
Active-learning-driven error control for data-driven state of charge 
estimation across the lithium battery lifecycle

Jinwei Xue a,b, Xuzhi Du c,*, Lei Zhao a,b, Zhigang Yang a,b,d,*, Chao Xia e,  
Yuan Ma f, Muhammad Jahidul Hoque c, Wuchen Fu c, Xiao Yan g,h, Nenad Miljkovic c,i,j,k,l,m,*

a School of Automotive Studies, Tongji University, Shanghai, 201804, China
b Shanghai Automotive Wind Tunnel Center, Tongji University, 201804, China
c Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
d Beijing Aeronautical Science & Technology Research Institute, Beijing, 102211, China
e Department of Mechanics and Maritime Sciences, Chalmers University of Technology, Gothenburg 412 96, Sweden
f Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China
g Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing, 400030, China
h Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing, 400030, China
i Institute for Sustainability, Energy, and Environment, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
j Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
k Materials Research Laboratory, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
l Air Conditioning and Refrigeration Center, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
m International Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan

H I G H L I G H T S G R A P H I C A L  A B S T R A C T

• Closed-loop SOC estimation framework 
with uncertainty-aware correction.

• Active learning minimizes retraining 
while improving SOC prediction 
accuracy.

• Model Disagreement index correlates 
strongly (0.91) with true SOC error.

• Achieves <1.5 % average SOC error 
with only 4 retrainings under WLTC.

• Framework enables robust SOC tracking 
across battery aging and fast charging.
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A B S T R A C T

Accurate estimation of lithium-ion battery state of charge (SOC) is crucial for the safe and efficient operation of 
electric vehicles (EVs). However, both data-driven and model-driven SOC estimation methods face significant 
challenges under battery aging, which alters internal resistance and electrochemical properties, especially across 
complex aging trajectories. Most existing deep learning and model-based approaches operate in an open-loop 
manner, lacking mechanisms for uncertainty quantification, accuracy prediction, or adaptive correction—lead
ing to uncontrolled estimation errors during aging. To address this, we propose an innovative closed-loop SOC 
estimation framework that integrates active learning with uncertainty-aware correction into deep learning 
networks, enabling real-time feedback on SOC prediction confidence levels without the need for additional 
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sensors or reference data. Specifically, we quantify the performance degradation of mainstream data-driven 
methods, including long short-term memory (LSTM) networks and Gaussian process regression (GPR), under 
complex aging paths. We demonstrate that our model-disagreement-based active learning correction strategy 
maintains robustness throughout the battery lifecycle. Experimental results show that with only four active 
retraining sessions over the full aging process, our method reduces average SOC estimation error to below 1.5 %, 
and maximum cycle-based average error to below 2 %. This work establishes a path toward uncertainty- 
informed, lifecycle-resilient, and data-efficient SOC estimation, marking a significant advancement in battery 
management systems for real-world EV applications.

1. Introduction

Lithium-ion batteries (LIBs) are used in electric vehicles (EVs) due to 
their high voltage, high energy density, low self-discharge, and long 
lifecycle [1–3]. The efficient operation of EVs depends directly on the 
battery management system (BMS) [4–7], where the state of charge 
(SOC) is the critical characteristic parameter. SOC denotes the remain
ing charge of the battery, defined mathematically by Eq. (1) [1]. 

SOC =
Qavailable

Qrated
, (1) 

where Qavailable is the available amount of charge, and Qrated is the full 
charge capacity.

Accurately estimating the SOC for LIBs is crucial. The rated capacity 
(Qrated) provided by the battery manufacturer does not represent the true 
capacity of the battery [8]. Moreover, Qrated varies throughout the bat
tery lifecycle due to factors such as usage time, environmental temper
ature fluctuations, and complex chemical reactions [9]. Additionally, 
the availability of sensors capable of directly measuring electrochemical 
phenomena (such as current, potential, and conductance) inside the 
battery is limited [10]. Furthermore, manufacturing defects and phys
ical damage during assembly also significantly impact SOC estimation 
[11]. Due to these uncontrollable factors, high-precision SOC estimation 
remains a challenging problem.

Mainstream SOC estimation methods can be broadly categorized into 
two categories: model-driven and data-driven approaches [1]. 
Model-based SOC estimation methods, also known as the white-box 
models [12], are constructed based on the principles governing bat
tery charging and discharging. These methods leverage a deep under
standing of battery system principles, employing core equations that 
accurately model these processes [13]. For example, Wang et al. [14–16] 
proposed two Kalman filter-based architectures to improve the SOC 
estimation ability and accuracy of LIBs, as well as a limited memory 
recursive least squares algorithm to improve the accuracy of online 
parameter identification. The results show that the proposed methods 
can achieve accurate SOC estimation under different temperatures, 
operating conditions, and initial SOC values. Therefore, model-based 
SOC estimation methods typically achieve higher accuracy. However, 
developing an accurate battery model necessitates expensive and 
time-consuming experimentation, along with substantial domain 
expertise and theoretical insight into battery systems [1]. Despite these 
efforts, limitations in prior knowledge of system dynamics inevitably 
lead to model imperfections. In recent years, with the continuous 
improvement in graphics processing unit (GPU) compute power, 
data-driven methods have garnered increasing attention [17]. 
Data-driven methods, also known as black-box models [12], rely on 
empirical observations and require minimal prior knowledge [18]. 
Data-driven methods heavily leverage available data during analysis, 
making them suitable for developing SOC estimation models in sce
narios where detailed internal battery characteristics and chemical re
actions are not known. Compared to model-based methods, data-driven 
approaches require less time and expertise to model complex nonlinear 
systems. For example, in the case of inaccurate initial SOC estimation, 
LSTM networks converge to the true SOC faster than unscented Kalman 
filters (UKF), achieving root mean square error (RMSE) and mean 

absolute error (MAE) levels below 2 % and 1 %, respectively [19]. 
Furthermore, LSTM models can accurately estimate SOC by monitoring 
measurable values such as battery current, voltage, and temperature, 
without relying on detailed information about internal electrochemical 
reactions and related model parameters [20].

Recently, researchers have made significant advances in SOC esti
mation through data-driven approaches using neural network models. 
Tong et al. [21] proposed a neural network model for SOC estimation 
under three operating modes: idling, charging, and discharging. They 
utilized the US06 drive cycle for model training and pulse testing for 
model validation, achieving an average SOC error of 3.8 %. Chaoui et al. 
[22] evaluated a recurrent neural network (RNN) SOC estimation model 
under dynamic charge and discharge current profiles and temperature 
variations. Compared to a multilayer perceptron neural network 
approach, this model exhibited lower root-mean-square error and higher 
computational speed. Cui et al. [23] developed an intelligent SOC esti
mation model based on a wavelet neural network. Using the New Eu
ropean Driving Cycle (NEDC) conditions, this model achieved a mean 
absolute error (MAE) of 0.59 % and a maximum SOC error of 3.13 %. 
Yang [18] proposed a recursive neural network with gated recurrent 
units, which estimates battery SOC from measured current, voltage, and 
temperature signals. This method provides accurate estimates for data 
from two mainstream LIB types under dynamic operating profiles and is 
sensitive to temperature changes. Yang [24] also combined LSTM with 
UKF, achieving a root-mean-square error of <1.1 % and an average error 
of <1 %, even for temperatures not included in the training data set. 
These studies have focused on the generalization performance of models 
under various operating profiles and temperatures. The training and 
testing data were collected from adjacent charging and discharging cy
cles, without systematically considering the impact of battery aging. 
However, research by Chaoui et al. [22] and Kang et al. [25] has shown 
that the accuracy of SOC estimation models trained on fresh battery data 
gradually declines as the battery ages. Since SOC estimation models for 
practical applications are primarily trained on historical data, their ac
curacy inevitably decreases due to aging. Therefore, to maintain the 
accuracy of SOC estimation models throughout the entire battery life
cycle, it is necessary to track the performance degradation of these 
models. This would enable the timely update or retraining of neural 
network models, ensuring sustained accuracy of SOC estimation across 
the lifecycle of the LIB.

