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ARTICLE INFO ABSTRACT

Keywords: Accurate estimation of lithium-ion battery state of charge (SOC) is crucial for the safe and efficient operation of
Lithium-ion battery electric vehicles (EVs). However, both data-driven and model-driven SOC estimation methods face significant
State of charge (SOC) challenges under battery aging, which alters internal resistance and electrochemical properties, especially across
g:::g};i:g;ﬂg 0C estimation complex aging trajectories. Most existing deep learning and model-based approaches operate in an open-loop
Deep learning manner, lacking mechanisms for uncertainty quantification, accuracy prediction, or adaptive correction—lead-
Active learning ing to uncontrolled estimation errors during aging. To address this, we propose an innovative closed-loop SOC
Closed-loop correction estimation framework that integrates active learning with uncertainty-aware correction into deep learning

networks, enabling real-time feedback on SOC prediction confidence levels without the need for additional
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sensors or reference data. Specifically, we quantify the performance degradation of mainstream data-driven
methods, including long short-term memory (LSTM) networks and Gaussian process regression (GPR), under
complex aging paths. We demonstrate that our model-disagreement-based active learning correction strategy
maintains robustness throughout the battery lifecycle. Experimental results show that with only four active
retraining sessions over the full aging process, our method reduces average SOC estimation error to below 1.5 %,
and maximum cycle-based average error to below 2 %. This work establishes a path toward uncertainty-
informed, lifecycle-resilient, and data-efficient SOC estimation, marking a significant advancement in battery
management systems for real-world EV applications.

1. Introduction

Lithium-ion batteries (LIBs) are used in electric vehicles (EVs) due to
their high voltage, high energy density, low self-discharge, and long
lifecycle [1-3]. The efficient operation of EVs depends directly on the
battery management system (BMS) [4-7], where the state of charge
(SOC) is the critical characteristic parameter. SOC denotes the remain-
ing charge of the battery, defined mathematically by Eq. (1) [1].

Qavailable

SOC = ,
Qrated /

(€Y

where Qgyaiiapie is the available amount of charge, and Qqeq is the full
charge capacity.

Accurately estimating the SOC for LIBs is crucial. The rated capacity
(Qrateq) provided by the battery manufacturer does not represent the true
capacity of the battery [8]. Moreover, Qq.q Varies throughout the bat-
tery lifecycle due to factors such as usage time, environmental temper-
ature fluctuations, and complex chemical reactions [9]. Additionally,
the availability of sensors capable of directly measuring electrochemical
phenomena (such as current, potential, and conductance) inside the
battery is limited [10]. Furthermore, manufacturing defects and phys-
ical damage during assembly also significantly impact SOC estimation
[11]. Due to these uncontrollable factors, high-precision SOC estimation
remains a challenging problem.

Mainstream SOC estimation methods can be broadly categorized into
two categories: model-driven and data-driven approaches [1].
Model-based SOC estimation methods, also known as the white-box
models [12], are constructed based on the principles governing bat-
tery charging and discharging. These methods leverage a deep under-
standing of battery system principles, employing core equations that
accurately model these processes [13]. For example, Wang et al. [14-16]
proposed two Kalman filter-based architectures to improve the SOC
estimation ability and accuracy of LIBs, as well as a limited memory
recursive least squares algorithm to improve the accuracy of online
parameter identification. The results show that the proposed methods
can achieve accurate SOC estimation under different temperatures,
operating conditions, and initial SOC values. Therefore, model-based
SOC estimation methods typically achieve higher accuracy. However,
developing an accurate battery model necessitates expensive and
time-consuming experimentation, along with substantial domain
expertise and theoretical insight into battery systems [1]. Despite these
efforts, limitations in prior knowledge of system dynamics inevitably
lead to model imperfections. In recent years, with the continuous
improvement in graphics processing unit (GPU) compute power,
data-driven methods have garnered increasing attention [17].
Data-driven methods, also known as black-box models [12], rely on
empirical observations and require minimal prior knowledge [18].
Data-driven methods heavily leverage available data during analysis,
making them suitable for developing SOC estimation models in sce-
narios where detailed internal battery characteristics and chemical re-
actions are not known. Compared to model-based methods, data-driven
approaches require less time and expertise to model complex nonlinear
systems. For example, in the case of inaccurate initial SOC estimation,
LSTM networks converge to the true SOC faster than unscented Kalman
filters (UKF), achieving root mean square error (RMSE) and mean

absolute error (MAE) levels below 2 % and 1 %, respectively [19].
Furthermore, LSTM models can accurately estimate SOC by monitoring
measurable values such as battery current, voltage, and temperature,
without relying on detailed information about internal electrochemical
reactions and related model parameters [20].

Recently, researchers have made significant advances in SOC esti-
mation through data-driven approaches using neural network models.
Tong et al. [21] proposed a neural network model for SOC estimation
under three operating modes: idling, charging, and discharging. They
utilized the US06 drive cycle for model training and pulse testing for
model validation, achieving an average SOC error of 3.8 %. Chaoui et al.
[22] evaluated a recurrent neural network (RNN) SOC estimation model
under dynamic charge and discharge current profiles and temperature
variations. Compared to a multilayer perceptron neural network
approach, this model exhibited lower root-mean-square error and higher
computational speed. Cui et al. [23] developed an intelligent SOC esti-
mation model based on a wavelet neural network. Using the New Eu-
ropean Driving Cycle (NEDC) conditions, this model achieved a mean
absolute error (MAE) of 0.59 % and a maximum SOC error of 3.13 %.
Yang [18] proposed a recursive neural network with gated recurrent
units, which estimates battery SOC from measured current, voltage, and
temperature signals. This method provides accurate estimates for data
from two mainstream LIB types under dynamic operating profiles and is
sensitive to temperature changes. Yang [24] also combined LSTM with
UKF, achieving a root-mean-square error of <1.1 % and an average error
of <1 %, even for temperatures not included in the training data set.
These studies have focused on the generalization performance of models
under various operating profiles and temperatures. The training and
testing data were collected from adjacent charging and discharging cy-
cles, without systematically considering the impact of battery aging.
However, research by Chaoui et al. [22] and Kang et al. [25] has shown
that the accuracy of SOC estimation models trained on fresh battery data
gradually declines as the battery ages. Since SOC estimation models for
practical applications are primarily trained on historical data, their ac-
curacy inevitably decreases due to aging. Therefore, to maintain the
accuracy of SOC estimation models throughout the entire battery life-
cycle, it is necessary to track the performance degradation of these
models. This would enable the timely update or retraining of neural
network models, ensuring sustained accuracy of SOC estimation across
the lifecycle of the LIB.

