HV

B 9.02 369.76 0.91 3.52  
 C 9.12 324.31 0.92 8.50  
 a 1.28 6.32 0.99 6.78  
 b 0.81 2.85 0.99 3.29  
 c 0.69 1.93 0.82 11.68  
 

LV

A 386.98 285706.26 0.70 2.56  
 B 11.89 272.29 0.64 0.71  
 C 386.12 283348.73 0.73 2.92  
 b 9.24 166.10 0.71 2.77  
 c 9.22 172.51 0.66 2.07  

Table 6
Evaluation metrics of PCEC without adaptive parameter generation module. 
 Model Phase MAE MSE 𝑅2 MAPE 
 

HV

B 8.11 2254.09 0.13 2.71  
 C 7.90 2196.24 0.19 2.80  
 a 1.52 6.53 0.98 9.76  
 b 1.17 7.93 0.98 30.30  
 c 0.42 1.25 0.61 9.33  
 

LV

A 269.11 188836.61 0.60 10.76  
 B 17.98 494.58 0.15 51.80  
 C 280.27 209193.22 0.62 6.26  
 b 8.30 161.34 0.36 11.75  
 c 8.62 160.67 0.28 1.39  

particularly in Phase B. Despite some minor differences, the evaluation 
metrics for other voltages remain similar to those of the original PCEC 
model. However, another experiment reveals distinctly different results. 
Given that noise signals can be amplified by the transformer, data 
reconstruction proves to be crucial when surge signals enter the low-
voltage side. PCEC with data reconstruction significantly outperforms 
the model without data reconstruction, particularly on the high-voltage 
side. Therefore, data reconstruction is a critical component of the PCEC 
framework.

4.5.2. The importance of adaptive parameter generation
By removing the adaptive parameter generation module, PCEC is 

reduced to a data-driven modeling approach, rather than a physics-
consistent model.

Table  6 summarizes the performance of PCEC without the adaptive 
parameter generation module. Unlike the case with the data reconstruc-
tion module, the adaptive parameter generation module incorporates 
essential physical information about transformers, providing valuable 
prior knowledge to the model. As a result, it plays a critical role in 
the overall performance of PCEC. The table shows that both experi-
ments exhibit poor performance when this module is excluded. Even 
when the combined wave is applied to the high-voltage phase A, the 
voltage fits for individual phases are suboptimal. Consequently, with 
the same number of parameters, the physics-consistent PCEC model 
demonstrates superior performance, primarily due to the presence of 
the adaptive parameter generation module.
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Table A.7
Evaluation metrics among machine learning models using same dataset (combined wave generator is connected to Phase A).
 Model NN KNN

 Phase B C a b c B C a b c  
 MAE 9.13 9.25 1.25 0.57 0.47 9.14 10.07 1.29 0.69 0.40  
 MSE 404.87 364.61 6.77 2.61 1.71 372.46 313.74 5.12 2.06 1.16  
 𝑅2 0.91 0.92 0.98 0.99 0.87 0.93 0.93 0.98 0.99 0.89  
 MAPE 3.11 11.42 9.44 8.55 10.99 6.94 6.23 9.68 5.72 11.11 
 Model ET RF

 Phase B C a b c B C a b c  
 MAE 8.34 8.93 1.13 0.61 0.39 8.36 8.84 1.12 0.62 0.39  
 MSE 375.46 261.14 4.51 1.60 1.16 370.50 268.45 4.70 1.61 1.01  
 𝑅2 0.93 0.94 0.99 0.99 0.86 0.93 0.94 0.99 0.99 0.91  
 MAPE 6.76 11.76 2.98 2.98 8.31 2.56 6.91 38.89 2.98 8.30  
 Model CNN XGB

 Phase B C a b c B C a b c  
 MAE 8.53 9.64 1.26 0.72 0.43 9.31 8.94 1.21 0.62 0.42  
 MSE 373.49 318.82 6.23 2.65 1.31 372.60 352.32 6.67 2.63 1.47  
 𝑅2 0.91 0.92 0.99 0.99 0.89 0.92 0.93 0.98 0.98 0.91  
 MAPE 2.66 13.40 9.64 3.80 8.58 7.99 7.91 9.67 3.87 9.59  
Table A.8
Evaluation metrics among machine learning models using same dataset (combined wave generator is connected to Phase a).
 Model NN KNN

 Phase A B C b c A B C b c  
 MAE 392.12 12.43 391.12 9.24 9.10 403.15 11.99 399.18 9.60 9.34  
 MSE 280899.72 282.70 280181.41 160.84 160.93 307714.96 346.25 301704.24 174.29 182.18 
 𝑅2 0.71 0.59 0.74 0.72 0.68 0.69 0.60 0.72 0.70 0.65  
 MAPE 2.90 0.71 2.27 2.38 2.66 7.77 1.35 3.08 2.82 2.23  
 Model ET RF

 Phase A B C b c A B C b c  
 MAE 386.39 11.05 385.85 9.28 9.27 385.21 11.05 384.78 9.26 9.25  
 MSE 285604.82 256.58 283899.15 166.38 172.29 283907.64 257.92 282377.69 165.98 171.76 
 𝑅2 0.70 0.67 0.73 0.71 0.66 0.71 0.67 0.74 0.71 0.66  
 MAPE 3.39 0.72 2.43 2.08 3.00 2.50 0.71 15.93 2.06 2.48  
 Model CNN XGB