To address the challenge of SOC estimation due to battery aging, Mao 
et al. [26] proposed a joint estimation method for SOC and state of 
health (SOH), improving SOC accuracy by updating the battery capacity 
based on estimated SOH. Wu et al. [27] developed a robust LSTM model 
through feature selection and LSTM structure optimization, achieving a 
maximum absolute SOC error of 2.721 % when tested on real-world 
driving data under different temperatures and aging stages. Tao et al. 
[28] trained an RNN model using data from multiple aging stages, 
demonstrating its ability to closely approximate the true SOC even on 
unseen aging stages. Rezaei et al. [29] introduced a UKF method to 
model the uncertainty of batteries with unknown statistical character
istics, employing fuzzy control to correct SOC estimation as uncertainty 
increases, thereby mitigating the impact of model inaccuracies on state 
estimation.

Although promising, these studies face limitations such as challenges 
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in acquiring data across multiple aging stages and addressing the un
known complex aging pathways induced by variable EV operating 
profiles. Online corrections applied to model-based methods may lead to 
error accumulation and insufficient reliability. Addressing these con
cerns, Kang [25] proposed a straightforward correction approach 
involving regular battery capacity testing every 20 cycles, with adjust
ments to the capacity estimation model if errors exceed 3 % in two 
consecutive tests. While this periodic detection and correction of the 
capacity estimation model could theoretically be extended to SOC 
models, frequent testing in practical EV applications is challenging, as it 
may disrupt normal use due to a lack of efficient mechanisms for 
informed decision-making.

In summary, data-driven SOC estimation methods—particularly 
those based on recurrent neural networks such as long short-term 
memory (LSTM) and probabilistic models like Gaussian process regres
sion (GPR)—have demonstrated notable accuracy and adaptability. 
However, existing approaches often operate in an open-loop fashion, 
lacking mechanisms to quantify uncertainty or dynamically adjust to 
evolving battery aging conditions [30]. As a result, their performance 
may deteriorate significantly over time, especially under complex aging 
paths and highly variable EV operating profiles such as the Worldwide 
harmonized Light vehicles Test Cycle (WLTC).

To overcome these limitations, we propose an innovative closed-loop 
SOC estimation framework that integrates active learning with 
uncertainty-aware correction into deep learning networks, enabling 
real-time feedback on SOC prediction confidence levels without the need 
for additional sensors or reference data. Specifically, we explore the use 
of various models—including Model Disagreement, greedy sampling, 
Gaussian Process Regression (GPR), and Bayesian Neural Networks 
(BNNs)—to develop active learning strategies for assessing and man
aging estimation uncertainty. This architecture offers a dynamic, data- 
driven mechanism to guide efficient model updates and maintain 
robust SOC estimation accuracy throughout the battery lifecycle. Our 
framework is validated using the complex WLTC profile, and demon
strates strong generalizability and reliability for SOC estimation in near 
real-world EV scenarios and nonlinear battery systems.

2. Correction strategies for data-driven SOC estimation models

2.1. SOC estimation based on LSTM-RNN

LSTM [20] is a variant of Recurrent Neural Networks (RNNs) [31] 
specifically designed for processing sequential data. Fig. 1a illustrates 
the concept of the hidden state in RNNs. The inputs at each time step 
from the previous time step in an RNN are collectively referred to as the 
"hidden state". This hidden state can be understood as the RNN’s 
memory of information from the previous steps in the sequence. The 
state is updated and propagated as the time steps proceed. Fig. 1b de
picts the architecture of an LSTM cell. The LSTM introduces three gates - 
input, forget, and output gates - to regulate the flow and retention of 
information, thereby mitigating issues like “vanishing gradient” and 
“exploding gradient”. These gates allow the LSTM to selectively 
remember, forget, or update information over time steps, enabling it to 
capture long-term dependencies in sequential data more effectively. 
This architecture has proven highly effective in various sequence 
modeling tasks such as language modeling [32], machine translation 
[33], and speech recognition [34], establishing LSTM as a widely 
adopted neural network framework in deep learning.

The input gate, forget gate, and output gate can be represented as 
follows: 

ik = η(WΨiΨk + Whihk− 1 + bi), (2) 

fk = η
(
WΨf Ψk + Whf hk− 1 + bf

)
, (3) 

ck = fkck− 1 + iktanh(WΨcΨk + Whchk− 1 + bc), (4) 

ok = η(WΨoΨk + Whohk− 1 + bo), (5) 

hk = oktanh(ck) . (6) 

Here, the initial hidden state h0 is set to a zero matrix, and η repre
sents the sigmoid function. The functions i, f , o, and c denote the input 
gate, forget gate, output gate and memory cell, respectively. They are 
referred to as gates because they are sigmoid functions that can be zero, 
thereby having the ability to suppress the flow of information to the next 
computational node. Each gate has its own set of network weights, 
denoted by W. The subscript of W indicates the transformation between 

Fig. 1. (a) Architecture of an RNN (left) and architecture of an RNN unfolded in time (right). The input data is given by Ψ, and hk− 1 denotes the hidden layer of the 
LSTM-RNN at time step k − 1. The output of the LSTM-RNN is the estimated SOC at each time step. (b) LSTM Cell Architecture, where i, f , o, and c denote the input 
gate, forget gate, output gate, and memory cell, respectively.
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components. For example, WΨo is the input-output gate matrix, and Whi 

is the hidden-input gate matrix. Each gate also includes a bias term b, 
enhancing the flexibility of the network in adapting to the data. The final 
fully connected layer performs a linear transformation on the hidden 
state tensor hk to obtain the SOC estimate at time step k, as follows: 

SOClstm,k = Vout hk + by, (7) 

where Vout and by are the weight matrix and biases of the fully connected 
layer, respectively. For LSTM-based SOC estimation, the input data in
cludes the measured charge voltage and current data over m time steps 
during the charging process. The collected data is processed by an RNN 
model, and the output is the estimated SOC at the final sampling point, 
which can be represented mathematically as:  

where fRNN represents the RNN model used to estimate SOC, and N is the 
final time step of the charging process.