To address the challenge of SOC estimation due to battery aging, Mao
et al. [26] proposed a joint estimation method for SOC and state of
health (SOH), improving SOC accuracy by updating the battery capacity
based on estimated SOH. Wu et al. [27] developed a robust LSTM model
through feature selection and LSTM structure optimization, achieving a
maximum absolute SOC error of 2.721 % when tested on real-world
driving data under different temperatures and aging stages. Tao et al.
[28] trained an RNN model using data from multiple aging stages,
demonstrating its ability to closely approximate the true SOC even on
unseen aging stages. Rezaei et al. [29] introduced a UKF method to
model the uncertainty of batteries with unknown statistical character-
istics, employing fuzzy control to correct SOC estimation as uncertainty
increases, thereby mitigating the impact of model inaccuracies on state
estimation.

Although promising, these studies face limitations such as challenges
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in acquiring data across multiple aging stages and addressing the un-
known complex aging pathways induced by variable EV operating
profiles. Online corrections applied to model-based methods may lead to
error accumulation and insufficient reliability. Addressing these con-
cerns, Kang [25] proposed a straightforward correction approach
involving regular battery capacity testing every 20 cycles, with adjust-
ments to the capacity estimation model if errors exceed 3 % in two
consecutive tests. While this periodic detection and correction of the
capacity estimation model could theoretically be extended to SOC
models, frequent testing in practical EV applications is challenging, as it
may disrupt normal use due to a lack of efficient mechanisms for
informed decision-making.

In summary, data-driven SOC estimation methods—particularly
those based on recurrent neural networks such as long short-term
memory (LSTM) and probabilistic models like Gaussian process regres-
sion (GPR)—have demonstrated notable accuracy and adaptability.
However, existing approaches often operate in an open-loop fashion,
lacking mechanisms to quantify uncertainty or dynamically adjust to
evolving battery aging conditions [30]. As a result, their performance
may deteriorate significantly over time, especially under complex aging
paths and highly variable EV operating profiles such as the Worldwide
harmonized Light vehicles Test Cycle (WLTC).

To overcome these limitations, we propose an innovative closed-loop
SOC estimation framework that integrates active learning with
uncertainty-aware correction into deep learning networks, enabling
real-time feedback on SOC prediction confidence levels without the need
for additional sensors or reference data. Specifically, we explore the use
of various models—including Model Disagreement, greedy sampling,
Gaussian Process Regression (GPR), and Bayesian Neural Networks
(BNNs)—to develop active learning strategies for assessing and man-
aging estimation uncertainty. This architecture offers a dynamic, data-
driven mechanism to guide efficient model updates and maintain
robust SOC estimation accuracy throughout the battery lifecycle. Our
framework is validated using the complex WLTC profile, and demon-
strates strong generalizability and reliability for SOC estimation in near
real-world EV scenarios and nonlinear battery systems.
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2. Correction strategies for data-driven SOC estimation models
2.1. SOC estimation based on LSTM-RNN

LSTM [20] is a variant of Recurrent Neural Networks (RNNs) [31]
specifically designed for processing sequential data. Fig. 1a illustrates
the concept of the hidden state in RNNs. The inputs at each time step
from the previous time step in an RNN are collectively referred to as the
"hidden state". This hidden state can be understood as the RNN’s
memory of information from the previous steps in the sequence. The
state is updated and propagated as the time steps proceed. Fig. 1b de-
picts the architecture of an LSTM cell. The LSTM introduces three gates -
input, forget, and output gates - to regulate the flow and retention of
information, thereby mitigating issues like “vanishing gradient” and
“exploding gradient”. These gates allow the LSTM to selectively
remember, forget, or update information over time steps, enabling it to
capture long-term dependencies in sequential data more effectively.
This architecture has proven highly effective in various sequence
modeling tasks such as language modeling [32], machine translation
[33], and speech recognition [34], establishing LSTM as a widely
adopted neural network framework in deep learning.

The input gate, forget gate, and output gate can be represented as
follows:

i = n(Wwi¥W + Wrilu_1 +by), 2)
Fie = n(WasW + Wighi 1 + by), 3)
¢k = fiCk—1 + ixtanh(Wy Wy + Whchi_1 + be), 4)
0 = N(WyoWx + Wiohy_1 + b,), (5)
h; = ortanh(cy) . (6)

Here, the initial hidden state hy is set to a zero matrix, and 5 repre-
sents the sigmoid function. The functions i, f, 0, and ¢ denote the input
gate, forget gate, output gate and memory cell, respectively. They are
referred to as gates because they are sigmoid functions that can be zero,
thereby having the ability to suppress the flow of information to the next
computational node. Each gate has its own set of network weights,
denoted by W. The subscript of W indicates the transformation between

S0Ci41
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Fig. 1. (a) Architecture of an RNN (left) and architecture of an RNN unfolded in time (right). The input data is given by ¥, and hy_; denotes the hidden layer of the
LSTM-RNN at time step k — 1. The output of the LSTM-RNN is the estimated SOC at each time step. (b) LSTM Cell Architecture, where i, f, 0, and ¢ denote the input

gate, forget gate, output gate, and memory cell, respectively.
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components. For example, Wy, is the input-output gate matrix, and Wy;
is the hidden-input gate matrix. Each gate also includes a bias term b,
enhancing the flexibility of the network in adapting to the data. The final
fully connected layer performs a linear transformation on the hidden
state tensor hy to obtain the SOC estimate at time step k, as follows:

Soclstm,k = Vour hk + by7 @)

where V,,; and by are the weight matrix and biases of the fully connected
layer, respectively. For LSTM-based SOC estimation, the input data in-
cludes the measured charge voltage and current data over m time steps
during the charging process. The collected data is processed by an RNN
model, and the output is the estimated SOC at the final sampling point,
which can be represented mathematically as:
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approximately consistent degree of aging between adjacent cycles dur-
ing the normal aging process, this approach is acceptable within this
context.

Assuming we have labeled a cycle sample with true SOC values for
training the SOC model, we proceed to iteratively extract samples from
subsequent cycles as the battery undergoes charging and discharging
cycles. While the trained SOC model initially exhibits short-term accu-
racy, continued battery aging renders predictions inaccurate for subse-
quently extracted cycle samples. To preempt SOC model failure,
appropriate correction strategies are essential to assess whether model
adjustments are needed for each cycle sample. Fig. 2 illustrates the
lifelong SOC estimation process under correction strategy control, which
will be discussed in the subsequent sections.

SOC(Kk) = fay(Uk —m+ 1,k —m+2, k), Ik—-m+1k—m+2, k), m<k <N, (8)

where fzyy represents the RNN model used to estimate SOC, and N is the
final time step of the charging process.

