Electrical Power and Energy Systems 170 (2025) 110817

Contents lists available at ScienceDirect TRy

POWER
AND ENERGY
SYSTEM:

International Journal of Electrical Power and Energy Systems

journal homepage: www.elsevier.com/locate/ijepes

Check for

Equivalent wide bandwidth transformer modeling using physics-consistent iz
error compensation model

Qianchao Wang *”, Chakhung Yeung?, Quan Zhou?, Yuxuan Ding *‘®>, Yaping Du?, Lei Jia ",
Song Zhang ©

a Department of Building Environment and Energy Engineering, Hong Kong Polytechnic University, 999077, Hong Kong, China
b The Power Research Institute, China Southern Power Grid, Guangzhou, 510000, China
¢ The Guizhou Electric Power Research Institute, China Southern Power Grid, Guiyang, 550000, China

ARTICLE INFO ABSTRACT

Keywords:

Wide bandwidth transformer
Deep learning
Physics-consistent model
Power system

Wide bandwidth transformer modeling has been a critical part in the power system. However, achieving
a balance between modeling accuracy and computational efficiency remains a significant challenge. To
address this, the present study introduces a novel physics-consistent error compensation model (PCEC), which
integrates a data reconstruction module, an adaptive parameter generation module, and an error compensation
module. First, the data reconstruction module effectively denoises the input signals. The processed data are
then utilized to generate RLC model parameters, incorporating time-varying physical properties into the PCEC
framework. Meanwhile, the same data are re-parameterized and used as input to the error compensation
module, which corrects deviations in the RLC model. To ensure the reliability of PCEC, a field experiment
is conducted to gather essential voltage data. The effectiveness of the proposed model is validated through
three analytical experiments, while the importance of individual modules is further demonstrated through two

ablation studies.

1. Introduction

The transient performance of power distribution networks plays a
critical role in ensuring the reliability and stability of modern power
systems, especially with the increasing integration of renewable en-
ergy sources, distributed generation, and advanced power electronics.
Transient events, such as lightning strikes and switching operations,
can induce high-frequency disturbances that pose significant risks to
equipment and system operation [1]. Effective protection against such
events requires accurate simulation and optimization of the network’s
transient response [2]. Transformers, as critical core components of
the power grid, play a pivotal role in shaping the system’s behavior
during such disturbances. Accurate modeling of transformers across a
wide frequency range is therefore essential for capturing the complex
dynamics of transient phenomena and enabling the design of robust
protection and mitigation strategies.

In this vein, some researchers proposed a lot modeling methods for
transformers. The most popular and simplest methods are the multi-
conductor transmission line (MTL) model [3] and the RLC model [4],
each of which is valid within a certain frequency range. Nevertheless,
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some inherent problems, such as the difficulty in modeling the dif-
ferences in winding turns length, being computationally intensive and
time-consuming limit the application of MTL [5]. On the other hand,
RLC models have been used in the analysis and simulation of trans-
formers with large-scale winding and a large number of turns/disks,
thanks to their lower complexity and lower computational require-
ments. In [6], a detailed transformer high frequency electric circuit
model is proposed considering the winding structure, inter-turn capaci-
tance and all mutual inductance. By calculating the model’s parameters
and comparing with other methods, the accuracy of the proposed model
is assessed. [7] proposed an improved RLC model by analyzing and
extracting the circular multi-conductor transmission line (CMTL) [8]
equations. The accuracy of the new RLC model is proved theoreti-
cally and practically. A winding-core high-frequency equivalent circuit
model is proposed in [9] to improve the accuracy of simulated signals.
These researches try to add some electronic components based on
physical mechanisms of transformers to achieve a trade-off between
computational complexity and model accuracy. However, these meth-
ods are computationally intensive and cost a lot, especially when the
model is infinitely subdivided into equivalent capacitors, resistors, and
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inductors. Therefore, it is necessary to find a way to effectively balance
computational complexity and physical consistency for equivalent wide
bandwidth transformer modeling. A potential way is to use the RLC
model as the core component and to use the efficient computing power
of artificial intelligence (AI) to compensate for the deviation of the RLC
model. The details of transformers can be fully compensated for by Al
models as long as the basic mechanism remains unchanged.

In recent research, AI has been used mainly for transformer fault
diagnosis and frequency response analysis (FRA) instead of regression
models [10]. Several machine learning methods are tested in partial
discharge (PD) localization of transformers, including neural networks,
support vector machine (SVM), and k-nearest neighbor [11]. They
are analyzed for near real-time identification of high-risk PDs. The
convolutional neural network (CNN) is widely utilized in transformer
fault diagnosis [12,13] using different input signals. [14] uses CNN
to interpret the frequency responses of power transformer windings
faults, improving detection accuracy and speed. The balanced isolation
forest is combined with CNN in [15] to suppress the level of noise of
the vibration signals for higher fault diagnostic accuracy. Some other
methods such as residual networks [16], state coding [17] are also
combined with deep learning methods for fault diagnosis. Although Al
is widely used for transformer fault diagnosis at this stage, establishing
a physically consistent deep learning regression model for transformer
is still a gap.