2.2. Modeling SOC estimation across the battery lifecycle

During the data preparation stage, ensuring accurate SOC estimation 
across all SOC levels requires comprehensive coverage of charging in
formation, from the lowest initial SOC to the deepest charging depth. 
Each cycle, defined as a consecutive charging and discharging process, 
constitutes a part of the battery lifespan until its end-of-life. Without loss 
of generality, let Xn = [xn1, xn2,…, xnm] denote data samples within the 
nth cycle, where x represents voltage and current sequences measured 
over a time window, serving as input to the SOC estimation neural 
network. Each cycle sample represents a specific aging stage and enters 
the sample pool sequentially, akin to iterative sample extraction. 
Additionally, real-time labeling of cycle samples during online SOC 
estimation is impractical. Therefore, labeling is performed offline for the 
next cycle sample after correction decisions are made. Given the 

approximately consistent degree of aging between adjacent cycles dur
ing the normal aging process, this approach is acceptable within this 
context.

Assuming we have labeled a cycle sample with true SOC values for 
training the SOC model, we proceed to iteratively extract samples from 
subsequent cycles as the battery undergoes charging and discharging 
cycles. While the trained SOC model initially exhibits short-term accu
racy, continued battery aging renders predictions inaccurate for subse
quently extracted cycle samples. To preempt SOC model failure, 
appropriate correction strategies are essential to assess whether model 
adjustments are needed for each cycle sample. Fig. 2 illustrates the 
lifelong SOC estimation process under correction strategy control, which 
will be discussed in the subsequent sections.

2.3. Preliminary correction strategies

This section introduces several simple and intuitive correction 
strategy methods. While these methods have some shortcomings, they 
are highly feasible and interpretable, making them suitable as reference 
baselines for active learning correction strategies.

Discharge capacity threshold correction strategy. This strategy in
volves tracking the total discharge capacity Q since the latest correction. 
If Q exceeds the threshold σQ, a correction is required. Then, Q is set to 
zero, and the next iteration begins. The discharge capacity is calculated 
based on the Coulomb counting method [35]: 

Q =

∫t

t0

I(t)dt, (9) 

where t represents time, to denotes the starting time, and I(t) signifies the 
current function of t. Notably, the directions of current during the 
charging and discharging processes are different, which can lead to 
Coulomb counting cancellation. Therefore, only the discharging process 

Fig. 2. Data-driven SOC estimation across the battery lifecycle under the guidance of an active learning and closed-loop correction strategy.

ŜOC(k) = fRNN(U(k − m + 1, k − m + 2,⋯, k), I(k − m + 1, k − m + 2,⋯, k)), m ≤ k ≤ N, (8) 
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is considered. Additionally, in practical applications, this formula needs 
to be discretized to match the sampling frequency of the sensor.

Cycle count threshold correction strategy. This strategy statistically 
tracks the total number of cycles the battery has gone through since the 
latest correction. If the number of cycles exceeds the threshold σc, a 
correction is requested. This method is feasible in experimental settings 
where the depth of each charge and discharge cycle is relatively 
consistent. However, in real-world battery usage scenarios, the depth of 
each charge and discharge can vary significantly, leading to instability 
in the cycle count statistics and threshold-based correction.

SOH Loss Threshold Correction Strategy. Accurate SOH acquisition is 
crucial for this strategy and can be achieved through experimental 
measurement or estimation methods. Experimental measurement of 
SOH requires specialized discharge testing, which disrupts the normal 
battery use. Therefore, online estimation methods are recommended, 
such as training an SOH estimation model like the SOC estimation 
model, to enable continuous SOH acquisition. Let the SOH of the most 
recent correction cycle be denoted as SOH0. The ΔSOH for any cycle T 
can be defined as: 

ΔSOHT = SOHT − SOH0 . (10) 

If ΔSOH exceeds the threshold σh, a correction is requested. This 
strategy allows for flexible control over the number of corrections 
throughout the battery lifecycle and offers good interpretability. How
ever, it requires a complete lifecycle dataset of SOH and related input 
features, along with a well-trained SOH estimation model.

2.4. Active learning-driven correction strategies

The preliminary correction strategies discussed earlier heavily rely 
on statistical accuracy and are vulnerable to cumulative statistical er
rors, potentially reducing effectiveness in real-world scenarios. There
fore, focusing on generalization capability, we leverage active learning 
to address the challenge of maintaining SOC estimation performance. 
Active learning, a specialized machine learning approach aimed at 
saving labeling costs and time [36], functions as a targeted search 
strategy widely applied across diverse research domains. For instance, 
active learning has been instrumental in identifying the most informa
tive experiments in expansive biological networks to minimize experi
ment count [37], and in reducing parameter combination evaluations 
for simulation models [38]. In our context, active learning can be uti
lized to select the most informative samples to update or retrain the SOC 
estimation model. This framework decides whether to query the label of 
the newest sample or to predict it based on previous samples when 
processing upcoming samples. By strategically labeling and training 
samples during critical battery life stages, the model accuracy and 
robustness can be significantly enhanced. In the realm of active learning, 
maintaining SOC estimation performance resembles a stream-based 
scenario [36], where unlabeled samples are sequentially and itera
tively sampled, rather than being accumulated into a pool all at once 
(pool-based scenario). Using active learning as a framework, one of the 
key challenges is modeling the uncertainty associated with estimation. A 
range of parametric and nonparametric methods have been explored to 
model uncertainty in power demand [39–41]. For instance, Abbasi [42] 
achieved a reliable and improved interpretation of power transformer 
frequency response traces by identifying key characteristics within these 
traces. However, these uncertainty modeling techniques cannot be 
directly applied to state of charge (SOC) accuracy, given the unpre
dictable aging processes of batteries and the time-series nature of their 
data streams. Herein, we introduce four approaches - Input Discrepancy, 
GPR Variance, Model Disagreement, and BNN Variance - to quantify the 
uncertainty inherent in SOC estimation.

2.4.1. Input discrepancy
The Input Discrepancy correction strategy is an active learning 

approach independent of the SOC model, characterized by low compu

tational cost. The Input Discrepancy metric inherits the core concept of 
Greedy sampling on the inputs (GSx) [43,44] which prioritizes the se
lection of samples farthest from previously labeled samples in each 
iteration. Under the assumption of generality, let us assume there are k 
labeled samples. For each of the remaining N − k unlabeled samples, 
GSx first computes their distances to the k labeled samples: 

dx
nm = ‖ xn − xm ‖, m = 1,⋯, k; n = k + 1,⋯,N . (11) 

The minimum distance dx
n of sample xn to the k labeled samples is 

then determined as: 

dx
n = min

m
dx

nm, n = k + 1,⋯,N . (12) 

Finally, the sample with the maximum dx
n is selected and requested 

for labeling.
GSx is not directly applicable to battery aging correction as it is 

designed for pool-based scenarios, while the aging correction involves a 
stream-based scenario. Therefore, we propose the Input Discrepancy 
metric based on GSx, which quantifies the correction importance of each 
cycle sample and applies it to stream-based active learning scenarios. 
Given the irreversible nature of aging, new samples hold greater value 
than older ones. Thus, during each correction, we replace old samples 
with newly labeled ones and directly retrain the SOC model with these 
updated samples. Furthermore, since each cycle sample consists of 
multiple sub-samples, the distance calculation between cycle samples 
should involve all sub-samples. Assuming the ath labeled cycle sample Xa 

with Na sub-samples and the bth unlabeled cycle sample Xb with Nb sub- 
samples, we define the distance between each unlabeled sub-sample in 
Xb and each labeled sub-sample in Xa as follows: 

dx
nm = ‖ xn − xm ‖, m = 1,⋯,Na; n = 1,⋯,Nb . (13) 

The Input Discrepancy of Xb is calculated as: 

Dx
ba =

1
Nb

∑Nb

i=1
min

m
dx

im, m = 1,2,⋯,Na . (14) 

High Input Discrepancy indicates that the SOC mo del encounters 
unfamiliar input features, underscoring the substantial value of labeling 
such input samples.