2.2. Modeling SOC estimation across the battery lifecycle

During the data preparation stage, ensuring accurate SOC estimation
across all SOC levels requires comprehensive coverage of charging in-
formation, from the lowest initial SOC to the deepest charging depth.
Each cycle, defined as a consecutive charging and discharging process,
constitutes a part of the battery lifespan until its end-of-life. Without loss
of generality, let X;, = [Xn1,Xn2, ..., Xam) denote data samples within the
n™ cycle, where x represents voltage and current sequences measured
over a time window, serving as input to the SOC estimation neural
network. Each cycle sample represents a specific aging stage and enters
the sample pool sequentially, akin to iterative sample extraction.
Additionally, real-time labeling of cycle samples during online SOC
estimation is impractical. Therefore, labeling is performed offline for the
next cycle sample after correction decisions are made. Given the
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2.3. Preliminary correction strategies

This section introduces several simple and intuitive correction
strategy methods. While these methods have some shortcomings, they
are highly feasible and interpretable, making them suitable as reference
baselines for active learning correction strategies.

Discharge capacity threshold correction strategy. This strategy in-
volves tracking the total discharge capacity Q since the latest correction.
If Q exceeds the threshold o, a correction is required. Then, Q is set to
zero, and the next iteration begins. The discharge capacity is calculated
based on the Coulomb counting method [35]:

Q= / I(t)dt, 9)
to

where t represents time, t, denotes the starting time, and I(t) signifies the
current function of t. Notably, the directions of current during the
charging and discharging processes are different, which can lead to
Coulomb counting cancellation. Therefore, only the discharging process
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Fig. 2. Data-driven SOC estimation across the battery lifecycle under the guidance of an active learning and closed-loop correction strategy.
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is considered. Additionally, in practical applications, this formula needs
to be discretized to match the sampling frequency of the sensor.

Cycle count threshold correction strategy. This strategy statistically
tracks the total number of cycles the battery has gone through since the
latest correction. If the number of cycles exceeds the threshold o, a
correction is requested. This method is feasible in experimental settings
where the depth of each charge and discharge cycle is relatively
consistent. However, in real-world battery usage scenarios, the depth of
each charge and discharge can vary significantly, leading to instability
in the cycle count statistics and threshold-based correction.

SOH Loss Threshold Correction Strategy. Accurate SOH acquisition is
crucial for this strategy and can be achieved through experimental
measurement or estimation methods. Experimental measurement of
SOH requires specialized discharge testing, which disrupts the normal
battery use. Therefore, online estimation methods are recommended,
such as training an SOH estimation model like the SOC estimation
model, to enable continuous SOH acquisition. Let the SOH of the most
recent correction cycle be denoted as SOH,. The ASOH for any cycle T
can be defined as:

ASOH; = SOH; — SOH, . (10)

If ASOH exceeds the threshold o, a correction is requested. This
strategy allows for flexible control over the number of corrections
throughout the battery lifecycle and offers good interpretability. How-
ever, it requires a complete lifecycle dataset of SOH and related input
features, along with a well-trained SOH estimation model.

2.4. Active learning-driven correction strategies

The preliminary correction strategies discussed earlier heavily rely
on statistical accuracy and are vulnerable to cumulative statistical er-
rors, potentially reducing effectiveness in real-world scenarios. There-
fore, focusing on generalization capability, we leverage active learning
to address the challenge of maintaining SOC estimation performance.
Active learning, a specialized machine learning approach aimed at
saving labeling costs and time [36], functions as a targeted search
strategy widely applied across diverse research domains. For instance,
active learning has been instrumental in identifying the most informa-
tive experiments in expansive biological networks to minimize experi-
ment count [37], and in reducing parameter combination evaluations
for simulation models [38]. In our context, active learning can be uti-
lized to select the most informative samples to update or retrain the SOC
estimation model. This framework decides whether to query the label of
the newest sample or to predict it based on previous samples when
processing upcoming samples. By strategically labeling and training
samples during critical battery life stages, the model accuracy and
robustness can be significantly enhanced. In the realm of active learning,
maintaining SOC estimation performance resembles a stream-based
scenario [36], where unlabeled samples are sequentially and itera-
tively sampled, rather than being accumulated into a pool all at once
(pool-based scenario). Using active learning as a framework, one of the
key challenges is modeling the uncertainty associated with estimation. A
range of parametric and nonparametric methods have been explored to
model uncertainty in power demand [39-41]. For instance, Abbasi [42]
achieved a reliable and improved interpretation of power transformer
frequency response traces by identifying key characteristics within these
traces. However, these uncertainty modeling techniques cannot be
directly applied to state of charge (SOC) accuracy, given the unpre-
dictable aging processes of batteries and the time-series nature of their
data streams. Herein, we introduce four approaches - Input Discrepancy,
GPR Variance, Model Disagreement, and BNN Variance - to quantify the
uncertainty inherent in SOC estimation.

2.4.1. Input discrepancy
The Input Discrepancy correction strategy is an active learning
approach independent of the SOC model, characterized by low compu-
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tational cost. The Input Discrepancy metric inherits the core concept of
Greedy sampling on the inputs (GSx) [43,44] which prioritizes the se-
lection of samples farthest from previously labeled samples in each
iteration. Under the assumption of generality, let us assume there are k
labeled samples. For each of the remaining N — k unlabeled samples,
GSx first computes their distances to the k labeled samples:

&, =% —Xn |, m=1,- ks n=k+1,---N. (11)

The minimum distance d¥ of sample x, to the k labeled samples is
then determined as:

d’,i:m,innd"nm, n=k+1,- N. (12)

Finally, the sample with the maximum d is selected and requested
for labeling.

GSx is not directly applicable to battery aging correction as it is
designed for pool-based scenarios, while the aging correction involves a
stream-based scenario. Therefore, we propose the Input Discrepancy
metric based on GSx, which quantifies the correction importance of each
cycle sample and applies it to stream-based active learning scenarios.
Given the irreversible nature of aging, new samples hold greater value
than older ones. Thus, during each correction, we replace old samples
with newly labeled ones and directly retrain the SOC model with these
updated samples. Furthermore, since each cycle sample consists of
multiple sub-samples, the distance calculation between cycle samples
should involve all sub-samples. Assuming the a labeled cycle sample X,
with N, sub-samples and the b unlabeled cycle sample X, with Nj, sub-
samples, we define the distance between each unlabeled sub-sample in
X, and each labeled sub-sample in X, as follows:

Qo = | Xn =X ||, m=1,- Nog; n =1, Np . 13)

The Input Discrepancy of X, is calculated as:
1 &
H—p— in & = . 1
Dy, N, ?:1 min d&, m=1,2- N, 14)

High Input Discrepancy indicates that the SOC mo del encounters
unfamiliar input features, underscoring the substantial value of labeling
such input samples.