Another problem is the parameter calculation of RLC models. For
most research, the parameters are determined by the inherent proper-
ties of transformers and some assumptions. Finite element simulations
can be employed to calculate frequency-dependent circuit parameters
via the magneto-static and electrostatic equations [7,9]. Optimization
algorithms can be used for parameters searching of RLC as well such
as particle swarm optimization [18], shark smell optimization [19],
and the enhanced logistic chaotic marine predator algorithm [20].
Neural networks are also utilized as the parameter searchers based
on FRA for different transformers with different ratings, sizes, and
winding structures [21,22]. Nevertheless, these calculated parameters
are deterministic and can only reflect the average of the properties
instead of the real-time features of the transformers.

In this context, the primary aim of this research is to develop a deep
learning regression model that effectively incorporates the underlying
physical principles of transformers, focusing on error compensation and
parameter optimization to improve the transformer model accuracy in
high frequencies. Building on the foundation of the RLC model, we
present a novel physics-consistent error compensation model, desig-
nated as PCEC. This model integrates three essential components: a data
reconstruction module, an error compensation module, and an adap-
tive parameter generation module. By employing variational loss and
reparameterization techniques [23] in the data reconstruction module,
we successfully decompose the raw sampled data into distinct input
signals and Gaussian noise. The input signals are subsequently utilized
as inputs for the RLC models and the adaptive parameter generation
module to ascertain the outputs and the corresponding parameters
for the RLC system. Following this, the reparameterized signals from
the reconstruction module are leveraged to minimize the discrepancy
between the observed outputs and the simulated outputs of the RLC
models. The loss functions embedded within PCEC are designed to drive
the compensated error toward zero, ensuring that the outputs of the
RLC models align closely with the actual data. Crucially, this innova-
tive architecture possesses the potential for adaptation across various
domains within regression modeling. To empirically demonstrate the
efficacy of PCEC, we conducted experiments utilizing real transformers
and gathered the necessary data for modeling. Comparative analyses
were performed involving three RLC-based models and four machine
learning models through rigorous analytical experiments. Furthermore,
ablation studies were executed to investigate the contributions of the
data reconstruction module and the adaptive parameter generation
module. In summary, the key contributions of this paper encompass:
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1. For RLC-based transformer modeling, a novel physics-consistent
error compensation model named PCEC is proposed, using deep
learning methods, to improve the modeling accuracy.

2. PCEC integrates three primary components: a data reconstruc-
tion module, an error compensation module, and an adaptive
parameter generation module. These modules effectively denoise
the raw data, produce real-time parameters for the RLC model
that accurately reflect the inherent characteristics of transform-
ers, and compensate for errors in the RLC model.

3. A field-based transformer experiment is conducted to collect
empirical data, which is used to validate the effectiveness of the
PCEC framework.

4. The analytical and ablation experiments demonstrate the effi-
ciency of PCEC and the importance of the proposed modules, es-
pecially compared with RLC-based models and machine learning
models.

The paper is organized as follows. Section 2 provides background
about equivalent wide bandwidth RLC model of transformer and vari-
ational auto encoder. Section 3 describes the detailed information of
the proposed PCEC, including the data reconstruction module, the error
compensation module, and the adaptive parameter generation module.
Section 4 shows the transformer experiments and other experimental
results, and Section 5 concludes the paper.

2. Preliminaries
2.1. Equivalent wide bandwidth RLC model of transformer

The frequency range of lightning-induced over-voltage is relatively
broad, typically spanning from 1 Hz to 1 MHz. Hence, an accurate
equivalent RLC model needs to depict the characteristics of transform-
ers in this situation. However, achieving higher model accuracy inher-
ently increases the computational complexity, posing significant chal-
lenges for practical application. In this section, we introduce an RLC
model which has the same structure as our real transformer to simulate
the transformer’s characteristics when struck by lightning [24].

Fig. 1 shows the structure of equivalent wide bandwidth RLC model.
The left side of the diagram depicts the high-voltage winding, while the
right side illustrates the low-voltage winding. Points A, B, C denote the
three-phase taps on the high-voltage side, whereas points a, b, ¢, and
o represent the corresponding three-phase taps and the neutral point
on the low-voltage side. Both ends of the windings are connected in a
star configuration. In this model, capacitance is employed to represent
capacitive coupling in the high-frequency range, inductance is utilized
to signify electromagnetic coupling in the low-frequency range, and
resistance accounts for energy losses.

Specifically, Chg and Clg in the figure indicate the capacitance
between the windings and the transformer shell. Ch and C! represent
the total equivalent capacitance between layers as well as inter-turn
capacitance. C1 = C2 = C3 = C4 denotes the inter-phase capacitance
of the high-voltage winding. Chl illustrates inter-winding capacitance.
R1 and R2 indicate leakage resistance. L1 and L2 represent leakage
inductance. Rm and Lm correspond to excitation resistance and excita-
tion inductance, respectively. The ideal ratio is represented by k. The
calculation of the parameters are based on the transformer nameplate
and the inter structure parameters [25].