2.4.2. GPR variance
GPR is a nonparametric model that leverages a Gaussian Process (GP) 

prior for regression analysis on data [45]. It offers advantages such as 
nonparametric modeling, probabilistic prediction, computational effi
ciency and robustness [46,47], making it widely employed in SOC and 
SOH estimation [48].

Given a training set D =
( (

xi, yi
)
, i= 1, 2,…, n

)
comprising n input- 

output pairs 
(
xi,yi

)
, where xi represents measured voltage and charge 

difference sequences, and yi denotes the corresponding SOC at the final 
sampling time step, we aim to compute the predictive distribution of the 
unknown observation y∗ at input x∗. Here, we define X = [x1,…, xn]

T and 
Y =

[
y1,…, yn

]T. Assuming yi = f(xi)+ ϵi, where ϵi ∼ N
(
0, σ2) is an 

independent and identically distributed Gaussian noise, and modeling 
the output f = (f(x1),f(x2)⋯f(xN)) as a Gaussian random field f ∼ N (0,
K), with Kij = k

(
xi, xj

)
representing the covariance kernel, the joint 

distribution of the training set D and the predicted test output (x∗, y∗) is: 
[

Y
y∗

]

= N

(

0,
[

K(X,X) + σ2I K(X, x∗)

K(x∗,X) K(x∗, x∗)

])

. (15) 

Given the training set, the mean prediction for the input x∗ is: 

y∗ = K(x∗,X)
(
K(X,X) + σ2I

)− 1Y . (16) 

The prediction variance is: 

Δ2 = K(x∗, x∗) − K(x∗,X)
(
K(X,X) + σ2I

)− 1K(X, x∗) . (17) 
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The standard deviation of the prediction determines the width of the 
confidence interval, serving as a measure of uncertainty and a key var
iable for correction decisions. Averaging the standard deviations of the 
estimated values for all sub-samples within a cycle sample provides the 
GPR uncertainty for the entire cycle sample.

2.4.3. Disagreement-based methods
The disagreement-based query strategy focuses on selecting data 

points where there is disagreement among multiple models or experts 
[49]. In the Model Disagreement strategy, the learner is represented by a 
hypothesis space H , which contains multiple hypotheses h, where each 
hypothesis h ∈ H represents an SOC estimation model that can map the 
input x to the output y. For simplicity, let us assume that the hypothesis 
space H contains only two hypotheses, though this setup can be 
generalized to more complex settings. In a regression problem, the 
output y is a continuous variable within the range [0,1]. The error of a 
hypothesis h is given by 

ϵ(h) = |h(X) − Y| . (18) 

Define the pseudo-distance between two hypotheses as 

d(h, hʹ
) = |ϵ(h) − ϵ(hʹ

)|, (19) 

The Model Disagreement ρ on the input x is defined as follows: 

ρh,hʹ(x) = |h(x) − hʹ
(x)| . (20) 

Here, the Model Disagreement ρ represents the magnitude of the 
difference in the predictions made by the different hypotheses for the 
same input. Specifically, this work uses LSTM and GPR as two con
trasting models to produce Model Disagreement index. Model 
Disagreement directly contributes to the uncertainty in the predictions 
of the learner, as the learner must consider the outputs of all the hy
potheses. When Model Disagreement is large, it becomes challenging to 
provide a final prediction that accommodates all hypotheses.

2.4.4. BNN variance
BNNs are stochastic artificial neural networks that utilize Bayesian 

inference [50]. Unlike traditional neural networks, which rely on point 
estimation methods, BNNs address the issue of trained models poten
tially generalizing unpredictably and overconfidently to data points 
outside the training distribution [51]. Such convincing yet incorrect 
results can be critical in real-world applications. To address this issue, 
BNNs simulate multiple possible computational pathways by assigning 
random probability distributions to the weights, thereby better quanti
fying the uncertainty inherent in the inference process. Figure S1 (see 
Supplementary Information) illustrates the distinction between 
Bayesian networks and conventional neural networks in weight calcu
lation, highlighting that a more concentrated result distribution in
dicates lower uncertainty. This computational process can be 
summarized as follows: 

θ ∼ p(θ),
y = Φθ(x) + ϵ, (21) 

where θ represents the network parameters, p(θ) is the probability dis
tribution of θ, and ϵ denotes random noise, indicating that the function 
Φ provides an approximate estimation. Training a BNN using a training 
set D is equivalent to computing the posterior distribution p(θ|D) of the 
parameters θ. Assuming independence between the network parameters 
θ and the input, the posterior distribution of θ can be expressed as: 

p(θ|D) =
p
(
Dy|Dx, θ

)
p(θ)

∫

θp
(
Dy|Dx, θ’)p(θ’)dθ’∝p

(
Dy|Dx, θ

)
p(θ) . (22) 

The Bayesian posterior of complex models such as artificial neural 
networks is a high-dimensional, highly non-convex probability distri
bution [52], making direct sampling from the posterior usually intrac
table. Therefore, variational inference [53] usually serves as a common 

alternative. Variational inference is not an exact method [50]. Instead of 
directly sampling from the posterior, variational inference posits a 
variational distribution qϕ(θ) parameterized by ϕ. The parameters ϕ are 
optimized through learning to align the variational distribution qϕ(θ) as 
close as possible with the true posterior p(θ|D). The Kullback-Leibler 
(KL) divergence (DKL) [54], rooted in Shannon’s information theory 
for measuring the disparity between probability distributions [55], is 
employed to quantify its proximity: 

DKL
(
qϕ‖ p

)
=

∫

θ

qϕ(θ)log
(

qϕ(θ)
P(θ|D)

)

dθ . (23) 

To avoid the direct computation of p(θ|D), the Evidence Lower 
Bound (ELBO) is further derived as the loss function: 

ELBO =

∫

θ

qϕ(θ)log

(
P(θ,D)
qϕ(θ)

)

dθ = log(P(D)) − DKL
(
qϕ‖ p

)
. (24) 

Since log(P(D)) only depends on the prior, minimizing DKL
(
qϕ ‖ p

)
is 

equivalent to maximizing the ELBO. Approximating the ELBO using 
Monte Carlo simulations yields: 

ELBO ≈
∑n

i=1
logq

(
θ(i)) − logP

(
θ(i)) − logP

(
D|θ(i)), (25) 

where n is the number of Monte Carlo samples, and P
(
θ(i)) represents the 

prior probability. We adopt the scale mixture prior distribution pro
posed by Charles [56]: 

P(θ) =
∏

j
πN

(
θj|0,σ2

1
)
+ (1 − π)N

(
θj|0,σ2

2
)
, (26) 

where θj denotes the jth parameter of the network, π is the scaling factor, 
and N represents the Gaussian probability density function. The stan
dard deviation of the first Gaussian density (σ1) is larger than that of the 
second (σ2), specifically σ1 > σ2, and σ2 should be much smaller than 1.