2.4.2. GPR variance

GPR is a nonparametric model that leverages a Gaussian Process (GP)
prior for regression analysis on data [45]. It offers advantages such as
nonparametric modeling, probabilistic prediction, computational effi-
ciency and robustness [46,47], making it widely employed in SOC and
SOH estimation [48].

Given a training set 7 = ((x;,y;),i=1,2,...,n) comprisingn input-
output pairs (X;,y;), where x; represents measured voltage and charge
difference sequences, and y; denotes the corresponding SOC at the final
sampling time step, we aim to compute the predictive distribution of the
unknown observation y* at input x*. Here, we define X = [xy, ..., X,” and
Y = [y1,.,Ya| - Assuming y; = f(x;) + €, where ¢; ~.7°(0,062) is an
independent and identically distributed Gaussian noise, and modeling
the output f = (f(x1).f(x2)---f(xn)) as a Gaussian random field f ~.77(0,
K), with Ky = k(x;,x;) representing the covariance kernel, the joint
distribution of the training set & and the predicted test output (x*,y*) is:

2]y ).

Given the training set, the mean prediction for the input x* is:
¥ =Kx,X)(KX,X) +0°T) 'Y . (16)
The prediction variance is:

A% = K(x",x°) — K(x", X) (K(X,X) + 6’I) 'K(X,X’) . 17
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The standard deviation of the prediction determines the width of the
confidence interval, serving as a measure of uncertainty and a key var-
iable for correction decisions. Averaging the standard deviations of the
estimated values for all sub-samples within a cycle sample provides the
GPR uncertainty for the entire cycle sample.

2.4.3. Disagreement-based methods

The disagreement-based query strategy focuses on selecting data
points where there is disagreement among multiple models or experts
[49]. In the Model Disagreement strategy, the learner is represented by a
hypothesis space /7', which contains multiple hypotheses h, where each
hypothesis h € 7 represents an SOC estimation model that can map the
input x to the output y. For simplicity, let us assume that the hypothesis
space 7 contains only two hypotheses, though this setup can be
generalized to more complex settings. In a regression problem, the
output y is a continuous variable within the range [0,1]. The error of a
hypothesis h is given by

e(h) = h(X)-Y]. (18)
Define the pseudo-distance between two hypotheses as

d(h.h) = |e(h) - e(K)], 19)
The Model Disagreement p on the input x is defined as follows:

Pri (%) = |h(x) — K (x)] . (20

Here, the Model Disagreement p represents the magnitude of the
difference in the predictions made by the different hypotheses for the
same input. Specifically, this work uses LSTM and GPR as two con-
trasting models to produce Model Disagreement index. Model
Disagreement directly contributes to the uncertainty in the predictions
of the learner, as the learner must consider the outputs of all the hy-
potheses. When Model Disagreement is large, it becomes challenging to
provide a final prediction that accommodates all hypotheses.

2.4.4. BNN variance

BNNs are stochastic artificial neural networks that utilize Bayesian
inference [50]. Unlike traditional neural networks, which rely on point
estimation methods, BNNs address the issue of trained models poten-
tially generalizing unpredictably and overconfidently to data points
outside the training distribution [51]. Such convincing yet incorrect
results can be critical in real-world applications. To address this issue,
BNNs simulate multiple possible computational pathways by assigning
random probability distributions to the weights, thereby better quanti-
fying the uncertainty inherent in the inference process. Figure S1 (see
Supplementary Information) illustrates the distinction between
Bayesian networks and conventional neural networks in weight calcu-
lation, highlighting that a more concentrated result distribution in-
dicates lower uncertainty. This computational process can be
summarized as follows:

0 ~p(0),
¥ =) +e, @D

where 0 represents the network parameters, p() is the probability dis-
tribution of 6, and ¢ denotes random noise, indicating that the function
® provides an approximate estimation. Training a BNN using a training
set D is equivalent to computing the posterior distribution p(8|D) of the
parameters #. Assuming independence between the network parameters
6 and the input, the posterior distribution of @ can be expressed as:

_ p(DyIDx,0)p(0)
pOD) = 1,p(Dy|D..0))p(8)d8

The Bayesian posterior of complex models such as artificial neural
networks is a high-dimensional, highly non-convex probability distri-
bution [52], making direct sampling from the posterior usually intrac-
table. Therefore, variational inference [53] usually serves as a common

-p(Dy|Dx,0)p(0) . (22)
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alternative. Variational inference is not an exact method [50]. Instead of
directly sampling from the posterior, variational inference posits a
variational distribution q, (@) parameterized by ¢. The parameters ¢ are
optimized through learning to align the variational distribution g, () as
close as possible with the true posterior p(0|D). The Kullback-Leibler
(KL) divergence (Dx.) [54], rooted in Shannon’s information theory
for measuring the disparity between probability distributions [55], is
employed to quantify its proximity:

D (4 P) = / q4(0)log < }?(bﬁﬁ,’;)) do . (23)
0

To avoid the direct computation of p(#|D), the Evidence Lower
Bound (ELBO) is further derived as the loss function:

P(6,D)
q4(0)

ELBO = / 4y (0)10g< )dﬂ =log(P(D)) — Dx.(qyll P) - (24)

Since log(P(D)) only depends on the prior, minimizing Dy (g || p) is
equivalent to maximizing the ELBO. Approximating the ELBO using
Monte Carlo simulations yields:

ELBO ~ ) logq(6") —1ogP(0") — logP(D|0"), (25)

i=1

where n is the number of Monte Carlo samples, and P(0<i> ) represents the
prior probability. We adopt the scale mixture prior distribution pro-
posed by Charles [56]:

P0) = [ [77(6;/0.63) + (1 — 7).7°(6;0,03), (26)
)

where 0; denotes the j* parameter of the network,  is the scaling factor,
and ./" represents the Gaussian probability density function. The stan-
dard deviation of the first Gaussian density (o) is larger than that of the
second (o02), specifically o1 > 02, and o2 should be much smaller than 1.

Variational inference provides a powerful mathematical framework
for Bayesian inference, but its main challenge in deep learning lies in the
stochastic nature that impedes gradient backpropagation through in-
ternal network nodes [57]. Bayes by Backprop resolves this challenge
using a reparameterization technique. It introduces a random variable
e ~ q(¢) as a source of non-variational noise. The network parameters 6
are then obtained through a deterministic transformation t(e, ¢), such
that 6 =t(e,¢p) adheres to the variational distribution q4(@). This
approach ensures that &, once sampled, remains constant relative to
other variables, enabling deterministic computations and standard
backpropagation.

When using BNNs for inference, we first sample the posterior dis-
tribution p(0|D) of the network parameters to obtain ® = {6;|i € [0,N)},
where 6; ~ p(8|D). Then, we obtain the predictive results by model
averaging:

1
y= @Z% (%) . @7

Meanwhile, the standard deviation of these predictions is employed
to quantify the uncertainty associated with the estimated results.