2.2. Variational auto-encoder

Variational auto-encoder (VAE) is a probabilistic model created by
variational inference.

Assuming that the input dataset is denoted as x = {x,-},.]i , and the
output is denoted as ¥ = {fc,}f\;l The implicit variable is denoted
as z = {z[}ll. The encoder is used to approach the real posterior
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Fig. 1. Equivalent wide bandwidth RLC model [24].

distribution p,(z|x) by estimated g4(z|x). Assuming that py(z|x) follows
the standard normal distribution N (0, 1) and can be written as
Po(x|2)py(2)

1
po(x) =

Po(z|x) =

where py(z) is the prior distribution following the standard normal
distribution. p,(x|z) is the probabilistic decoder. To evaluate the differ-
ence between real and estimated posterior distributions, the Kullback—
Leibler (KL) divergence is utilized in loss function.

KL(N(u,6%) || N(0, 1))
e~ 6=1?/20% |\[2 762 )
_ )dx

- / 1 mnPp2e? <log
V2ro? X212 /\2x
= % / L a2 [ oga? 4 x? — (x — ) /o Ndx
V2ro?

= %(—Ioga2 + ;42 +062 - 1)

@

where u and o are separately the estimated the mean and variance.
The decoder is then used to reconstruct the inputs after sampling by
introducing the reconstruction loss in loss function.

N
1 .
bm o g ®)

Therefore, the training goal for VAE is minimizing the KL divergence
and the reconstruction loss.

3. Physics-consistent error compensation model

The physics-consistent error compensation model is divided into
three modules: data reconstruction module, adaptive parameter gener-
ation module, and error compensation module to deal with the inherent
noise of sampled data, the lack of real-time features in RLC model, and
the potential error compensation.

3.1. Data reconstruction module

For industrial modeling, the noise is inevitable when data is sampled
from field devices, resulting in model drift. Thus, it is necessary to
reconstruct the input dataset for denoising. We assume that the input

sampled data x = {x[}:i] € RV is consist of the real signals and the
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white noise:
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where x; is the actual input signals and ¢; is the white noise following
the Gaussian distribution N(0,0?2). Therefore, the x; ~ N(%;,06%). To
improve the modeling accuracy, the noise ¢; needs to be extracted
before modeling and parameter tuning.

The data reconstruction module is composed of 1D-convolution
layers and 1D convolution transpose layers, which is depicted in Fig.
2. Before being imported into the data reconstruction module, the raw
sampled data is cut into multiple segments with k sampling points as
data pre-processing. Based on the principle of VAE, the input data can
be projected to a standard normal distribution ¢,(z|x) and then decoded
into the original data. However, due to the existence of noise, the out-
puts are assumed to be drawn from the distribution x; ~ N(x;, aiz). Thus,
the reconstruction loss becomes the maximum likelihood estimation
(MLE) instead of mean squared error (MSE) in Eq. (3). This is achieved
by minimizing the negative log likelihood loss function:

k
1
Lr:EL:ZI

where X; is the estimated mean of x; and the o, is the estimated vari-
ance of x;. By minimizing the lossp, = Ly +L,, the data reconstruction
module can separate noise ¢ from raw data.

(= %,)°
2 i i
10g(27[6x})+ 2—2 (5)

o
Xi

0| —

3.2. Adaptive parameter generation module

For RLC models, the essential parameters such as capacitance, resis-
tance, and inductance determines the performance of models. However,
the optimized deterministic parameters are hard to present the time-
varying characteristics of transformers especially in a fixed model
structure. Therefore, we create a super-network called the adaptive
parameter generation module to generate these time-varying key pa-
rameters.

The adaptive parameter generation module is composed of several
fully connected layers after flattening the estimated mean x;, which
is shown in Fig. 3. The model can be denoted as C;, L;, R; = @y(x)).
Here, we need to notice that the input of the module @,(-) is a vector,
including the input from time ¢ — k to ¢ instead of a scalar. This is
due to one of our assumptions: the characteristics of the transformer
do not change in a very short time. Hence, within k sampling points,
the parameters of the RLC model remain unchanged. Consequently, we
will simulate the RLC model k times to calculate the output yg; ¢, since
that we have k inputs. The corresponding loss is

k
Lgic = % Z:‘(y,- — Yree) (6)
i=
where, the y is the sampled output, yz; . is calculated output.
3.3. Error compensation module
Since the RLC model cannot fully reflect the detailed information

of transformer under lightning strike, the error compensation module
is used to compensate for this potential bias.
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Fig. 4 depicts the data flow in error compensation module. The
model can be denoted as ygc; = E(X,04,V;), where E() is the
nonlinear function and v is a new variable for reparameterization.
Different from the adaptive parameter generation module, the input
of this module is the reparameterized x,; instead of X; to improve
the robustness of error compensation. Because the noise ¢; follows
the Gaussian distribution N (0, aiz), the reparameterization x,; can be
achieved by introducing a new variable v, which follows the standard
normal distribution:

X, =X + v %0 7

where v, is sampled from N(0, 1). Then, the long short-term memory
(LSTM) is utilized to extract the underlying temporal relationships in
the data for further error compensation. To ensure that the module is
the error compensation of RLC model, the output yg is constrained in
loss function:

k
1
Lgc=— Z(J’z

i=1

3.4. Model structure and loss function

—YRLC,i — yEC,i)2 (8)

=

The physics-consistent error compensation model is realized by
cleverly combining above mentioned modules, which is shown in Fig.
5.