Variational inference provides a powerful mathematical framework 
for Bayesian inference, but its main challenge in deep learning lies in the 
stochastic nature that impedes gradient backpropagation through in
ternal network nodes [57]. Bayes by Backprop resolves this challenge 
using a reparameterization technique. It introduces a random variable 
ε ∼ q(ε) as a source of non-variational noise. The network parameters θ 
are then obtained through a deterministic transformation t(ε, ϕ), such 
that θ = t(ε,ϕ) adheres to the variational distribution qϕ(θ). This 
approach ensures that ε, once sampled, remains constant relative to 
other variables, enabling deterministic computations and standard 
backpropagation.

When using BNNs for inference, we first sample the posterior dis
tribution p(θ|D) of the network parameters to obtain Θ = {θi|i ∈ [0,N)}, 
where θi ∼ p(θ|D). Then, we obtain the predictive results by model 
averaging: 

ŷ =
1
|Θ|

∑

θi∈Θ
Φθi (x) . (27) 

Meanwhile, the standard deviation of these predictions is employed 
to quantify the uncertainty associated with the estimated results.

2.4.5. Threshold design and debouncing processing
Uncertainty is a unitless quantity derived from variance-based cal

culations and other metrics (as explained in the Eqs. 14, 17, 20, and 27). 
The uncertainty represents a relative measure rather than an absolute 
physical value. The uncertainty measures obtained above are compared 
against predefined thresholds to assess if corrective adjustments are 
necessary for the SOC estimation model under the current battery aging 
conditions. In real-world applications, these thresholds can be flexibly 
defined based on practical constraints, such as acceptable error levels 
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and retraining budget. Specifically, these thresholds can be empirically 
set based on data from batteries of the same model. Our findings indicate 
that applying consistent thresholds to batteries with diverse aging paths 
of the same model results in similar maximum SOC estimation errors 
after correction, supported by detailed experimental data in the Sup
plementary Information (see Figure S12a and Figure S13a). In addition, 
thresholds can be dynamically adjusted during battery use. For example, 
a model correction may be triggered immediately if the driver perceives 
discrepancies between the estimated remaining range and actual con
ditions, or when the vehicle mileage reaches a specific threshold. This 
momentary uncertainty measure then serves as the subsequent 
threshold.

However, relying solely on simple threshold-based judgments may 
lack stability in practical application, as outliers in uncertainty could 
easily surpass the threshold, leading to erroneous decisions. To mitigate 
this, we propose collecting multiple samples from adjacent cycles and 
implementing corrections when their uncertainty measures consecu
tively exceed the set threshold three times. This approach ensures that 
the correction strategy is only activated when the SOC estimation model 
uncertainty state is robust, thereby enhancing system reliability and 
resistance to interference.

3. Battery aging experiments

To conduct battery cycling aging tests, a commercial 18,650 battery 
was selected, with some key characteristic parameters listed in Table 1. 
The experimental profiles are divided into two main categories: simple 
operating profiles and complex operating profiles. The complex oper
ating profiles are designed based on the World Light Vehicle Test Cycle 
(WLTC) [58]. The WLTC specifies vehicle speed variations within a test 
cycle, as shown in Figure S2a. This cycle is highly complex, encom
passing low, medium, high, and extra-high-speed segments, which 
comprehensively cover a range of different speeds. Furthermore, the 
frequent acceleration and deceleration events in the low to 
medium-speed range closely resemble urban driving conditions.

The resulting current-time curve for an individual battery cell, based 
on the WLTC, is shown in Figure S2b, which was detailed in our previous 
work [59]. Notably, during vehicle deceleration, the regenerative 
braking system is considered, meaning the individual battery cell 
operation alternates between discharge and charge states. This design 
choice aligns with the actual usage of EVs and increases the complexity 
of the operating conditions, enhancing the distinction between the 
complex and constant-current conditions.

To facilitate a comparative analysis, three test conditions were 
designed: 1C constant-current, 3C-WLTC, and 6C-WLTC (hereafter 
referred to as 1C, 3C, and 6C, respectively). The charging process is 
identical for all three conditions, utilizing a 1C constant-current con
stant-voltage charging scheme. The differences lie in the discharge 
processes. The 1C condition follows a 1C constant-current discharge, 
while the 3C and 6C conditions are scaled versions of the current profile 
shown in Figure S2b, with maximum discharge rates of 3C (9 A) and 6C 
(18 A), respectively. All experimental conditions were designed in 
accordance with the battery specification sheet (see Supplementary 
Information-1) to ensure safe operation and to avoid cell damage. The 
specific settings for each condition are summarized in Table 2.

It is worth noting that the current results should be interpreted as 
cycling-dominant worst-case validation under the current testing con
ditions, while slower calendar-driven drift is expected to be even better 
accommodated by the uncertainty-guided re-calibration mechanism.

4. Results and discussion

In practical EV scenarios, a significant absolute error can render the 
SOC estimation model inadequate for real-world requirements. This 
discrepancy becomes particularly problematic during critical battery 
states, such as near depletion, where a large error could lead to inac
curate mileage estimates, impacting both driving safety and user satis
faction. Therefore, minimizing the error throughout each correction 
period is essential. Consequently, in the results section, we implement 
SOC correction based on the cycle-based average error.

This section presents a systematic investigation of correction stra
tegies designed to enhance the accuracy and robustness of battery SOC 
estimation models over their lifespan. We first explore several intuitive 
correction approaches based on battery degradation indicators, followed 
by a comparative analysis of uncertainty-driven strategies using 
different uncertainty quantification methods. Emphasis is placed on how 
these strategies interact with single-cycle and full-lifecycle models, and 
how uncertainty indicators can be leveraged to trigger timely correc
tions. The goal is to develop a correction framework that balances 
estimation accuracy with practical applicability under near-real-world 
usage conditions. The following subsections detail the deployment and 
performance of these strategies.

4.1. Correction based on preliminary correction strategies

Fig. 3a illustrates the distribution of overall cycle errors and 
correction points resulting from the preliminary correction strategies 
proposed in this paper. These strategies include adjustments based on 
discharge capacity (Q-count), cycle number (cycle-count), and SOH Loss 
thresholds. The test condition used is 3C, with the single-cycle SOC 
model trained on instantaneous cycle samples collected. Different 
correction strategies are represented by distinct colors for their respec
tive curves and correction points. Thresholds designated for the three 
strategies ensure that the initial correction occurs at the 75th cycle, 
enhancing the clarity of comparative results. Comparing the strategies, 
the SOH Loss-based correction strategy yields fewer correction points 
compared to the fixed discharge capacity strategy. Both strategies 
effectively suppress maximum SOC estimation errors over the battery 
lifecycle. Excessive corrections not only increase costs but also impact 
the normal use of LIBs, making the correction point distribution of the 
SOH Loss strategy more reasonable. Additionally, compared to the fixed 
cycle number strategy, the fixed discharge capacity strategy shows 
progressively delayed subsequent corrections. This delay reflects the 
reduced maximum capacity of the battery and decreased discharge ca
pacity per cycle as it ages.

Fig. 3b compares the performance of the single-cycle model and the 
lifecycle model, with the latter trained on full lifecycle data under 6C 
conditions. The lifecycle model demonstrates an overall lower error 
level throughout the lifecycle of the battery. In contrast, while the 
single-cycle model exhibits higher overall errors compared to the 

Table 1 
Key parameters of the present 18,650 Li-ion battery.