2.4.5. Threshold design and debouncing processing

Uncertainty is a unitless quantity derived from variance-based cal-
culations and other metrics (as explained in the Eqs. 14, 17, 20, and 27).
The uncertainty represents a relative measure rather than an absolute
physical value. The uncertainty measures obtained above are compared
against predefined thresholds to assess if corrective adjustments are
necessary for the SOC estimation model under the current battery aging
conditions. In real-world applications, these thresholds can be flexibly
defined based on practical constraints, such as acceptable error levels
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and retraining budget. Specifically, these thresholds can be empirically
set based on data from batteries of the same model. Our findings indicate
that applying consistent thresholds to batteries with diverse aging paths
of the same model results in similar maximum SOC estimation errors
after correction, supported by detailed experimental data in the Sup-
plementary Information (see Figure S12a and Figure S13a). In addition,
thresholds can be dynamically adjusted during battery use. For example,
a model correction may be triggered immediately if the driver perceives
discrepancies between the estimated remaining range and actual con-
ditions, or when the vehicle mileage reaches a specific threshold. This
momentary uncertainty measure then serves as the subsequent
threshold.

However, relying solely on simple threshold-based judgments may
lack stability in practical application, as outliers in uncertainty could
easily surpass the threshold, leading to erroneous decisions. To mitigate
this, we propose collecting multiple samples from adjacent cycles and
implementing corrections when their uncertainty measures consecu-
tively exceed the set threshold three times. This approach ensures that
the correction strategy is only activated when the SOC estimation model
uncertainty state is robust, thereby enhancing system reliability and
resistance to interference.

3. Battery aging experiments

To conduct battery cycling aging tests, a commercial 18,650 battery
was selected, with some key characteristic parameters listed in Table 1.
The experimental profiles are divided into two main categories: simple
operating profiles and complex operating profiles. The complex oper-
ating profiles are designed based on the World Light Vehicle Test Cycle
(WLTC) [58]. The WLTC specifies vehicle speed variations within a test
cycle, as shown in Figure S2a. This cycle is highly complex, encom-
passing low, medium, high, and extra-high-speed segments, which
comprehensively cover a range of different speeds. Furthermore, the
frequent acceleration and deceleration events in the low to
medium-speed range closely resemble urban driving conditions.

The resulting current-time curve for an individual battery cell, based
on the WLTC, is shown in Figure S2b, which was detailed in our previous
work [59]. Notably, during vehicle deceleration, the regenerative
braking system is considered, meaning the individual battery cell
operation alternates between discharge and charge states. This design
choice aligns with the actual usage of EVs and increases the complexity
of the operating conditions, enhancing the distinction between the
complex and constant-current conditions.

To facilitate a comparative analysis, three test conditions were
designed: 1C constant-current, 3C-WLTC, and 6C-WLTC (hereafter
referred to as 1C, 3C, and 6C, respectively). The charging process is
identical for all three conditions, utilizing a 1C constant-current con-
stant-voltage charging scheme. The differences lie in the discharge
processes. The 1C condition follows a 1C constant-current discharge,
while the 3C and 6C conditions are scaled versions of the current profile
shown in Figure S2b, with maximum discharge rates of 3C (9 A) and 6C
(18 A), respectively. All experimental conditions were designed in
accordance with the battery specification sheet (see Supplementary
Information-1) to ensure safe operation and to avoid cell damage. The
specific settings for each condition are summarized in Table 2.

Table 1
Key parameters of the present 18,650 Li-ion battery.

Parameter Value

Chemical component of cathode LiNiCoAlO, (NCA)

Chemical component of anode Graphite
Nominal capacity 3000 mAh
Range of working voltage 2.5~42V
Nominal voltage 3.7V
Charging current at 1C 3A
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Table 2
Battery charge and discharge rates and corresponding current values for
different operating profiles.

Test profile Charge/discharge rate Current magnitude
1C constant 1C charge/discharge I = 3A
current
6C-WLTC 1Ccharge, max 6Cdischarge  Imax = 18 A, Iye =
3.22A
3C-WLTC 1Ccharge, max 3Cdischarge  Imax = 9 A, Iy = 1.61A

It is worth noting that the current results should be interpreted as
cycling-dominant worst-case validation under the current testing con-
ditions, while slower calendar-driven drift is expected to be even better
accommodated by the uncertainty-guided re-calibration mechanism.

4. Results and discussion

In practical EV scenarios, a significant absolute error can render the
SOC estimation model inadequate for real-world requirements. This
discrepancy becomes particularly problematic during critical battery
states, such as near depletion, where a large error could lead to inac-
curate mileage estimates, impacting both driving safety and user satis-
faction. Therefore, minimizing the error throughout each correction
period is essential. Consequently, in the results section, we implement
SOC correction based on the cycle-based average error.

This section presents a systematic investigation of correction stra-
tegies designed to enhance the accuracy and robustness of battery SOC
estimation models over their lifespan. We first explore several intuitive
correction approaches based on battery degradation indicators, followed
by a comparative analysis of uncertainty-driven strategies using
different uncertainty quantification methods. Emphasis is placed on how
these strategies interact with single-cycle and full-lifecycle models, and
how uncertainty indicators can be leveraged to trigger timely correc-
tions. The goal is to develop a correction framework that balances
estimation accuracy with practical applicability under near-real-world
usage conditions. The following subsections detail the deployment and
performance of these strategies.

4.1. Correction based on preliminary correction strategies

Fig. 3a illustrates the distribution of overall cycle errors and
correction points resulting from the preliminary correction strategies
proposed in this paper. These strategies include adjustments based on
discharge capacity (Q-count), cycle number (cycle-count), and SOH Loss
thresholds. The test condition used is 3C, with the single-cycle SOC
model trained on instantaneous cycle samples collected. Different
correction strategies are represented by distinct colors for their respec-
tive curves and correction points. Thresholds designated for the three
strategies ensure that the initial correction occurs at the 75th cycle,
enhancing the clarity of comparative results. Comparing the strategies,
the SOH Loss-based correction strategy yields fewer correction points
compared to the fixed discharge capacity strategy. Both strategies
effectively suppress maximum SOC estimation errors over the battery
lifecycle. Excessive corrections not only increase costs but also impact
the normal use of LIBs, making the correction point distribution of the
SOH Loss strategy more reasonable. Additionally, compared to the fixed
cycle number strategy, the fixed discharge capacity strategy shows
progressively delayed subsequent corrections. This delay reflects the
reduced maximum capacity of the battery and decreased discharge ca-
pacity per cycle as it ages.