The sampled input data is reconstructed to reduce the effect of
noise on the RLC parameter generation and the corresponding RLC
model output. In another aspect, the reconstructed data is reparame-
terized for error compensation module to improve the robustness of
the whole model. The whole loss function of physics-consistent error
compensation model is

Loss=Lg;+ L.+ Lgrc+ Ligc 9

where Lg; and L. make sure that RLC model takes the dominant
position in the whole model. Based on VAE theory, the new introduced
parameter v does not affect the training process.
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Fig. 6. The schematic diagram of the experiment.

4. Experimental results
4.1. Experiment setup

Surge response experiments are conducted on a ‘Dynl1’ transformer
with the load applied to the high-voltage side. The schematic diagram
of the experiment is shown in Fig. 6.

This distribution transformer is an oil-immersed type with a rated
capacity of 630 kVA, a rated voltage of 10/0.4 kV, and a rated fre-
quency of 50 Hz. The core is a three-legged laminated type, made of
silicon steel sheets. The windings adopt a three-phase, dual-winding
structure, and are made of enameled rectangular copper wire. Two ex-
tra 400 Q resistances are added on the high-voltage side in experiments
to equalize the cable resistance. The transformer tank is a rectangular
corrugated oil tank. The low-voltage bushing uses a standard porcelain
bushing for lead-out. A current transformer is installed at the low-
voltage terminal to monitor the current on the low-voltage side, and
the lead is connected to the end of the bushing and routed outside
the tank for low-voltage side voltage measurement. The high-voltage
bushing integrates an AC sensor that measures voltage on the high-
voltage side. The combination wave generator is connected to either
the high-voltage or low-voltage side of phase A.

Fig. 7 gives the detailed information of the experiment, including
the transformer, the combined wave generator, the oscilloscope, and
the isolation transformer. The parameters of the ‘Dynll’ transformer
are summarized in Table 1. We use the CWS 1000N combined wave
generator to generate the 1.2/50~8/20 ps hybrid-surge pulse, which
conforms to IEC/EN 61000-4-5. The isolation transformer GBK, —
500 VA is used to protect the TDS3054C oscilloscopes. We collect the
output voltages of all phases, and each voltage contains 10,000 sampled
data with 0.1 ps sample time.

When the generated lightning waves are injected into the high-
voltage side of a three-phase distribution transformer, the high
-frequency characteristics of the waves can significantly impact the
internal characteristics of the transformer. The distributed capacitance
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Table 1
The parameters of the ‘Dynl1’ transformer.
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Basic Parameters

Structural Parameters

Rated capacity (kVA) 630
Rated voltage (KV) 25

Tap range +2x2.5
Rated frequency (Hz) 50
Maximum ambient temperature (° C) 40
No-load loss (W) 510
Load loss (W) 4960
Impedance voltage (%) 4.5
Winding average temperature rise (K) 65

Voltage regulation method

Phase number 3
Number of windings 2
Winding material
Core structure
Insulation type

Copper
Three-column laminated core
Mineral oil

Insulation class A
Cooling method ONAN
Model Dynll

non-excitation voltage regulation

of the transformer windings provides a coupling path for the lightning
waves, resulting in strong electromagnetic coupling between the three-
phase windings, which induces interference and ultimately manifests
as high-frequency voltage spikes on the low-voltage side. Furthermore,
high-frequency lightning waves trigger complex multiple reflections
and superpositions within the windings, leading to an uneven dis-
tribution of voltage between winding layers and phases. In addition
to capacitive coupling and high-frequency reflections, the injection
of lightning waves can exacerbate interference through magnetic flux
coupling in the windings. The combined effects of these factors result
in more uneven distributions of voltage, current, and magnetic fields
within the transformer, increasing insulation stress and operational
risks for the equipment.

Our experiments are used to explore the characteristics of the trans-
former when it receives a sudden high-frequency signal. Therefore, the
collected data is limited to explore all characteristics of transformers.
Meanwhile, due to limited resources, the experiments are conducted
on a ‘Dynll’ transformer, which cannot reflect the characteristics of
all transformers with different configurations.

4.2. Model setup

For each block of PCEC, we have different parameters. In the
data reconstruction module, the features are extracted by two 1D-
convolution layers with 64 filters, and each kernel is 3 x 3. The
transpose layers have the corresponding parameters to reconstruct the
data. The adaptive parameter generation module is composed of four
fully connected layers after flattening the estimated mean £. Each layer
has 512 neurons and ‘PReLU’ [26] as the activation function. The
error compensation module has two LSTM layers with 256 neurons
to find the potential relationships in the reparameterized data. The
subsequent fully connected layers have the same parameters as the
adaptive parameter generation module.