Parameter Value

Chemical component of cathode LiNiCoAlO2 (NCA)
Chemical component of anode Graphite
Nominal capacity 3000 mAh
Range of working voltage 2.5 ~ 4.2 V
Nominal voltage 3.7 V
Charging current at 1C 3 A

Table 2 
Battery charge and discharge rates and corresponding current values for 
different operating profiles.

Test profile Charge/discharge rate Current magnitude

1C constant 
current

1C charge/discharge I = 3 A

6C-WLTC 1C charge, max 6C discharge Imax = 18 A, Iave =

3.22 A
3C-WLTC 1C charge, max 3C discharge Imax = 9 A, Iave = 1.61 A
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lifecycle model, it achieves lower error levels in the few adjacent cycles 
following a correction. This "adjacent advantage" can be more clearly 
observed from Fig. 3c: the error for Q-count correction strategy is lower 
most of the time compared to both the latest lifecycle models trained on 
the 1C and 6C lifecycle datasets [3]. It can be inferred that with a proper 
correction strategy and a few corrections, a single-cycle model can 
outperform a lifecycle model.

It is worth noting that the lifecycle model requires a broad range of 
training data, and when its performance deviates, effective correction 
becomes challenging. Conversely, the single-cycle model offers greater 
flexibility, requiring only one correction to quickly reduce the SOC error 
to an ideal level. By combining the single-cycle model with a reasonable 
correction strategy, the entire battery lifecycle can be divided into 
multiple stages, with a specific SOC estimation model applied in each 
stage. Consequently, this approach can be expected to maintain good 
SOC estimation accuracy throughout the lifecycle.

4.2. Uncertainty curves across a full lifecycle without correction

Fig. 4 illustrates the four uncertainty indicators proposed in this 
paper and their variations with battery aging without correction. Due to 
the differing scales of the variables, dual y-axes are used to display their 
changing trends, with the error coordinates on the left and the uncer
tainty indicator coordinates on the right. The uncertainty indicators are 
represented by blue curves in each subplot, while the error curves are 
shown in red. Each blue correction point represents a sample labeling 
and model training instance. The four indicators are Input Discrepancy, 
GPR Confidence Intervals, BNN Variance, and Model Disagreement. We 
observe that the SOC estimation error increases with the cycle count, 

and the four indicators exhibit similar growth trends to the SOC esti
mation error, implying that these indicators can effectively reflect error 
changes when the error is unknown. The Input Discrepancy indicator 
and GPR Variance show relatively stable upward trends, followed by 
Model Disagreement, while the BNN Variance is the most unstable, 
displaying large oscillations. The stability of these uncertainty indicators 
is crucial for correction decision-making, as excessive oscillations can 
obscure the error information they contain. Therefore, filtering the BNN 
Variance may be necessary before use.

4.3. Input discrepancy correction

Fig. 5 presents the error and uncertainty curves across the entire 
lifecycle under the Input Discrepancy correction strategy. The infinite 
threshold (σ = ∞) denotes the scenario in which no correction is applied 
throughout the battery life cycle. The other thresholds, for better 
demonstrating the correction effect over the entire lifecycle, are deter
mined by analyzing the variance trend of the uncertainty indicators 
across cycles under the no-correction baseline (see Fig. 4). This approach 
allows us to select a meaningful threshold corresponding to the point 
where the first correction would occur, thereby enabling a consistent 
framework for evaluating performance improvements.

Multiple correction points segment the lifecycle into distinct 
correction stages. The blue curve (Input Discrepancy) and the red curve 
(error) exhibit similar trends. Each correction results in a significant 
reduction in both error and uncertainty, while slightly altering the 
trends of these variables. This change leads to a poor alignment of the 
two curves, suggesting a deviation in their correlation. As the Input 
Discrepancy (uncertainty) threshold is lowered, the first correction is 

Fig. 3. Test results for the 3C scenario dataset. (a) Lifecycle error curve and correction point distribution based on the preliminary correction strategy. (b) Per
formance comparison between the lifecycle model and the single-cycle model without any correction. (c) Performance comparison between the lifecycle models and 
the single-cycle model with corrections advised by Q-count strategy.
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triggered earlier, and the maximum error in the initial correction stage is 
accordingly reduced. Notably, the uncertainty for the first cycle sample 
after each correction consistently reaches 0.03, rather than approaching 
a value closer to 0. This may be due to voltage and current signal 
measurement errors, as two sets of sensors cannot produce completely 
identical outputs on the same signal snippet. This strategy effectively 
controls SOC maximum cycle-based average error to a close level of 
0.02, especially for the first and second corrections, demonstrating its 
efficacy.

Fig. 6 illustrates the relationship between average error and average 
uncertainty per cycle under the Input Discrepancy correction strategy 
with varying correction thresholds. The differing data point colors 
distinguish the correction stages. The data points within the same 
correction stage align closely around a straight line, with similar 
regression line slopes across stages, especially for correction #1 and #2, 
as shown in Fig. 6a and b. This stability in the linear relationship 

between error and uncertainty throughout the lifecycle suggests mini
mal impact from model corrections. In this scenario, establishing a 
consistent threshold for each correction stage can effectively control the 
maximum error within each stage, ensuring they remain similar.

Fig. 7 displays the distribution of life-long errors and uncertainties 
under the Input Discrepancy correction strategy with different correc
tion thresholds. We observe that both error and uncertainty increase 
with a higher threshold throughout the lifecycle. The uncertainty re
mains free of outliers and shows a concentrated distribution, indicating 
its stability and utility for downstream calculations and comparisons.

4.4. GPR confidence interval-based correction

Figure S3 shows the lifecycle error and uncertainty curves under the 
GPR confidence correction. As can be seen in Figure S3a, in the first 
correction stage, the two curve segments exhibit significant differences, 

Fig. 4. Variation curves of uncertainty indicators with battery aging for (a) Input Discrepancy; (b) GPR Confidence; (c) Model Dispersion; (d) BNN Variance. Red 
error curves use the left axis, while blue uncertainty curves use the right axis.
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whereas the subsequent correction stages show much closer alignment. 
Specifically, the maximum cycle-based average error in the first stage 
reaches 0.014, compared to approximately 0.005 in the later stages. This 
indicates a notable shift in the trend of GPR confidence and error post 
the initial correction. Consequently, the threshold correction based on 
GPR confidence fails to effectively control the maximum error within 
each correction stage and the timing of corrections throughout the 
lifecycle. For instance, the first stage correction occurs too late, allowing 
the SOC estimation error to grow too large, potentially failing to meet 
usage requirements. Additionally, as the battery nears the end of its 
lifecycle, GPR confidence shows large fluctuations, triggering frequent 
correction requests. These unnecessary corrections only increase the 
SOC model maintenance cost without significantly improving perfor
mance, contradicting the original intent of the correction strategy. 
Therefore, GPR confidence may not be suitable for reflecting the SOC 

model performance.
Figure S4 further illustrates the significant shift in the linear rela

tionship between GPR confidence and error. The regression line of the 
scatter points in the first correction stage deviates notably from other 
stages, and except for this stage, the scatter points in other correction 
stages are relatively concentrated. This matches the observations in 
Figure S3, implying that the rapid decline in maximum capacity early in 
the battery life (as shown in Figure S5, Supplementary Information) may 
negatively impact the calculation of GPR confidence.