Fig. 3b compares the performance of the single-cycle model and the
lifecycle model, with the latter trained on full lifecycle data under 6C
conditions. The lifecycle model demonstrates an overall lower error
level throughout the lifecycle of the battery. In contrast, while the
single-cycle model exhibits higher overall errors compared to the
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Fig. 3. Test results for the 3C scenario dataset. (a) Lifecycle error curve and correction point distribution based on the preliminary correction strategy. (b) Per-
formance comparison between the lifecycle model and the single-cycle model without any correction. (c) Performance comparison between the lifecycle models and

the single-cycle model with corrections advised by Q-count strategy.

lifecycle model, it achieves lower error levels in the few adjacent cycles
following a correction. This "adjacent advantage" can be more clearly
observed from Fig. 3c: the error for Q-count correction strategy is lower
most of the time compared to both the latest lifecycle models trained on
the 1C and 6C lifecycle datasets [3]. It can be inferred that with a proper
correction strategy and a few corrections, a single-cycle model can
outperform a lifecycle model.

It is worth noting that the lifecycle model requires a broad range of
training data, and when its performance deviates, effective correction
becomes challenging. Conversely, the single-cycle model offers greater
flexibility, requiring only one correction to quickly reduce the SOC error
to an ideal level. By combining the single-cycle model with a reasonable
correction strategy, the entire battery lifecycle can be divided into
multiple stages, with a specific SOC estimation model applied in each
stage. Consequently, this approach can be expected to maintain good
SOC estimation accuracy throughout the lifecycle.

4.2. Uncertainty curves across a full lifecycle without correction

Fig. 4 illustrates the four uncertainty indicators proposed in this
paper and their variations with battery aging without correction. Due to
the differing scales of the variables, dual y-axes are used to display their
changing trends, with the error coordinates on the left and the uncer-
tainty indicator coordinates on the right. The uncertainty indicators are
represented by blue curves in each subplot, while the error curves are
shown in red. Each blue correction point represents a sample labeling
and model training instance. The four indicators are Input Discrepancy,
GPR Confidence Intervals, BNN Variance, and Model Disagreement. We
observe that the SOC estimation error increases with the cycle count,

and the four indicators exhibit similar growth trends to the SOC esti-
mation error, implying that these indicators can effectively reflect error
changes when the error is unknown. The Input Discrepancy indicator
and GPR Variance show relatively stable upward trends, followed by
Model Disagreement, while the BNN Variance is the most unstable,
displaying large oscillations. The stability of these uncertainty indicators
is crucial for correction decision-making, as excessive oscillations can
obscure the error information they contain. Therefore, filtering the BNN
Variance may be necessary before use.

4.3. Input discrepancy correction

Fig. 5 presents the error and uncertainty curves across the entire
lifecycle under the Input Discrepancy correction strategy. The infinite
threshold (6 = o) denotes the scenario in which no correction is applied
throughout the battery life cycle. The other thresholds, for better
demonstrating the correction effect over the entire lifecycle, are deter-
mined by analyzing the variance trend of the uncertainty indicators
across cycles under the no-correction baseline (see Fig. 4). This approach
allows us to select a meaningful threshold corresponding to the point
where the first correction would occur, thereby enabling a consistent
framework for evaluating performance improvements.

Multiple correction points segment the lifecycle into distinct
correction stages. The blue curve (Input Discrepancy) and the red curve
(error) exhibit similar trends. Each correction results in a significant
reduction in both error and uncertainty, while slightly altering the
trends of these variables. This change leads to a poor alignment of the
two curves, suggesting a deviation in their correlation. As the Input
Discrepancy (uncertainty) threshold is lowered, the first correction is
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Fig. 4. Variation curves of uncertainty indicators with battery aging for (a) Input Discrepancy; (b) GPR Confidence; (c) Model Dispersion; (d) BNN Variance. Red

error curves use the left axis, while blue uncertainty curves use the right axis.

triggered earlier, and the maximum error in the initial correction stage is
accordingly reduced. Notably, the uncertainty for the first cycle sample
after each correction consistently reaches 0.03, rather than approaching
a value closer to 0. This may be due to voltage and current signal
measurement errors, as two sets of sensors cannot produce completely
identical outputs on the same signal snippet. This strategy effectively
controls SOC maximum cycle-based average error to a close level of
0.02, especially for the first and second corrections, demonstrating its
efficacy.

Fig. 6 illustrates the relationship between average error and average
uncertainty per cycle under the Input Discrepancy correction strategy
with varying correction thresholds. The differing data point colors
distinguish the correction stages. The data points within the same
correction stage align closely around a straight line, with similar
regression line slopes across stages, especially for correction #1 and #2,
as shown in Fig. 6a and b. This stability in the linear relationship

between error and uncertainty throughout the lifecycle suggests mini-
mal impact from model corrections. In this scenario, establishing a
consistent threshold for each correction stage can effectively control the
maximum error within each stage, ensuring they remain similar.

Fig. 7 displays the distribution of life-long errors and uncertainties
under the Input Discrepancy correction strategy with different correc-
tion thresholds. We observe that both error and uncertainty increase
with a higher threshold throughout the lifecycle. The uncertainty re-
mains free of outliers and shows a concentrated distribution, indicating
its stability and utility for downstream calculations and comparisons.

4.4. GPR confidence interval-based correction

Figure S3 shows the lifecycle error and uncertainty curves under the
GPR confidence correction. As can be seen in Figure S3a, in the first
correction stage, the two curve segments exhibit significant differences,
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Fig. 5. Error and uncertainty curves throughout the lifecycle under the Input Discrepancy correction strategy (dual y-axis) for thresholds of (a) 6 = 0.06; (b) ¢ =
0.08; (c) 6 = 0.1; and (d) 6 = . Red error curves use the left axis, while blue uncertainty curves use the right axis.

whereas the subsequent correction stages show much closer alignment.
Specifically, the maximum cycle-based average error in the first stage
reaches 0.014, compared to approximately 0.005 in the later stages. This
indicates a notable shift in the trend of GPR confidence and error post
the initial correction. Consequently, the threshold correction based on
GPR confidence fails to effectively control the maximum error within
each correction stage and the timing of corrections throughout the
lifecycle. For instance, the first stage correction occurs too late, allowing
the SOC estimation error to grow too large, potentially failing to meet
usage requirements. Additionally, as the battery nears the end of its
lifecycle, GPR confidence shows large fluctuations, triggering frequent
correction requests. These unnecessary corrections only increase the
SOC model maintenance cost without significantly improving perfor-
mance, contradicting the original intent of the correction strategy.
Therefore, GPR confidence may not be suitable for reflecting the SOC
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model performance.

Figure S4 further illustrates the significant shift in the linear rela-
tionship between GPR confidence and error. The regression line of the
scatter points in the first correction stage deviates notably from other
stages, and except for this stage, the scatter points in other correction
stages are relatively concentrated. This matches the observations in
Figure S3, implying that the rapid decline in maximum capacity early in
the battery life (as shown in Figure S5, Supplementary Information) may
negatively impact the calculation of GPR confidence.