We train the model with a batch size of 64 using the “NAdam”
optimizer [27], with an initial learning rate of 0.01. The learning rate
decays with a factor of 0.1 if the accuracy change over 5 consecutive
epochs is no more than 1 x 10™*. We set the number of epochs to 100
to ensure proper convergence. The dataset is split into training and
test sets with a ratio of 0.8: 0.2. The experiments are implemented in
Tensorflow using a CPU Intel i7-11800H processor at 2.3 Hz and a GPU
NVIDIA T600.

4.3. Evaluation indicators

In order to compare the performance of different models, we use
four different evaluation indicators to evaluate the regression accuracy,
including mean absolute error (MAE), MSE, R-Square (R?), and mean
absolute percentage error (MPAE). The indicators have been widely
accepted in regression model evaluation. MAE measures the average
magnitude of errors between predicted and actual values. MSE mea-
sures the average of the squared errors, emphasizing larger errors due
to squaring. R? quantifies the proportion of variance in the dependent

Fig. 7. Transformer experiment.

variable explained by the model and MAPE expresses errors as a
percentage of actual values, providing a relative measure.

1 N
MAE = N ' ly; = il
i=1
1 N
_ a2
MSE = F ;(J’i )
. 10$)
N A
R=1- Zi=1(yi - Y1)2
Z,{il(fi _y‘_)z

N N
1 YVi—Yi
MAPE = — | ——|

where y; is the experimental output, y; is the model output and y; is
the mean of experimental output.

4.4. Analytical experiments

In this section, the effectiveness of the proposed method is evaluated
by comparing PCEC with several RLC-based models, including those
with physics-based parameters [25] (RLC) and optimization-based pa-
rameters [28] (OptRLC). Additionally, the efficiency of PCEC is assessed
through comparisons with several machine learning techniques, in-
cluding traditional neural networks (NN), K-nearest neighbor (KNN)
regression, extra trees regression (ET), random forest regression (RF),
convolution neural networks (CNN) and eXtreme Gradient Boosting
(XGB). In order to make the comparison more targeted, we retain the
data reconstruction module and adaptive parameter generation module
when machine learning models are used.

4.4.1. The comparisons among RLC models and PCEC
Using the parameters of the ‘Dynl1’ transformer , we calculate the
capacitance, leakage, and resistance variables for the RLC model. These
calculated variables also serve as the initial input for the Particle Swarm
Optimization (PSO) algorithm to obtain potentially improved variables.
Fig. 8 illustrates the output voltages of two selected phases when
the combined wave generator is connected to Phase A and Phase a,
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Fig. 8. The comparisons among RLC models and PCEC. The upper two figures depict
the output voltages at Phase B and a when the combined wave generator is connected
to Phase A. The down two figures depict the output voltages at Phase A and b when
the combined wave generator is connected to Phase a.

Table 2
Evaluation metrics among RLC models and PCEC (combined wave generator is
connected to Phase A).

Model Phase MAE MSE R? MAPE

B 17.32 1592.41 0.83 2.46

C 17.57 1748.59 0.81 3.07
RLC a 1.36 6.91 0.99 11.99

b 0.97 3.66 0.99 5.18

c 0.42 1.28 0.33 1515.64

B 16.37 1559.13 0.82 2.29

C 16.66 1691.36 0.87 2.30
OptRLC a 1.32 6.82 0.99 6.79

b 1.03 3.81 0.99 4.06

c 0.42 1.29 0.46 327.52

B 11.57 370.02 0.93 6.73

C 8.82 283.76 0.94 6.61
PCEC a 1.23 6.11 0.99 9.08

b 0.69 218 0.99 3.83

c 0.40 1.17 0.91 5.04

respectively. The upper two plots show that the voltage gains of both
the RLC and OptRLC models are excessively high, deviating from the
experimental data. While the OptRLC model outperforms the original
RLC model, it still does not match the performance of PCEC. Addi-
tionally, the voltage drop rate following the gain is faster under PCEC
than in the other two models. In the lower two plots, PCEC facilitates
the adaptive parameter generation within the embedded RLC model,
resulting in less bias compared to the other RLC models. Despite some
deviations in the error compensation module, the voltage obtained
using PCEC closely matches the experimental data.

Tables 2 and 3 present the evaluation metrics. Due to the effective
integration of the RLC model with error compensation, the evaluation
metrics for PCEC are notably lower than those of the other models,
with the exception of R?. The deterministic capacitance, leakage, and
resistance variables, which are either calculated or optimized based on
the transformer parameters, fail to fully capture the dynamic behavior
of transformers. As a result, error compensation is crucial for improving
model performance. Interestingly, while some studies suggest that op-
timizing RLC variables can enhance modeling accuracy, this approach
does not seem to outperform PCEC in the current comparison.

4.4.2. The comparisons among several machine learning methods using
same dataset

To evaluate the efficiency of PCEC on the same dataset as in
Section 4.4.1, several machine learning techniques are employed to
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Fig. 9. The comparisons among machine learning models and PCEC. The upper two
figures depict the enlarged output voltages at Phase B and a when the combined wave
generator is connected to Phase A. The down two figures depict the output voltages at
Phase A and b when the combined wave generator is connected to Phase a.