Despite the imperfect linearity between GPR confidence and error, 
reducing the threshold results in decreased overall GPR confidence and 
error throughout the lifecycle, as shown in Figure S6. The outliers in the 
box plot in Figure S6a are mainly due to the significant fluctuations in 
GPR confidence towards the end of the battery lifecycle. The error 
outliers in Figure S6b mainly arise from the first correction stage, where 

Fig. 5. Error and uncertainty curves throughout the lifecycle under the Input Discrepancy correction strategy (dual y-axis) for thresholds of (a) σ = 0.06; (b) σ =
0.08; (c) σ = 0.1; and (d) σ = ∞. Red error curves use the left axis, while blue uncertainty curves use the right axis.
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the error had already reached a relatively high level. However, after the 
first correction, the correction strategy becomes more aggressive, 
maintaining lower error levels. As a result, the large error samples from 
the first correction stage contribute to the outliers above the upper 
bound of the box plot.

4.5. Model disagreement-based correction

Figure S7 shows the life-long error and uncertainty curves under the 
Model Disagreement correction strategy. The curves across each three 
threshold correction results show similar trends, with error and uncer
tainty well-fitted. As the threshold increases, the number of corrections 
also rises, which effectively reduces the maximum error. In Figure S7a-c, 

the error at each correction point within the same lifecycle is nearly 
identical, indicating a stable positive correlation between uncertainty 
and error. This stability allows the strategy to effectively control the 
maximum error. For example, guided by the Model Disagreement-based 
correction strategy with an uncertainty threshold of 0.015, the LSTM 
network requires only four retraining sessions over the entire battery 
lifecycle to keep the average SOC estimation error below 1.5 % and the 
maximum cycle-based average error below 2 %. Notably, Model 
Disagreement remains relatively stable throughout the aging cycles, 
with very few outliers. As seen in Figure S7c, there is an abnormal 
fluctuation in Model Disagreement between 150 and 200 cycles, which 
exceeds the preset threshold multiple times. However, thanks to the high 
fault tolerance of the proposed threshold debouncing method for 

Fig. 6. Scatter plots of the correlation between Input Discrepancy and errors after correction using a threshold of (a) σ = 0.06; (b) σ = 0.08; (c) σ = 0.1; and (d) σ 
= ∞.

Fig. 7. Distribution box plots of the (a) input discrepancy throughout the lifecycle; and (b) SOC estimation errors throughout the lifecycle.
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sporadic abnormal values, the correction decision remains unaffected by 
these anomalies.

Fig. 8 presents similar results from the perspective of point distri
bution. In Fig. 8a-c, the scatter points in each correction stage are tightly 
clustered along the trend line, with trend lines between correction stages 
nearly overlapping. This indicates a very stable linear correlation be
tween Model Disagreement and error, suggesting that corrections have 
not significantly impacted this correlation.

The consistent and stable linear relationship between Model 
Disagreement and error across correction stages demonstrates that this 
strategy can effectively control the maximum error by leveraging the 
reliable correlation. This desirable property allows the correction 
approach to maintain the SOC model performance throughout the bat
tery lifecycle.

Figure S8 shows that the median distribution of Model Disagreement 
and errors clearly increases with higher thresholds, indicating robust 
control over errors by the Model Disagreement correction strategy. By 
appropriately selecting the Model Disagreement threshold, this 
approach can provide suitable feedback when the SOC neural network 
error increases, thereby effectively managing the desired maximum SOC 
error.

4.6. BNN variance-based correction

Figure S9 presents the error and uncertainty curves throughout the 
lifecycle under BNN Variance correction. In Figures S9a and b, the un
certainty and error curves are well-aligned and exhibit a similar growth 
trend. In Figure S9a, the last two corrections occur one after another 
closely after the third-to-last, despite the corresponding error levels 

being relatively low. This is primarily due to significant fluctuations in 
uncertainty. When peaks of uncertainty occur consecutively, the pro
posed threshold debouncing method becomes less effective. Despite the 
instability in BNN Variance, the metric always fluctuates around the true 
error curve (Figure S9a-c), indicating a certain ability to reflect error. In 
cases where uncertainty thresholds are slightly raised (Figure S9b and 
c), the maximum cycle-based average errors across all correction stages 
remain relatively consistent, reaching 0.025 and 0.03, respectively, 
depending on the thresholds.

Similarly, Figure S10 shows that the scatter distribution of BNN 
Variance and error correlation has a high degree of variability, making it 
difficult to discern a clear regression line. However, despite the scatter 
distribution’s discreteness, there is a relatively large overlap between 
different correction stages, indicating that the scatter distribution of the 
correlations between stages has not significantly shifted due to the 
corrections. This is a desirable property, as it suggests that the correla
tions are minimally affected by the corrections, which is advantageous 
for the universality of the scale across different correction stages.

Figure S11 illustrates the distribution of SOC estimation error and 
BNN Variance over the lifecycle. As indicated in Figure S11a, changes in 
the threshold do not significantly affect the distribution of uncertainty. 
However, Figure S11b reveals that the result for the threshold of 0.0375 
shows a notable difference compared to 0.04 and 0.043. Referencing 
Figure S11c, the reduction in error is primarily due to multiple unnec
essary corrections. These results suggest that the practical application 
effect of BNN Variance correction is unsatisfactory. However, this 
behavior is not due to convergence problems; the BNN generally 
maintains a low average estimation error (<2 %) across most cycles, 
suggesting stable prediction performance. The oscillations in BNN 

Fig. 8. Scatter plots of the correlation between Model Disagreement and errors after each correction using a threshold of (a) σ = 0.015; (b) σ = 0.025; (c) σ = 0.035; 
and (d) Threshold σ = ∞.
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Variance primarily stem from inherent stochasticity in the variational 
inference process and the limited number of Monte Carlo samples (100 
in this study), which was chosen as a trade-off between computational 
cost and practical feasibility for real-time applications.

4.7. Linear correlation and supplementary validation

Table 3 documents the correlation coefficients between uncertainties 
and errors under various correction strategies, reflecting the degree of 
association between these variables. The correlation coefficient metrics 
analyzed include Pearson correlation coefficient [60], Spearman corre
lation coefficient [61], and Kendall correlation coefficient [62]. As 
depicted in Table 3, the Model Disagreement correction with a threshold 
of 0.035 exhibits the highest values across all three types of correlation 
coefficients, indicating a robust correlation between uncertainty and 
error throughout the lifecycle. The Pearson coefficient assesses the 
strength of linear relationships between continuous variables. In this 
context, the Model Disagreement correction strategy produces Pearson 
coefficients exceeding 0.9, indicating a strong positive linear correla
tion. The Input Discrepancy strategy demonstrates slightly lower Pear
son coefficients, yet still around a respectable level of 0.8. The Spearman 
correlation coefficient evaluates rank correlations, capturing monotonic 
relationships beyond linear patterns. Here, the Model Disagreement and 
Input Discrepancy correction strategies perform best, while the BNN 
Variance strategy shows weaker performance, particularly with a 
smaller threshold of 0.0375, possibly due to significant fluctuations in 
BNN Variance. The GPR Confidence exhibits notable fluctuations in 
correlation with errors post-initial correction, resulting in poorer cor
relation coefficient metrics. Together, the Model Disagreement strategy 
exhibits superior error characterization capabilities, maintaining a sta
ble linear relationship minimally impacted by corrections, thereby 
enhancing the applicability of this correction approach.