Despite the imperfect linearity between GPR confidence and error,
reducing the threshold results in decreased overall GPR confidence and
error throughout the lifecycle, as shown in Figure S6. The outliers in the
box plot in Figure S6a are mainly due to the significant fluctuations in
GPR confidence towards the end of the battery lifecycle. The error
outliers in Figure S6b mainly arise from the first correction stage, where
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Fig. 7. Distribution box plots of the (a) input discrepancy throughout the lifecycle; and (b) SOC estimation errors throughout the lifecycle.

the error had already reached a relatively high level. However, after the
first correction, the correction strategy becomes more aggressive,
maintaining lower error levels. As a result, the large error samples from
the first correction stage contribute to the outliers above the upper
bound of the box plot.

4.5. Model disagreement-based correction

Figure S7 shows the life-long error and uncertainty curves under the
Model Disagreement correction strategy. The curves across each three
threshold correction results show similar trends, with error and uncer-
tainty well-fitted. As the threshold increases, the number of corrections
also rises, which effectively reduces the maximum error. In Figure S7a-c,

11

the error at each correction point within the same lifecycle is nearly
identical, indicating a stable positive correlation between uncertainty
and error. This stability allows the strategy to effectively control the
maximum error. For example, guided by the Model Disagreement-based
correction strategy with an uncertainty threshold of 0.015, the LSTM
network requires only four retraining sessions over the entire battery
lifecycle to keep the average SOC estimation error below 1.5 % and the
maximum cycle-based average error below 2 9%. Notably, Model
Disagreement remains relatively stable throughout the aging cycles,
with very few outliers. As seen in Figure S7c, there is an abnormal
fluctuation in Model Disagreement between 150 and 200 cycles, which
exceeds the preset threshold multiple times. However, thanks to the high
fault tolerance of the proposed threshold debouncing method for
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sporadic abnormal values, the correction decision remains unaffected by
these anomalies.

Fig. 8 presents similar results from the perspective of point distri-
bution. In Fig. 8a-c, the scatter points in each correction stage are tightly
clustered along the trend line, with trend lines between correction stages
nearly overlapping. This indicates a very stable linear correlation be-
tween Model Disagreement and error, suggesting that corrections have
not significantly impacted this correlation.

The consistent and stable linear relationship between Model
Disagreement and error across correction stages demonstrates that this
strategy can effectively control the maximum error by leveraging the
reliable correlation. This desirable property allows the correction
approach to maintain the SOC model performance throughout the bat-
tery lifecycle.

Figure S8 shows that the median distribution of Model Disagreement
and errors clearly increases with higher thresholds, indicating robust
control over errors by the Model Disagreement correction strategy. By
appropriately selecting the Model Disagreement threshold, this
approach can provide suitable feedback when the SOC neural network
error increases, thereby effectively managing the desired maximum SOC
error.

4.6. BNN variance-based correction

Figure S9 presents the error and uncertainty curves throughout the
lifecycle under BNN Variance correction. In Figures S9a and b, the un-
certainty and error curves are well-aligned and exhibit a similar growth
trend. In Figure S9a, the last two corrections occur one after another
closely after the third-to-last, despite the corresponding error levels
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being relatively low. This is primarily due to significant fluctuations in
uncertainty. When peaks of uncertainty occur consecutively, the pro-
posed threshold debouncing method becomes less effective. Despite the
instability in BNN Variance, the metric always fluctuates around the true
error curve (Figure S9a-c), indicating a certain ability to reflect error. In
cases where uncertainty thresholds are slightly raised (Figure S9b and
c), the maximum cycle-based average errors across all correction stages
remain relatively consistent, reaching 0.025 and 0.03, respectively,
depending on the thresholds.

Similarly, Figure S10 shows that the scatter distribution of BNN
Variance and error correlation has a high degree of variability, making it
difficult to discern a clear regression line. However, despite the scatter
distribution’s discreteness, there is a relatively large overlap between
different correction stages, indicating that the scatter distribution of the
correlations between stages has not significantly shifted due to the
corrections. This is a desirable property, as it suggests that the correla-
tions are minimally affected by the corrections, which is advantageous
for the universality of the scale across different correction stages.

Figure S11 illustrates the distribution of SOC estimation error and
BNN Variance over the lifecycle. As indicated in Figure S11a, changes in
the threshold do not significantly affect the distribution of uncertainty.
However, Figure S11b reveals that the result for the threshold of 0.0375
shows a notable difference compared to 0.04 and 0.043. Referencing
Figure S1l1c, the reduction in error is primarily due to multiple unnec-
essary corrections. These results suggest that the practical application
effect of BNN Variance correction is unsatisfactory. However, this
behavior is not due to convergence problems; the BNN generally
maintains a low average estimation error (<2 %) across most cycles,
suggesting stable prediction performance. The oscillations in BNN
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Variance primarily stem from inherent stochasticity in the variational
inference process and the limited number of Monte Carlo samples (100
in this study), which was chosen as a trade-off between computational
cost and practical feasibility for real-time applications.

4.7. Linear correlation and supplementary validation

Table 3 documents the correlation coefficients between uncertainties
and errors under various correction strategies, reflecting the degree of
association between these variables. The correlation coefficient metrics
analyzed include Pearson correlation coefficient [60], Spearman corre-
lation coefficient [61], and Kendall correlation coefficient [62]. As
depicted in Table 3, the Model Disagreement correction with a threshold
of 0.035 exhibits the highest values across all three types of correlation
coefficients, indicating a robust correlation between uncertainty and
error throughout the lifecycle. The Pearson coefficient assesses the
strength of linear relationships between continuous variables. In this
context, the Model Disagreement correction strategy produces Pearson
coefficients exceeding 0.9, indicating a strong positive linear correla-
tion. The Input Discrepancy strategy demonstrates slightly lower Pear-
son coefficients, yet still around a respectable level of 0.8. The Spearman
correlation coefficient evaluates rank correlations, capturing monotonic
relationships beyond linear patterns. Here, the Model Disagreement and
Input Discrepancy correction strategies perform best, while the BNN
Variance strategy shows weaker performance, particularly with a
smaller threshold of 0.0375, possibly due to significant fluctuations in
BNN Variance. The GPR Confidence exhibits notable fluctuations in
correlation with errors post-initial correction, resulting in poorer cor-
relation coefficient metrics. Together, the Model Disagreement strategy
exhibits superior error characterization capabilities, maintaining a sta-
ble linear relationship minimally impacted by corrections, thereby
enhancing the applicability of this correction approach.