Table 3
Evaluation metrics among RLC models and PCEC (combined wave generator is
connected to Phase a).

Model Phase MAE MSE R? MAPE

A 285.15 187 765.47 0.76 10.62

B 25.19 1066.79 0.60 3289.32
RLC C 323.86 214620.78 0.73 8.89

b 6.68 88.69 0.79 72099.01

c 7.94 135.88 0.69 78574.56

A 283.29 184114.05 0.77 4.63

B 25.19 1066.84 0.61 7293.93
OptRLC C 319.18 209028.25 0.75 5.25

b 6.59 85.69 0.80 37309.72

c 7.88 132.36 0.70 58938.81

A 66.12 8302.21 0.98 2.29

B 11.28 261.47 0.66 0.73
PCEC C 65.03 7772.54 0.99 0.97

b 2.42 10.51 0.97 4.81

c 2.75 13.59 0.96 4.93

construct models as alternatives to the LSTM-based error compensation
approach.

Fig. 9 compares the output voltages from the machine learning
models and PCEC. As shown in the upper two plots, there are notable
discrepancies between the machine learning models and PCEC. Specif-
ically, KNN, RF, XGB and ET exhibit significant oscillations, leading
to substantial deviations in the voltage on side a compared to the
experimental values. Although the NN model produces a smoother
voltage response, it shows a slower voltage drop, as seen in Fig. 9(a),
resulting in simulation errors. In the lower two plots, these issues
become even more apparent. The voltage fluctuations in KNN, RF,
XGB and ET models are even more pronounced than in the exper-
imental data, particularly on the high-voltage side, with noticeable
voltage deviations. The NN-based simulation, while smoother, is still
outperformed by the other methods. In contrast, PCEC delivers the
best performance by effectively integrating the RLC model with error
compensation.

Tables A.7 and A.8 present the evaluation metrics. Although oscilla-
tions are observed in Fig. 9(b), there is no significant difference in the
overall evaluation metrics, as shown in Table A.7. The used machine
learning models demonstrate the potential to capture high-voltage vari-
ations, provided that additional parameters are incorporated. However,
when the combined wave enters the transformer from the low-voltage
side (Phase a), the discrepancy between the machine learning mod-
els and PCEC becomes evident. As depicted in Figs. 9(c) and 9(d),
PCEC consistently outperforms all other methods across all evaluation
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Fig. 10. The comparisons among machine learning models and PCEC. The upper two
figures depict the enlarged output voltages at Phase A and a when the combined wave
generator is connected to Phase C. The down two figures depict the output voltages at
Phase A and a when the combined wave generator is connected to Phase c.

metrics. In situations where the low-voltage side of the transformer
experiences a surge, traditional machine learning methods fail to accu-
rately model the rapid response of the high-voltage side. By comparing
the evaluation matrix in Table A.8 with PCEC, the PCEC outperforms
other models at almost all phases, especially phase A.

4.4.3. The comparisons among several machine learning methods using
additional dataset

To further verify the scalability and the priority of PCEC, we test
PCEC using a new dataset in which the combination wave generator is
connected to either the high-voltage or low-voltage side of phase C and
the extra 400 Q resistances are deleted in this experiment.

Fig. 10 shows the simulation results of all models. Different from
the dataset from Section 4.4.1, the input signals in this section do not
have a very high gain, which makes it easier to distinguish from the
previous data. When the wave generator is connected to Phase C, all
models perform equally well especially at phase A. In contrast, some
extra oscillations in phase A are observed from other machine learning
models occur when wave generator is connected to Phase c, resulting
in the bias of simulation. Due to the low gain, the trend of all models
are correct.

Table 4 shows the evaluation metrics of PCEC using additional
dataset when the wave generator is connected to Phase C and c. Tables
A.9 and A.10 shows the evaluation metrics of other machine learning
models. Due to the low gain, the evaluation metrics are very close
among all the methods. When the wave generator is connected to high
voltage side, the models perform similarly, which is consistent with the
performance in the figure. However, when wave generator is connected
to low voltage side, PCEC outperforms other models. The evaluation
metrics has been slightly improved when we use LSTM-based error
compensation module.

4.5. Ablation experiments

This subsection explores the importance of data reconstruction mod-
ule and adaptive parameter generation module by deleting them sepa-
rately in PCEC.

4.5.1. The importance of data reconstruction

The data reconstruction module is designed to filter potential noise
from peripheral sources, thereby enhancing modeling accuracy. Table
5 presents the simulation results for both the high-voltage side (HV)
and the low-voltage side (LV). When the combined wave is applied
from Phase A, the data reconstruction module does not perform well,
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Table 4
Evaluation metrics of PCEC using additional dataset (combined wave generator is
connected to Phase C and c).