 Phase A B C b c A B C b c  
 MAE 381.08 12.19 385.15 10.11 9.99 387.20 11.30 386.51 9.29 9.28  
 MSE 280589.80 285.26 281763.99 193.07 192.35 287372.58 265.80 285517.30 166.86 173.04 
 𝑅2 0.71 0.67 0.74 0.68 0.63 0.71 0.67 0.73 0.71 0.66  
 MAPE 3.53 0.89 1.62 1.83 7.84 4.11 0.73 8.12 7.27 3.93  
Table A.9
Evaluation metrics among machine learning models using additional dataset (combined wave generator is connected to Phase C).
 Model NN KNN

 Phase A B a b c A B a b c  
 MAE 0.24 0.20 0.05 0.05 0.08 0.18 0.19 0.04 0.04 0.08  
 MSE 0.14 0.10 0.02 0.02 0.12 0.11 0.10 0.02 0.02 0.11  
 𝑅2 0.99 0.99 0.88 0.63 0.90 0.99 0.99 0.96 0.72 0.95  
 MAPE 0.86 0.12 8.38 0.69 1.18 0.05 12.80 10.05 0.72 25.03 
 Model ET RF

 Phase A B a b c A B a b c  
 MAE 0.17 0.15 0.03 0.03 0.06 0.20 0.16 0.04 0.04 0.07  
 MSE 0.08 0.06 0.01 0.01 0.08 0.09 0.07 0.01 0.01 0.08  
 𝑅2 0.99 0.99 0.98 0.81 0.99 0.99 0.99 0.97 0.79 0.99  
 MAPE 0.34 0.52 6.22 0.90 1.34 0.17 0.12 10.79 0.54 1.21  
 Model CNN XGB

 Phase A B a b c A B a b c  
 MAE 0.23 0.20 0.05 0.05 0.08 0.29 0.17 0.04 0.03 0.07  
 MSE 0.13 0.10 0.02 0.02 0.12 0.08 0.07 0.01 0.01 0.08  
 𝑅2 0.99 0.99 0.84 0.65 0.87 0.99 0.99 0.93 0.81 0.98  
 MAPE 0.55 0.14 5.69 0.83 1.01 0.26 0.17 7.63 1.37 1.27  
5. Conclusion

Accurate and efficient wide-bandwidth transformer modeling is cru-
cial for power systems. This paper presents a novel physics-consistent 
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error compensation modeling approach for wide-bandwidth transform-
ers, referred to as PCEC, designed to operate under limited com-
putational resources. We propose a data reconstruction module and 
incorporate an additional maximum likelihood estimation (MLE) loss 
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Table A.10
Evaluation metrics among machine learning models using additional dataset (combined wave generator is connected to Phase c).
 Model NN KNN

 Phase A B C a b A B C a b  
 MAE 9.27 10.41 7.33 0.43 0.42 6.61 5.84 5.30 0.30 0.32 
 MSE 212.99 200.45 152.13 0.33 0.30 174.53 127.38 125.94 0.25 0.22 
 𝑅2 0.97 0.92 0.98 0.95 0.94 0.98 0.96 0.98 0.96 0.96 
 MAPE 1.48 7.14 1.73 3.73 9.54 8.39 5.83 0.49 3.74 0.92 
 Model ET RF

 Phase A B C a b A B C a b  
 MAE 4.28 4.56 3.35 0.20 0.23 5.40 5.25 4.29 0.25 0.26 
 MSE 96.55 87.31 68.01 0.15 0.13 119.50 94.98 86.63 0.17 0.15 
 𝑅2 0.99 0.98 0.99 0.97 0.97 0.98 0.98 0.99 0.97 0.97 
 MAPE 0.55 2.93 1.38 3.64 13.88 0.75 9.75 0.74 1.91 2.70 
 Model CNN XGB

 Phase A B C a b A B C a b  
 MAE 9.40 10.31 7.04 0.44 0.42 6.27 5.60 4.90 0.27 0.28 
 MSE 212.72 194.74 154.82 0.33 0.31 114.36 93.75 79.44 0.17 0.16 
 𝑅2 0.97 0.94 0.98 0.95 0.94 0.98 0.97 0.99 0.97 0.97 
 MAPE 1.30 2.90 0.71 4.98 7.80 1.04 4.09 1.09 2.40 2.90 
function to denoise the input signals. Following this, the adaptive pa-
rameter generation module is introduced to integrate the time-varying 
physical characteristics of transformers into the RLC models within 
the PCEC framework. The error compensation module is employed 
to address potential deviations in the RLC models. Analytical exper-
iments demonstrate that PCEC effectively compensates for errors be-
tween experimental and simulated data—an outcome that is difficult 
to achieve solely through RLC parameter optimization or machine 
learning methods. Ablation studies emphasize the essential role of both 
the data reconstruction and adaptive parameter generation modules, 
particularly on the low-voltage side.

A key limitation of PCEC is its sensitivity to data, which reduces 
its generalizability compared to purely physics-based models. The 
approach also requires additional data for training the neural networks. 
Nevertheless, we believe that PCEC holds significant potential for 
achieving physics-consistent modeling in power systems.
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