To further verify the generalization performance of the method, we
adopted the public dataset provided by Severson et al. [63], where
commercial LFP/graphite cells (A123 Systems, model APR18650M1A,
1.1 Ah nominal capacity) were cycled in a temperature-controlled
environmental chamber (30 °C) under varied fast-charging conditions
but identical discharging conditions (4 C to 2.0 V, where 1 Cis 1.1 A).
This dataset differs from ours in chemistry (LFP vs. NCA), charging
protocol (custom multistage fast charge vs. standard CC/CV), and lower
sampling rate. For verification, we applied the Model Disagreement
correction strategy that performed best on our own data. As can be
observed from the error/uncertainty curve shown in Figure S15a, with
one initial training and only 3 subsequent corrections, the lifespan SOC
estimation error can be controlled lower than 4 %. Figures S14b-d
likewise demonstrates a strong correlation between the Model
Disagreement uncertainty and the error. The strategy efficiently and

Table 3

Correlation coefficients between correction strategy errors and uncertainties.
Strategy Threshold Pearson Spearman Kendall
Input discrepancy 0.06 0.84 0.87 0.68
Input discrepancy 0.08 0.87 0.86 0.66
Input discrepancy 0.10 0.77 0.80 0.62
Input discrepancy © 0.99 0.99 0.93
GPR variance 0.00010 0.45 0.61 0.44
GPR variance 0.00020 0.47 0.50 0.36
GPR variance 0.00027 0.82 0.84 0.65
GPR variance © 0.99 0.99 0.91
Model disagreement 0.015 0.91 0.91 0.74
Model disagreement 0.025 0.98 0.98 0.88
Model disagreement 0.035 0.96 0.98 0.89
Model disagreement © 0.98 0.97 0.87
BNN variance 0.0375 0.11 0.06 0.04
BNN variance 0.0400 0.53 0.53 0.37
BNN variance 0.0430 0.63 0.62 0.43
BNN variance o0 0.89 0.88 0.70
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uniformly limits the peak error at each stage, mirroring the results ob-
tained on our in house dataset and suggesting that the method can be
generalized to near-real world usage conditions.

Building on the solid results and discussions, our active learning-
driven error control strategy demonstrates significant potential for on-
line data-driven SOC estimation throughout the lifecycle of LIBs in EVs.
EVs, with fewer mechanical components and a simpler drivetrain than
internal combustion engine vehicles, have extended maintenance in-
tervals and typically lower maintenance costs. According to the Amer-
ican Automobile Association (AAA), EVs may undergo maintenance
annually for regular services such as wheel alignment and brake services
[64]. However, due to the complexity of actual operating conditions, the
accuracy of data-driven SOC estimation is highly likely to deteriorate
prematurely (as shown in Fig. 3b). Our proposed correction strategy
enables the automatic identification of this issue for the first time,
allowing for smart and timely remedies within closed-loop error detec-
tion sessions. Specifically, when deterioration in SOC estimation per-
formance is detected, the maintenance schedule can be flexibly adjusted,
either brought forward or delayed. During the subsequent maintenance,
a deep charging process is performed, during which common profes-
sional sensors can be used to collect the training samples (such as
voltage and current curves) required for the data-driven SOC model
training. This SOC model correction process only requires the duration
of a normal charging session, without significantly increasing the
maintenance time or cost. Moreover, our results indicate that the Model
Disagreement correction strategy enables robust and high-precision SOC
estimation with only four standard corrections across the battery’s
WLTC lifecycle. Given that the design lifetime of LIB packs in EVs ranges
from 6 to 15 years [65], our suggested correction frequency (four times
per lifetime) or annual correction would be sufficient for maintaining
data-driven SOC estimation performance in real-world EV scenarios. In
summary, the innovative active learning and closed-loop correction
strategy proposed in this research advances data-driven SOC estimation
in EVs in terms of feasibility, reliability, and flexibility.

While our framework demonstrates high flexibility and robustness,
we recognize that its performance in overcharging and dynamic tem-
perature scenarios and the impact of cell balancing has yet to be eval-
uated, primarily due to the lack of corresponding data. We plan to
address these in future work by expanding the dataset to include over-
charging conditions, thus broadening the applicability of active-deep-
learning SOC estimation. We also plan to extend the framework to a
module-level or pack-level system, where balancing effects and inter-
cell dependencies will be explicitly modeled and addressed in conjunc-
tion with SOC estimation and uncertainty correction. Additionally,
while we have leveraged data from WLTC profiles to simulate complex
driving conditions, there remains a gap between the test data and real-
world profiles due to factors such as random driving behaviors and
unpredictable charge-discharge cycles. Future studies will further
explore the scalability and reliability of our framework under these
realistic conditions. Despite these limitations, we believe our framework
provides valuable insights into active-deep-learning SOC estimation,
offering a flexible and robust solution that sets the foundation for
advanced applications in complex EV operating profiles.

5. Conclusions

We systematically evaluate the error trends of mainstream RNN-
based SOC estimation models across the entire lifecycle of lithium-ion
batteries, using the complex World Light-duty Test Cycle (WLTC) pro-
files that reflect real-world electric vehicle operation. By analyzing both
lifecycle-level and single-cycle training strategies, we reveal that data-
driven SOC estimation models experience uncontrolled degradation in
accuracy as battery aging progresses. To address this critical limitation,
we propose an innovative closed-loop SOC estimation framework pow-
ered by active learning, which enables real-time confidence assessment
of model predictions without requiring additional reference sensors or
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experiments. Our proposed architecture features a Model Disagreement-
based active-learning correction strategy that continuously monitors
prediction uncertainty and triggers retraining only when necessary.
Experimental validation under WLTC conditions and a fast-charging
protocol demonstrates that the proposed strategy effectively maintains
estimation robustness throughout the battery lifecycle. Notably, the
Model Disagreement index achieves a high Pearson correlation coeffi-
cient of 0.91 with the actual SOC estimation error, confirming its strong
capacity to reveal true prediction uncertainty. For the WLTC dataset,
leveraging the proposed mechanism, the LSTM model requires only four
retraining sessions across the entire aging cycle to keep the average SOC
error below 1.5 % and the maximum cycle-based average error below 2
%. For the fast-charging dataset, the model achieves robust performance
with one initial training and only 3 subsequent corrections, keeping the
lifetime SOC estimation error below 4 %.

These results underscore the feasibility and effectiveness of our
closed-loop, uncertainty-aware architecture in extending the reliability
and adaptability of data-driven SOC estimation for EVs under complex
and evolving operating conditions. Future work will investigate the
generalizability of the proposed framework across different neural
network backbones, hyperparameter settings, battery models, environ-
mental temperatures, and real-world EV datasets with calendar aging
and cell balancing, to enhance its robustness and applicability. These
efforts will further support the validation of the generalization capa-
bility of our proposed active-learning-driven error control architecture
for data-driven SOC estimation.
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