Model Phase MAE MSE R? MAPE
A 0.21 0.10 0.99 0.25
B 0.14 0.09 0.99 0.12
HV a 0.04 0.02 0.92 4.45
b 0.04 0.02 0.78 0.62
c 0.08 0.12 0.97 0.92
A 4.19 95.74 0.99 0.43
B 5.72 92.92 0.98 7.21
LV C 210 52.98 0.99 0.30
a 0.20 0.10 0.99 1.20
b 0.27 0.15 0.98 1.74
Table 5
Evaluation metrics of PCEC without data reconstruction module.
Model Phase MAE MSE RrR? MAPE
B 9.02 369.76 0.91 3.52
C 9.12 324.31 0.92 8.50
HV a 1.28 6.32 0.99 6.78
b 0.81 2.85 0.99 3.29
c 0.69 1.93 0.82 11.68
A 386.98 285706.26 0.70 2.56
B 11.89 272.29 0.64 0.71
LV C 386.12 283348.73 0.73 2.92
b 9.24 166.10 0.71 2.77
c 9.22 172.51 0.66 2.07
Table 6
Evaluation metrics of PCEC without adaptive parameter generation module.
Model Phase MAE MSE R? MAPE
B 8.11 2254.09 0.13 2.71
C 7.90 2196.24 0.19 2.80
HV a 1.52 6.53 0.98 9.76
b 1.17 7.93 0.98 30.30
c 0.42 1.25 0.61 9.33
A 269.11 188836.61 0.60 10.76
B 17.98 494.58 0.15 51.80
LV C 280.27 209193.22 0.62 6.26
b 8.30 161.34 0.36 11.75
c 8.62 160.67 0.28 1.39

particularly in Phase B. Despite some minor differences, the evaluation
metrics for other voltages remain similar to those of the original PCEC
model. However, another experiment reveals distinctly different results.
Given that noise signals can be amplified by the transformer, data
reconstruction proves to be crucial when surge signals enter the low-
voltage side. PCEC with data reconstruction significantly outperforms
the model without data reconstruction, particularly on the high-voltage
side. Therefore, data reconstruction is a critical component of the PCEC
framework.

4.5.2. The importance of adaptive parameter generation

By removing the adaptive parameter generation module, PCEC is
reduced to a data-driven modeling approach, rather than a physics-
consistent model.

Table 6 summarizes the performance of PCEC without the adaptive
parameter generation module. Unlike the case with the data reconstruc-
tion module, the adaptive parameter generation module incorporates
essential physical information about transformers, providing valuable
prior knowledge to the model. As a result, it plays a critical role in
the overall performance of PCEC. The table shows that both experi-
ments exhibit poor performance when this module is excluded. Even
when the combined wave is applied to the high-voltage phase A, the
voltage fits for individual phases are suboptimal. Consequently, with
the same number of parameters, the physics-consistent PCEC model
demonstrates superior performance, primarily due to the presence of
the adaptive parameter generation module.
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Table A.7

Evaluation metrics among machine learning models using same dataset (combined wave generator is connected to Phase A).
Model NN KNN
Phase B C a b c B C a b c
MAE 9.13 9.25 1.25 0.57 0.47 9.14 10.07 1.29 0.69 0.40
MSE 404.87 364.61 6.77 2.61 1.71 372.46 313.74 5.12 2.06 1.16
R? 0.91 0.92 0.98 0.99 0.87 0.93 0.93 0.98 0.99 0.89
MAPE 3.11 11.42 9.44 8.55 10.99 6.94 6.23 9.68 5.72 11.11
Model ET RF
Phase B C a b c B C a b c
MAE 8.34 8.93 1.13 0.61 0.39 8.36 8.84 1.12 0.62 0.39
MSE 375.46 261.14 4.51 1.60 1.16 370.50 268.45 4.70 1.61 1.01
R? 0.93 0.94 0.99 0.99 0.86 0.93 0.94 0.99 0.99 0.91
MAPE 6.76 11.76 2.98 2.98 8.31 2.56 6.91 38.89 2.98 8.30
Model CNN XGB
Phase B C a b c B C a b c
MAE 8.53 9.64 1.26 0.72 0.43 9.31 8.94 1.21 0.62 0.42
MSE 373.49 318.82 6.23 2.65 1.31 372.60 352.32 6.67 2.63 1.47
RrR? 0.91 0.92 0.99 0.99 0.89 0.92 0.93 0.98 0.98 0.91
MAPE 2.66 13.40 9.64 3.80 8.58 7.99 7.91 9.67 3.87 9.59

Table A.8

Evaluation metrics among machine learning models using same dataset (combined wave generator is connected to Phase a).
Model NN KNN
Phase A B C b c A B C b c
MAE 392.12 12.43 391.12 9.24 9.10 403.15 11.99 399.18 9.60 9.34
MSE 280899.72 282.70 280181.41 160.84 160.93 307714.96 346.25 301704.24 174.29 182.18
R? 0.71 0.59 0.74 0.72 0.68 0.69 0.60 0.72 0.70 0.65
MAPE 2.90 0.71 2.27 2.38 2.66 7.77 1.35 3.08 2.82 2.23
Model ET RF
Phase A B C b c A B C b c
MAE 386.39 11.05 385.85 9.28 9.27 385.21 11.05 384.78 9.26 9.25
MSE 285604.82 256.58 283899.15 166.38 172.29 283907.64 257.92 282377.69 165.98 171.76
R? 0.70 0.67 0.73 0.71 0.66 0.71 0.67 0.74 0.71 0.66
MAPE 3.39 0.72 2.43 2.08 3.00 2.50 0.71 15.93 2.06 2.48
Model CNN XGB
Phase A B C b c A B C b c
MAE 381.08 12.19 385.15 10.11 9.99 387.20 11.30 386.51 9.29 9.28
MSE 280589.80 285.26 281763.99 193.07 192.35 287 372.58 265.80 285517.30 166.86 173.04
R? 0.71 0.67 0.74 0.68 0.63 0.71 0.67 0.73 0.71 0.66
MAPE 3.53 0.89 1.62 1.83 7.84 4.11 0.73 8.12 7.27 3.93