To further verify the generalization performance of the method, we 
adopted the public dataset provided by Severson et al. [63], where 
commercial LFP/graphite cells (A123 Systems, model APR18650M1A, 
1.1 Ah nominal capacity) were cycled in a temperature-controlled 
environmental chamber (30 ◦C) under varied fast-charging conditions 
but identical discharging conditions (4 C to 2.0 V, where 1 C is 1.1 A). 
This dataset differs from ours in chemistry (LFP vs. NCA), charging 
protocol (custom multistage fast charge vs. standard CC/CV), and lower 
sampling rate. For verification, we applied the Model Disagreement 
correction strategy that performed best on our own data. As can be 
observed from the error/uncertainty curve shown in Figure S15a, with 
one initial training and only 3 subsequent corrections, the lifespan SOC 
estimation error can be controlled lower than 4 %. Figures S14b-d 
likewise demonstrates a strong correlation between the Model 
Disagreement uncertainty and the error. The strategy efficiently and 

uniformly limits the peak error at each stage, mirroring the results ob
tained on our in house dataset and suggesting that the method can be 
generalized to near-real world usage conditions.

Building on the solid results and discussions, our active learning- 
driven error control strategy demonstrates significant potential for on
line data-driven SOC estimation throughout the lifecycle of LIBs in EVs. 
EVs, with fewer mechanical components and a simpler drivetrain than 
internal combustion engine vehicles, have extended maintenance in
tervals and typically lower maintenance costs. According to the Amer
ican Automobile Association (AAA), EVs may undergo maintenance 
annually for regular services such as wheel alignment and brake services 
[64]. However, due to the complexity of actual operating conditions, the 
accuracy of data-driven SOC estimation is highly likely to deteriorate 
prematurely (as shown in Fig. 3b). Our proposed correction strategy 
enables the automatic identification of this issue for the first time, 
allowing for smart and timely remedies within closed-loop error detec
tion sessions. Specifically, when deterioration in SOC estimation per
formance is detected, the maintenance schedule can be flexibly adjusted, 
either brought forward or delayed. During the subsequent maintenance, 
a deep charging process is performed, during which common profes
sional sensors can be used to collect the training samples (such as 
voltage and current curves) required for the data-driven SOC model 
training. This SOC model correction process only requires the duration 
of a normal charging session, without significantly increasing the 
maintenance time or cost. Moreover, our results indicate that the Model 
Disagreement correction strategy enables robust and high-precision SOC 
estimation with only four standard corrections across the battery’s 
WLTC lifecycle. Given that the design lifetime of LIB packs in EVs ranges 
from 6 to 15 years [65], our suggested correction frequency (four times 
per lifetime) or annual correction would be sufficient for maintaining 
data-driven SOC estimation performance in real-world EV scenarios. In 
summary, the innovative active learning and closed-loop correction 
strategy proposed in this research advances data-driven SOC estimation 
in EVs in terms of feasibility, reliability, and flexibility.

While our framework demonstrates high flexibility and robustness, 
we recognize that its performance in overcharging and dynamic tem
perature scenarios and the impact of cell balancing has yet to be eval
uated, primarily due to the lack of corresponding data. We plan to 
address these in future work by expanding the dataset to include over
charging conditions, thus broadening the applicability of active-deep- 
learning SOC estimation. We also plan to extend the framework to a 
module-level or pack-level system, where balancing effects and inter- 
cell dependencies will be explicitly modeled and addressed in conjunc
tion with SOC estimation and uncertainty correction. Additionally, 
while we have leveraged data from WLTC profiles to simulate complex 
driving conditions, there remains a gap between the test data and real- 
world profiles due to factors such as random driving behaviors and 
unpredictable charge-discharge cycles. Future studies will further 
explore the scalability and reliability of our framework under these 
realistic conditions. Despite these limitations, we believe our framework 
provides valuable insights into active-deep-learning SOC estimation, 
offering a flexible and robust solution that sets the foundation for 
advanced applications in complex EV operating profiles.

5. Conclusions

We systematically evaluate the error trends of mainstream RNN- 
based SOC estimation models across the entire lifecycle of lithium-ion 
batteries, using the complex World Light-duty Test Cycle (WLTC) pro
files that reflect real-world electric vehicle operation. By analyzing both 
lifecycle-level and single-cycle training strategies, we reveal that data- 
driven SOC estimation models experience uncontrolled degradation in 
accuracy as battery aging progresses. To address this critical limitation, 
we propose an innovative closed-loop SOC estimation framework pow
ered by active learning, which enables real-time confidence assessment 
of model predictions without requiring additional reference sensors or 

Table 3 
Correlation coefficients between correction strategy errors and uncertainties.

Strategy Threshold Pearson Spearman Kendall

Input discrepancy 0.06 0.84 0.87 0.68
Input discrepancy 0.08 0.87 0.86 0.66
Input discrepancy 0.10 0.77 0.80 0.62
Input discrepancy ∞ 0.99 0.99 0.93
GPR variance 0.00010 0.45 0.61 0.44
GPR variance 0.00020 0.47 0.50 0.36
GPR variance 0.00027 0.82 0.84 0.65
GPR variance ∞ 0.99 0.99 0.91
Model disagreement 0.015 0.91 0.91 0.74
Model disagreement 0.025 0.98 0.98 0.88
Model disagreement 0.035 0.96 0.98 0.89
Model disagreement ∞ 0.98 0.97 0.87
BNN variance 0.0375 0.11 0.06 0.04
BNN variance 0.0400 0.53 0.53 0.37
BNN variance 0.0430 0.63 0.62 0.43
BNN variance ∞ 0.89 0.88 0.70
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experiments. Our proposed architecture features a Model Disagreement- 
based active-learning correction strategy that continuously monitors 
prediction uncertainty and triggers retraining only when necessary. 
Experimental validation under WLTC conditions and a fast-charging 
protocol demonstrates that the proposed strategy effectively maintains 
estimation robustness throughout the battery lifecycle. Notably, the 
Model Disagreement index achieves a high Pearson correlation coeffi
cient of 0.91 with the actual SOC estimation error, confirming its strong 
capacity to reveal true prediction uncertainty. For the WLTC dataset, 
leveraging the proposed mechanism, the LSTM model requires only four 
retraining sessions across the entire aging cycle to keep the average SOC 
error below 1.5 % and the maximum cycle-based average error below 2 
%. For the fast-charging dataset, the model achieves robust performance 
with one initial training and only 3 subsequent corrections, keeping the 
lifetime SOC estimation error below 4 %.

These results underscore the feasibility and effectiveness of our 
closed-loop, uncertainty-aware architecture in extending the reliability 
and adaptability of data-driven SOC estimation for EVs under complex 
and evolving operating conditions. Future work will investigate the 
generalizability of the proposed framework across different neural 
network backbones, hyperparameter settings, battery models, environ
mental temperatures, and real-world EV datasets with calendar aging 
and cell balancing, to enhance its robustness and applicability. These 
efforts will further support the validation of the generalization capa
bility of our proposed active-learning-driven error control architecture 
for data-driven SOC estimation.
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