Table A.9

Evaluation metrics among machine learning models using additional dataset (combined wave generator is connected to Phase C).
Model NN KNN
Phase A B a b c A B a b c
MAE 0.24 0.20 0.05 0.05 0.08 0.18 0.19 0.04 0.04 0.08
MSE 0.14 0.10 0.02 0.02 0.12 0.11 0.10 0.02 0.02 0.11
R? 0.99 0.99 0.88 0.63 0.90 0.99 0.99 0.96 0.72 0.95
MAPE 0.86 0.12 8.38 0.69 1.18 0.05 12.80 10.05 0.72 25.03
Model ET RF
Phase A B a b c A B a b c
MAE 0.17 0.15 0.03 0.03 0.06 0.20 0.16 0.04 0.04 0.07
MSE 0.08 0.06 0.01 0.01 0.08 0.09 0.07 0.01 0.01 0.08
R? 0.99 0.99 0.98 0.81 0.99 0.99 0.99 0.97 0.79 0.99
MAPE 0.34 0.52 6.22 0.90 1.34 0.17 0.12 10.79 0.54 1.21
Model CNN XGB
Phase A B a b c A B a b c
MAE 0.23 0.20 0.05 0.05 0.08 0.29 0.17 0.04 0.03 0.07
MSE 0.13 0.10 0.02 0.02 0.12 0.08 0.07 0.01 0.01 0.08
R? 0.99 0.99 0.84 0.65 0.87 0.99 0.99 0.93 0.81 0.98
MAPE 0.55 0.14 5.69 0.83 1.01 0.26 0.17 7.63 1.37 1.27

5. Conclusion

Accurate and efficient wide-bandwidth transformer modeling is cru-
cial for power systems. This paper presents a novel physics-consistent

error compensation modeling approach for wide-bandwidth transform-
ers, referred to as PCEC, designed to operate under limited com-
putational resources. We propose a data reconstruction module and
incorporate an additional maximum likelihood estimation (MLE) loss
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Table A.10

Evaluation metrics among machine learning models using additional dataset (combined wave generator is connected to Phase c).
Model NN KNN
Phase A B C a b A B C a b
MAE 9.27 10.41 7.33 0.43 0.42 6.61 5.84 5.30 0.30 0.32
MSE 212.99 200.45 152.13 0.33 0.30 174.53 127.38 125.94 0.25 0.22
R? 0.97 0.92 0.98 0.95 0.94 0.98 0.96 0.98 0.96 0.96
MAPE 1.48 7.14 1.73 3.73 9.54 8.39 5.83 0.49 3.74 0.92
Model ET RF
Phase A B C a b A B C a b
MAE 4.28 4.56 3.35 0.20 0.23 5.40 5.25 4.29 0.25 0.26
MSE 96.55 87.31 68.01 0.15 0.13 119.50 94.98 86.63 0.17 0.15
R? 0.99 0.98 0.99 0.97 0.97 0.98 0.98 0.99 0.97 0.97
MAPE 0.55 2.93 1.38 3.64 13.88 0.75 9.75 0.74 1.91 2.70
Model CNN XGB
Phase A B C a b A B C a b
MAE 9.40 10.31 7.04 0.44 0.42 6.27 5.60 4.90 0.27 0.28
MSE 212.72 194.74 154.82 0.33 0.31 114.36 93.75 79.44 0.17 0.16
RrR? 0.97 0.94 0.98 0.95 0.94 0.98 0.97 0.99 0.97 0.97
MAPE 1.30 2.90 0.71 4.98 7.80 1.04 4.09 1.09 2.40 2.90

function to denoise the input signals. Following this, the adaptive pa-
rameter generation module is introduced to integrate the time-varying
physical characteristics of transformers into the RLC models within
the PCEC framework. The error compensation module is employed
to address potential deviations in the RLC models. Analytical exper-
iments demonstrate that PCEC effectively compensates for errors be-
tween experimental and simulated data—an outcome that is difficult
to achieve solely through RLC parameter optimization or machine
learning methods. Ablation studies emphasize the essential role of both
the data reconstruction and adaptive parameter generation modules,
particularly on the low-voltage side.

A key limitation of PCEC is its sensitivity to data, which reduces
its generalizability compared to purely physics-based models. The
approach also requires additional data for training the neural networks.
Nevertheless, we believe that PCEC holds significant potential for
achieving physics-consistent modeling in power systems.
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